
ar
X

iv
:1

40
9.

49
35

v1
 [

cs
.D

S]
 1

7
Se

p
20

14

Finding Even Subgraphs Even Faster

Prachi Goyal1, Pranabendu Misra2, Fahad Panolan2, Geevarghese Philip3, and
Saket Saurabh2,4

1 Indian Institute of Science, India. prachi.goyal@csa.iisc.ernet.in
2 Institute of Mathematical Sciences, India.
{pranabendu|fahad|saket}@imsc.res.in

3 Max-Planck-Institute for Informatics, Germany. gphilip@mpi-inf.mpg.de
4 University of Bergen, Norway.

Abstract. Problems of the following kind have been the focus of much
recent research in the realm of parameterized complexity: Given an in-
put graph (digraph) on n vertices and a positive integer parameter k,
find if there exist k edges (arcs) whose deletion results in a graph that
satisfies some specified parity constraints. In particular, when the objec-
tive is to obtain a connected graph in which all the vertices have even
degrees—where the resulting graph is Eulerian—the problem is called
Undirected Eulerian Edge Deletion. The corresponding problem
in digraphs where the resulting graph should be strongly connected and
every vertex should have the same in-degree as its out-degree is called Di-

rected Eulerian Edge Deletion. Cygan et al. [Algorithmica, 2014]
showed that these problems are fixed parameter tractable (FPT), and
gave algorithms with the running time 2O(k log k)nO(1). They also asked,
as an open problem, whether there exist FPT algorithms which solve
these problems in time 2O(k)nO(1). In this paper we answer their ques-
tion in the affirmative: using the technique of computing representative
families of co-graphic matroids we design algorithms which solve these
problems in time 2O(k)nO(1). The crucial insight we bring to these prob-
lems is to view the solution as an independent set of a co-graphic matroid.
We believe that this view-point/approach will be useful in other prob-
lems where one of the constraints that need to be satisfied is that of
connectivity.

1 Introduction

Many well-studied algorithmic problems on graphs can be phrased in the fol-
lowing way: Let F be a family of graphs or digraphs. Given as input a graph
(digraph) G and a positive integer k, can we delete k vertices (or edges or arcs)
from G such that the resulting graph (digraph) belongs to the class F? Recent
research in parameterized algorithms has focused on problems of this kind where
the class F consists of all graphs/digraphs whose vertices satisfy certain parity
constraints [2, 3, 6, 7]. In this paper we obtain significantly faster parameterized
algorithms for two such problems, improving the previous best bounds due to
Cygan et al. [3]. We also settle the parameterized complexity of a third prob-
lem, disproving a conjecture of Cai and Yang [2] and solving an open problem

http://arxiv.org/abs/1409.4935v1

posed by Fomin and Golovach [7]. We obtain our results using recently-developed
techniques for the efficient computation of representative sets of matroids.

Our Problems. An undirected graph G is even (respectively, odd) if every
vertex of G has even (resp. odd) degree. A directed graph D is balanced if the
in-degree of each vertex of D is equal to its out-degree. An undirected graph
is Eulerian if it is connected and even; and a directed graph is Eulerian if it
is strongly connected and balanced. Cai and Yang [2] initiated the systematic
study of parameterized Eulerian subgraph problems. In this work we take up the
following edge-deletion problems of this kind:

Undirected Eulerian Edge Deletion Parameter: k
Input: A connected undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges in G such that G \S
is Eulerian?

Undirected Connected Odd Edge Deletion Parameter: k
Input: A connected undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges in G such that G \S
is odd and connected?

Directed Eulerian Edge Deletion Parameter: k
Input: A strongly connected directed graph D and an integer k.
Question: Does there exist a set S of at most k arcs in D such that D \ S
is Eulerian?

Our algorithms for these problems also find such a set S of edges/arcs when
it exists; so we slightly abuse the notation and refer to S as a solution to the
problem in each case.

Previous Work. Cai and Yang [2] listed sixteen odd/even undirected subgraph
problems in their pioneering paper, and settled the parameterized complexity of
all but four. The first two problems above are among these four; Cai and Yang
conjectured that these are both W[1]-hard, and so are unlikely to have fixed-
parameter tractable (FPT) algorithms: those with running times of the form
f(k) ·nO(1) for some computable function f where n is the number of vertices in
the input graph. Cygan et al. [3] disproved this conjecture for the first problem:
they used a novel and non-trivial application of the colour-coding technique to
solve both Undirected Eulerian Edge Deletion and Directed Eule-

rian Edge Deletion in time 2O(k log k)nO(1). They also posed as open the
question whether there exist 2O(k)nO(1)-time algorithms for these two problems.
Fomin and Golovach [7] settled the parameterized complexity of the other two
problems—not defined here—left open by Cai and Yang, but left the status of
Undirected Connected Odd Edge Deletion open.

Our Results and Methods. We devise deterministic algorithms which run
in time 2O(k)nO(1) for all the three problems defined above. This answers the

2

question of Cygan et al. [3] in the affirmative, solves the problem posed by Fomin
and Golovach, and disproves the conjecture of Cai and Yang for Undirected

Connected Odd Edge Deletion.

Theorem 1 Undirected Eulerian Edge Deletion, Undirected Con-

nected Odd Edge Deletion, and Directed Eulerian Edge Deletion

can all be solved in time O(2(2+ω)k · n2m3k6) + mO(1) where n = |V (G)|,
m = |E(G)| and ω is the exponent of matrix multiplication.

Our main conceptual contribution is to view the solution as an independent set
of a co-graphic matroid, which we believe will be useful in other problems where
one of the constraints that need to be satisfied is that of connectivity.

We now give a high-level overview of our algorithms. Given a subset of ver-
tices T of a graph G, a T -join of G is a set S ⊆ E(G) of edges such that T is
exactly the set of odd degree vertices in the subgraph H = (V (G), S). Observe
that T -joins exist only for even-sized vertex subsets T . The following problem is
long known to be solvable in polynomial time [5].

Min T -Join
Input: An undirected graph G and a set of terminals T ⊆ V (G).
Question: Find a T -join of G of the smallest size.

Consider the two problems we get when we remove the connectivity (resp.
strong connectivity) requirement on the graph G \ S from Undirected Eule-

rian Edge Deletion and Directed Eulerian Edge Deletion; we call
these problems Undirected Even Edge Deletion and Directed Bal-

anced Edge Deletion, respectively. Cygan et al. show that Undirected

Even Edge Deletion can be reduced to Min T -Join, and Directed Bal-

anced Edge Deletion to a minimum cost flow problem with unit costs, both
in polynomial time [3]. Thus it is not the local requirement of even degrees which
makes these problems hard, but the simultaneous global requirement of (strong)
connectivity.

To handle this situation we turn to a matroid which correctly captures the
connectivity requirement. Let I be the family of all subsets X ⊆ E(G) of the
edge set of a graph G such that the subgraph (V (G), E(G) \ X) is connected.
Then the pair (E(G), I) forms a linear matroid called the co-graphic matroid of
G (See Section 2 for definitions). Let T be the set of odd-degree vertices of the
input graph G. Observe that for Undirected Eulerian Edge Deletion, the
solution S we are after is both a T -join and an independent set of the co-graphic
matroid of G. We exploit this property of S to design a dynamic programming
algorithm which finds S by computing “representative sub-families” [8,10,12,13]
of certain families of edge subsets in the context of the co-graphic matroid of
G. We give simple characterizations of solutions which allow us to do dynamic
programming, where at every step we only need to keep a representative family of
the family of partial solutions where each partial solution is an independent set of
the corresponding co-graphic matroid. To find the desired representative family
of partial solutions we use the algorithm by Lokshtanov et al. [11]. Our methods

3

also imply that Undirected Connected Odd Edge Deletion admits an
algorithm with running time 2O(k)nO(1).

