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Computing Teichmuller Maps between Polygons
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Abstract

By the Riemann-mapping theorem, one can bijectively maprttezior of ann-gon P to that of
anothem-gon (@ conformally. However, (the boundary extension of) this piag need not necessarily
map the vertices aP to thoseQ. In this case, one wants to find the “best" mapping betweesethely-
gons, i.e., one that minimizes the maximum angle distotbe dilatation) overll points in P. From
complex analysis such maps are known to exist and are uniduasy.are called extremal quasiconformal
maps, or Teichmdller maps.

Although there are many efficient ways to compute or apprai@nonformal maps, there is currently
no such algorithm for extremal quasiconformal maps. Thigepatudies the problem of computing
extremal quasiconformal maps both in the continuous aratetis settings.

We provide the first constructive method to obtain the exaéieyuasiconformal map in the continuous
setting. Our construction is via an iterative proceduré ih@roven to converge quickly to the unique
extremal map. To get to withia of the dilatation of the extremal map, our method uéks /s*)
iterations. Every step of the iteration involves convexmj#ation and solving differential equations,
and guarantees a decrease in the dilatation. Our method vsésction of the polygon mapping problem
to that of the punctured sphere problem, thus solving a menei@gl problem.

We also discretize our procedure. We provide evidence &ofatt that the discrete procedure closely
follows the continuous construction and is therefore etgubto converge quickly to a good approxima-
tion of the extremal quasiconformal map.
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1 Introduction

One of the foundational results in complex analysis, tharRien mapping theorem, states that any non-
empty simply connected domain C C can be mapped bijectively and conformally to the unit diskT his
implies that the interiors of two simple planargonsP and() can be mapped bijectively and conformally
to each other. By another restili [4], such a nfapP — @ extends continuously to the boundafyof P
(the edges). Generally, the verticestio not map to the vertices @f under this extended mapping.

Assume we are given an orderifig;}”_, and{v;}""_, of the vertices of” and@, respectively. Consider
the space of homeomorphisnfsthat mapP to @, such thatf(v;) = v;. Such anf is bound to stretch
angles (unless the polygons are linear images of each pted)a classical way to measure this angle
stretch byf at a pointp € P is by uu¢(p) = fz(p)/f-(p). This complex-valued functiop is called the
Beltrami coefficient off, and it satisfied|;¢||. < 1. The problem we consider is computing the "best"
homeomorphisny., in the above class, i.e., gh such that the norm of its Beltrami differentidl.| | is the
smallest amongst all homeomorphisms satisying the abowdittmns. These homeomorphisms that stretch
angles but by a bounded amount are called quasiconformag¢timorphisms (g.c.h.), and the "best" g.c.h.
f+ is called the extremal quasiconformal map, or the Teicheniap.

As an example, consider two rectanglRs= [0, a;] x [0,b;](¢ = 1,2) in the plane. Starting from the
origin, label the vertices ok, and iz, counter-clockwise aév; }j_, and{v;.}?:l, respectively ¢, = v, =
(0,0)). Consider the space of all g.c.Ji.. Ry — Ry such thatf(v;) = ’U;. It was shown by Grotzsch [14]
that the affine may. (z,y) = (az2x/a1,bay/b1) is the unique extremal quasiconformal map; any other map
f would stretch angles at some popte R; more thang (i.e.,3p € Ry : |us(p)| > |p«(p)]). For the
generaln-gon case mentioned above, such an analytic solution ddesxisd. However, the extremal map
exists and is unique (these are the famous theorems by Tellenf22] and [23], proven rigorously later by
Abhlfors [2]), and is of the form conformal affine o conformal.

Computing a Riemann mapping from a given polygon to the dékdmathered a lot of attention in the
past. Algorithms (e.g., CRDT [8]) based on finding the unknguarameters in the Schwarz-Christoffel
mapping formula[[7] for a Riemann map were proposed, andatest result by Bishop [3] computes a
(1 4 ¢) quasiconformal map i®(n log(1/¢)loglog(1/¢)).

No such algorithm that computes (or approximates) the ewteuasiconformal map is known. In
contrast to the Riemann mapping problem, where Riemann ganstructive proof, the proof by Te-
ichmuller/Ahlfors is an existence result, and no consivecproofs are available. Furthermore, the "for-
mula" for Teichmiller maps analogous to the Schwarz-Giifedt mapping for Riemann mapping states
that u. = k¢/|¢|, for some integrable holomorphic functian with at most simple poles at the vertices
of P. Thus, givenP, we know all the extremal maps with domaiity our problem is figuring out which
one takes us to our targél. Even thoughy comes from a finite dimensional family, there is no direct
search criteridh This should be contrasted with the known relation betwéerirmages of the vertices of
the polygon in the Schwarz-Christoffel formula and the @piof harmonic measure [13]. In fact, to the
authors’ knowledge, there does not exist a method thatngivaartingf betweenP and(@, computes &
With [|g][se < ||ef]|oo if ONE EXiSts.

This paper gives the first results for theoretically coredtng and algorithmically computing Teich-
muller maps for the polygon case stated above. Our procaduterative; we 1) start with a g.c.h. that
sends the vertices d? to the vertices of) in the prescribed order, 2) improve on it, and then 3) recarse
the improved map.

The problem of computing a Teichmdiller map is syonymous wi@imputing geodesics in the Teich-

It is not known how much a variation iswould change the solution of the Beltrami equation&ey/ ||



mduller space endowed with the Teichmiiller metric, whichhis tiniversal cover of the moduli space of
Riemann surfaces (in which all (mutually homeomorphic)-dimeensional complex manifolds are quo-
tiented under the equivalence relation of biholomorphisigjichmdiller theory is an active area of research
in mathematics, and it has connections to topc@agynamics, algebraic geometry, and number theory. Be-
ing able to compute the distance between two given pointsTeiehmdller space (two equivalence classes
of marked Riemann surfaces) would help us learn more abeugebmetry of this interesting space. This
work is therefore intended to be an introduction to this salbject from a computational perspective, and
we certainly feel that many computationally challengingoproblems lie hidden.

Computing Teichmiller maps is also an important problenhénftelds of medical imaging, computer
graphics and vision. In medical imaging, conformal and quedormal mapping has been applied for brain
cortical surface registration[( [24[, [16]). In computesiain, conformal geometry has been applied for shape
analysis and dynamic surface registration and trackind®])[#27]), and in computer graphics, conformal
geometry has been applied for surface parameterizatids]). [1

Surface registration refers to the process of finding amwdtone-to-one correspondence between sur-
faces that preserves the surface geometric structuresduodes the distortions as much as possible. Teich-
muller maps satisfy all these requirements. Thus being tabb®@mpute them would help one get a novel
algorithm for surface registration. 1n [26] various adwages of extremal quasiconformal maps over many
existing methods were discussed in detail, and we referdader to it for an overview of how extremal
guasiconformal maps are important in geometry processing.

Related work The only previous work to have considered the problem of ading extremal quasicon-
formal maps is[[26]. The authors consider a very similar ieersvhere a Dirichlet boundary condition is
given on the disk, and one is required to compute the extremaplwhose boundary values satisfy the given
condition. The authors propose a heuristic; they obtainighth nonlinear" energy and minimize it using
an alternate-descent method. There is no guarantee on hdlefaolution is from the true extremal map,
as the solution obtained could be a local minima of the enekggther possibly related work is [20], where
the authors use the concept of conformal welding to get fprges for a simple closed curve.

Various eminent mathematicians (Teichmuiller, AhlforsyB&eich, Strebel, Krushkal, Hamilton, etc.)
have contributed to Teichmiller theory. We refer the reaal§t2] and [17] for some excellent introductions
to Teichmuller theory. Most of the classical results we s @ither be found in these books, or references
contained therein.

