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Computing Teichmüller Maps between Polygons

Mayank Goswami∗ Xianfeng Gu† Vamsi P. Pingali‡ Gaurish Telang§

Abstract

By the Riemann-mapping theorem, one can bijectively map theinterior of ann-gonP to that of
anothern-gonQ conformally. However, (the boundary extension of) this mapping need not necessarily
map the vertices ofP to thoseQ. In this case, one wants to find the “best" mapping between these poly-
gons, i.e., one that minimizes the maximum angle distortion(the dilatation) overall points inP . From
complex analysis such maps are known to exist and are unique.They are called extremal quasiconformal
maps, or Teichmüller maps.

Although there are many efficient ways to compute or approximate conformal maps, there is currently
no such algorithm for extremal quasiconformal maps. This paper studies the problem of computing
extremal quasiconformal maps both in the continuous and discrete settings.

We provide the first constructive method to obtain the extremal quasiconformal map in the continuous
setting. Our construction is via an iterative procedure that is proven to converge quickly to the unique
extremal map. To get to withinε of the dilatation of the extremal map, our method usesO(1/ε4)
iterations. Every step of the iteration involves convex optimization and solving differential equations,
and guarantees a decrease in the dilatation. Our method usesa reduction of the polygon mapping problem
to that of the punctured sphere problem, thus solving a more general problem.

We also discretize our procedure. We provide evidence for the fact that the discrete procedure closely
follows the continuous construction and is therefore expected to converge quickly to a good approxima-
tion of the extremal quasiconformal map.
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1 Introduction

One of the foundational results in complex analysis, the Riemann mapping theorem, states that any non-
empty simply connected domainU ( C can be mapped bijectively and conformally to the unit diskD. This
implies that the interiors of two simple planarn-gonsP andQ can be mapped bijectively and conformally
to each other. By another result [4], such a mapf : P → Q extends continuously to the boundarȳP of P
(the edges). Generally, the vertices ofP do not map to the vertices ofQ under this extended mapping.

Assume we are given an ordering{vi}ni=1 and{v′

i}ni=1 of the vertices ofP andQ, respectively. Consider
the space of homeomorphismsf that mapP̄ to Q̄, such thatf(vi) = v

′

i. Such anf is bound to stretch
angles (unless the polygons are linear images of each other), and a classical way to measure this angle
stretch byf at a pointp ∈ P is by µf (p) = fz̄(p)/fz(p). This complex-valued functionµf is called the
Beltrami coefficient off , and it satisfies||µf ||∞ < 1. The problem we consider is computing the "best"
homeomorphismf∗ in the above class, i.e., anf∗ such that the norm of its Beltrami differential||µ∗||∞ is the
smallest amongst all homeomorphisms satisying the above conditions. These homeomorphisms that stretch
angles but by a bounded amount are called quasiconformal homeomorphisms (q.c.h.), and the "best" q.c.h.
f∗ is called the extremal quasiconformal map, or the Teichmüller map.

As an example, consider two rectanglesRi = [0, ai] × [0, bi](i = 1, 2) in the plane. Starting from the
origin, label the vertices ofR1 andR2 counter-clockwise as{vj}4j=1 and{v′

j}4j=1, respectively (v1 = v
′

1 =

(0, 0)). Consider the space of all q.c.h.f : R1 → R2 such thatf(vi) = v
′

i. It was shown by Grötzsch [14]
that the affine mapf∗(x, y) = (a2x/a1, b2y/b1) is the unique extremal quasiconformal map; any other map
f would stretch angles at some pointp ∈ R1 more thang (i.e., ∃p ∈ R1 : |µf (p)| > |µ∗(p)|). For the
generaln-gon case mentioned above, such an analytic solution does not exist. However, the extremal map
exists and is unique (these are the famous theorems by Teichmuller [22] and [23], proven rigorously later by
Ahlfors [2]), and is of the form conformal◦ affine◦ conformal.

Computing a Riemann mapping from a given polygon to the disk has gathered a lot of attention in the
past. Algorithms (e.g., CRDT [8]) based on finding the unknown parameters in the Schwarz-Christoffel
mapping formula [7] for a Riemann map were proposed, and the latest result by Bishop [3] computes a
(1 + ε) quasiconformal map inO(n log(1/ε) log log(1/ε)).

No such algorithm that computes (or approximates) the extremal quasiconformal map is known. In
contrast to the Riemann mapping problem, where Riemann gavea constructive proof, the proof by Te-
ichmüller/Ahlfors is an existence result, and no constructive proofs are available. Furthermore, the "for-
mula" for Teichmüller maps analogous to the Schwarz-Christoffel mapping for Riemann mapping states
thatµ∗ = kφ̄/|φ|, for some integrable holomorphic functionφ, with at most simple poles at the vertices
of P . Thus, givenP , we know all the extremal maps with domainP ; our problem is figuring out which
one takes us to our targetQ. Even thoughφ comes from a finite dimensional family, there is no direct
search criterion1. This should be contrasted with the known relation between the images of the vertices of
the polygon in the Schwarz-Christoffel formula and the concept of harmonic measure [13]. In fact, to the
authors’ knowledge, there does not exist a method that, given a startingf betweenP andQ, computes ag
with ||µg||∞ < ||µf ||∞ if one exists.

This paper gives the first results for theoretically constructing and algorithmically computing Teich-
müller maps for the polygon case stated above. Our procedureis iterative; we 1) start with a q.c.h. that
sends the vertices ofP to the vertices ofQ in the prescribed order, 2) improve on it, and then 3) recurseon
the improved map.

The problem of computing a Teichmüller map is syonymous withcomputing geodesics in the Teich-

1It is not known how much a variation isφ would change the solution of the Beltrami equation forkφ̄/|φ|
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müller space endowed with the Teichmüller metric, which is the universal cover of the moduli space of
Riemann surfaces (in which all (mutually homeomorphic) one-dimensional complex manifolds are quo-
tiented under the equivalence relation of biholomorphism). Teichmüller theory is an active area of research
in mathematics, and it has connections to topology2, dynamics, algebraic geometry, and number theory. Be-
ing able to compute the distance between two given points in aTeichmüller space (two equivalence classes
of marked Riemann surfaces) would help us learn more about the geometry of this interesting space. This
work is therefore intended to be an introduction to this richsubject from a computational perspective, and
we certainly feel that many computationally challenging open problems lie hidden.

Computing Teichmüller maps is also an important problem in the fields of medical imaging, computer
graphics and vision. In medical imaging, conformal and quasiconformal mapping has been applied for brain
cortical surface registration ( [24], [16]). In computer vision, conformal geometry has been applied for shape
analysis and dynamic surface registration and tracking ( [25]), [27]), and in computer graphics, conformal
geometry has been applied for surface parameterization ( [15]).

Surface registration refers to the process of finding an optimal one-to-one correspondence between sur-
faces that preserves the surface geometric structures and reduces the distortions as much as possible. Teich-
müller maps satisfy all these requirements. Thus being ableto compute them would help one get a novel
algorithm for surface registration. In [26] various advantages of extremal quasiconformal maps over many
existing methods were discussed in detail, and we refer the reader to it for an overview of how extremal
quasiconformal maps are important in geometry processing.

Related work The only previous work to have considered the problem of computing extremal quasicon-
formal maps is [26]. The authors consider a very similar version where a Dirichlet boundary condition is
given on the disk, and one is required to compute the extremalmap whose boundary values satisfy the given
condition. The authors propose a heuristic; they obtain a "highly nonlinear" energy and minimize it using
an alternate-descent method. There is no guarantee on how far the solution is from the true extremal map,
as the solution obtained could be a local minima of the energy. Another possibly related work is [20], where
the authors use the concept of conformal welding to get fingerprints for a simple closed curve.

Various eminent mathematicians (Teichmüller, Ahlfors, Bers, Reich, Strebel, Krushkal, Hamilton, etc.)
have contributed to Teichmüller theory. We refer the readerto [12] and [17] for some excellent introductions
to Teichmüller theory. Most of the classical results we use can either be found in these books, or references
contained therein.

2 Problem statements and results

In this section we first state rigorously what extremal quasiconformal map we want to compute, and what
we mean by computing such a map. We will then state our main results.

2.1 Problem statements

The amount of angle stretch induced by a quasiconformal homeomorphism (abbreviated henceforth as
q.c.h.)f can be quantified using the Beltrami coefficientµf of f . Definingfz̄ = fx+ify andfz = fx−ify,
wherefx andfy denote the partials off w.r.t. x andy, the Beltrami coefficientµf is defined asµf = fz̄/fz.
Intuitively, a q.c.h. maps the unit circle in the tangent space at a pointp in the domain to an ellipse in the

2It has been used by Lipman Bers to give a simpler proof of Thurston’s classification theorem for surface homeomorphisms.
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tangent space atf(p), and(1+ |µf |)/(1− |µf |) is the eccentricity of this ellipse. For a formal definition of
quasiconformal maps and Beltrami differentials, we refer the reader to Section 7.2 in the Appendix.