2 Preliminaries

Throughout the paper we use ω to denote the exponent in the running time of
matrix multiplication, the current best known bound for which is ω < 2.373 [15].
Graphs and Directed Graphs. We use “graph” to denote simple graphs
without self-loops, directions, or labels, and “directed graph” or “digraph” for
simple directed graphs without self-loops or labels. We use standard terminology
from the book of Diestel [4] for those graph-related terms which we do not
explicitly define. In general we use G to denote a graph and D to denote a
digraph. We use V (G) and E(G), respectively, to denote the vertex and edge
sets of a graph G, and V (D) and A(D), respectively, to denote the vertex and
arc sets of a digraph D. For an edge set E′ ⊆ E(G), we use (i) V (E′) to denote
the set of end vertices of the edges in E′, (ii) G \ E′ to denote the subgraph
G′ = (V (G), E(G)\E′) of G, and (iii) G(E′) to denote the subgraph (V (E′), E′)
of G. The terms V (A′), D \ A′, and D(A′) are defined analogously for an arc
subset A′ ⊆ A(D).

If P is a path from vertex u to vertex v in graph G (or in digraph D) then
we say that (i) P connects u and v, (ii) u, v are, respectively, the initial vertex
and the final vertex of P , and (iii) u, v are the end vertices of path P . Let
P1 = x1x2 . . . xr and P2 = y1y2 . . . ys be two edge-disjoint paths in graph G.
If xr = y1 and V (P1) ∩ V (P2) = {xr}, then we use P1P2 to denote the path
x1x2 . . . xry2 . . . ys. A path system P in graph G (resp., digraph D) is a collection
of paths in G (resp. in D), and it is edge-disjoint if no two paths in the system
share an edge. We use V (P) and E(P) (A(P) for a path system in digraph) for
the set of vertices and edges, respectively, in a path system P . We say that a
path system P = {P1, . . . , Pr} ends at a vertex u if path Pr ends at u. We use
V e(P) to denote the set of end vertices of paths in a path system P . For a path
system P in a digraph D, we use V i(P) and V f (P), respectively, to denote the
set of initial vertices and the set of final vertices, respectively, of paths in P . For
a path system P = {P1, . . . , Pr} and an edge/arc (u, v), we define P ◦ (u, v) as
follows.

P ◦ (u, v) =

{
{P1, . . . , Prv} if u is the final vertex of Pr and v /∈ V (Pr)
{P1, . . . , Pr, uv} if u is not the final vertex of Pr

A directed graph D is strongly connected if for any two vertices u and v of
D, there is a directed path from u to v and a directed path from v to u in D. A
digraph D is weakly connected if the underlying undirected graph is connected.
The in-neighborhood of a vertex v in D is the set N−

D (v) = {u | (u, v) ∈ A(D)},
and the in-degree of v in D is d−D(v) = |N−

D (v)|. The out-neighborhood of v is
the set N+

D (v) = {w | (v, w) ∈ A(D)}, and its out-degree is d+D(v) = |N+
D (v)|.

Matroids.We now state some basic definitions and properties of matroids which
we use in the rest of the paper. We refer the reader to the book of Oxley [14] for
a comprehensive treatment of the subject.

4

Definition 1. A pair M = (E, I), where E is a set called the ground set and I
is a family of subsets of E, which are called independent sets, is a matroid if it
satisfies the following conditions:

(I1) ∅ ∈ I.
(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.
(I3) If A,B ∈ I and |A| < |B| , then ∃ e ∈ (B \A) such that A ∪ {e} ∈ I.

An inclusion-wise maximal set of I is called a basis of the matroid. All bases of
a matroid have the same size, called the rank of the matroid M .

Linear Matroids and Representable Matroids. Let E be the set of column
labels of a matrix A over some field F, and let I be the set of all subsets X of E
such that the set of columns labelled by X is linearly independent over F. Then
M = (E, I) is a matroid, called the vector matroid of the matrix A. If a matroid
M is the vector matroid of a matrix A over some field F, then we say that M
(i) is representable over F, and (ii) is a linear (or representable) matroid.

Co-Graphic Matroids. The co-graphic matroid of a connected graph G is
defined as M = (E(G), I) where I = {S ⊆ E(G) | (G \ S) is connected}. It is a
linear matroid and, given a graph G, a representation of the co-graphic matroid
of G over the finite field F2 can be found in polynomial time [12, 14]. The rank
of the cographic matroid of a connected graph G is (|E(G)| − |V (G)| + 1). We
use MG to denote the co-graphic matroid of a graph G. For a directed graph D
we use MD to denote the co-graphic matroid of the underlying undirected graph
of D.

Let A be a family of path systems in a graph G. Let e = (u, v) be an edge
in G (or an arc in D), and let M = (E, I) be the co-graphic matroid of graph
G (or of digraph D). We use A • {e} to denote the family of path systems

A • {e} = {P ′ = P ◦ e | P ∈ A, e /∈ E(P), E(P ′) ∈ I } .

Representative Families of Matroids. The notion of representative families
of matroids and their fast computation play key roles in our algorithms.

Definition 2. [8,12] Given a matroid M = (E, I), a family S of subsets of E,

and a non-negative integer q, we say that a subfamily Ŝ ⊆ S is q-representative
for S if the following holds. For every set Y ⊆ E of size at most q, if there is a
set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint
from Y with X̂ ∪ Y ∈ I.

In other words, if some independent set X in S can be extended to a larger
independent set by a set Y of at most q new elements, then there is a set X̂ in
Ŝ that can be extended by the same set Y . If Ŝ ⊆ S is q-representative for S we
write Ŝ ⊆q

rep S.
In this paper we are interested in linear matroids and in representative fam-

ilies derived from them. The following theorem states the key algorithmic result
which we use for the computation of representative families of linear matroids.

5

Theorem 1. [11] Let M = (E, I) be a linear matroid of rank n and let S =
{S1, . . . , St} be a family of independent sets, each of size b. Let A be an n ×
|E| matrix representing M over a field F, where F = Fpℓ or F is Q. Then

there is deterministic algorithm which computes a representative set Ŝ ⊆q
rep S of

size at most nb
(
b+q
b

)
, using O

((
b+q
b

)
tb3n2 + t

(
b+q
b

)ω−1
(bn)ω−1

)
+ (n+ |E|)O(1)

operations over the field F.

3 Undirected Eulerian Edge Deletion

In this section we describe our 2O(k)nO(1)-time algorithm for Undirected Eu-

lerian Edge Deletion. Let (G, k) be an instance of the problem. Cygan et
al. [3] observed the following characterization.

Observation 1 A set S ⊆ E(G) ; |S| ≤ k of edges of a graph G is a solution to
the instance (G, k) of Undirected Eulerian Edge Deletion if and only if
it satisfies the following conditions:

(a) G \ S is a connected graph; and,
(b) S is a T -join where T is the set of all odd degree vertices in G.