2 Problem statements and results

In this section we first state rigorously what extremal ge@siormal map we want to compute, and what
we mean by computing such a map. We will then state our mairitses

2.1 Problem statements

The amount of angle stretch induced by a quasiconformal bomephism (abbreviated henceforth as
g.c.h.) f can be quantified using the Beltrami coefficigntof f. Defining f; = f, +if, andf, = fo—ify,
wheref, and f, denote the partials of w.r.t. z andy, the Beltrami coefficient; is defined ag.y = fz/f..
Intuitively, a g.c.h. maps the unit circle in the tangentcgpat a poinp in the domain to an ellipse in the

2|t has been used by Lipman Bers to give a simpler proof of Ttbais classification theorem for surface homeomorphisms.



tangent space #t(p), and(1 + [u¢])/(1 — |u¢|) is the eccentricity of this ellipse. For a formal definitioh o
guasiconformal maps and Beltrami differentials, we rdfierreader to Sectidn 7.2 in the Appendix.

Let P andQ be twon- polygon in the plane. Le{v;}!" ; and{v , be an ordering of the vertices of
P and@, respectively. Observe that:

1. The polygons, or for that matter any simply connected dorfwith boundary as a Jordan curve) is
conformally equivalent to the upper half plafe and

2. Composition by conformal maps does not change the ddat&naximal angle stretch).
Therefore, am-gon is the same ad with n marked points on the boundat¥Hl = R.

Problem 1. [Polygon mapping problem] Givefr1, ...z, w1, ...w, } € OH, find f, : H — H (with Beltrami
coefficienty.,) satisfying:

1. f, is a quasiconformal homeomorphismIbfo itself.
2. f*(ZZ') =w;, 1 € {1, n}
3. ||l loo < ||12£||oo for all £ satisfying (1) and (2) above.

Note that by Teichmiller's theorems, the abgiyeexists and is unique. We state the punctured sphere
problem next, and show that it is in fact a generalizatiorheffiolygon mapping problem.

Problem 2. [Punctured sphere problem] leQll,. Zn—3y2n—2 = 0,21 = 1,2, = o0}, {wy,...wp_3,
Wp—9 = 0,w,—1 = 1,w, = oo}, andh : C — C such thati(z;) = w;, find f, : C—C satisfying:

1. f, is a quasiconformal homeomorphism®to itself.
2. f. is isotopic toh relative to the pointg0, 1, 00, 21, ..2,—3}, I.€. fu(2;) = w;.
3. ||l loo < |l12£]|o for all £ satisfying (1) and (2) above.

We call the base;-punctured spher& and the targetv;-punctured spher§ from now on. The reason
why the punctured sphere problem requires a starting im@pinput is that by Teichmdiller's theorem, the
extremal map exists and is unique within each homotopy cEss following theorem shows that ProblEn 2
is indeed general.

Theorem 3. An algorithm for Probleni]2 can be used to give a solution tobRro[1.

Proof of Theorem[3. We take an instance of the polygon mapping problem and caniean instance of
the punctured sphere problem first.

Let hg be any quasiconformal homeomorphism mappiim @, such thaty(v;) = ’U;. By conformally
mapping P and to H (denote the maps byp andng), we get a quasiconformal self-homeomorphism
h,, of H, satisfyingh,,(z;) = w;, wherez; andw; are images (underp andng) of v; andv;, respectively.
Furthermoreh,, can be normalized to fiQ, 1 andoco. Let H denote the lower half plane, and define a
quasiconformal self-homeomorphisim of H by h(z) = h,(z). Now h, andh, agree orR, and can be
pieced together to get a quasiconformal self-homeomarphiof C satisfying h(z;) = w;. Note thath
fixes0, 1 andoo.

The next theorem shows how one can get back the answer to lygopanapping problem from the
answer to the punctured sphere problem.

3We allow foroo to be a vertex of the polygon.



Lemma 4. Let f be the solution to Problefd 2 when it is fed the input dgig w;, h} as above. Then:

Lopg(2) = py(2).

2. Letf, denote the restriction of to H. Then(wg)~! o f, o mp is the solution to Probler 1 with data
Pand@.

Proof: We first prove that for alt € C, f(z) = f(z). Define another homeomorphigjrasg(z) = f(z). It
is straightforward to check thatis a self homeomorphism @f and satisfieg(z;) = w;.

Now [|if]loo = ||itgllsc- By uniqueness of the extremal quasiconformal mappjfnig, unique, and so
must satisfyf = g everywhere. Thug(2) = f(z), which impliesy(z) = 14(Z).

To prove the second assertion, Jétdenote the solution to Probleh 1 with dataand@. Using the
above construction, we get a self-homeomorphignof C which satisfies the same propertieshaand f.

Uniqueness of now implies thatf = h*. O

Ways to represent the Teichmdller map In theory, a normalized g.c.ly. can be specified by specifying
p¢. For computational purposes, unless a closed form expre$si f. or 1. is available, the best one can
do is to evaluatef, or u, at a dense set of point inside the domain. Teichmdller'sattarization states
that .. (the Beltrami coefficient of the solution to either ProblerorIProbleni®), equalk|¢|/¢, for some

0 < k < 1, and somentegrable holomorphic quadratic differential (Definition[11). ¢ comes from an
n — 3 dimensional family, and a closed form expression for a bgsis- - - , ¢,,—3} is available. Therefore,
by representing the coefficientsin ¢ = Z;‘:_f’ c;¢; andk, one can represent,.. The input and output
complexity of both problems would b@(n) in this case. The g.c.hf, is the solution of the Beltrami
equation foru,, and can be represented as a series of singular operatdiedapp... ( [6], [11], [2]).

Our representation: We do not perform a search on the coefficientsnd adopt the first approach instead.
If k. = ||| |0 iS the maximal dilatation of the extremal mgp then our goal can be stated as follows.

Goal: Given ane > 0, compute the values of on a given set of points inside the base polygén
where the Beltrami differentigl s of f satisfies |uf||o < ks« + €.

Complexity: To the best of the authors’ knowledge, even if the polygbnsnd( have rational coordi-
nates, there is no known way to represent the extremal mdpfinite precision (all representations may
consist of transcendental numbers). Thus, it is not knowetkdr the problem is in NP or not. We therefore
do not address the actual complexity, and straightaway @ivartds an approximation algorithm.

2.2 Our results

Continuous construction: Problem2 asks for the extremal Beltrami differential Br(the z; punctured
sphere) that is isotopic to the starting miap All Beltrami differentials of g.c.h. that are isotopic to
(relative to the punctures) constitute what is called tlubgl equivalence class (Definitionl12) @f, and
our task is to compute the Beltrami differential in this slagth the leasi... norm. Denote the vector space
of all Beltrami differentials on the basg-punctured spher& by B(R), and the unit ball (in thé.., norm)
of this vector space aB; (R).

The global class ofi;, cannot be described in a closed form (the only way to know @ tifferentials
are globally equivalent is to solve their Beltrami equalidhlies inside By (R), and except in trivial cases,
iS not convex.



Our main result is that we solve the problem by breakingltheminimization over the global class into
a sequence df., minimizations over a convex domain( ., ), described explicitly (in terms @(n) equal-
ities) in terms ofuy,. This convex domain will be the class of Beltrami differaigi that aranfinitesimally
equivalent(Definition[14) tosuy,.

Let D(u) denote the infinitesimal equivalence clasgpnd P(1.) the Beltrami differentialy € D(u)
such that|vy||eo < ||V]|oo for all v € D(p). P () is called infinitesimally extremal (Definitidn 1L5).

Theorem 5. [Limiting procedure for Punctured Sphere Problem] Theresexa sequence of g.c.lf; s.t.
1. f1 = h, the starting map in Problef 2.
2. Isotopic: f; is homotopic td, andf;(z;) = w;, for all ¢ and ;.