LetP andQ be twon-polygons3 in the plane. Let{vi}ni=1 and{v′

i}ni=1 be an ordering of the vertices of
P andQ, respectively. Observe that:

1. The polygons, or for that matter any simply connected domain (with boundary as a Jordan curve) is
conformally equivalent to the upper half planeH, and

2. Composition by conformal maps does not change the dilatation (maximal angle stretch).

Therefore, ann-gon is the same asH with n marked points on the boundary∂H = R.

Problem 1. [Polygon mapping problem] Given{z1, ...zn, w1, ...wn} ∈ ∂H, findf∗ : H → H (with Beltrami
coefficientµ∗) satisfying:

1. f∗ is a quasiconformal homeomorphism ofH to itself.

2. f∗(zi) = wi, i ∈ {1, ...n}

3. ||µ∗||∞ ≤ ||µf ||∞ for all f satisfying (1) and (2) above.

Note that by Teichmüller’s theorems, the abovef∗ exists and is unique. We state the punctured sphere
problem next, and show that it is in fact a generalization of the polygon mapping problem.

Problem 2. [Punctured sphere problem] Given{z1, ...zn−3, zn−2 = 0, zn−1 = 1, zn = ∞}, {w1, ...wn−3,
wn−2 = 0, wn−1 = 1, wn = ∞}, andh : Ĉ → Ĉ such thath(zi) = wi, find f∗ : Ĉ → Ĉ satisfying:

1. f∗ is a quasiconformal homeomorphism ofĈ to itself.

2. f∗ is isotopic toh relative to the points{0, 1,∞, z1 , ..zn−3}, i.e. f∗(zi) = wi.

3. ||µ∗||∞ ≤ ||µf ||∞ for all f satisfying (1) and (2) above.

We call the basezi-punctured sphereR and the targetwi-punctured sphereS from now on. The reason
why the punctured sphere problem requires a starting maph as input is that by Teichmüller’s theorem, the
extremal map exists and is unique within each homotopy class. The following theorem shows that Problem 2
is indeed general.

Theorem 3. An algorithm for Problem 2 can be used to give a solution to Problem 1.

Proof of Theorem 3. We take an instance of the polygon mapping problem and converit to an instance of
the punctured sphere problem first.

Leth0 be any quasiconformal homeomorphism mappingP toQ, such thath0(vi) = v
′

i. By conformally
mappingP andQ to H (denote the maps byπP andπQ), we get a quasiconformal self-homeomorphism
hu of H, satisfyinghu(zi) = wi, wherezi andwi are images (underπP andπQ) of vi andv

′

i, respectively.
Furthermorehu can be normalized to fix0, 1 and∞. Let H denote the lower half plane, and define a
quasiconformal self-homeomorphismhℓ of H by hℓ(z) = hu(z̄). Now hu andhℓ agree onR, and can be
pieced together to get a quasiconformal self-homeomorphism h of Ĉ satisfyingh(zi) = wi. Note thath
fixes0, 1 and∞.

The next theorem shows how one can get back the answer to the polygon mapping problem from the
answer to the punctured sphere problem.

3We allow for∞ to be a vertex of the polygon.
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Lemma 4. Letf be the solution to Problem 2 when it is fed the input data{zi, wi, h} as above. Then:

1. µf (z) = µf (z̄).

2. Letfu denote the restriction off toH. Then(πQ)−1 ◦ fu ◦ πP is the solution to Problem 1 with data
P andQ.

Proof: We first prove that for allz ∈ C, f(z) = f(z̄). Define another homeomorphismg asg(z) = f(z̄). It
is straightforward to check thatg is a self homeomorphism of̂C and satisfiesg(zi) = wi.

Now ||µf ||∞ = ||µg||∞. By uniqueness of the extremal quasiconformal mapping,f is unique, and so
must satisfyf = g everywhere. Thusf(z) = f(z̄), which impliesµf (z) = µf (z̄).

To prove the second assertion, letf∗ denote the solution to Problem 1 with dataP andQ. Using the
above construction, we get a self-homeomorphismh∗ of Ĉ which satisfies the same properties ash andf .
Uniqueness off now implies thatf = h∗.

Ways to represent the Teichmüller map In theory, a normalized q.c.h.f can be specified by specifying
µf . For computational purposes, unless a closed form expression for f∗ or µ∗ is available, the best one can
do is to evaluatef∗ or µ∗ at a dense set of point inside the domain. Teichmüller’s characterization states
thatµ∗(the Beltrami coefficient of the solution to either Problem 1or Problem 2), equalsk|φ|/φ, for some
0 ≤ k < 1, and someintegrable holomorphic quadratic differentialφ (Definition 11). φ comes from an
n− 3 dimensional family, and a closed form expression for a basis{φ1, · · · , φn−3} is available. Therefore,
by representing the coefficientsci in φ =

∑n−3
i=1 ciφi andk, one can representµ∗. The input and output

complexity of both problems would beO(n) in this case. The q.c.h.f∗ is the solution of the Beltrami
equation forµ∗, and can be represented as a series of singular operators applied toµ∗ ( [6], [11], [2]).

Our representation: We do not perform a search on the coefficientsci and adopt the first approach instead.
If k∗ = ||µ∗||∞ is the maximal dilatation of the extremal mapf∗, then our goal can be stated as follows.

Goal: Given anε > 0, compute the values off on a given set of points inside the base polygonP ,
where the Beltrami differentialµf of f satisfies||µf ||∞ < k∗ + ε.

Complexity: To the best of the authors’ knowledge, even if the polygonsP andQ have rational coordi-
nates, there is no known way to represent the extremal map with finite precision (all representations may
consist of transcendental numbers). Thus, it is not known whether the problem is in NP or not. We therefore
do not address the actual complexity, and straightaway aim towards an approximation algorithm.

2.2 Our results

Continuous construction: Problem 2 asks for the extremal Beltrami differential onR (the zi punctured
sphere) that is isotopic to the starting maph. All Beltrami differentials of q.c.h. that are isotopic toh
(relative to the punctures) constitute what is called the global equivalence class (Definition 12) ofµh, and
our task is to compute the Beltrami differential in this class with the leastL∞ norm. Denote the vector space
of all Beltrami differentials on the basezi-punctured sphereR byB(R), and the unit ball (in theL∞ norm)
of this vector space asB1(R).

The global class ofµh cannot be described in a closed form (the only way to know if two differentials
are globally equivalent is to solve their Beltrami equation). It lies insideB1(R), and except in trivial cases,
is not convex.
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Our main result is that we solve the problem by breaking theL∞ minimization over the global class into
a sequence ofL∞ minimizations over a convex domainD(µh), described explicitly (in terms ofO(n) equal-
ities) in terms ofµh. This convex domain will be the class of Beltrami differentials that areinfinitesimally
equivalent(Definition 14) toµh.

LetD(µ) denote the infinitesimal equivalence class ofµ, andP (µ) the Beltrami differentialν0 ∈ D(µ)
such that||ν0||∞ ≤ ||ν||∞ for all ν ∈ D(µ). P(µ) is called infinitesimally extremal (Definition 15).

Theorem 5. [Limiting procedure for Punctured Sphere Problem] There exists a sequence of q.c.h.fi s.t.

1. f1 = h, the starting map in Problem 2.

2. Isotopic: fi is homotopic toh, andfi(zj) = wj , for all i andj.

3. “Explicit" construction: Denote byµi the Beltrami coefficient offi. Thenµi+1 is an “explicit func-
tion" of µi andP (µi) in that it can be obtained by solving two differential equations depending only
onµi andP (µi).

4. Uniform Convergence:fi → f∗ uniformly and‖µi‖L∞ → ‖µ∗‖L∞ asi → ∞.

Theorem 6. [Fast approximation] There exist constantsC > 0 andε0 > 0 such that for allε < ε0 and

∀ i ≥ C

ε4(1− ||µ1||∞)2
,

||µi||∞ − k∗ < ε, whereµi is the Beltrami differential offi in Theorem 5 above.

Discretization: We represent all Beltrami differentials as piecewise constant differentials4 on a fine mesh.
Every step of the continuous procedure mentioned above is shown to have a discrete analog.

The mesh we will be working on depends on the error toleranceδ required; near the punctures the mesh
is made up of (triangulated) regular polygons, whose numberof vertices and radii depend onδ. The mesh is
a triangulation with edge lengths bounded above byε (which is a function ofδ). We call this triangulation a
canonical triangulation of sizeε (see Definition 22) and denote it by∆ε.

The first theorem states that our discretization for the operatorP that returns the infinitesimally extremal
Beltrami coefficient is in fact an approximation.