For a designated set T ⊆ V (G) of terminal vertices of graph G, we call a set
S ⊆ E(G) a co-connected T -join of graph G if (i) G \ S is connected and (ii) S
is a T -join. From Observation 1 we get that the Undirected Eulerian Edge

Deletion problem is equivalent to checking whether the given graph G has a
co-connected T -join of size at most k, where T is the set of all odd-degree vertices
in G. We present an algorithm which finds a co-connected T -join for an arbitrary
(even-sized) set of terminals T within the claimed time-bound. That is, we solve
the following more general problem

Co-Connected T -Join Parameter: k
Input: A connected graph G, an even-sized subset T ⊆ V (G) and an integer
k.
Question: Does there exist a co-connected T -join of G of size at most k?

We design a dynamic programming algorithm for this problem where the
partial solutions which we store satisfy the first property of co-connected T -
join and “almost satisfy” the second property. To limit the number of partial
solutions which we need to store, we compute and store instead, at each step,
a representative family of the partial solutions in the corresponding co-graphic
matroid. We start with the following characterization of the T -joins of a graph
G.

Proposition 1. [9, Proposition 1.1] Let T be an even-sized subset of vertices

of a graph G, and let ℓ = |T |
2 . A subset S of edges of G is a T -join of G if and

only if S can be expressed as a union of the edge sets of (i) ℓ paths which connect
disjoint pairs of vertices in T , and (ii) zero or more cycles, where the paths and
cycles are all pairwise edge-disjoint.

6

This proposition yields the following useful property of inclusion-minimal
co-connected T -joins (minimal co-connected T -joins for short) of a graph G.

Lemma 1. Let T be an even-sized subset of vertices of a graph G, and let ℓ =
|T |
2 . Let S be a minimal co-connected T -join of G. Then (i) the subgraph G(S) is
a forest, and (ii) the set S is a union of the edge-sets of ℓ pairwise edge disjoint
paths which connect disjoint pairs of vertices in T .

Proof. Suppose the subgraph G(S) is not a forest. Then there exists a cycle C
in G(S). The degree of any vertex v of G in the subgraph G(S \E(C)) is either
the same as its degree in the subgraph G(S), or is smaller by exactly two. So the
set S \ E(C) is also a T -join of G. And since the subgraph G \ S is connected
by assumption, we get that the strictly larger subgraph G \ (S \ E(C)) is also
connected. Thus S \E(C) is a co-connected T -join of G which is a strict subset
of S. This contradicts the minimality of S, and hence we get that G(S) is a
forest.

Thus there are no cycles in the subgraph G(S), and hence we get from Propo-
sition 1 that S is a union of the edge sets of ℓ pairwise edge-disjoint paths which
connect disjoint pairs of vertices in T .

Note that the set of paths described in Lemma 1 are just pairwise edge-disjoint.
Vertices (including terminals) may appear in more than one path as internal ver-
tices. A partial converse of the above lemma follows directly from Proposition 1.

Lemma 2. Let T be an even-sized subset of vertices of a graph G, and let ℓ =
|T |
2 . Let a subset S ⊆ E(G) of edges of G be such that (i) G\S is connected, and
(ii) S is a union of the edge-sets of ℓ pairwise edge-disjoint paths which connect
disjoint pairs of vertices in T . Then S is a co-connected T -join.

Proof. Since S is a union of the edge sets of ℓ pairwise edge-disjoint paths which
connect disjoint pairs of vertices in T , we get from Proposition 1 that S is a
T -join. Since G \ S is connected as well, S is a co-connected T -join.

An immediate corollary of Lemma 1 is that for any set T ⊆ V (G), any T -join
of the graph G has at least |T |/2 edges. Hence if |T | > 2k then we can directly
returnNo as the answer forCo-Connected T -Join. So from now on we assume
that |T | ≤ 2k. From Lemmas 1 and 2 we get that to solve Co-Connected T -
Join it is enough to check for the existence of a pairwise edge-disjoint collection
of paths P = {P1, . . . , P |T |

2

} such that (i) the subgraph (G \E(P)) is connected,

(ii) |E(P)| ≤ k, and (iii) the paths in P connect disjoint pairs of terminals in T .
We use dynamic programming to find such a path system.

We first state some notation which we need to describe the dynamic pro-
gramming table. We use Q to denote the set of all path systems in G which
satisfy the above conditions. For 1 ≤ i ≤ k we use Q(i) to denote the set of all
potential partial solutions of size i : Each Q(i) is a collection of path systems

Q(i) = {P
(i)
1 , . . . ,P

(i)
t } where each path system P

(i)
s = {P1, . . . , Pr} ∈ Q(i) has

the following properties:

7

(i) The paths P1, . . . , Pr are pairwise edge-disjoint.
(ii) The end-vertices of the paths P1, . . . , Pr are all terminals and are pairwise

disjoint, with one possible exception. One end-vertex (the final vertex) of the
path Pr may be a non-terminal, or a terminal which appears as an end-vertex
of another path as well.

(iii) |E(P
(i)
s)| = i, and the subgraph G \ E(P

(i)
s) is connected.

Note that the only ways in which a partial solution P
(i)
s may violate one of the

conditions in Lemma 2 are: (i) it may contain strictly less than T
2 paths, and/or

(ii) there may be a path Pr (and only one such), which has one end-vertex vr
which is a non-terminal or is a terminal which is an end-vertex of another path as

well. We call Pr the last path in P
(i)
s and vr the final vertex of P

(i)
s , and say that

Pr ends at vertex vr. For a path system P = {P1, . . . , Pr} and u ∈ V (G) ∪ {ǫ},
we use W (P , u) to denote the following set.

W (P , u) =

{
V e(P) if u = ǫ

(V e(P \ {Pr})) ∪ {v | v is the initial vertex of Pr} if u 6= ǫ

Finally, for each 1 ≤ i ≤ k, T ′ ⊆ T , and v ∈ (V (G) ∪ {ǫ}) we define

Q[i, T ′, v] = {P ∈ Q(i) |W (P , v) = T ′, and if v 6= ǫ then v is the final vertex of P}

as the set of all potential partial solutions of size i whose set of end vertices is
exactly T ′ ∪ {v}. Observe from this definition that in the case v = ǫ, the last
path Pr in each path system P = {P1, . . . , Pr} ∈ Q[i, T

′, ǫ] ends at a “good”
vertex; that is, at a terminal vertex which is different from all the end vertices
of the other paths P1, . . . , P(r−1) in P .

It is not difficult to see that this definition of Q[i, T ′, v] is a correct notion of
a partial solution for Co-Connected T -Join:

Lemma 3. Let (G, T, k) be a Yes instance of Co-Connected T -Join which

has a minimal solution of size k′ ≤ k, and let ℓ = |T |
2 . Then for each 1 ≤ i ≤ k′

there exist T ′ ⊆ T , v ∈ (V (G) ∪ {ǫ}), and path systems P = {P1, P2, . . . , Pr} ∈
Q[i, T ′, v] and P ′ = {P ′

r, P
′
r+1, . . . , P

′
ℓ} in G (where E(P ′

r) = ∅ if v = ǫ) such
that (i) E(P) ∩ E(P ′) = ∅, (ii) PrP

′
r is a path in G, and (iii) P ∪ P ′ =

{P1, P2, . . . , PrP
′
r, P

′
r+1, . . . , P

′
ℓ} is an edge-disjoint path system whose edge set

is a solution to the instance (G, T, k).