3. “Explicit" construction: Denote byu; the Beltrami coefficient of;. Thengu;. is an “explicit func-
tion" of u; and P(y;) in that it can be obtained by solving two differential eqoas depending only
on y; and P(u;).

4. Uniform Convergence:f; — f. uniformly and||u;||zee — ||pt«|| e @St — 0.

Theorem 6. [Fast approximation] There exist constarts> 0 andey > 0 such that for all: < g and

C
Vi )
e (1= [lpallo)?

| ti]|co — ks« < €, wherep; is the Beltrami differential of; in Theorenib above.

Discretization: We represent all Beltrami differentials as piecewise amstifferentiald on a fine mesh.
Every step of the continuous procedure mentioned aboveisrsto have a discrete analog.

The mesh we will be working on depends on the error tolerarreguired; near the punctures the mesh
is made up of (triangulated) regular polygons, whose nurabeertices and radii depend on The mesh is
a triangulation with edge lengths bounded above fhich is a function o). We call this triangulation a
canonical triangulation of size(see Definitio 22) and denote it k..

The first theorem states that our discretization for theatpe® that returns the infinitesimally extremal
Beltrami coefficient is in fact an approximation.

Theorem 7. [Discrete infinitesimally extremal] Given an error tolere@0 < § < 1, a collection ofn

punctureszy, 2o, . . . z,,, @ triangulation A, and a piecewise constant Beltrami coefficienfwhere||u| <

1), there exists an algorithrhNEXT that computes a piecewise constant Beltrami coefficiesiich that
121l = Il < l[v[|é, wherev = P(w).

Discrete algorithm: Having discretized the main component of our procedurethellother steps in our
procedure can be easily implemented in practice. Computiquasiconformal theory is a field still in
its infancy, and very few error estimates on these widebdudiscretizations are known. We define two
subroutines next that concern the discretization of coitipas and inverses of quasiconformal maps.

“In fact, the existence of the solution to the Beltrami ecpratif an arbitrary: € L™ with ||u||s < 1 was shown by 1) first
showing the existence of the solution to a piecewise conm/arZ) sewing the individual piecewise g.c. maps along the Haon
and 3) taking a limit of such piecewise constant differdnﬁ,a—> 1 and showing that the maps converge.



Definition 8. [Subroutine:PI ECEW SE- COVP |

Input: A triangulationA., two piece-wise constant Beltrami coefficieptsand» (corresponding to g.c.h
f1 and f5 respectively), and error toleranc&sandds,.

Output: A triangulationA_ that is a refinement oA, a piecewise constant Beltrami coefficignbmp that
approximates the Beltrami coefficient of the compositfgn= f; o f5 within errord; in the L*° topology,
and the imagegs(v,) of the vertices), of A_ up to an error ob.

Definition 9. [Subroutine:Pl ECEW SE- | NV ]

Input: A triangulationA., a piecewise constant Beltrami coefficienfcorresponding to g.c.fi), and error
tolerances); andds.

Output: A triangulationA_ that is a refinement of\., a piecewise constant Beltrami coefficient, that
approximates the Beltrami coefficient ¢f ! within error §; in the L> topology, and the imageg ™ (v,)

of the vertices ofA s up to an error ob,.

Assuming the existence of the subroutiRtECEW SE- COVP andPl ECEW SE- | NV , we construct
an approximation algorithm for the Teichmuller map.

Theorem 10. [Teichmuller Map Algorithm] Given 1) a triangulatiofy that includes: punctures:y, . . . z,,

2) a mesh of sample pointg 3) an error tolerance’, and 4) a piece-wise constant Beltrami coefficiggt
whose corresponding qg.c.Hfy satisfiesfy(z;) = w;, there exists an algorithBEXTREVAL that computes
A., and the images &f up to an error ofy under a g.c.h.F' having a piece-wise constant (in the computed
triangulation) Beltrami coefficient » such that

1. ||uF|lpe — |Jsllze < & wherepu, is the Beltrami coefficient of the extremal quasiconformapran
the punctured sphere in the homotopy clasgyof

2. |F(2) — wi| = O(9).

An implementation of our algorithm will be presented in ali@oming paper.

Structure of the paper: In Section 8 we define some terms that we use in our constructio Sec-
tion[4 we dwelve into the proofs of Theorefds 5 ahd 6. Seé¢tioetibes our discretized procedure and
proves Theorenis 7 afd]10. We conclude in Se€fion 6 with dssmus on complexity and generalizations to
arbitrary Riemann surfaces.

3 Preliminaries

SectionZ.ll and Sectidn 7.2 (in Appendix Secfibn 7) providekasic definitions of Riemann surfaces and
guasiconformal maps, respectively. For the sake of compésis of the main body, in this section we define
some of the concepts we will require for our continuous aoiesibn.

Definition 11. [Holomorphic quadratic differential] A holomorphic quadic differential on a Riemann
surfaceR is an assignment of a functiafy(z;) on each chart; such that ifz; is another local coordinate,

2
then (=) = ;(z) () -
We will denote the space of such differentials Bnas A(R). By the Riemann-Roch theorem, the

complex dimension of this vector space for a gepubsed compact surface withpunctures iSg — 3+ n.
Fact: ForR = C\ {0, 1, 00, 21, ...2,—3} (the Riemann sphere witth punctures),

Pr(2) = g o

(z—l)(z—zk)’ 1§k‘§n—3, (l)

6



form a basis ofn — 3) dimensional complex vector spad¢R). Heren; is a constant, chosen such that the
normofgis1,ie., ||| = [0 = 1.

Equivalence relations on Beltrami coefficients Global equialence: This relation is defined only on
Beltrami differentials of norm less thah i.e. those that belong to the unit b (R) = {¢ € B(R) :
[lnllo < 1}. Given two such differentialg. and v, denote the solution to their respective normalkzed
Beltrami equations ag” : R — Ry andf" : R — R;. Both Ry and R; are punctured spheres.

Definition 12. [Global equivalence}. andv are called globally equivalent (writtgn~, v) if:
1. f”(zi) = f“(zi) \V/Z

2. The identity map froni?, to R; is homotopic tof o (f#)~! via a homotopy consisting of quasicon-
formal homeomorphisms.

Definition 13. [Trivial Beltrami differential] A Beltrami differentiak is called trivial if it is globally equiv-
alent to0.

Infinitesimal Equivalence: This relation is defined on all dB(R).

Definition 14. [Infinitesimal equivalencel andv are infinitesimally equivalent (writtep ~; v) if [ R 1O =
Jrvoforall ¢ € A(R), with ||¢|| = 1.

Definition 15. [Infinitesimally extremal] A Beltrami differentiaby is called infinitesimally extremal if
[v]loc < [|1tlloo forall p ~; v.

Definition 16. [Infinitesimally trivial Beltrami differential] A Beltrarndifferential v is called infinitesimally
trivial if it is infinitesimally equivalent td.

Section[ 7.4 lists all the theorems from Teichmiiller thedrgt twe will require, namely the Mapping
theorem (Theorerm_31), the composition formula (Equatfidl))(Zhe variational lemma (Lemnial32), the
principle of Teichmuller contraction (Equatidn_{22)) andshimportantly, the Hamilton-Krushkal, Reich-
Strebel, necessary and sufficient condition for optimdlitigeoreni 3B).

4 Proofs of Theorem$b and6

At the heart of our construction of the sequerfeén Theorem$b and 6 lies the following lemma. lkebe
any quasiconformal homeomorphism betwég(the z; punctured sphere) artl(the w; punctured sphere)
which is a valid input to Problel 2, ang, denote its Beltrami differential.