Theorem 7. [Discrete infinitesimally extremal] Given an error tolerance 0 < δ < 1, a collection ofn
puncturesz1, z2, . . . zn, a triangulation∆ε and a piecewise constant Beltrami coefficientµ (where‖µ‖ <
1), there exists an algorithmINEXT that computes a piecewise constant Beltrami coefficientν̂ such that
‖ν̂‖ − ‖ν‖ < ‖ν‖δ, whereν = P(µ).

Discrete algorithm: Having discretized the main component of our procedure, allthe other steps in our
procedure can be easily implemented in practice. Computational quasiconformal theory is a field still in
its infancy, and very few error estimates on these widely-used discretizations are known. We define two
subroutines next that concern the discretization of compositions and inverses of quasiconformal maps.

4In fact, the existence of the solution to the Beltrami equation of an arbitraryµ ∈ L∞ with ||µ||∞ < 1 was shown by 1) first
showing the existence of the solution to a piecewise constant µ

′

, 2) sewing the individual piecewise q.c. maps along the boundary,
and 3) taking a limit of such piecewise constant differential µ

′

n → µ and showing that the maps converge.
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Definition 8. [Subroutine:PIECEWISE-COMP ]
Input: A triangulation∆ε, two piece-wise constant Beltrami coefficientsµ1 andµ2 (corresponding to q.c.h
f1 andf2 respectively), and error tolerancesδ1 andδ2.
Output: A triangulation∆ε

′ that is a refinement of∆ε, a piecewise constant Beltrami coefficientµcomp that
approximates the Beltrami coefficient of the compositionf3 = f1 ◦ f2 within errorδ1 in theL∞ topology,
and the imagesf3(va) of the verticesva of ∆ε′ up to an error ofδ2.

Definition 9. [Subroutine:PIECEWISE-INV ]
Input: A triangulation∆ε, a piecewise constant Beltrami coefficientµ (corresponding to q.c.hf ), and error
tolerancesδ1 andδ2.
Output: A triangulation∆ε′ that is a refinement of∆ε, a piecewise constant Beltrami coefficientµinv that
approximates the Beltrami coefficient off−1 within error δ1 in theL∞ topology, and the imagesf−1(va)
of the vertices of∆ε′ up to an error ofδ2.

Assuming the existence of the subroutinesPIECEWISE-COMP andPIECEWISE-INV , we construct
an approximation algorithm for the Teichmüller map.

Theorem 10. [Teichmüller Map Algorithm] Given 1) a triangulationT0 that includesn puncturesz1, . . . zn,
2) a mesh of sample pointsS, 3) an error toleranceδ, and 4) a piece-wise constant Beltrami coefficientµ0,
whose corresponding q.c.h.f0 satisfiesf0(zj) = wj , there exists an algorithmEXTREMAL that computes
∆ε, and the images ofS up to an error ofδ under a q.c.h.F having a piece-wise constant (in the computed
triangulation) Beltrami coefficientµF such that

1. ‖µF ‖L∞ − ‖µ∗‖L∞ < δ whereµ∗ is the Beltrami coefficient of the extremal quasiconformal map on
the punctured sphere in the homotopy class off0.

2. |F (zi)− wi| = O(δ).

An implementation of our algorithm will be presented in a forthcoming paper.
Structure of the paper: In Section 3 we define some terms that we use in our construction. In Sec-

tion 4 we dwelve into the proofs of Theorems 5 and 6. Section 5 describes our discretized procedure and
proves Theorems 7 and 10. We conclude in Section 6 with discussions on complexity and generalizations to
arbitrary Riemann surfaces.

3 Preliminaries

Section 7.1 and Section 7.2 (in Appendix Section 7) provide the basic definitions of Riemann surfaces and
quasiconformal maps, respectively. For the sake of completeness of the main body, in this section we define
some of the concepts we will require for our continuous construction.

Definition 11. [Holomorphic quadratic differential] A holomorphic quadratic differential on a Riemann
surfaceR is an assignment of a functionφi(zi) on each chartzi such that ifzj is another local coordinate,

thenφi(zi) = φj(zj)(
dzj
dzi

)
2
.

We will denote the space of such differentials onR asA(R). By the Riemann-Roch theorem, the
complex dimension of this vector space for a genusg closed compact surface withn punctures is3g−3+n.

Fact: ForR = Ĉ \ {0, 1,∞, z1, ...zn−3} (the Riemann sphere withn punctures),

φk(z) =
ηi

z(z − 1)(z − zk)
, 1 ≤ k ≤ n− 3, (1)
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form a basis of(n− 3) dimensional complex vector spaceA(R). Hereηi is a constant, chosen such that the
norm ofφ is 1, i.e., ||φ|| =

∫

R |φ| = 1.

Equivalence relations on Beltrami coefficients Global equivalence: This relation is defined only on
Beltrami differentials of norm less than1, i.e. those that belong to the unit ballB1(R) = {µ ∈ B(R) :
||µ||∞ < 1}. Given two such differentialsµ andυ, denote the solution to their respective normalized5

Beltrami equations asfµ : R → R0 andfυ : R → R1. BothR0 andR1 are punctured spheres.

Definition 12. [Global equivalence]µ andυ are called globally equivalent (writtenµ ∼g υ) if:

1. fµ(zi) = fυ(zi) ∀i.

2. The identity map fromR0 toR1 is homotopic tofυ ◦ (fµ)−1 via a homotopy consisting of quasicon-
formal homeomorphisms.

Definition 13. [Trivial Beltrami differential] A Beltrami differentialυ is called trivial if it is globally equiv-
alent to0.

Infinitesimal Equivalence: This relation is defined on all ofB(R).

Definition 14. [Infinitesimal equivalence]µ andυ are infinitesimally equivalent (writtenµ ∼i υ) if
∫

R µφ =
∫

R υφ for all φ ∈ A(R), with ||φ|| = 1.

Definition 15. [Infinitesimally extremal] A Beltrami differentialυ is called infinitesimally extremal if
||υ||∞ ≤ ||µ||∞ for all µ ∼i υ.

Definition 16. [Infinitesimally trivial Beltrami differential] A Beltrami differentialυ is called infinitesimally
trivial if it is infinitesimally equivalent to0.

Section 7.4 lists all the theorems from Teichmüller theory that we will require, namely the Mapping
theorem (Theorem 31), the composition formula (Equation (21)), the variational lemma (Lemma 32), the
principle of Teichmüller contraction (Equation (22)) and most importantly, the Hamilton-Krushkal, Reich-
Strebel, necessary and sufficient condition for optimality(Theorem 33).

4 Proofs of Theorems 5 and 6

At the heart of our construction of the sequencefi in Theorems 5 and 6 lies the following lemma. Leth be
any quasiconformal homeomorphism betweenR (thezi punctured sphere) andS (thewi punctured sphere)
which is a valid input to Problem 2, andµh denote its Beltrami differential.

Lemma 17. Letυh be the infinitesimally extremal Beltrami differential in the infinitesimal class ofµh. Let
µg(t) be a curve of Beltrami differentials with the following properties:

1. µg(t) is globally trivial.

2. µg(t) = t(µh − υh) +O(t2).

Denote the solution to the Beltrami equation ofµg(t) by gt. Then∃ δ > 0 such that∀t < δ, the map
ht = h ◦ (gt)−1 has smaller dilatation thanh.

5Fixing the points0,1 and∞. Hence the freedom of Möbius tranformation is accounted for.
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Proof of Lemma 17.By the formula for composition of quasiconformal maps ((21)in Section 7.4),

µht
(gt(z)) =

µh − µg(t)

1− µg(t)µh

1

θt
, (2)

whereθt = pt/pt andpt =
∂gt
∂z . (2) implies

|µht
◦ gt|2 =

|µh|2 − 2Re(µhµg(t)) + |µg(t)|2

1− 2Re(µhµg(t)) + |µg(t)µh|2
(3)

Using the fact that
||µg(t)− t(µh − υh)||∞ = O(t2)

and differentiating (3) with respect tot once and puttingt = 0, we get that

|µht
◦ gt| = |µh| − t

1− |µh|2
|µh|

Re(|µh|2 − µhυh) +O(t2) (4)

Let k0 = ||υh||∞ < k = ||µh||∞. Define

S1 = {z ∈ R : |µh(z)| ≤ (k + k0)/2}
and

S2 = {z ∈ R : (k + k0)/2 < |µh(z)| ≤ k}
Clearly,S1 ∪ S2 = R. Since inS1 the starting value of this curve att = 0 is |µ|, which is certainly less

thank, (2) implies there existsδ1 > 0 andc1 > 0 such that for0 < t < δ1,

|µht
◦ gt(z)| ≤ k − c1t for z ∈ S1 (5)

Forz in S2 the coefficient oft in (4) is bounded below by

1− k2

k

[

(

k + k0
2

)2

− k0k

]

=
1− k2

k

(

k − k0
2

)2

> 0

Therefore, (4) implies there existsδ2 > 0 andc2 > 0 such that for0 < t < δ2,

|µht
◦ gt(z)| ≤ k − c2t for z ∈ S2 (6)

Putting together (5) and (6), we find that||µht
||∞ < k for sufficiently smallt > 0, proving the lemma.