Proof. Let P̂ = {P̂1, . . . , P̂ℓ} be a path system in graph G which witnesses—as
per Lemma 1—the fact that (G, T, k) has a solution of size k′. If i =

∑r

j=1 |E(P̂j)|

for some 1 ≤ r ≤ ℓ then the path systems P = {P̂1, P̂2, . . . , P̂r} ∈ Q[i, T ′, v] and
P ′ = {∅, ˆPr+1, ˆPr+2, . . . , P̂ℓ} satisfy the claim, where T ′ = T ∩V e(P) and v = ǫ.

If i takes another value then let 1 ≤ r ≤ ℓ be such that
∑r−1

j=1 |E(P̂j)| <

i <
∑r

j=1 |E(P̂j)|. “Split” the path P̂r as P̂r = P̂ 1
r P̂

2
r such that

∑r−1
j=1 |E(P̂j)|+

|E(P̂ 1
r)| = i. Now the path systems P = {P̂1, P̂2, . . . , ˆPr−1, P̂ 1

r } ∈ Q[i, T
′, v] and

8

P ′ = {P̂ 2
r , ˆPr+1, ˆPr+2, . . . , P̂ℓ} satisfy the claim, where T ′ = T ∩ V e(P) and v is

the final vertex of the path P̂ 1
r .

Given this notion of a partial solution the natural dynamic programming
approach is to try to compute, in increasing order of 1 ≤ i ≤ k, partial solutions
Q[i, T ′, v] for all T ′ ⊆ T , v ∈ (V (G) ∪ {ǫ}) at step i. But this is not feasible
in polynomial time because the sets Q[i, T ′, v] can potentially grow to sizes
exponential in |V (G)|. Our way out is to observe that to reach a final solution
to the problem we do not need to store every element of a set Q[i, T ′, v] at
each intermediate step. Instead, we only need to store a representative family
R of partial solutions corresponding to Q[i, T ′, v], where R has the following
property: If there is a way of extending—in the sense of Lemma 3—any partial
solution P ∈ Q[i, T ′, v] to a final solution then there exists a P̂ ∈ R which can
be extended the same way to a final solution.

Observe now that our final solution and all partial solutions are independent
sets in the co-graphic matroid MG of the input graph G. We use the algorithm of
Lokshtanov et al. [11]—see Theorem 1—to compute these representative families
of potential partial solutions at each intermediate step. In step i of the dynamic
programming we store, in place of the set Q[i, T ′, v], its (k− i)-representative set
̂Q[i, T ′, v] ⊆k−i

rep Q[i, T
′, v] with respect to the co-graphic matroid MG; for the

purpose of this computation we think of each element P of Q[i, T ′, v] as the edge
set E(P). Lemma 4 below shows that this is a safe step. Whenever we talk about
representative families in this section, it is always with respect to the co-graphic
matroid MG associated with G; we do not explicitly mention the matroid from
now on. We start with the following definitions.

Definition 3. Let 1 ≤ i ≤ k , T ′ ⊆ T, ℓ = |T |
2 and v ∈ (V (G) ∪ {ǫ}), and let

Q[i, T ′, v] be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} be
a path system in the set Q[i, T ′, v]. Let P ′ = {P ′

r, P
′
r+1, . . . , P

′
ℓ} be a path system

in G (where E(P ′
r) = ∅ if v = ǫ) such that (i) |E(P ′)| ≤ (k − i), (ii) PrP

′
r is

a path in G, (iii) P ∪ P ′ = {P1, P2, . . . , PrP
′
r, P

′
r+1, . . . , P

′
ℓ} is an edge-disjoint

path system that connects disjoint pairs of terminals in T , (iv) V e(P ∪ P ′) = T
and (v) G \ (E(P)∪E(P ′)) is connected. Then P ′ is said to be an extender for
P.

Definition 4. Let 1 ≤ i ≤ k , T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}), and let Q[i, T ′, v]
be the corresponding set of partial solutions. We say that J [i, T ′, v] ⊆ Q[i, T ′, v]
is a path-system equivalent set to Q[i, T ′, v] if the following holds: If P ∈
Q[i, T ′, v] and P ′ be an extender for P, then there exists P∗ ∈ J [i, T ′, v] such
that P ′ is an extender for P∗ as well. We say that J [i, T ′, v] ⊑k−i

peq Q[i, T
′, v].

The next lemma shows that a representative family is indeed a path-system
equivalent set to Q[i, T ′, v].

Lemma 4. Let (G, T, k) be an instance of Co-Connected T -Join such that

the smallest co-connected T -join of G has size k and let ℓ = |T |
2 . Let 1 ≤ i ≤

k , T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}), and let Q[i, T ′, v] be the corresponding set of

9

partial solutions. If ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T

′, v], then ̂Q[i, T ′, v] ⊑k−i
peq Q[i, T

′, v].

More generally, if J [i, T ′, v] ⊆ Q[i, T ′, v] and ̂J [i, T ′, v] ⊆k−i
rep J [i, T

′, v] then

̂J [i, T ′, v] ⊑k−i
rep J [i, T

′, v].

Proof. We first prove the first claim. The second claim of the lemma follows by

similar arguments. Let ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T

′, v], let P = {P1, . . . , Pr} be a path
system in the set Q[i, T ′, v], and let P ′ = {P ′

r, P
′
r+1, . . . , P

′
ℓ} be a path system in

G (where E(P ′
r) = ∅ if v = ǫ) which is an extender for P . We have to show that

there exists a path system P∗ ∈ ̂Q[i, T ′, v] such that P ′ is an extender for P∗

as well. Since P ′ is an extender for P we have, by definition, that (i) |E(P ′)| ≤
(k − i), (ii) PrP

′
r is a path in G, (iii) P ∪ P ′ = {P1, . . . , PrP

′
r, P

′
r+1, . . . , P

′
ℓ} is

an edge-disjoint path system that connects disjoint pairs of terminals in T , (iv)
V e(P ∪ P ′) = T and (v) G \ (E(P) ∪ E(P ′)) is connected.

Since (i) P ∈ Q[i, T ′, v], (ii) E(P) ∩ E(P ′) = ∅, (iii) G \ (E(P) ∪ E(P ′))

is connected, and (iv) ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T

′, v], there exists a path system

P∗ = {P ∗
1 , P

∗
2 , . . . , P

∗
r } in ̂Q[i, T ′, v] such that (i) E(P∗) ∩ E(P ′) = ∅ and (ii)

G \ (E(P∗)∪E(P ′)) is connected. This follows directly from the definitions of a
co-graphic matroid and a representative set.

We now show that P ′ is indeed an extender for P∗. Since P and P∗ both
belong to the set Q[i, T ′, v] we get that |E(P)| = |E(P∗)| = i and that P∗

is an edge-disjoint path system. And since E(P∗) ∩ E(P ′) = ∅, we have that
P∗ ∪ P ′ = {P ∗

1 , . . . , P
∗
r−1, P

∗
r P

′
r , P

′
r+1, . . . , P

′
ℓ} is an edge-disjoint path system

but for P ∗
r P

′
r which could be an Eulerian walk (walk where vertices could repeat

but not the edges). Now we prove that the “path system” P∗ ∪ P ′ connects
disjoint pairs of terminals in T , but for a pair which is connected by an Eulerian
walk. We now consider two cases for the “vertex” v.