Lemma 17. Let v, be the infinitesimally extremal Beltrami differential iretmfinitesimal class ofi;,. Let
g(t) be a curve of Beltrami differentials with the following pesfies:

1. pg(t) is globally trivial.
2. p1g(t) = t(pn — vn) + O(?),

Denote the solution to the Beltrami equationigf(t) by g;. Then3 § > 0 such thatvt < J, the map
hs = h o (g;)~! has smaller dilatation that.

SFixing the points,1 andco. Hence the freedom of Mébius tranformation is accounted for



Proof of LemmallZ.By the formula for composition of quasiconformal mags{(@l$ectiord 7.4),

e (9:(2)) = %% 2)

whered; = 5;/p; andp, = 9. @) implies

|1, Ogt’2 _ ’MhP — ZRG(M(Q) + ‘,Ug(t)’z “

1 — 2Re(panpug (1)) + |pag(t)pin]?

Using the fact that
111 (8) = t(un, = vp)lloo = O(#7)
and differentiating[(3) with respect toonce and putting = 0, we get that

1 — |upl? .
|, © 9e| = |pn| — t%Reﬂth — 1) + O(t?) (4)

Letko = ||vnlloo < k = ||ptn]|co- Define
Si={z€ R:|u(2)] < (k+ko)/2}

and
Sy ={z€R:(k+ko)/2 <|un(z)| <k}

Clearly, S; U Sy = R. Since inS; the starting value of this curve at= 0 is |u|, which is certainly less
thank, (2) implies there existd; > 0 andc; > 0 such that fol0 < ¢ < 4y,

i, © 9:(2)| <k —eit forz e Sy (5)

For z in Sy the coefficient of in (4)) is bounded below by

k+ ko> 1k (k—ko\®
< 5 > —ki(]k?]— 2 5 >0

Therefore,[(#) implies there exisis > 0 andcy, > 0 such that fo) < ¢ < ds,

1— k2
k

lpn, 0 g1(2)] <k —cot forz € Sy (6)
Putting togethe(5) andl(6), we find that, || < & for sufficiently smallt > 0, proving the lemma.

]
The proof is similar to that of the Hamilton-Krushkal, ReiStrebel necessary-and-sufficient condition
for extremality (see Theorem 133), published in a sequengeapérs. We refer the reader fo [12] for a
combined proof of this celebrated result, which is the oneadagpt. To the best of the authors’ knowledge,
the above lemma is the first result that describes, givenréngtanap, how to get a map with a smaller
dilatation.

The proof of Theorerml5 is constructive. We summarize thetooctson first:



4.1 Summary of the construction

At stepi, Given a starting may; : R — S with Beltrami coefficientu;, let v; denote the infinitesimally
extremal Beltrami coefficient in the infinitesimal classif Letk; = ||uil|oo andky = ||v;||. Observe
that; — v; is infinitesimally trivial (Definition16).

1. Choosé such that

. (3 £ e (ki —kD)2(1 —k?)
t g — — ? 2 7
m”1<4*%J4’ 20, 1-k2+Cy )’ @

wheree < min(1/2, (k; — k?)/8), andC; andC, are two explicit constants to be derived later.
2. Use Sectioh 413 to construct a quasiconformal self-honogphismg; of R such that

e 1, is globally trivial.
o ||y — t(pi — vi)||oo < Cat?, whereCs is the same constant as [0 (7).

3. Formf;,1 = f; o (¢;)~" such thatf;,; has smaller dilatation thaf) (by Lemmd1¥).

4. Reiterate withf;; as the starting map.

4.2 How the construction implies Theorem§ anfl6

The 14 in step (2) above can be constructed by solving two difféaémiguations involving, ; andwv;
(Lemmd21 in Section 41.3). Assuming that, we have the follgdemma that quantifies the progress made
in stepi. Recall thatk; = ||;]|oc andk? = ||v;so-

Lemma 18. [Decrease in one step] Kfis chosen as il {7), thely — k; .1 > d, where

. _ 1.0 . _ 1.0)2 _ .2
= min (B2, G UL KEY),

Proof of Lemmal[I8. To simplify notation, we let = k; andko = &?, since we will be assuming that we
are in step of the iteration. As in the proof of Lemnhall7, I8t be the region whergu;| < % and S
be such thatk < |u;| < k. Assuming that < min(3/4, C1) implies Lemmd 21, so we assume this
condition ont.

Furthermore, orby, if t < min (3/4, C1, 5 \/%) by the composition formula for g.c. maps we get,

’Ni_lug’
lit10g1(2)] = T————
‘ |1_#il‘g|
< ’Ni_t(ﬂityi)‘_’_ C2t27
|1 — pifig] 11— pifig]
1 k+k
< TR0 L op 4+ o2
1—¢ 2
<

1 k?—l—k?o+€
1—¢ 2

where the last inequality follows by requiring, si,| < 2t + C2t? < e, which is true for the assumed value
of t. Notice that|y;|, |v;| are less than.



Therefore, ordy,
k?—k‘o—2€(1+k‘)

k— | >
k— ko
- 4
if e < Ef0 0On S,
i =gl | =t — v Cot®
11— pirig] 11— puifig| 11— pifig]
i — t(i — vi)| Cot?
11— pit (s — 7)| — |l Cot? |1 — pigig
Now,
k= lpisal = [pal = [piga]
o il (1 = pit(m = 2)] = |l Cot?) — i — t(ui — vi)| _ Cot?
B 11— it (i — ;)| — || Cot? l—¢
A—-B Cyt?
— — 2 - (8)
11— pit(fis — )| — |pilCot> 1 —¢
whereA = |,u2|(|1 — ,ult(ﬂz — V_z)|) andB = |,LLZ'|02752 — |,u2 — t(/Li — I/Z’LL)| Using
A% - p?
A-B=""—"—"
A+ B
A+B<A4
A2 = B? = (1 — |l ) 2R (i (1 — 7)) — il |ps — v P (1 + [il*))
> (1= |wal*) (k= ko)® = |l — vil (1 + |pa*)) 9)
Using Equatiof® in Equatidd 8 and the fact that 1/2 we see that
2
E—|pis1] > (t(k — ko)? — 8t%) — 205t
LN24(1 1.2
8
with the last equation holding if < %ﬁfgf) concluding the proof.
O

Now we apply the principle of Teichmuller contraction, winiessentially bounds; — kY from below by a
function ofk; — k. (how far we are from the infinitesimally extremal coeffici¢gits us how far we are from
the extremal). Using Lemniall8, Equatidn (7) and the prieogflTeichmuiller contraction (Equation {22)),
we get

Lemma 19. There exists a constant; > 0, such that ift is chosen as if{7), then

ki — kiy1 > Ca(1 = ||pun]loo)? (ki — k)

10



Proof of Lemmal[I9. The first three terms in thain expression in Equatioi](7) are independent of the
iteration step. If the value afis one of these, then the lemma is evident. Similarly, if takig ofd is the
first of the two terms in thenin in Lemmad_ 18, then the lemma is clear too.

Assume now that = (ki kD)2 —k7) Noting thatl — k; + Cy < Cy + 1, and thatl — k? > 1 — k;, we
- 1_ki2+02 . g 7 2 2 ) i i
K02 (1—k; . : : .
gett > %0(2119) Using this value in Lemma 18 gives

(ki — K)* (L~ k)
8(1+ Cy) ’
and by Teichmiiller contractior; — k9 > (k; — k.)/10, implying

d >

(ks — k)*(1 — k)2

d
~ 80(1+Cy) '

PuttingCs = m and noting thal — k; > 1 — k; completes the proof of the lemma.
O

Using Lemma_10, the proofs of Theorefs 5 &hd 6 can now be ctedple
Proof of Theorem[8: The first three assertions follow easily from our constarct{notice thafu, being
trivial implies that we stay within the initial homotopy sls). We now prove assertion (4) in the statement
of the theorem.