The proof is similar to that of the Hamilton-Krushkal, Reich-Strebel necessary-and-sufficient condition
for extremality (see Theorem 33), published in a sequence ofpapers. We refer the reader to [12] for a
combined proof of this celebrated result, which is the one weadapt. To the best of the authors’ knowledge,
the above lemma is the first result that describes, given a starting map, how to get a map with a smaller
dilatation.

The proof of Theorem 5 is constructive. We summarize the construction first:
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4.1 Summary of the construction

At stepi, Given a starting mapfi : R → S with Beltrami coefficientµi, let υi denote the infinitesimally
extremal Beltrami coefficient in the infinitesimal class ofµi. Let ki = ||µi||∞ andk0i = ||υi||∞. Observe
thatµi − υi is infinitesimally trivial (Definition 16).

1. Chooset such that

t = min

(

3

4
, C1,

ε

4
,

√

ε

2C2
,
(ki − k0i )

2(1− k2i )

1− k2i + C2

)

, (7)

whereε ≤ min(1/2, (ki − k0i )/8), andC1 andC2 are two explicit constants to be derived later.

2. Use Section 4.3 to construct a quasiconformal self-homeomorphismgi of R such that

• µg is globally trivial.

• ||µg − t(µi − υi)||∞ < C2t
2, whereC2 is the same constant as in (7).

3. Formfi+1 = fi ◦ (gi)−1 such thatfi+1 has smaller dilatation thanfi (by Lemma 17).

4. Reiterate withfi+1 as the starting map.

4.2 How the construction implies Theorems 5 and 6

Theµg in step (2) above can be constructed by solving two differential equations involvingt, µi andυi
(Lemma 21 in Section 4.3). Assuming that, we have the following lemma that quantifies the progress made
in stepi. Recall thatki = ||µi||∞ andk0i = ||υi||∞.

Lemma 18. [Decrease in one step] Ift is chosen as in (7), thenki − ki+1 > d, where

d = min

(

ki − k0i
4

,
(ki − k0i )

2t(1− k2i )

8

)

.

Proof of Lemma 18. To simplify notation, we letk = ki andk0 = k0i , since we will be assuming that we
are in stepi of the iteration. As in the proof of Lemma 17, letS1 be the region where|µi| ≤ k+k0

2 andS2

be such thatk+k0
2 ≤ |µi| < k. Assuming thatt < min(3/4, C1) implies Lemma 21, so we assume this

condition ont.
Furthermore, onS1, if t < min

(

3/4, C1,
ε
4 ,
√

ε
2C2

)

, by the composition formula for q.c. maps we get,

|µi+1 ◦ gt(z)| =
|µi − µg|
|1− µiµ̄g|

≤ |µi − t(µi − νi)|
|1− µiµ̄g|

+
C2t

2

|1− µiµ̄g|

≤ 1

1− ε

(

k + k0
2

+ 2t+ C2t
2

)

≤ 1

1− ε

(

k + k0
2

+ ε

)

where the last inequality follows by requiring|µiµ̄g| < 2t+ C2t
2 < ε, which is true for the assumed value

of t. Notice that|µi|, |νi| are less than1.

9



Therefore, onS1,

k − |µi+1| ≥ k − k0 − 2ε(1 + k)

2(1 − ε)

>
k − k0

4

if ε ≤ k−k0
8 . OnS2,

|µi − µg|
|1− µiµ̄g|

≤ |µi − t(µi − νi)|
|1− µiµ̄g|

+
C2t

2

|1− µiµ̄g|

≤ |µi − t(µi − νi)|
|1− µit(µ̄i − ν̄i)| − |µi|C2t2

+
C2t

2

|1− µiµ̄g|

Now,

k − |µi+1| ≥ |µi| − |µi+1|

≥ |µi|(|1− µit(µ̄i − ν̄i)| − |µi|C2t
2)− |µi − t(µi − νi)|

|1− µit(µ̄i − ν̄i)| − |µi|C2t2
− C2t

2

1− ε

≥ A−B

|1− µit(µ̄i − ν̄i)| − |µi|C2t2
− C2t

2

1− ε
(8)

whereA = |µi|(|1− µit(µ̄i − ν̄i)|) andB = |µi|C2t
2 − |µi − t(µi − νiu)|. Using

A−B =
A2 −B2

A+B

A+B < 4

A2 −B2 = (1− |µi|2)(2ℜ(tµi(µ̄i − ν̄i))− t2|µi|2|µi − νi|2(1 + |µi|2))
≥ (1− |µi|2)(t(k − k0)

2 − t2|µi|2|µi − νi|2(1 + |µi|2)) (9)

Using Equation 9 in Equation 8 and the fact thatε < 1/2 we see that

k − |µi+1| ≥
1− k2

4
(t(k − k0)

2 − 8t2)− 2C2t
2

≥ (k − k0)
2t(1− k2)

8
(10)

with the last equation holding ift < (k−k0)2(1−k2)
1−k2+C2

, concluding the proof.

Now we apply the principle of Teichmüller contraction, which essentially boundski − k0i from below by a
function ofki−k∗ (how far we are from the infinitesimally extremal coefficienttells us how far we are from
the extremal). Using Lemma 18, Equation (7) and the principle of Teichmüller contraction (Equation (22)),
we get

Lemma 19. There exists a constantC3 > 0, such that ift is chosen as in (7), then

ki − ki+1 > C3(1− ||µ1||∞)2(ki − k∗)
4

10



Proof of Lemma 19. The first three terms in themin expression in Equation (7) are independent of the
iteration step. If the value oft is one of these, then the lemma is evident. Similarly, if the value ofd is the
first of the two terms in themin in Lemma 18, then the lemma is clear too.

Assume now thatt = (ki−k0i )
2(1−k2i )

1−k2i+C2

. Noting that1− ki + C2 < C2 + 1, and that1− k2i > 1− ki, we

gett > (ki−k0i )
2(1−ki)

1+C2
. Using this value in Lemma 18 gives

d >
(ki − k0i )

4(1− ki)
2

8(1 +C2)
,

and by Teichmüller contraction,ki − k0i ≥ (ki − k∗)/10, implying

d >
(ki − k∗)4(1− ki)

2

80(1 + C2)
,

PuttingC3 =
1

80(1+C2)
, and noting that1− ki > 1− k1 completes the proof of the lemma.

Using Lemma 19, the proofs of Theorems 5 and 6 can now be completed.
Proof of Theorem 5: The first three assertions follow easily from our construction (notice thatµg being
trivial implies that we stay within the initial homotopy class). We now prove assertion (4) in the statement
of the theorem.

Theki form a decreasing sequence and are bounded from above byk1 and below byk∗. Hence theki
converge to somek ≥ 0. But thenki − ki+1 → 0 asi → ∞, and Lemma 19 now implies thatki − k∗ → 0,
and sok = k∗. Thuski → k∗.

Now the fact thatfi converge uniformly tof∗ follows because of the convergence property of q.c.h.
The space of all q.c.h.f with ||µf ||∞ < k1 forms a compact space, and so there exists a subsequence
that converges. By the arguments above and by uniqueness off∗, this limit must bef∗. Furthermore, this
must be true of any convergent subsequence of thefi. Thus we get that the entire sequencefi converges
uniformly tof∗.
Proof of Theorem 6: Let A = C3(1 − ‖µ1‖∞)2 and defineyn = ‖µn‖∞ − k∗. By Lemma 19 and
Teichmüller contraction (Equation (22)),yn+1 ≤ yn −Ay4n . If y1 < ε, we are done. If not, theny1 − y2 ≥
Ay41 ≥ Aε4 and thusy2 ≤ y1 − Aε4. If y2 < ε we are done. If not,y3 ≤ y2 − Aε4 ≤ y1 − 2Aε4.
Continuing inductively we see thatyn ≤ y1 − (n− 1)Aε4 if yn−1 > ε. The right hand side is less thanε if
n > 1

Aε4
(‖µ1‖L∞ − k∗ − ε). Since(‖µ1‖L∞ − k∗ − ε) < 2, puttingC = 2/C3 proves the theorem.

4.3 Constructing self homeomorphismsgi

Given a starting mapfi, we show how to construct the self homeomorphismgi of R used in our construction.
We simplify notation by suppressing thei, keeping in mind that this is theith step of the procedure. Thusµ
andµg will denote the Beltrami differentials offi andgi, respectively. Also,υ is the infinitesimally extremal
Beltrami differential in the infinitesimal class ofµ.