Case 1: v = ǫ. In this case, since P and P∗ both belong to the set Q[i, T ′, ǫ]
we have that V e(P) = V e(P∗) = T ′. Also E(P ′

r) = ∅, and P ∪ P
′ is the path

system {P1, . . . , Pr, P
′
r+1, P

′
r+2, . . . , P

′
ℓ} with exactly ℓ = |T |

2 paths which connect
disjoint pairs of terminals in T . Since V e(P ∪ P ′) = T , P = {P1, . . . , Pr} and
V e(P) = T ′, we get that V e(P ′) = T \ T ′. Now since V e(P∗) = T ′ it follows
that P∗ ∪ P ′ is a path system which connects disjoint pairs of terminals in T .

Case 2: v 6= ǫ. In this case, since P and P∗ both belong to the set Q[i, T ′, v] we
have that V e(P) = V e(P∗) = T ′∪{v}, and that the final vertex of each of these
two path systems is v. Also P∪P ′ = {P1, . . . , PrP

′
r, P

′
r+1, P

′
r+2, . . . , P

′
ℓ} is a path

system with exactly ℓ = |T |
2 paths which connect disjoint pairs of terminals in

T . Since (i) V e(P ∪P ′) = T , (ii) P = {P1, . . . , Pr}, (iii) P ′ = {P ′
r, P

′
r+1, . . . , P

′
ℓ},

(iv) V e(P) = T ′ ∪ {v}, and (v) the final vertex of the path Pr in P is v, we get
that (i) the initial vertex of the path P ′

r in P
′ is v and (ii) V e(P ′) = (T \T ′)∪{v}.

Now since V e(P∗) = T ′ ∪ {v} and (ii) the final vertex of P∗ is v it follows that
P∗ ∪ P ′ is a path system which connects disjoint pairs of terminals in T , where
P ∗
r P

′
r which could be an Eulerian walk.
Thus, we have shown that P∗ ∪ P ′ connects disjoint pairs of terminals in T

with paths, except for P ∗
r P

′
r which could be an Eulerian walk. Combining this

10

with Proposition 1 and the fact that G \ (E(P∗) ∪ E(P ′)) is connected, we get
that E(P∗) ∪ E(P ′) is a co-connected T -join of G.

Finally, we show that P∗ ∪ P ′ is a path system. Towards this we only need
to show that P ∗

r P
′
r is not an Eulerian walk but a path. Observe that |E(P∗) ∪

E(P ′)| ≤ |E(P∗)| + |E(P ′)| ≤ k. However, E(P∗) ∪ E(P ′) is a co-connected
T -join of G and thus by our assumption, E(P∗) ∪ E(P ′) has size exactly k –
thus a minimum sized solution. By Lemma 1 this implies that E(P∗)∪E(P ′) is
a forest and hence P ∗

r Pr is a path in G. This completes the proof.

For our proofs we also need the transitivity property of the relation ⊑q
peq.

Lemma 5. The relation ⊑q
peq is transitive.

Proof. Let A ⊑q
peq B and B ⊑q

peq C. We need to show that A ⊑q
peq C. Let P ∈ C

and P ′ be an extender for P . By the definition of B ⊑q
peq C, there exists Pb ∈ B

such that P ′ is also an extender of Pb. Since A ⊑q
peq B, there exists Pa ∈ A such

that P ′ is also an extender of Pa. This implies A ⊑q
peq C.

Our algorithm is based on dynamic programming and stores a tableD[i, T ′, v]
for all i ∈ {0, . . . , k}, T ′ ⊆ T and v ∈ V (G) ∪ {ǫ}. The idea is that D[i, T ′, v]
will store a path-system equivalent set to Q[i, T ′, v]. That is, D[i, T ′, v] ⊑k−i

peq

Q[i, T ′, v]. The recurrences for dynamic programming is given by the following.
For i = 0, we have the following cases.

D[0, T ′, v] :=

{
{∅} if T ′ = ∅ and v = ǫ

∅ otherwise
(1)

For i ≥ 1, we have the following cases based on whether v = ǫ or not.

D[i, T ′, v] :=

(⋃

t∈T ′

(t,v)∈E(G)

D[i − 1, T ′ \ {t}, ǫ] • {(t, v)}

)⋃

(⋃

(u,v)∈E(G)

D[i − 1, T ′, u] • {(u, v)}

)
(2)

D[i, T ′, ǫ] :=

(⋃

t1,t2∈T ′

(t1,t2)∈E(G)

D[i − 1, T ′ \ {t1, t2}, ǫ] • {(t1, t2)}

)⋃

(⋃

t∈T ′

(u,t)∈E(G)

D[i − 1, T ′ \ {t}, u] • {(u, t)}

)
(3)

The next lemma will be used in proving the correctness of the algorithm.

Lemma 6. For all i ∈ {0, . . . , k}, T ′ ⊆ T, v ∈ V (G) ∪ {ǫ}, D[i, T ′, v] ⊑k−i
peq

Q[i, T ′, v].

11

Proof. Let I denote the family of independent sets in MG, the co-graphic ma-
troid associated with G. We prove the lemma using induction on i. The base case
is i = 0. Observe that for i = 0, for all T ′ ⊆ T and v ∈ V (G) ∪ {ǫ} we have that
Q[0, T ′, v] = ∅. So ideally we should set D[0, T ′, v] = Q[0, T ′, v] = ∅. However,
in the recursive steps of the algorithm we need to use the • operation between
two families of sets, and to make this meaningful, we define D[0, ∅, ǫ] = {∅} and
∅ otherwise.

Now we prove that the claim holds for i ≥ 1. Let us also assume that by
induction hypothesis the claim is true for all i′ < i. Fix a T ′ ⊆ T , and v ∈
V (G) ∪ {ǫ} and let Q[i, T ′, v] be the corresponding set of partial solutions. Let
P = {P1, . . . , Pr} ∈ Q[i, T ′, v] and P ′ = {P ′

r, P
′
r+1, . . . , P

′
ℓ} be a path system

such that P ′ is an extender for P . We need to show that there exists a P∗ ∈
D[i, T ′, v] such that P ′ is also an extender for P∗.

Case 1: v 6= ǫ. Consider the path system P = {P1, . . . , Pr} ∈ Q[i, T ′, v]. P has
i edges and its set of end-vertices is T ′∪{v}. Also, its final vertex is v. Let (u, v)
be the last edge in path Pr. Let P

′′
r be the path obtained by deleting edge (u, v)

from Pr. More precisely: If Pr has at least two edges then P ′′
r is the non-empty

path obtained by deleting the edge (u, v) and the vertex v from Pr, and if (u, v)
is the only edge in Pr (in which case u ∈ T ′) then P ′′

r = ∅. Note that the initial
vertex of P ′

r ∈ P
′ is v. Let uP ′

r be the path obtained by concatenating the path
uv and P ′

r. Let P1 = {P1, . . . , P
′′
r } and P

′
1 = {uP ′

r, P
′
r+1, . . . , P

′
ℓ}. Then P1 has

(i− 1) edges and P ′
1 is an extender for P1. Now we consider two cases:

(u, v) is the only edge in Pr: Here P ′′
r = ∅ and u ∈ T ′; let t = u. Note that

P1 = {P1, . . . , Pr−1} ∈ Q[i − 1, T ′ \ {t}, ǫ]. Hence by induction hypothesis
there exists P∗

1 ∈ D[i − 1, T ′ \ {t}, ǫ] such that P ′
1 is also an extender for

P∗
1 . Since P

′
1 is an extender for P∗

1 , E(P∗
1)∪E(P ′

1) ∈ I (by the definition of
extender). This implies that E(P∗

1) ∪ {(t, v)} ∈ I. Since P
∗
1 ∈ D[i − 1, T ′ \

{t}, ǫ] and (t, v) ∈ E(G), by Equation 2, we get a path system P∗ ∈ D[i, T ′, v]
by adding the new path Pr = tv to P∗