Thek; form a decreasing sequence and are bounded from aboke diyd below byk,. Hence thek;
converge to somg > 0. But thenk; — k;, 1 — 0 asi — oo, and Lemm&_19 now implies thaf — k. — 0,
and sok = k,. Thusk; — k..

Now the fact thatf; converge uniformly tof, follows because of the convergence property of g.c.h.
The space of all g.c.hf with ||uf||« < ki forms a compact space, and so there exists a subsequence
that converges. By the arguments above and by uniquenefs thiis limit must bef,. Furthermore, this
must be true of any convergent subsequence offth@hus we get that the entire sequengeonverges
uniformly to fi.

Proof of Theorem[@: Let A = C3(1 — ||u1]/o0)? and definey, = ||tnlloo — k«. By LemmalI® and
Teichmdiller contraction (Equation(22)),+1 < y, — Ayt . If y; < ¢, we are done. If not, themy — y >
Ayt > Ae* and thusys < y; — Ae*. If yo < e we are done. If notyz < yo — Ae* < y; — 2464
Continuing inductively we see that, < y; — (n — 1)Ae* if 3,1 > . The right hand side is less tharif
n > o (||pllzee — ke — ). Since(||py ||z — ke —€) < 2, puttingC' = 2/Cs proves the theorem.

4.3 Constructing self homeomorphismgy;

Given a starting may;, we show how to construct the self homeomorphigmof R used in our construction.
We simplify notation by suppressing thekeeping in mind that this is thith step of the procedure. Thus
andp, will denote the Beltrami differentials of; andg;, respectively. Alsoy is the infinitesimally extremal
Beltrami differential in the infinitesimal class pf

Leta = p — v, t be as in Equatiori{7), and ¢t~ be the normalized solution to the Beltrami equation
for ta. We observe next thagt’® moves the points; only by a distance)(2).

Lemma 20. Letr =  Jnax |z;|, and letf* be as above. Then there exists a constgntiepending only
1<n—

onr, and a constand > 0 such that for alli, |fi(z) — 2| < Cpt2, Wt <.

11



Proof of Lemmal[20. By (1),
zk(zk — 1)

%) = T D )

for 1 < i < n — 3is a basis for the space of quadratic differentialsionLet ( = £ + in. Infinitesimal

equivalence ofa now implies that
tadédn
= 11
[ e -

Now we use the mapping theorem (Theoferh 31 in Se€tidn 7.4helmotation of the theoren¥(z;) = 0
by (11). Existence of, C,. and the statement now follows from the statement of the nngpiieorem. [
Denote f'*(z;) by zZ We will first construct another homeomorphistnfrom C to itself which satisfies
f\,(z;) = 7. We then define the required self homeomorphigre: f, o f'“. The construction of, will be
via a vector field method.

Construction of f, by a vector field method: Let{D,,---,D,_3} denote disjoint open disks centered
at z;. Choosing the radius of each disk tobe- d/4, whered = max |z; — z;| ensures disjointness.
,)SN—

We will fix these disks once and for all.

A single disk: We first construct a self homeomorphisfh of C which is the identity outside;, and
mapSzZ'- to z;. Now z; € R, and by a rotation we can assume tJaLalts real and greater than. Consider the
vector field

wherep(z) is a C* function identically zero outsid®;, and identicallyl inside the disk of radiug /2
aroundz;, denoted asD;. Let~ be the one parameter family of diffeomorphisms associafédthis vector
field. We denote the time parameter ogind note that the diffeomorphism send&; to z;. We denote this
diffeomorphisnry ats = 1 by fi. Now definef, = 3o f7=2...0 fl, andg; = f, o f'“. We have

Lemma 21. There exist constantS; > 0 and C, > 0 such thatu, above is globally trivial, and for all
t < min(3/4,C1), ||y — t(p — v)|]eo < Cat?.

The exact values of’; and Cs can be inferred from the proof. They equal the value$ ahd C,,
respectively, in the mapping theorem, wheg: 1.

Proof of Lemmal2].

In what follows, we denotef; (the quasiconformal map aftériterations of the algorithm) by for
convenience. In fact, we drop the subsciipitogether. Recall that from;, we construct a new quadratic
differential v; that is infinitesimally extremal. Let; = u; — v;.

We then construcy; that is a self homeomorphism of the base punctured spRausing the vector
field method. If we manage to prove that the dilatation of tregprobtained by the vector field method
|v][z < Gt2, then for the composition (herel| = 1) ¢; = fv o fi®, if i is sufficiently large then
11+ tavA| > 3

‘toz—l—Avofto‘ —ta] = ’Avofto‘+t2a2Avoft°"
1+ taAv N 14+ tavA
< (2G+ 12 (12)

12



Therefore the Beltrami of the compositiontis + O(t?) where theO(¢?) term is bounded above by
(2G + 1)t? = Ct2. Our aim is to prove that’ exists and is bounded independent.oin whatever follows
we denotef, simply by f.

Recall that the vector field iX' = 3. p;(2;(t) — z;). Lety(t, s,y, y) be the flow where is the “time
parameter” for the flow angl is the initial position. Notice that the vector field diffe®+(¢,1,y,9) = f
and the Beltrami. Notice that

_ s
v o= 7,
- Tatfy — fofey
13
o (fgttfy - fgftty)fg - 2fyfyt(f§tfy - fgfty)
Vit = 1
fy
If | fy| >mandfy,|fyl, | /3], | fel, | fyrel, | f5¢| @and|f,:| are bounded above hy/, then|vy| < %{f -

G. First we have to prove that inde@d < 1 so thatf is g.c. For all of these things we consider

DY CCORE

d 3 !
% = > (ot + o) (zi(t) — ) + > pz

dyu
ds

% = > (p=1y + pA) (2i(E) — =)

d-

L= Y e+ A () — )

Dyt
ds

= > (== (1) + 202 + Py + p=(30)” + p2u) (1) — 2) + > pzi + D (pem+ p)

= Z(pzz’}/t')/y + pfz’?t')/y + P2yt + pzi%ﬁ’?y + Pz‘zﬁtﬁy + pfﬁ/yt)(zi (t) - Zi) + Z(Pz%j + 0275)% (t)
and similarly for the other quantities. Notice that(t) — z;| < Et>. For future reference léip||c2 < 155

andmax; |z;| = a. Notice that by Cauchy’s estimates| < 4(a + E) and|z; | < 16(a + E) for t < 2. For
a system of IDE of the type

w(s) —w = /OS A(t)w(t)dt

by the Gronwall inequality|w(s)| < |w|exp(smaxy q+/n[Al). Without loss of generality, let <

13



min(3/4, exp(—EP/2)———, ) andP, E > 1. Therefore

V4 100E7>’ )

%t Ly, Dlleo < exp(PEL?) < exp(PE)
gt 1y, D)o < PEt? exp(PEt?) < exp(PE)
Iy (s) — 1] < 2PEt?exp(EP) < 3
1
"=y
[t 1y, 9llco < PE(a+ E)exp(PE)
4(t, 1y, 9llco < (PE(a+ E))® exp(PE)
et 1,0, 9)llco < (PE(a+ E))? exp(PE)
et Ly, D)llco < (PE(a+ E))? exp(PE)
Iyt 1,9, 9)lloo < (PE(a+ E))® exp(PE)
et (t, 1y, D)llco < (PE(a+ E))® exp(PE)
C= 26—M4 +1 < 200(PE(a+ E))2 exp(4PE)

Recall thate = max; |z;| (not z;(¢) but z;(0)), E is that constant such that;(t) — z2| < Et?, andP =
1000]|p| 2. Note thatt has an additional condition in that min(2, exp(—EP/2) \/W) So as to ensure

that indeed~,| >  and thatv| < 1.