Let α = µ − υ, t be as in Equation (7), and letf tα be the normalized solution to the Beltrami equation
for tα. We observe next thatf tα moves the pointszi only by a distanceO(t2).

Lemma 20. Let r = max
1≤i≤n−3

|zi|, and letf tα be as above. Then there exists a constantCr depending only

on r, and a constantδ > 0 such that for alli, |f tα(zi)− zi| ≤ Crt
2, ∀t < δ.
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Proof of Lemma 20.By (1),

φi(ζ) =
zk(zk − 1)

ζ(ζ − 1)(ζ − zk)

for 1 ≤ i ≤ n − 3 is a basis for the space of quadratic differentials onR. Let ζ = ξ + iη. Infinitesimal
equivalence oftα now implies that

∫ ∫

C

tαdξdη

ζ(ζ − 1)(ζ − zk)
= 0 (11)

Now we use the mapping theorem (Theorem 31 in Section 7.4). Inthe notation of the theorem,V (zi) = 0
by (11). Existence ofδ, Cr and the statement now follows from the statement of the mapping theorem.
Denotef tα(zi) by z

′

i. We will first construct another homeomorphismfv from Ĉ to itself which satisfies
fv(z

′

i) = zi. We then define the required self homeomorphismgi = fv ◦ f tα. The construction offv will be
via a vector field method.

Construction of fv by a vector field method: Let {D1, · · · ,Dn−3} denote disjoint open disks centered
at zi. Choosing the radius of each disk to ber = d/4, whered = max

1≤i,j≤n−3
|zi − zj| ensures disjointness.

We will fix these disks once and for all.

A single disk: We first construct a self homeomorphismf i
v of Ĉ which is the identity outsideDi, and

mapsz
′

i to zi. Now zi ∈ R, and by a rotation we can assume thatz
′

i is real and greater thanzi. Consider the
vector field

X(z) = p(z)(z
′

i − zi)
∂

∂x
,

wherep(z) is aC∞ function identically zero outsideDi, and identically1 inside the disk of radiusr/2
aroundzi, denoted asD

′

i. Letγ be the one parameter family of diffeomorphisms associated with this vector
field. We denote the time parameter bys and note that the diffeomorphismγ1 sendsz

′

i to zi. We denote this
diffeomorphismγ ats = 1 by f i

v. Now definefv = fn−3
v ◦ fn−2

v · · · ◦ f1
v , andgi = fv ◦ f tα. We have

Lemma 21. There exist constantsC1 > 0 andC2 > 0 such thatµg above is globally trivial, and for all
t < min(3/4, C1), ||µg − t(µ − υ)||∞ < C2t

2.

The exact values ofC1 andC2 can be inferred from the proof. They equal the values ofδ andCr,
respectively, in the mapping theorem, whenr = 1.
Proof of Lemma 21.

In what follows, we denotefi (the quasiconformal map afteri iterations of the algorithm) byf for
convenience. In fact, we drop the subscripti altogether. Recall that fromµi, we construct a new quadratic
differentialνi that is infinitesimally extremal. Letαi = µi − νi.

We then constructgi that is a self homeomorphism of the base punctured sphereR using the vector
field method. If we manage to prove that the dilatation of the map obtained by the vector field method
‖v‖L∞ ≤ Gt2, then for the composition (here|A| = 1) gi = fv ◦ f tαi , if i is sufficiently large then
|1 + tαvA| > 1

2

|tα+Av ◦ f tα

1 + tαAv
− tα| = |Av ◦ f

tα + t2α2Av ◦ f tα

1 + tαvA
|

≤ (2G+ 1)t2 (12)

12



Therefore the Beltrami of the composition istα + O(t2) where theO(t2) term is bounded above by
(2G + 1)t2 = Ct2. Our aim is to prove thatG exists and is bounded independent ofi. In whatever follows
we denotefv simply byf .

Recall that the vector field isX =
∑

j ρj(zj(t) − zj). Let γ(t, s, y, ȳ) be the flow wheres is the “time
parameter" for the flow andy is the initial position. Notice that the vector field diffeo is γ(t, 1, y, ȳ) = f
and the Beltramiv. Notice that

v =
fȳ
fy

vt =
fȳtfy − fȳfty

f2
y

vtt =
(fȳttfy − fȳftty)f

2
y − 2fyfyt(fȳtfy − fȳfty)

f4
y

If |fy| > m andft, |fy|, |fȳ|, |fȳtt|, |fytt|, |fȳt| and|fyt| are bounded above byM , then|vtt| ≤ 6M4

m4 =
G. First we have to prove that indeed|v| < 1 so thatf is q.c. For all of these things we consider

dγ

ds
=

∑

ρ(γ)(zi(t)− zi)

dγt
ds

=
∑

(ρzγt + ρz̄ γ̄t)(zi(t)− zi) +
∑

ρz
′

i

dγtt
ds

=
∑

(ρzz(γt)
2 + 2ρz̄z|γt|2 + ρzγtt + ρz̄z(γ̄t)

2 + ρz̄ γ̄tt)(zi(t)− zi) +
∑

ρz
′′

i +
∑

(ρzγt + ρz̄γ̄t)z
′

i

dγy
ds

=
∑

(ρzγy + ρz̄ γ̄y)(zi(t)− zi)

dγȳ
ds

=
∑

(ρzγȳ + ρz̄ γ̄ȳ)(zi(t)− zi)

dγyt
ds

=
∑

(ρzzγtγy + ρz̄z γ̄tγy + ρzγyt + ρzz̄γtγ̄y + ρz̄zγ̄tγ̄y + ρz̄ γ̄yt)(zi(t)− zi) +
∑

(ρzγȳ + ρz̄ γ̄ȳ)z
′

i(t)

and similarly for the other quantities. Notice that|zi(t)− zi| ≤ Et2. For future reference let‖ρ‖C2 ≤ P
10000

andmaxi |zi| = a. Notice that by Cauchy’s estimates|z′

i| ≤ 4(a+E) and|z′′

i | ≤ 16(a+E) for t < 3
4 . For

a system of IDE of the type

w(s)− w =

∫ s

0
A(t)w(t)dt

by the Gronwall inequality,|w(s)| ≤ |w| exp(smax[0,s]
√
n‖A‖). Without loss of generality, lett <
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min(3/4, exp(−EP/2) 1√
100EP , ) andP, E > 1. Therefore

‖γy(t, 1, y, ȳ)‖C0 ≤ exp(PEt2) ≤ exp(PE)

‖γȳ(t, 1, y, ȳ)‖C0 ≤ PEt2 exp(PEt2) ≤ exp(PE)

|γy(s)− 1| ≤ 2PEt2 exp(EP) ≤ 1

2

m =
1

2
‖γt(t, 1, y, ȳ‖C0 < PE(a + E) exp(PE)

‖γtt(t, 1, y, ȳ‖C0 < (PE(a + E))3 exp(PE)

‖γyt(t, 1, y, ȳ)‖C0 < (PE(a + E))2 exp(PE)

‖γȳt(t, 1, y, ȳ)‖C0 < (PE(a + E))2 exp(PE)

‖γytt(t, 1, y, ȳ)‖C0 < (PE(a + E))3 exp(PE)

‖γȳtt(t, 1, y, ȳ)‖C0 < (PE(a + E))3 exp(PE)

C = 2
6M4

m4
+ 1 < 200(PE(a +E))12 exp(4PE)

Recall thata = maxi |zi| (not zi(t) but zi(0)), E is that constant such that|zi(t) − zi| ≤ Et2, andP =
1000‖ρ|C2 . Note thatt has an additional condition in thatt < min(34 , exp(−EP/2) 1√

100EP ) so as to ensure

that indeed|γy| ≥ 1
2 and that|v| < 1.

Until now the constants depended onmaxi |zi|. However, note that the extremal map problem is in-
variant under Möbius transformations fixing the upper half plane. The constantsδ andCr in the mapping
theorem depend only onr (wherer is the disk inside which these estimates are valid). For the polygon
mapping problem, a-priori all thezis are on the real line, and three of them are0, 1 and∞. Assume that
∞ is thenth puncture (sozn = ∞),and choosezmin = mini 6=n zi andzmax = maxi 6=n zi. We then find a
Möbius transformation that mapszmin, zmax andzn to 0, 1,∞, respectively. Now all the new punctures are in
the interval[0, 1], and the mapping theorem provides absolute constants that do not depend on the punctures
anymore.

We showed in Theorem 3 how to reduce the polygon mapping problem to the punctured sphere problem.
However, the above procedure can also be directly implemented on polygons, once we have the appropriate
basis for the space of quadratic differentials. We give a simple well-known description of this basis in
Section 8.3 in the appendix..

5 Discretization of the procedure

Before we discretize the procedure, we give the properties of the mesh we work on as promised in Sec-
tion 2.2. Given an error toleranceδ, let ε = O(δ6n−2).