1 . Since P
′
1 is an extender of P∗

1 , P
′ is

an extender of P∗ as well.
(u, v) is not the only edge in Pr: Here P ′′

r 6= ∅, and u is the final vertex in
P ′
r. Hence P1 = {P1, . . . , P

′′
r } ∈ Q[i − 1, T ′, u]. Since P ′

1 is an extender
for P1, by induction hypothesis there exists P∗

1 ∈ D[i − 1, T ′, u] such that
P ′
1 is also an extender for P∗

1 . By the definition of extender, we have that
E(P∗

1) ∪ E(P ′
1) ∈ I . This implies that E(P∗

1) ∪ {(u, v)} ∈ I. Since P
∗
1 ∈

D[i − 1, T ′, u] and (u, v) ∈ E(G), by Equation 2, we get a path system
P∗ ∈ D[i, T ′, v] by adding the new edge {(u, v)} to P∗

1 . Since P ′
1 is an

extender of P∗
1 , P

′ is an extender of P∗ as well.

Case 2: v = ǫ. We have that P = {P1, . . . , Pr} ∈ D[i, T ′, ǫ]. Then P has i
edges, its set of end-vertices is T ′, and no end-vertex repeats. Let (u, t) be the
last edge in path Pr. Then t ∈ T ′. Let P ′′

r be the path obtained by deleting
edge (u, t) from Pr. More precisely: If Pr has at least two edges then P ′′

r is the
non-empty path obtained by deleting the edge (u, t) and the vertex t from Pr,
and if (u, t) is the only edge in Pr then P ′′

r = ∅. Let P1 = {P1, . . . , P
′′
r } and

12

P ′
1 = {ut, P ′

r, P
′
r+1, . . . , P

′
ℓ}. Then P1 has (i− 1) edges and P ′

1 is an extender for
P1. Now we consider two cases:

(u, t) is the only edge in Pr: Here P ′′
r = ∅, and {u, t} ⊆ T ′. Let t1 = u, t2 = t.

Then P1 is a path system in Q[i− 1, T ′ \ {t1, t2}, ǫ]. By induction hypothesis
there exists P∗

1 ∈ D[i− 1, T ′ \ {t1, t2}, ǫ] such that P ′
1 is also an extender of

P∗
1 . By the definition of extender, we have that E(P∗

1) ∪ E(P ′
1) ∈ I. This

implies that E(P∗
1) ∪ {(t1, t2)} ∈ I. Since P

∗
1 ∈ D[i − 1, T ′ \ {t1, t2}, ǫ] and

(t1, t2) ∈ E(G), by Equation 3, we get a path system P∗ ∈ D[i, T ′, v] by
adding the new path t1t2 to P∗

1 . Since P
′
1 is an extender of P∗

1 , P
′ is an

extender of P∗ as well.
(u, t) is not the only edge in Pr: Here P ′′

r 6= ∅, u is the final vertex in P ′′
r .

Then P1 ∈ Q[i − 1, (T ′ \ t), u]. By induction hypothesis there exists P∗
1 ∈

D[i− 1, (T ′ \ t), u] such that P ′
1 is also an extender of P∗

1 . By the definition
of extender, we have that E(P∗

1) ∪ E(P ′
1) ∈ I. This implies that E(P∗

1) ∪
{(u, t)} ∈ I. Since P∗

1 ∈ D[i−1, (T ′ \ t), u] and (u, t) ∈ E(G), by Equation 3,
we get a path system P∗ ∈ D[i, T ′, ǫ] by adding the new edge (u, t) to P∗

1 .
Since P ′

1 is an extender of P∗
1 , P

′ is an extender of P∗ as well.

In both cases above we showed that D[i, T ′, v] ⊑k−i
peq Q[i, T

′, v].

Algorithm, Correctness and Running Time. We now describe the main
steps of the algorithm. It finds a smallest sized co-connected T -join (of size at

most k) for G. The algorithm iteratively tries to find a solution of size |T |
2 ≤ k′ ≤

k and returns a solution corresponding to the smallest k′ for which it succeeds;
else it returns No. By Lemma 4 it is enough, in the dynamic programming (DP)

table, to store the representative set ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T

′, v] instead of the
complete set Q[i, T ′, v], for all i ∈ {1, 2, . . . , k}, T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}).

In the algorithm we compute and store the set ̂Q[i, T ′, v] in the DP table entry
D[i, T ′, v]. We follow Equations 1, 2 and 3 and fill the table D[i, T ′, v]. For
i = 0 we use Equation 1 and fill the table. After this we compute the values
of D[i, T ′, v] in increasing order of i from 1 to k. At the ith iteration of the for
loop, we compute D[i, T ′, v] from the DP table entries computed at the previous
iteration. Since we need to keep the size of potential partial solutions in check, we

compute the representative family ̂D[i, T ′, v] for each DP table entry D[i, T ′, v]

constructed in the ith iteration and then set D[i, T ′, v] ← ̂D[i, T ′, v]. By the
definition of Q[i, T, ǫ] and Lemma 2, any path system in D[i, T, ǫ] is a solution
to the instance (G, T, k); we check for such a solution as the last step. This
completes the description of the algorithm.

The correctness of the algorithm follows from the following. By Lemma 6 we

know thatD[i, T ′, v] ⊑k−i
peq Q[i, T

′, v] and by Lemma 4 we have that ̂D[i, T ′, v] ⊑k−i
peq

D[i, T ′, v]. Thus, by transitivity of⊑q
peq (by Lemma 5) we have that ̂D[i, T ′, v] ⊑k−i

peq

Q[i, T ′, v]. This completes the proof of correctness.
We now compute an upper bound on the running time of the algorithm.

Lemma 7. The above algorithm runs in time O(2(2+ω)k ·n2m3k5)+mO(1) where
n = |V (G)| and m = |E(G)|.

13

Proof. Let 1 ≤ i ≤ k and T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}) be fixed, and let us

consider the running time of computing ̂D[i, T ′, v]. That is, the running time to
compute (k− i)-representative family of D[i, T ′, v]. We know that the co-graphic
matroid MG is representable over F2 and that its rank is bounded by m−n+1.
By Theorem 1, the running time of this computation of the (k−i)-representative
family is bounded by:

O

((
k

i

)
· |D[i, T ′, v]|i3m2 + |D[i, T ′, v]| ·

(
k

i

)ω−1

(i ·m)ω−1

)
+mO(1).

The family D[i, T ′, v] is computed using Equation 2 or Equation 3 from the
DP table entries D[i − 1, T ′′, u], computed in the previous iteration and the
size of D[i − 1, T ′′, u] is bounded according to Theorem 1. Thus the size of the
family D[i, T ′, v] is upper bounded by,

|D[i, T ′, v]| ≤ ((2k)2 + 2kn) ·

(
max

T ′′⊆T ′,u∈V

̂D[i − 1, T ′′, u]

)
.

Theorem 1 gives bounds on the sizes of these representative families ̂D[i − 1, T ′′, u],
from which we get |D[i, T ′, v]| ≤ 4kn ·mi

(
k

i−1

)
.

Observe that Since the number choices for (T ′, v) such that T ′ ⊆ T and
v ∈ V (G){ǫ} is bounded by 4k(n + 1), and we compute DP table entries for
i = 1 to k, the overall running time can be bounded by:

O

(
4kn

k∑

i=1

((
k

i

)
·

(
k

i− 1

)
kni4m3 +

(
k

i− 1

)
·

(
k

i

)ω−1

kn(im)ω

))
+mO(1).