Until now the constants depended onwx; |z;|. However, note that the extremal map problem is in-
variant under Mobius transformations fixing the upper h&hp. The constantandC, in the mapping
theorem depend only on (wherer is the disk inside which these estimates are valid). For tiiggon
mapping problem, a-priori all the;s are on the real line, and three of them @ré andoco. Assume that
oo is thenth puncture (sa;,, = oo),and choosemin = min;, z; and zmax = max;-, z;. We then find a
MGdbius transformation that mapgin, zmax @ndz, to 0, 1, oo, respectively. Now all the new punctures are in
the interval0, 1], and the mapping theorem provides absolute constantsdhraitdlepend on the punctures
anymore.

O
We showed in Theorefd 3 how to reduce the polygon mapping gmobb the punctured sphere problem.
However, the above procedure can also be directly implesdenth polygons, once we have the appropriate
basis for the space of quadratic differentials. We give gomvell-known description of this basis in
Sectior 8.8 in the appendix..

5 Discretization of the procedure

Before we discretize the procedure, we give the propertigheomesh we work on as promised in Sec-
tion[2.2. Given an error tolerandelets = O(55%~2).

Definition 22. [Canonical triangulation of siz€] A canonical triangulation of size, denoted as\. is a set
of vertices and edgdgd’., E.), with z; € V, satisfying the following.

1. It contains the edges and vertices of a regular polygoteceth at) and of diamete©(5~1), and line
segments joining the vertices of this polygorsto

14



2. Except for the line segments to, all the other sides of the triangulation have Euclideamytierat
moste.

3. It contains the edges and vertices of regular polygond/ o= O(5(!=2")) sides centered at the
punctures of diameteD (), and lines joining the the vertices of these polygons tor tbenters, i.e.
to the punctures.

4. A.is arefinement o\ ;.

We now describe what the algorithhiNEXT does, after which we prove Theoréin 7.

5.1 | NEXT and the proof of Theorem[7

We want to discretize the operatB 1) which returns, with the leastZ.> norm satisfying/ pVOi = I R 1P
for all ¢; in Equation[(1). Note that the startingis piecewise constant at the start of every iteration.

Observation 23. The integral ofp; over any triangle; can be computed analytically.

We provide this formula (that involves taking the logaritfra complex number) in Sectign 8.1.

We approximate by piecewise constant Beltrami differentials. One canlgasgie then that the con-
straints for infinitesimal equivalence become linear aasts of the formAx = b, where A is the matrix
whose(, j)th entry equalgtj ¢i, x is the vector of unknown values of the piecewise constant a triangle,

andb is the vector offtj 1jdi, wherey; is the value ofu on trianglet ;.

If A, z andb are real, an.°° minimization can be formulated as a linear program. In osecave
break the vectors and matrices into their real and comples,pand then we can formulate the program as
a quadratically constrained quadratic program. Althougieneral they are NP-hard to solve, we show that
our program involves positive semi-definite matrices; drid known that such instances can be solved in
polynomial time using interior-point methods [18]. Desadlre in Sectioh 8] 2.

Lemma 24. [| NEXT ] There exists an algorithrhNEXT that, given a piecewise constgnbn A, returns
a piecewise constant such thatmax;, 7(t;) < maxy; 3(t;), wheref is any piecewise constant (ak.)
Beltrami differential that is infinitesimally equivalert .

With this, we are now in a position to prove Theorgim 7.

Proof sketch for Theorem[T: The main idea is to use = P(u) and produce a piecewise constant
vp, Which does not satisfy the integral constraints, but tmerenvolved can be estimated. We then add a
piecewise constant differential tg, to producer, that is in the same infinitesimal class @asand whose
dilatation is close to that af. This proves that (whose dilatation is smaller than that ©f) satisfies the
desired requirement.

Proof of Theorem[d. In whatever follows we assume thiat| < A. Letk = min(|z; — 2;]/200, |2 —
1]/200, |z;|/200). Here we prove thafv|| — ||v.|| < d. The strategy is to produce a piece-wise constant
Beltrami coefficient’, whose norm i$ close tov, and satisfies the integral constraint exactly. To do this we
first produce a piece-wise constant Beltramiwhose norm is equal to that of the infinitesimally extremal
onel|v.|| and| [ (v, — vs)¢r| < § V k. We claim that we may produgg, by adding terms of magnitude at
mosto to v, so as to make sure that the integral constraint is obeyedlgxbwleed, by the hypothesis on
the canonical triangulation we see that one may chooseisutfic many triangles of sizé and solve linear
equations that determine the constants to be added on tiesglds so as to satisfy the integral constraint.
Thus the problem is reduced to finding and proving the error estimate.
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The infinitesimally extremal, = k*%' = k. %‘W’“' k. %c‘:kg’k' where|cé,| < 1with |é;| = 1. Then

Cr Pk

e > (z—21)... (2 — z—1)(z2 — 2k11) - - - | 2(z—=1)(z—21)...
Ye(z—21). . (2= 2z5—1)(z2 — 2k41) .- |2(z=1D)(z—21)...]
|3 ekhi(2)]
= k*~— z
> éphi(2) .. 'g( )

We first approximateh, andg by piece-wise constant functions with an error of at mdstithin the
large polygon. Replace the valuesiqf, g by their values at the centers of the triangles in the trigatgn.
This gives us, in the large polygon. Outside it we sgfto 0.

The error thus caused fa; is less thare2™ R™. For g the error is more subtle. In the small polygons
around the punctures, ¥ > 12“ then the error caused i(z) is less thanéj in those regions. For future

< ly2 — 1] fO |W|dt and the same inequality holds f&ii

use it is useful to note tha%g |y1

Outside the polygons the error gnis less thanm. Since the radius of the polygonsristhe error in

% outside the polygons is less th%ﬁ% < /3. Notice thats < min(k2", %). Next we

want to estimatd}, = f’ (mk(yl*)(_ vp)l = /Uk. Indeed,
2(z — 1) (2 — 2
Jﬁgm/ %mw+/ Uy
|z|>2R T |2|<2R
k: )
2

where2|z|3 > |z(z — 1)(z — z)| > % if R > max3%,1,2"(1+ A)". Now we estimate/j,.

/ Uy, -l-/ U
|z|<2RN| > éhi|>k |z|]<2RN| > ¢phy|>k

5 Skt Z/ Uy +/
¢ |2|<2RN| Y7 Ephy|>kN|z—z¢ | <A |2|<2RN| Y7 Ephg|>kN|z—2¢|[ >R Y €
12 k 2/(n—1)\n
k—f )2 /3

where the last estimate is obtained by rememberingXhét/s, = (z — A1) ... for some); within the big
polygon. One may choosg « and so as to estimaté, by ¢. Indeed,

3(%)”
1000(1 + A)?

ST A)

5<56+5

< 0(52n 1)

K<
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5.2 EXTREMAL and the proof of Theorem[10

Apart from the subroutinesNEXT , Pl ECEW SE- COVP andPl ECEW SE- | NV , we will require three
more subroutines to discretize our procedure.

Definition 25. [SubroutineTRI ANG ]
Input: a set of pointsS, a sizeM, and a triangulation\..
Output: A triangulationA_ of the given sizeVl containingS such thatA . is a refinement of\..

Definition 26. [Subroutine:BELTRAM ]

Input: A triangulationA. of the plane, a piecewise constant Beltrami coefficigrand error tolerancé.
Output: A triarjgulationA; that is a refinement of\., and the imagef(vi) of the verticesy; € A; such
that|f#(v;) — f(vi)| < 6.