Definition 22. [Canonical triangulation of sizeε] A canonical triangulation of sizeε, denoted as∆ε is a set
of vertices and edges(Vε, Eε), with zi ∈ Vε, satisfying the following.

1. It contains the edges and vertices of a regular polygon centered at0 and of diameterO(δ−1), and line
segments joining the vertices of this polygon to∞.
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2. Except for the line segments to∞, all the other sides of the triangulation have Euclidean length at
mostε.

3. It contains the edges and vertices of regular polygons ofN = O(δ(1−2n)) sides centered at the
punctures of diameterO(δ), and lines joining the the vertices of these polygons to their centers, i.e.
to the punctures.

4. ∆ε is a refinement of∆1/2.

We now describe what the algorithmINEXT does, after which we prove Theorem 7.

5.1 INEXT and the proof of Theorem 7

We want to discretize the operatorP(µ) which returnsν with the leastL∞ norm satisfying
∫

R νφi =
∫

R µφi

for all φi in Equation (1). Note that the startingµ is piecewise constant at the start of every iteration.

Observation 23. The integral ofφi over any triangletj can be computed analytically.

We provide this formula (that involves taking the logarithmof a complex number) in Section 8.1.
We approximateν by piecewise constant Beltrami differentials. One can easily see then that the con-

straints for infinitesimal equivalence become linear constraints of the formAx = b, whereA is the matrix
whose(i, j)th entry equals

∫

tj
φi, x is the vector of unknown values of the piecewise constantν on a triangle,

andb is the vector of
∫

tj
µjφi, whereµj is the value ofµ on triangletj.

If A, x and b are real, anL∞ minimization can be formulated as a linear program. In our case, we
break the vectors and matrices into their real and complex parts, and then we can formulate the program as
a quadratically constrained quadratic program. Although in general they are NP-hard to solve, we show that
our program involves positive semi-definite matrices; and it is known that such instances can be solved in
polynomial time using interior-point methods [18]. Details are in Section 8.2.

Lemma 24. [INEXT ] There exists an algorithmINEXT that, given a piecewise constantµ on∆ε returns
a piecewise constant̂ν such thatmaxtj ν̂(tj) ≤ maxtj β(tj), whereβ is any piecewise constant (on∆ε)
Beltrami differential that is infinitesimally equivalent to µ.

With this, we are now in a position to prove Theorem 7.
Proof sketch for Theorem 7: The main idea is to useν = P(µ) and produce a piecewise constant

νp, which does not satisfy the integral constraints, but the error involved can be estimated. We then add a
piecewise constant differential toνp to produceν̃p that is in the same infinitesimal class asµ and whose
dilatation is close to that ofν. This proves that̂ν (whose dilatation is smaller than that ofν̃p) satisfies the
desired requirement.

Proof of Theorem 7. In whatever follows we assume that|zi| ≤ A. Let ˜̃k = min(|zi − zj|/200, |zi −
1|/200, |zi |/200). Here we prove that‖ν‖ − ‖ν∗‖ < δ. The strategy is to produce a piece-wise constant
Beltrami coefficient̃νp whose norm isδ close toν∗ and satisfies the integral constraint exactly. To do this we
first produce a piece-wise constant Beltramiνp whose norm is equal to that of the infinitesimally extremal
one‖ν∗‖ and|

∫

(νp − ν∗)φk| < δ ∀ k. We claim that we may producẽνp by adding terms of magnitude at
mostδ to νp so as to make sure that the integral constraint is obeyed exactly. Indeed, by the hypothesis on
the canonical triangulation we see that one may choose sufficiently many triangles of size12 and solve linear
equations that determine the constants to be added on these triangles so as to satisfy the integral constraint.
Thus the problem is reduced to findingνp and proving the error estimate.
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The infinitesimally extremalν∗ = k∗
|φ|
φ = k∗

|
∑

ckφk|∑
ckφk

= k∗
|
∑

c̃kφk|∑
c̃kφk

where|c̃k| ≤ 1 with |c̃1| = 1. Then

ν∗ = k∗
|∑ c̃k(z − z1) . . . (z − zk−1)(z − zk+1) . . . |
∑

c̃k(z − z1) . . . (z − zk−1)(z − zk+1) . . .

z(z − 1)(z − z1) . . .

|z(z − 1)(z − z1) . . . |

= k∗
|∑ c̃khk(z)|
∑

c̃khk(z) . . .
g(z)

We first approximatehk andg by piece-wise constant functions with an error of at mostβ within the
large polygon. Replace the values ofhk, g by their values at the centers of the triangles in the triangulation.
This gives usνp in the large polygon. Outside it we setνp to 0.

The error thus caused forhk is less thanε2nRn. For g the error is more subtle. In the small polygons
around the punctures, ifN > 12π

β then the error caused ing(z) is less thanβ3 in those regions. For future

use it is useful to note thaty2|y2 − y1
|y1 ≤ |y2 − y1|

∫ 1
0 | 1

ty2+(1−t)y1
|dt and the same inequality holds for|y|y .

Outside the polygons the error ing is less than
√
ε2nRn

1−√
ε2nRn . Since the radius of the polygons isκ̃, the error in

|
∑

c̃khk|∑
c̃khk

outside the polygons is less than ε2nRn

(k̃)n−1−ε2nRn
< β. Notice thatε < min(k̃2n, β2

22nR2n ). Next we

want to estimateIk =
∫ |ηk(ν∗ − νp)|
|z(z − 1)(z − zk)|

=

∫

Uk. Indeed,

Ik ≤ 4k∗

∫

|z|≥2R

1

r2
drdθ +

∫

|z|≤2R
Uk

≤ k∗δ
2

+ Jk

where2|z|3 ≥ |z(z − 1)(z − zk)| ≥ |z|3
2 if R > max 4

δ , 1, 2
n(1 +A)n. Now we estimateJk.

Jk =

∫

|z|≤2R∩|
∑

c̃khk|>κ
Uk +

∫

|z|≤2R∩|
∑

c̃khk|>κ
Uk

< k∗
β

κ− β
+ k∗β +

∑

ξ

∫

|z|≤2R∩|
∑

c̃khk|>κ∩|z−zξ|<κ̃
Uk +

∫

|z|≤2R∩|
∑

c̃khk|>κ∩|z−zξ|>κ̃ ∀ ξ

< k∗
β

κ− β
+ k∗β + k∗(1 +A)2

12πk̃

(˜̃κ)2
+ k∗(A+ 1)2

(πκ2/(n−1))n

κ̃3
(13)

where the last estimate is obtained by remembering that
∑

c̃khk = (z − λ1) . . . for someλi within the big
polygon. One may choosẽκ, κ andβ so as to estimateIk by δ. Indeed,

κ̃ <
δ(˜̃κ)2

1000(1 +A)2

κ <

(

δ4(˜̃κ)6

1010(1 +A)8

)(n−1)/2

β < δ
κ

6 + δ

< O(δ2n−1)
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5.2 EXTREMAL and the proof of Theorem 10

Apart from the subroutinesINEXT , PIECEWISE-COMP andPIECEWISE-INV , we will require three
more subroutines to discretize our procedure.

Definition 25. [Subroutine:TRIANG ]
Input: a set of pointsS, a sizeM , and a triangulation∆ε.
Output : A triangulation∆ε

′ of the given sizeM containingS such that∆ε
′ is a refinement of∆ε.

Definition 26. [Subroutine:BELTRAMI ]
Input: A triangulation∆ε of the plane, a piecewise constant Beltrami coefficientµ, and error toleranceδ.
Output: A triangulation∆

′

ε that is a refinement of∆ε, and the imageŝf(vi) of the verticesvi ∈ ∆
′

ε such
that |fµ(vi)− f̂(vi)| < δ.

Definition 27. [Subroutine:VECT-FIELD ]
Input: A Ck (k sufficiently large, e.g.k > 10) vector fieldX (written as a formula in terms of elementary
functions), a triangulation∆ε, and an error toleranceδ.
Output: A triangulation∆

′

ε that is a refinement of∆ε, the images ofvi ∈ ∆ε up to errorδ under aCk

diffeomorphismγx corresponding to the flow alongX, and a piecewise smooth Beltrami coefficient that
approximates the one up to errorδ.

Implementing TRIANG , BELTRAMI and VECT-FIELD : We outline ways to implement the above
three subroutines:

1. Given a set ofn points, we can obtain the Delaunay triangulation inO(n log n) time. While im-
plementingTRIANG , we first compute the Delaunay triangulation of all the points falling inside a
triangle of the given triangulation. The we connect the vertices on the convex hull of such a set of
points to one of the three vertices of the triangle they lie in. If this complete triangulation is not yet size
M , we make the mesh denser by adding points as in [19] (points are added to either the circumcenters
of triangles or mid-points of edges), until we reach the desired size.