The running time above simplifies to O(2(2+ω)k · n2m3k5) +mO(1).

Putting all these together we get

Theorem 2 Co-Connected T -Join can be solved in O(2(2+ω)k · n2m3k6) +
mO(1) time where n = |V (G)| and m = |E(G)|.

Using Observation 1 and Theorem 2 we get

Theorem 3 Undirected Eulerian Edge Deletion can be solved in time
O(2(2+ω)k · n2m3k6) +mO(1) where n = |V (G)| and m = |E(G)|.

We can similarly use Theorem 2 to design an algorithm for Undirected

Connected Odd Edge Deletion. First we observe the following.

Observation 2 Let (G, k) be an instance of Undirected Connected Odd

Edge Deletion, let T be the set of even degree vertices of G and let S be a
solution to (G, k). Then S is a co-connected T -join.

14

Proof. Since S is a solution to the instance (G, k) of Undirected Connected

Odd Edge Deletion, the set of odd degree vertices in G(S) is exactly T . Since
G \ S is connected as well, S is co-connected T -join.

Therefore we must have that T is a set of even cardinality. By setting T as
the set of terminal vertices and applying Theorem 2 we get

Theorem 4 Undirected Connected Odd Edge Deletion can be solved
in time O(2(2+ω)k · n2m3k6) +mO(1) where n = |V (G)| and m = |E(G)|.

4 Directed Eulerian Edge Deletion

In this section we modify the algorithm described for Undirected Eulerian

Edge Deletion to solve the directed version of the problem. The main ingre-
dient of the proof is the characterization of “solution” for the directed version of
the problem. We begin with a few definitions. For a digraphD, we call S ⊆ A(D)
a balanced arc deletion set, if D \ S is balanced. We call a set S ⊆ A(D) a co-
connected balanced arc deletion set if D \ S is balanced and weakly connected.

Let (D, k) be an instance to Directed Eulerian Edge Deletion. A so-
lution S ⊆ A(D) of the problem should satisfy the following two properties, (a)
S must be a balanced arc deletion set of D and, (b) D \ S must be strongly
connected. In fact, something more stronger is known in the literature.

Proposition 2. [1] A digraph D is Eulerian if and only if D is weakly con-
nected and balanced.

Due to Proposition 2, we can relax the property (b) of the solution S and re-
place the requirement of having D \ S as strongly connected with just requiring
D \ S to be be weakly connected. Now observe that solution S of Directed

Eulerian Edge Deletion is in fact a co-connected balanced arc deletion set
of the directed graph D. Thus our goal is to compute a minimal co-connected
balanced arc deletion set of D of size at most k.

We start with the following easy property of in-degrees and out-degrees of
vertices in D. For a digraph D, define T − = {v ∈ V (D) | d−D(v) > d+D(v)},
T = = {v ∈ V (D) | d−D(v) = d+D(v)} and T + = {v ∈ V (D) | d−D(v) < d+D(v)}.

Proposition 3. In a digraph D,
∑

v∈T +

d+D(v)− d−D(v) =
∑

v∈T −

d−D(v)− d+D(v).

Proof. It is well known that

∑
v∈V (D)

d+(v) =
∑

v∈V (D)

d−(v)

⇐⇒
∑

v∈T +

d+(v) +
∑

v∈T −

d+(v) =
∑

v∈T −

d−(v) +
∑

v∈T +

d−(v)

⇐⇒
∑

v∈T +

d+D(v)− d−D(v) =
∑

v∈T −

d−D(v)− d+D(v).

This completes the proof.

15

The following lemma characterizes the set of arcs which form a minimal
solution S of the given instance (D, k). We then use this characterization to
design a dynamic-programming algorithm for the problem.

Lemma 8. Let D be a digraph, and ℓ =
∑

v∈T + d+D(v) − d−D(v). Let S ⊆ A(D)
be a minimal co-connected balanced arc deletion set. Then S is a union of ℓ arc
disjoint paths P = {P1, . . . , Pℓ} such that

(1) For i ∈ {1, . . . , ℓ}, Pi starts at a vertex in T + and ends at a vertex in T −.
(2) The number of paths in P that starts at v ∈ T + is equal to d+D(v) − d−D(v)

and the number of paths in P that ends at u ∈ T − is equal to d−D(u)−d+D(u).

Proof. First we claim that D(S) is a directed acyclic digraph. Suppose not, then
let C be a directed cycle in D(S). The in-degree and out-degree of any vertex
of v of D in D(S \ A(C)) is either same as its in-degree and out-degree in the
subgraph D(S) or both in-degree and out-degree of v is smaller by exactly one.
So S \A(C) is a balanced arc deletion set of D. And since the subgraph D \S is
connected by assumption, we get that the strictly larger subgraph D\(S \A(C))
is also connected. Thus S \A(C) is a co-connected balanced arc deletion set of
D. This contradicts the fact that S is minimal, and hence we get that D(S) a
directed acyclic digraph.

We prove the lemma using induction on ℓ. When ℓ = 0, the lemma holds
vacuously. Now consider the induction step, i.e, when ℓ > 0. Consider a maximal
path P in D(S). We claim that P starts at a vertex in T +. Suppose not, let P
starts at w ∈ V (D) \ T +. Further, let (w, x) be the arc of P that is incident
on w. By our assumption w ∈ T − ∪ T =, which implies that if (w, x) ∈ S, then
there must exist an arc (y, w) ∈ S or else the vertex w cannot be balanced in
D \S. And since D(S) is a directed acyclic digraph we have that y 6∈ V (P). But
this contradicts the assumption that P is a maximal path in D(S). By similar
arguments we can prove that P ends at a vertex in T −. Let P starts at t1 and
ends at t2, where t1 ∈ T + and t2 ∈ T −. Now consider the digraphD′ = D\A(P).
Clearly, S \ A(P) is a minimal co-connected balanced arc deletion set for the
digraph D′. We claim the following

∑

{v∈V (D′)|d+

D′ (v)>d
−

D′(v)}

d+D′(v) − d−D′(v) = ℓ− 1.

The correctness of this follows from the fact that the difference d+D′(v)−d
−
D′ (v) =

d+D(v) − d−D(v) for all v ∈ V (D) \ {t1, t2}. And for t1 we have that d+D′(t1) −
d−D′(t1) = d+D(t1)− d−D(t1)− 1.

Now by applying induction hypothesis on D′ with ℓ−1 we have that S\A(P)
is a union of ℓ − 1 arc disjoint paths P1, . . . , Pℓ−1 which satisfies properties (1)
and (2) for the digraph D′. Now consider the path system P, P1, . . . , Pℓ−1 and
observe that it indeed satisfies properties (1) and (2). This concludes the proof.

Finally, we prove a kind of “converse” of Lemma 8.

16

Lemma 9. Let D be a digraph, ℓ =
∑

v∈T + d+D(v) − d−D(v) and let S ⊆ A(D).
Furthermore, S is a union of ℓ arc disjoint paths P = {P1, . . . , Pℓ} with the
following properties.

1. The digraph D \ S is weakly connected.
2. For i ∈ {1, . . . , ℓ}, Pi starts at a vertex in T + and ends at a vertex in T −.
3. The number of paths in P that starts at v ∈ T + is equal to d+D(v) − d−D(v)

and the number of paths in P that ends at u ∈ T − is equal to d−D(u)−d+D(u).