Definition 27. [Subroutine:VECT- FI ELD ]

Input: A C* (k sufficiently large, e.gk > 10) vector fieldX (written as a formula in terms of elementary
functions), a triangulatior\., and an error tolerance

Output: A triangulation A; that is a refinement of\., the images of; € A, up to erroré under aC*
diffeomorphism-, corresponding to the flow along, and a piecewise smooth Beltrami coefficient that
approximates the one up to eriar

Implementing TRI ANG , BELTRAM and VECT- FI ELD : We outline ways to implement the above
three subroutines:

1. Given a set ofv points, we can obtain the Delaunay triangulationCitn log n) time. While im-
plementingTRI ANG , we first compute the Delaunay triangulation of all the poifatling inside a
triangle of the given triangulation. The we connect theiged on the convex hull of such a set of
points to one of the three vertices of the triangle they lidfithis complete triangulation is not yet size
M, we make the mesh denser by adding points [19] (poiatadated to either the circumcenters
of triangles or mid-points of edges), until we reach the eksize.

2. The solution to the Beltrami equation fercan be expressed as a series of singular operators applied
to u. There are many efficient algorithms and implementatio®§, (11]) existing forBELTRAM
Most of them can bound th& norm of the error, but the methods if [6] can be used to bouad th
error too [5].

3. The idea of deforming a surface by a vector field has beeledpgxtensively in computer graphics.
We refer the reader t6][1] for an implementation.

Description of EXTREMAL : The algorithm summarized below is based on Seéfioh 4.1.
e UseTRI ANG to produce a triangulation of size required IWEXT to run within an error 0b'°.

e Loopi = 1to N whereN is the number of iterations in Theordr 6 to produce the rasitiftin an
error of/2.

1. Usel NEXT to producey; from ; within an error ofs'°. If v; = u; then stop.
2. Findt; by Equation[(V), using, as||v; |-
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3. InvokeBELTRAM for the coefficient;(u; — v;) to find the images of the punctures within an
accuracy of?.

4. Define the vector fiel as in the continuous construction using a piecewise polyalorarsion
of the bump function (that i€''° for instance). Then caWECT- FI ELD to find a piecewise
constant Beltrami coefficient up to an errortpf

5. UsePl ECEW SE- COMP to compose the Beltrami coefficients of stejand stept within an
error (|| ui|| — ||v;]])® for the Beltrami coefficient and/i? for the g.c.h.

6. UsePl ECEW SE- | NV to find the Beltrami coefficient of the inverse of the q.c.htefps, up
to the same error as that in step

7. CallPl ECEW SE- COVP to composeg:; and the Beltrami coefficient of stejto form ;.1 (up
to the same error as that in step

The algorithm terminates by producing,. The proof of Theorem 10 is similar to that of Theorgim 6.

6 Discussions

We conjecture our algorithm to run in polynomial time. Trssevidenced by the fact that 1) the num-
ber of iterations is a polynomial if/e, 2) | NEXT (quadratic program)TRI ANG , BELTRAM and
VECT- FI ELD run in polynomial time, and 3) we expect the existence of polgial time subroutines
Pl ECEW SE- COVP andPl ECEW SE- | NV .

Open problems abound. Apart from improving (complexity apgroximation) the algorithm we pro-
pose, the extremal map problem can be further explored iry mi@aactions.

1. Most of the ideas presented here (notably Lerimla 17) casdxéto envision an algorithm for com-
puting Teichmdiller maps between arbitrary (finite analy§ioe) Riemann surfaces. The problem is
challenging for multiple reasons—for instance, an explicisis of holomorphic quadratic differen-
tials may not be available.

2. The authors feel that building a discrete version of Tmigter theory would be an important achieve-
ment. Given a triangulated Riemann surface, defining aelis@analog of dilatation that gives nice
results (e.g. existence and uniqueness) about the extreapalvould be the next step in this direction.

3. Most of the surfaces we see in everyday life can be regasl@lemann surfaces. Being able to com-
pute the "best" angle-preserving map between them is nbrtaf theoretical and practical interest.
Our current efforts are aimed at being able to visualize gsiod in Teichmiiller space. Seeing the
base polygon (or Riemann surface) morphing (similar to wiest accomplished in [20]) into the tar-
get polygon (surface) under the solutionttq.,, would give us an idea of how shapes actually change
while following a geodesic in this moduli space.

Acknowledgements: The first author would like to thank Frederick Gardiner, Gtupher Bishop, Irwin
Kra and Joe Mitchell for numerous discussions and helpfgyestions.
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Appendices

7 Appendix 1: Quasiconformal maps and essential theorems from Teich-
muller Theory

All of the material in this section is classical and can benfibin books on complex analysis and Riemann

surfaces, such asl[2/9,10] 12].

7.1 Riemann mapping theorem and Riemann surfaces

Theorem 28(Riemann Mapping) Let (2 be a simply connected domain in the complex pl&neot equal
to the entire complex plane. Then there exists a biholomonplap f : D — Q. Further, f is unique up to
composition by a Mébius transformation.

That f is biholomorphic implies it is conformal. One can therefgtate as a corollary that any two
simply connected domains i (not equal tdC) can be mapped conformally and bijectively to each other.

Riemann surface Let M be atwo dimensional real manifold. A complex chartiddns a homeomorphism
¢ from an open subset C R to an open subsd® C C. Let¢; : A1 — By andg, : Ay — By be two
complex charts¢; and¢, are said to be compatible if the map

do 0P h1(Ar N Az) = (A1 N Ag)

is biholomorphic.
A complex atlas o/ is a system of charts which covéf, and in which any two charts are compatible.
Two complex atlases are regarded equivalent if all chartsdrunion of the atlases are pairwise compatible.

Definition 29 (Riemann surface)A Riemann surface is a pair(M, o), where)M is a connected two-
manifold ands is an equivalence class of complex atlases\Hn

Examples of Riemann surface include the complex plane, geniathe complex plane, the Riemann
sphereC and all Riemannian manifolds (oriented two-manifolds veitRiemannian metric).

Given two Riemann surface® andN, a mapf : M — N is conformalif its restriction on any local
conformal parameters tsolomorphic Geometrically, a conformal map preserves angles, andftians
infinitesimal circles to infinitesimal circles, as shown iige[d frame (a),(b) and (c).

7.2 Quasiconformal maps

A generalization of conformal maps agaasiconformamaps, which are orientation preserving homeomor-
phisms between Riemann surfaces with bounded conforndiitprtion, in the sense that their first order

approximations takes small circles to small ellipses ofratmal eccentricity, as shown in Hiy.1 frame (d) and
(e). Mathematically,f: C — C is quasiconformal provided that it satisfies the Beltranuiagmpn:

fz = u(2)fe. (14)

for some complex-valued functiom satisfying||u||.c < 1. p is called theBeltrami coefficientand is a
measure of the non-conformality ¢f In particular, the mag is conformal around a small neighborhood
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of p whenpu(p) = 0. As shown in Figurél2, the orientation of the ellipse is deubble argument ofi. The
dilatation of f is defined as the ratio between the major axis and the minsradthe infinitesimal ellipse.
The maximal dilatation of is given either by:

by =t 5)
or by
Lt
K= e (19)

A homeomaorphism with dilatation less than or equakias called aK-quasiconformal mapping

(a)Original surface (b) Conformal (c) Conformal (d) Qc miaugp (e) Qc mapping
mapping mapping

Figure 1: Conformal and quasiconformal mappings from a hufaee surface to the planar disk.

Figure 2: Beltrami coefficient.

7.3 Quadratic differentials

Definition 30 (Holomorphic quadratic differential)A holomorphic quadratic differential on a Riemann
surfaceR is an assignment of a functiafy(z;) on each chart; such that ifz; is another local coordinate,

theng;(z;) = ¢j(zj)(%)2'

We will denote the space of such differentials Bnas A(R). By the Riemann-Roch theorem, the
complex dimension of this vector space for a gemaksed compact surface withpunctures i$g — 3 +n.
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The Riemann surfaces of primary importance to us are thetpratt Riemann sphere and the unit
disk. For the unit disk, there is only one chartand therefore any function holomorphic in the interior
of the disk can be viewed as a quadratic differential (thesiteon condition is vacuous). Fd& = C \
{0,1, 00, 21, ...2,—3} (the Riemann sphere witth punctures),

N zk(zk—l)
¢i(z)_z(z—1)(z—zk)’ 1<k<n-3, a7

form a basis of » — 3) dimensional complex vector spaggR).