2. The solution to the Beltrami equation forµ can be expressed as a series of singular operators applied
to µ. There are many efficient algorithms and implementations ( [6], [11]) existing forBELTRAMI .
Most of them can bound thelp norm of the error, but the methods in [6] can be used to bound theL∞

error too [5].

3. The idea of deforming a surface by a vector field has been applied extensively in computer graphics.
We refer the reader to [1] for an implementation.

Description of EXTREMAL : The algorithm summarized below is based on Section 4.1.

• UseTRIANG to produce a triangulation of size required byINEXT to run within an error ofδ10.

• Loop i = 1 to N whereN is the number of iterations in Theorem 6 to produce the resultwithin an
error ofδ/2.

1. UseINEXT to produceνi from µi within an error ofδ10. If νi = µi then stop.

2. Findti by Equation (7), usingk0 as‖νi‖∞.

17



3. InvokeBELTRAMI for the coefficientti(µi − νi) to find the images of the punctures within an
accuracy oft3i .

4. Define the vector fieldX as in the continuous construction using a piecewise polynomial version
of the bump function (that isC10 for instance). Then callVECT-FIELD to find a piecewise
constant Beltrami coefficient up to an error oft3i .

5. UsePIECEWISE-COMP to compose the Beltrami coefficients of step3 and step4 within an
error(‖µi‖ − ‖νi‖)5 for the Beltrami coefficient andδ/i2 for the q.c.h.

6. UsePIECEWISE-INV to find the Beltrami coefficient of the inverse of the q.c.h of step5, up
to the same error as that in step5.

7. CallPIECEWISE-COMP to composeµi and the Beltrami coefficient of step6 to formµi+1 (up
to the same error as that in step5).

The algorithm terminates by producingµN . The proof of Theorem 10 is similar to that of Theorem 6.

6 Discussions

We conjecture our algorithm to run in polynomial time. This is evidenced by the fact that 1) the num-
ber of iterations is a polynomial in1/ε, 2) INEXT (quadratic program),TRIANG , BELTRAMI and
VECT-FIELD run in polynomial time, and 3) we expect the existence of polynomial time subroutines
PIECEWISE-COMP andPIECEWISE-INV .

Open problems abound. Apart from improving (complexity andapproximation) the algorithm we pro-
pose, the extremal map problem can be further explored in many directions.

1. Most of the ideas presented here (notably Lemma 17) can be used to envision an algorithm for com-
puting Teichmüller maps between arbitrary (finite analytictype) Riemann surfaces. The problem is
challenging for multiple reasons—for instance, an explicit basis of holomorphic quadratic differen-
tials may not be available.

2. The authors feel that building a discrete version of Teichmüller theory would be an important achieve-
ment. Given a triangulated Riemann surface, defining a discrete analog of dilatation that gives nice
results (e.g. existence and uniqueness) about the extremalmap would be the next step in this direction.

3. Most of the surfaces we see in everyday life can be regardedas Riemann surfaces. Being able to com-
pute the "best" angle-preserving map between them is certainly of theoretical and practical interest.
Our current efforts are aimed at being able to visualize geodesics in Teichmüller space. Seeing the
base polygon (or Riemann surface) morphing (similar to whatwas accomplished in [20]) into the tar-
get polygon (surface) under the solution totµ∗, would give us an idea of how shapes actually change
while following a geodesic in this moduli space.

Acknowledgements:The first author would like to thank Frederick Gardiner, Christopher Bishop, Irwin
Kra and Joe Mitchell for numerous discussions and helpful suggestions.
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Appendices

7 Appendix 1: Quasiconformal maps and essential theorems from Teich-
müller Theory

All of the material in this section is classical and can be found in books on complex analysis and Riemann
surfaces, such as [2,9,10,12].

7.1 Riemann mapping theorem and Riemann surfaces

Theorem 28(Riemann Mapping). LetΩ be a simply connected domain in the complex planeC, not equal
to the entire complex plane. Then there exists a biholomorphic mapf : D −→ Ω. Further,f is unique up to
composition by a Möbius transformation.

That f is biholomorphic implies it is conformal. One can thereforestate as a corollary that any two
simply connected domains inC (not equal toC) can be mapped conformally and bijectively to each other.

Riemann surface LetM be a two dimensional real manifold. A complex chart onM is a homeomorphism
φ from an open subsetA ⊂ R to an open subsetB ⊂ C. Let φ1 : A1 → B1 andφ2 : A2 → B2 be two
complex charts.φ1 andφ2 are said to be compatible if the map

φ2 ◦ φ1
−1 : φ1(A1 ∩A2) → φ2(A1 ∩A2)

is biholomorphic.
A complex atlas onM is a system of charts which coverM , and in which any two charts are compatible.

Two complex atlases are regarded equivalent if all charts inthe union of the atlases are pairwise compatible.

Definition 29 (Riemann surface). A Riemann surfaceR is a pair(M,σ), whereM is a connected two-
manifold andσ is an equivalence class of complex atlases onM .

Examples of Riemann surface include the complex plane, domains in the complex plane, the Riemann
sphereĈ and all Riemannian manifolds (oriented two-manifolds witha Riemannian metric).

Given two Riemann surfacesM andN , a mapf : M → N is conformalif its restriction on any local
conformal parameters isholomorphic. Geometrically, a conformal map preserves angles, and transforms
infinitesimal circles to infinitesimal circles, as shown in Figure 1 frame (a),(b) and (c).

7.2 Quasiconformal maps

A generalization of conformal maps arequasiconformalmaps, which are orientation preserving homeomor-
phisms between Riemann surfaces with bounded conformalitydistortion, in the sense that their first order
approximations takes small circles to small ellipses of bounded eccentricity, as shown in Fig.1 frame (d) and
(e). Mathematically,f : C → C is quasiconformal provided that it satisfies the Beltrami equation:

fz̄ = µ(z)fz. (14)

for some complex-valued functionµ satisfying ||µ||∞ < 1. µ is called theBeltrami coefficient, and is a
measure of the non-conformality off . In particular, the mapf is conformal around a small neighborhood
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of p whenµ(p) = 0. As shown in Figure 2, the orientation of the ellipse is double the argument ofµ. The
dilatation of f is defined as the ratio between the major axis and the minor axis of the infinitesimal ellipse.
The maximal dilatation off is given either by:

kf = ||µf ||∞, (15)

or by

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (16)

A homeomorphism with dilatation less than or equal toK is called aK-quasiconformal mapping.

(a)Original surface (b) Conformal (c) Conformal (d) Qc mapping (e) Qc mapping
mapping mapping

Figure 1: Conformal and quasiconformal mappings from a human face surface to the planar disk.

1 + |µ|

1− |µ| arg(µ)/2

K = 1+|µ|
1−|µ|

Figure 2: Beltrami coefficient.

7.3 Quadratic differentials

Definition 30 (Holomorphic quadratic differential). A holomorphic quadratic differential on a Riemann
surfaceR is an assignment of a functionφi(zi) on each chartzi such that ifzj is another local coordinate,

thenφi(zi) = φj(zj)(
dzj
dzi

)
2
.

We will denote the space of such differentials onR asA(R). By the Riemann-Roch theorem, the
complex dimension of this vector space for a genusg closed compact surface withn punctures is3g−3+n.
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(a)φ1 (b)R1 (c) φ2 (d)R2

Figure 3: Holomorphic quadratic differential bases on a pentagon.

(a) (b) (c) (d)

Figure 4: Holomorphic quadratic differentials on a pentagon. (a) and (b) show[0.2(φ′
1)

2 + 0.8(φ′
2)

2]dz2,
(c) and (d) show[−0.2(φ′

1)
2 + 1.2(φ′

2)
2]dz2.

The Riemann surfaces of primary importance to us are the punctured Riemann sphere and the unit
disk. For the unit disk, there is only one chartz, and therefore any function holomorphic in the interior
of the disk can be viewed as a quadratic differential (the transition condition is vacuous). ForR = Ĉ \
{0, 1,∞, z1, ...zn−3} (the Riemann sphere withn punctures),

φi(z) =
zk(zk − 1)

z(z − 1)(z − zk)
, 1 ≤ k ≤ n− 3, (17)

form a basis of(n− 3) dimensional complex vector spaceA(R).
Another vector space of importance to us is the space of polygon differentials. LetP be a polygon in

the plane, normalized so that0, 1 and∞ are three vertices ofP . Supposeφk : P → Dk is the conformal
mapping, whereDk is a planar rectangle, such thatφk maps{0, 1,∞, zk} to the four corners of the rectangle
Dk. Then

{(φ′
1)

2dz2, (φ′
2)

2dz2, · · · , (φ′
n−3)

2dz2}
form the bases ofA(R). As shown in Figure 3, the Riemann surfaceR is a pentagon with vertices
{z1, z2, z3, z4, z5}, φ1 mapsR to planar rectanglesR1, such that{z1, z2, z3, z4} are mapped to four corners.
The checkerboard texture onR1 is pulled back toR and shown in (a). Similarly,φ2 maps{z1, z2, z3, z5}
to a rectangleR2. Then{(φ′

1)
2dz2, (φ′

2)
2dz2} form the bases of all holomorphic quadratic differentials on

the pentagon. Figure 4 shows the linear combinations of these bases. Figures 5 and 6 show the bases and
certain linear combinations of the bases on a hexagon, respectively.
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Figure 5: Holomorphic quadratic differential bases on a hexagon.