Then S is a co-connected balanced arc deletion set.

Proof. By property (2), each vertex v ∈ T = appears only as internal vertex
of any path in P . Therefore v is balanced in D \ S. For every vertex t ∈ T +,
exactly d+D(t)− d−D(t) paths start at t in P and no path in P ends at t and thus
t is balanced in D \ S. Similar arguments hold for all t ∈ T −. Hence D \ S is
balanced. Since D \ S is weakly connected as well by property (1), we have that
S is a co-connected balanced arc deletion set of D.

Now we are ready to describe the algorithm for Directed Eulerian Edge

Deletion. Let (D, k) be an instance of the problem. Lemma 8 and Lemma 9
imply that for a solution we can seek a path system P with properties mentioned
in Lemma 9. Let T +

m be the multiset of vertices in the graph G such that each
vertex v ∈ T + appears d+D(v) − d−D(v) times in T +

m . Similarly, let T −
m be the

multiset of vertices in the graph D such that each vertex v ∈ T − appears
d−D(v) − d+D(v) times in T −

m . Due to Proposition 3 we know that |T +
m | = |T

−
m |.

Observe that if |T +
m | > k, then any balanced arc deletion set must contain more

than k arcs and thus the given instance is a No instance. So we assume that
|T +

m | ≤ k.
Lemma 8 implies that the solution can be thought of as a path system P =

{P1, . . . , Pℓ} connecting vertices from T +
m to the vertices of T −

m such that all
the vertices of T +

m ∪ T
−
m appear as end points exactly once and D \ A(P) is

weakly connected. Observe that the solution is a path system with properties
which are similar to those in the undirected case of the problem. Indeed, the
solution S corresponds to an independent set in the co-graphic matroid of the
underlying (undirected) graph of D. After this the algorithm for Directed

Eulerian Edge Deletion is identical to the algorithm for Co-Connected

T -Join. Let T = T +
m ∪T

−
m . We can define a notion of partial solutions analogous

toQ[i, T ′, v]. The definition of extender remains the same except for the last item,
where we now require that P ∪ P ′ is an arc disjoint path system connecting
vertices from T +

m to the vertices of T −
m such that every vertex of T +

m ∪ T
−
m

is an endpoint of exactly one path. Finally, we can define the recurrences for
dynamic programming similar to those defined for D[i, T ′, v] in the case of Co-

Connected T -Join. We then use these recurrences along with an algorithm
to compute representative families to solve the given instance. A pseudo-code
implementation of the algorithm is presented as Algorithm 1. The correctness of
the algorithm follows via similar arguments as before. And by an analysis similar
to the case of Co-Connected T -Join we can obtain the following bound on
the running time of the algorithm.

17

Theorem 2. Directed Eulerian Edge Deletion can be solved in time
O(2(2+ω)k · n2m3k6) +mO(1) where where n = |V (D)| and m = |A(D)|.

5 Conclusion

In this paper, we have designed FPT algorithms for Eulerian Edge Deletion

and related problems which significantly improve upon the earlier algorithms.
Our algorithms are based on simple dynamic programming over the set of partial
solutions to the problems and, the construction of representative families of par-
tial solutions. It would be interesting to find other applications of computation
of representative families over a cographic matroid.

References

1. Jrgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms and Ap-
plications. Springer Publishing Company, Incorporated, 2nd edition, 2008.

2. Leizhen Cai and Boting Yang. Parameterized complexity of even/odd subgraph
problems. J. Discrete Algorithms, 9(3):231–240, 2011.

3. Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlot-
ter. Parameterized complexity of eulerian deletion problems. Algorithmica,
68(1):41–61, 2014.

4. Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, 2010.

5. Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the Chinese post-
man. Mathematical Programming, 5(1):88–124, 1973.

6. Fedor V. Fomin and Petr A. Golovach. Long circuits and large euler subgraphs.
In ESA, volume 8125, pages 493–504, 2013.

7. Fedor V. Fomin and Petr A. Golovach. Parameterized complexity of connected
even/odd subgraph problems. J. Comput. Syst. Sci., 80(1):157–179, 2014.

8. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of
representative sets with applications in parameterized and exact algorithms. In
SODA, pages 142–151, 2014.

9. András Frank. A survey on t-joins, t-cuts, and conservative weightings. In Combi-
natorics, Paul Erdös is eighty, volume 2, pages 213–252. János Bolyai Mathemat-
ical Society, 1993.

10. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices:
New tools for kernelization. In Proceedings of the 53rd Annual Symposium on
Foundations of Computer Science (FOCS 2012), pages 450–459. IEEE, 2012.

11. Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. De-
terministic truncation of linear matroids. CoRR, abs/1404.4506, 2014.

12. Dániel Marx. A parameterized view on matroid optimization problems. Theor.
Comput. Sci, 410(44):4471–4479, 2009.

13. B. Monien. How to find long paths efficiently. Ann. Discrete Math., 25:239–254,
1985.

14. James G Oxley. Matroid theory, volume 3. Oxford University Press, 2006.
15. Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-

Winograd. In Proceedings of the 44th Symposium on Theory of Computing Con-
ference (STOC 2012), pages 887–898. ACM, 2012.

18

Algorithm 1: Algorithm for Directed Eulerian Edge Deletion

Input: A weakly connected digraph D and an integer k
Output: S ⊆ A(D) of size at most k, such that D \ S is Eulerian if there exists

one, otherwise No

1 T − ← {v ∈ V (D) | d−D(v) > d+D(v)}

2 T + ← {v ∈ V (D) | d−D(v) < d+D(v)}
3 Construct a multiset T −

m such that number of occurrences of v ∈ T − is exactly

equal to d−D(v)− d+D(v)
4 Construct a multiset T +

m such that number of occurrences of v ∈ T + is exactly

equal to d+D(v)− d−D(v)
5 T ← T +

m ∪ T
−
m

6 if T +
m > k then

7 return No

8 for T ′ ⊆ T and v ∈ V (D) ∪ {ǫ} do
9 D[0, T ′, v]← ∅

10 D[0, ∅, ǫ]← {∅}
11 for i ∈ {1, 2, . . . , k} do
12 for T ′ ⊆ T and v ∈ V (D) ∪ {ǫ} do
13 if v 6= ǫ then

14 D[i, T ′, v]←

(

⋃

e=(u,v)∈A(D)

(

D[i− 1, T ′
, u] • {e}

)

)

∪

15

(

⋃

t∈T ′∩T +
m

(t,v)∈A(D)

(

D[i − 1, T ′ \ {t}, ǫ] • {(t, v)}
)

)

16 if v = ǫ then

17 D[i, T ′, ǫ]←

(

⋃

t∈T ′
∩T

−
m

(u,t)∈A(D)

(

D[i− 1, T ′ \ {t}, u] • {(u, t)}
)

)

∪

18

(

⋃

t1∈T ′
∩T

+
m

,t2∈T ′
∩T

−
m

(t1,t2)∈A(D)

(

D[i − 1, T ′ \ {t1, t2}, ǫ] • {(t1, t2)}
)

)

19 Compute ̂D[i, T ′, v] ⊆k−i
rep D[i, T

′, v] in MD using Theorem 1

20 D[i, T ′, v]← ̂D[i, T ′, v]

21 if D[i, T, ǫ] 6= ∅ then
22 return S ∈ D[i, T, ǫ]

23 return No

19