Another vector space of importance to us is the space of palglifferentials. LetP be a polygon in
the plane, normalized so that1 andoo are three vertices aP. Supposey,, : P — Dy, is the conformal
mapping, wherd, is a planar rectangle, such thiat maps{0, 1, oo, z } to the four corners of the rectangle
Dy. Then

{(¢1)d2%, (¢5)%dz?, -+, (¢,_5)°dz"}
form the bases ofA(R). As shown in Figurd]3, the Riemann surfaBeis a pentagon with vertices
{z1, 22, 23, 24, 25 }, ¢1 MapsR to planar rectangleR;, such that z;, 29, 23, z4 } are mapped to four corners.
The checkerboard texture d®y is pulled back toR and shown in (a). Similarlyp, maps{z1, 22, 23, 25 }
to a rectangleRs. Then{(¢})%d2?, (¢4)?dz?} form the bases of all holomorphic quadratic differentiats o
the pentagon. Figuid 4 shows the linear combinations oetheses. Figurés 5 ahtl 6 show the bases and
certain linear combinations of the bases on a hexagon, ctagly.
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Figure 5: Holomorphic quadratic differential bases on asigex.

b4
b4

Figure 6: Holomorphic quadratic differentials on a hexagon

An excellent book for studying Quadratic differentials imther detail is[[211].
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7.4 Classical theorems used in our construction
We start with a theorem which explains the dependence of adgdl coefficient to the solution of its
Beltrami equation.

Mapping Theorem [ [12], Theoreml, Pagel0] Let u(z) be a measurable complex-valued function de-
fined on a domainf) for which ||u||~ = k& < 1. Consider the Beltrami equation,

f2(2) = p(2) f=(2). (18)

Theorem 31. Equation[18 gives a one to one correspondence between tloé geasiconformal homeo-
morphisms of that fix the pointg), 1 and oo and the set of measurable complex-valued functions C
for which |||l < 1. Furthermore, the normalized solutioft* of Equatior’18 depends holomorphically
on x and for anyr > 0 there exist$ > 0 andC(r) > 0 such that

|fH(2) — 2 — tV(2)| < C(r)t* for |z| < rand]t| <, (19)

_ 2(z-1) p(¢)dédn
Vi = /c D) (20)

where

and¢ =& +in.

Composition of Quasiconformal Maps Let i, o and7 be the Beltrami coefficients of quasiconformal
mapsf*, f andf™ with f7 = f° o (f#)~. Then

= ({2g) et @)

wherep = %f“(z) andf = g. In particular, if f7 is the identity, that is, it = 0, then

T=— <u1—3> o (")

p

The following lemma relates infinitesimally trivial Beltra coeffcients to globally trivial ones.

Lemma 32. [Variational lemma][ [12], Theoren®, Page140] w is an infinitesimally trivial Beltrami differ-
ential if, and only if, there exists a curvg of trivial Beltrami differentials for whichr;(z) = tu, + O(t?)
uniformly inz.

Teichmller contraction The principle of Teichmuller contraction states that giedBeltrami coefficient
1, its distance to the globally extremat is of the same order as its distance to the infinitesimallyeexal
v. For a full statement and proof of the principle, [12]editem10, pagel03.

We will restate the part of the principle relevant to us. kgt= ||u*|| be the dilatation of the ex-
tremal Beltrami coefficient in the same global clasg:.aand letv be the infinitesimally extremal Beltrami
coefficient in the infinitesimal class @f Fix0 < k1 < 1. Then

|| plloo — Ko 2 )
TR k1)2(||ﬂ||oo —vlleo) < m(llp”OO — ko). (22)
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Hamilton-Krushkal, Reich-Strebel condition

Theorem 33. [Hamilton-Krushkal, Reich-Strebel necessary-and-sigfficcondition for extremality] A qua-
siconformal mapf has minimal dilatation in its Teichmdller class if and onlyts Beltrami coefficieni: is
extremal in its infinitesimal class.

8 Appendix for the discretization of the procedure

8.1 Formula for the integral of ¢; on a triangle ¢,

Let D be the triangle whose vertices args, ~ (in that order). Then

/Dm:/D(éﬂl—a;(z—m*a(a—lﬁ(z—a))

o
A A e e R e e e e e
e ey L
- 7—;5 E[ﬁ 1ial2+a(a1—1)13}
Il:fy_;a(’yln’y—fy—alna—ka)—j(ﬁlnﬁ—ﬁ—alna—ka)
12:Via((y_1)1n(7_1)_7—(a_1)1n(a—1)+a)
(8= V(- 1)~ B~ (@~ Dlafa— 1) + )
I3:fy_;a((’y—a)ln(’y—a)—’y—(a—a)ln(a—a)—i—a)

1

_ﬁ——a((ﬁ —a)ln(B—a) — B — (a—a)ln(a —a) + a))

(23)

8.2 Details of the algorithm INEXT
P(u) is the solution to the following program.

Program 34.
min  ||V||co
subject to: / vo; = / up; Vi € {1,2..n — 3}
R R
Prograni 34 is arl.., norm minimization subject to certain constraints. We wolvg the above program

whenv ranges over all piecewise constant Beltrami differentialst {;}~_,, whereT is the number of
triangles in the triangulation, be a basis of piecewise tmomiBeltrami differentials.
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Consider theith trianglet;; the integral of any basis elemefin Equation[(1) can be computed analyt-
ically, and in a preprocessing step, we compute the matrivhere((a;;)) = ftj Oi-

We writer = > \;i;, and represent as a vecton = (A1, Ao, - -+, Ar). Each)\; is a complex number;
separating into real and imaginary parts wexyet= A, +i);;. Let the analogous vector farbe \'. Then
the above constraint can be written.48 = b, whereb = A)’. Using the above separation into real and
imaginary parts for the matrid = A, + iA; andb = b, + ib;, this is equivalent to

Definition 35 (Constraints)
AN — AN = b, (24)

Aih + AN = (25)

We introduce another variable € R*, making the number of variabld®T" + 1). Let the vector of
unknowns bes = (A1, -+, Apry Aity -+, iy 2).

Program 36.

min z

subjectto :  Constraint®4 and2s,
and A2+ A5 —2<0 VI<j<T

The last constraint uses the fact that the solutibto Prograni 34 is of Teichmiller form. The objective
function of Prograni_36 is linear in the unknown variables n&mintd 24 anfi 25 are also linear. The last
set of constraints can be written &sP; 3 — z < 0, whereP; is a(27 + 1) matrix of zeroes with itg;, j)"
and(T + 7, T + 7)*" entry beingl. P; has all but two eigenvalues 8sand two eigenvalues atgimplying
that it is positive semi-definite.

Although solving a quadratically constrained quadratiogoam in general is NP-Hard, positive semi-
definite instances of it are polynomial time solvable. Nug#rsolvers for these programs have been vastly
studied, and efficient implementations exist. We refer #agler to Pagé2 of [18] for a complete reference.

This completes the proof for Lemrhal24.

8.3 Holomorphic quadratic differentials on polygons

SupposeP is a polygon with verticeqzg, z1,--- ,2z,-1}. For each2 < k < n, there exists a unique
conformal mapg,, which mapsP to a rectangleR = [0,1] x [0, ], and maps:, z1, 22, ;. to the four
vertices ofR. Then{(¢},)2d=>} form the basis of holomorphic quadratic differentials/@n

All the above proofs can be modified analogously for the patygnapping problem with minimal effort.
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