Figure 6: Holomorphic quadratic differentials on a hexagon.

An excellent book for studying Quadratic differentials in further detail is [21].
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7.4 Classical theorems used in our construction

We start with a theorem which explains the dependence of a Beltrami coefficient to the solution of its
Beltrami equation.

Mapping Theorem [ [12], Theorem1, Page10] Let µ(z) be a measurable complex-valued function de-
fined on a domainΩ for which ||µ||∞ = k < 1. Consider the Beltrami equation,

fz̄(z) = µ(z)fz(z). (18)

Theorem 31. Equation 18 gives a one to one correspondence between the setof quasiconformal homeo-
morphisms of̂C that fix the points0, 1 and∞ and the set of measurable complex-valued functionsµ on Ĉ
for which ||µ||∞ < 1. Furthermore, the normalized solutionfµ of Equation 18 depends holomorphically
onµ and for anyr > 0 there existsδ > 0 andC(r) > 0 such that

|f tµ(z)− z − tV (z)| ≤ C(r)t2 for |z| < r and |t| < δ, (19)

where

V (z) = −z(z − 1)

π

∫ ∫

C

µ(ζ)dξdη

ζ(ζ − 1)(ζ − z)
, (20)

andζ = ξ + iη.

Composition of Quasiconformal Maps Let µ, σ andτ be the Beltrami coefficients of quasiconformal
mapsfµ, fσ andf τ with f τ = fσ ◦ (fµ)−1. Then

τ =

(

σ − µ

1− µ̄σ

1

θ

)

◦ (fµ)−1, (21)

wherep = ∂
∂zf

µ(z) andθ = p̄
p . In particular, iffσ is the identity, that is, ifσ = 0, then

τ = −
(

µ
p

p̄

)

◦ (fµ)−1.

The following lemma relates infinitesimally trivial Beltrami coeffcients to globally trivial ones.

Lemma 32. [Variational lemma][ [12], Theorem6, Page140] µ is an infinitesimally trivial Beltrami differ-
ential if, and only if, there exists a curveσt of trivial Beltrami differentials for whichσt(z) = tµz + O(t2)
uniformly inz.

Teichmüller contraction The principle of Teichmüller contraction states that givena Beltrami coefficient
µ, its distance to the globally extremalµ∗ is of the same order as its distance to the infinitesimally extremal
υ. For a full statement and proof of the principle, see [12], Theorem10, page103.

We will restate the part of the principle relevant to us. Letk0 = ||µ∗||∞ be the dilatation of the ex-
tremal Beltrami coefficient in the same global class asµ, and letυ be the infinitesimally extremal Beltrami
coefficient in the infinitesimal class ofµ. Fix 0 < k1 < 1. Then

||µ||∞ − k0
4

≤ 2

(1− k1)2
(||µ||∞ − ||υ||∞) ≤ 2

(1− k1)4
(||µ||∞ − k0). (22)
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Hamilton-Krushkal, Reich-Strebel condition

Theorem 33. [Hamilton-Krushkal, Reich-Strebel necessary-and-sufficient condition for extremality] A qua-
siconformal mapf has minimal dilatation in its Teichmüller class if and only if its Beltrami coefficientµ is
extremal in its infinitesimal class.

8 Appendix for the discretization of the procedure

8.1 Formula for the integral of φi on a triangle tj

Let D be the triangle whose vertices areα, β, γ (in that order). Then

∫

D

1

z(z − 1)(z − a)
=

∫

D

(

1

az
+

1

(1− a)(z − 1)
+

1

a(a− 1)(z − a)

)

=

∫ 1

0

∫ u

0
(

1

a(α+ u(β − α) + v(γ − β))
+

1

(1− a)(α− 1 + u(β − α) + v(γ − β))
+

1

a(a− 1)(α− a+ u(β − α) + v(γ − β))
dvdu

=
1

γ − β

[

1

a
I1 +

1

1− a
I2 +

1

a(a− 1)
I3

]

I1 =
1

γ − α
(γ ln γ − γ − α lnα+ α)− 1

β − α
(β ln β − β − α lnα+ α)

I2 =
1

γ − α
((γ − 1) ln(γ − 1)− γ − (α− 1) ln(α− 1) + α)

− 1

β − α
((β − 1) ln(β − 1)− β − (α− 1) ln(α− 1) + α))

I3 =
1

γ − α
((γ − a) ln(γ − a)− γ − (α− a) ln(α− a) + α)

− 1

β − α
((β − a) ln(β − a)− β − (α− a) ln(α− a) + α))

(23)

8.2 Details of the algorithm INEXT

P(µ) is the solution to the following program.

Program 34.

min ||ν||∞

subject to:
∫

R
νφi =

∫

R
µφi ∀i ∈ {1, 2...n − 3}

Program 34 is anL∞ norm minimization subject to certain constraints. We will solve the above program
whenν ranges over all piecewise constant Beltrami differentials. Let {νi}Ti=1, whereT is the number of
triangles in the triangulation, be a basis of piecewise constant Beltrami differentials.
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Consider thejth triangletj; the integral of any basis elementφ in Equation (1) can be computed analyt-
ically, and in a preprocessing step, we compute the matrixA where((aij)) =

∫

tj
φi.

We writeν =
∑

λiνi, and representν as a vectorλ = (λ1, λ2, · · · , λT ). Eachλk is a complex number;
separating into real and imaginary parts we getλk = λrk + iλik. Let the analogous vector forµ beλ

′
. Then

the above constraint can be written asAλ = b, whereb = Aλ
′
. Using the above separation into real and

imaginary parts for the matrixA = Ar + iAi andb = br + ibi, this is equivalent to

Definition 35 (Constraints).
Arλr −Aiλi = br (24)

Aiλr +Arλi = bi (25)

We introduce another variablez ∈ R+, making the number of variables(2T + 1). Let the vector of
unknowns beβ = (λr1, · · · , λrT , λi1, · · · , λiT , z).

Program 36.

min z

subject to : Constraints24 and25,

and λ2
rj + λ2

ij − z ≤ 0 ∀1 ≤ j ≤ T

The last constraint uses the fact that the solutionν∗ to Program 34 is of Teichmüller form. The objective
function of Program 36 is linear in the unknown variables. Constraints 24 and 25 are also linear. The last
set of constraints can be written asβtPjβ − z ≤ 0, wherePj is a(2T + 1) matrix of zeroes with its(j, j)th

and(T + j, T + j)th entry being1. Pj has all but two eigenvalues as0, and two eigenvalues are1, implying
that it is positive semi-definite.

Although solving a quadratically constrained quadratic program in general is NP-Hard, positive semi-
definite instances of it are polynomial time solvable. Numerical solvers for these programs have been vastly
studied, and efficient implementations exist. We refer the reader to Page42 of [18] for a complete reference.

This completes the proof for Lemma 24.

8.3 Holomorphic quadratic differentials on polygons

SupposeP is a polygon with vertices{z0, z1, · · · , zn−1}. For each2 < k < n, there exists a unique
conformal mapφk, which mapsP to a rectangleR = [0, 1] × [0, h], and mapsz0, z1, z2, zk to the four
vertices ofR. Then{(φ′

k)
2dz2} form the basis of holomorphic quadratic differentials onP .

All the above proofs can be modified analogously for the polygon mapping problem with minimal effort.

27


	1 Introduction
	2 Problem statements and results
	2.1 Problem statements
	2.2 Our results

	3 Preliminaries
	4 Proofs of Theorems ?? and ??
	4.1 Summary of the construction
	4.2 How the construction implies Theorems ?? and ??
	4.3 Constructing self homeomorphisms gi

	5 Discretization of the procedure
	5.1 INEXT and the proof of Theorem ??
	5.2 EXTREMAL and the proof of Theorem ??

	6 Discussions
	References
	7 Appendix 1: Quasiconformal maps and essential theorems from Teichmüller Theory
	7.1 Riemann mapping theorem and Riemann surfaces
	7.2 Quasiconformal maps
	7.3 Quadratic differentials
	7.4 Classical theorems used in our construction

	8 Appendix for the discretization of the procedure
	8.1 Formula for the integral of i on a triangle tj
	8.2 Details of the algorithm INEXT
	8.3 Holomorphic quadratic differentials on polygons


