
Balanced Allocation on Graphs: A Random Walk Approach

Ali Pourmiri
Max Planck Institute for Informatics, Saarbrücken, Germany

pourmiri@mpi-inf.mpg.de

July 22, 2014

Abstract

In this paper we propose an algorithm for allocating n sequential balls into n bins that are
organized as a n-vertex d-regular graph G, where d > 3 can be any integer. Let L be a given
positive integer. In each round t, 1 6 t 6 n, ball t picks a node of G uniformly at random and
performs a non-backtracking random walk (NBRW) of length L from the chosen node. Then it
deterministically selects a subset of the visited nods as the potential choices and allocates itself
on one of the choices with minimum load (ties are broken uniformly at random). Suppose that G
has girth at least Ω(L(logL+log log d)). We establish an upper bound for the maximum number
of balls at any bin after allocating n balls by the algorithm, called maximum load, in terms of
L with high probability. We also show that the upper bound is at most an O(logL+ log log d)
factor above the lower bound that is proved for the algorithm. In particular we show that if

G has girth at least (log n)
1+ε
2 , for any constant ε ∈ (0, 1] and we set L = b(log n)

1+δ
2 c, where

0 < δ < ε is a constant, then the maximum load is bounded by O(1/δ) with high probability.
Finally, we present some more general results which hold for a variant of this algorithm.

1 Introduction

The standard balls into bins model is a process which sequentially allocates n balls into n
bins where each ball picks d bins independently and uniformly at random and the ball is then
allocated in a least loaded bin in the set of d choices. When d = 1, it is well known that at the
end of process the maximum number of ball at any bin, maximum load, is (1+o(1)) logn

log logn with

high probability1. Azer et al. [3] showed that for d > 2, provided ties are broken randomly,
the maximum load is log logn

log d +O(1). The result implies that the maximum load is constant if

and only if d = logΩ(1) n. Vöcking [12] proposed an algorithm called always-go-left that uses
exponentially smaller number of choices (i.e. d = Ω(log log n).) to reach a constant maximum
load. In this algorithm the bins are partitioned into d groups of size n/d and each ball picks one
random bin from each group. It is then allocated in a least loaded bin among the chosen bins and
ties are broken asymmetrically. The algorithm results in a maximum load of log logn

dφd
+ O(1),

1With high probability means with probability 1− o(1/n).

1

ar
X

iv
:1

40
7.

25
75

v2
 [

cs
.D

S]
 2

0
Ju

l 2
01

4

where 1 6 φd 6 2 with high probability. For a complete survey on standard balls into bins
process we refer the reader to [11].

In many applications selecting any random set of choices is costly. For instance assume that
the bins are processors that are interconnected as a graph and balls are tasks arriving one by
one, where the goal is to assign tasks to the processor by minimizing the maximum load in a
distributed fashion. So in these settings having two far away choices is not desirable. To take
this constraint into account, Kenthapadi and Panigrahy [9] proposed a model in which bins are
interconnected as a ∆-regular graph and each ball picks a random edge of the graph. It is then
placed at one of its endpoints with smaller load. This allocation algorithm results in a maximum

load of log log n+O
(

logn
log(∆/ log4 n)

)
+O(1). Following the study of balls into bins with correlated

choices, Godfrey [8] generalized the mentioned result such that each ball picks an random edge
of a hypergraph that has Ω(log n) bins and satisfies some mild conditions. Recently, Bogdan et
al. [5] studied a model where bins are nodes of a graph. Each ball picks a random node and
performs a local search from the node to find a node with local minimum load and finally placed
on. They show that when the graph is a constant degree expander, the local search guarantees
a maximum load of Θ(log log n) with high probability.

Model, Results and Techniques. The present paper studies a model where bins are
interconnected as a d-regular graph G and L is a given positive integer. Then in each round
t, 1 6 t 6 n, ball t picks a node of G uniformly at random and performs a non-backtracking
random walk (NBRW)2 of length L which is denoted by Wt = (u0, u1, . . . , uL). After that
a set of potential choices called b-choice, βt := {uj·r | 0 6 j 6 bL/rc} (b = bL/rc + 1 and
r = d2 · logd−1 log ne), is selected and finally the ball is allocated in a least loaded bin of βt
(ties are broken randomly). We denote this allocation algorithm by A and Wt is said to be the
NBRW corresponding to b-choice βt or vice versa. To have more accessible proofs and avoid
extensive case analysis we always assume that L > 30r.

Theorem 1.1 (Lower Bound). Suppose that G be a n-vertex d-regular graph with girth at
least 10L. Then with probability 1 − n−Ω(1) the maximum load attained by A on G is at least
Ω(r logd n/L

2).

For a proof see Section 2. Our main result is the following theorem. Let us define r =
d2 · logd−1 log ne and η =

√
r logd−1 n.

Theorem 1.2 (Main Theorem). Let k > 3 be any constant. Suppose that L be an integer and
G is an n-vertex d-regular graph with d > 3 and girth at least 10L(logL+ log log d). Then with
probability 1−n−k+3, the maximum load attained by A denoted by l∗ is O (k · log log n/ log(L/η))
when L > 5η and we have l∗ = O

(
k(logL+ log log d) · r · logd−1 n/L

2
)

for every 30r 6 L 6 5η.

A special case of the main result is the following:

Corollary 1.3. Let 0 < δ < ε 6 1 be constant. If G has girth at least (log n)
1+ε
2 and we set

L = b(log n)
1+δ
2 c, then the maximum load attained by A on G is O(1/δ) with high probability.

2A non-backtracking random walk (NBRW) W of length L started from a node is a random walk in L steps so
that in each step the walker picks a neighbor uniformly at random and moves to that neighbor with an additional
property that the walker never traverses an edge twice in a row. Further information about NBRWs can be found in
[1] and [2].

2

Suppose that G be a 3-regular graph with girth at least (log n)7/10. By definition we have
r = d2 log2 log ne. The following remarks are immediate results from the main theorem.

Remark 1. Let L = b(log2 n)6/10c. Then with high probability the maximum load attained
by A on G is some constant.

Remark 2. Let L = b
√

(2 log2 log n) log2 nc = bηc. Then with high probability the maximum
load attained by A on G is O(log log n).

We prove our main result in two steps, we first show that A is (α, n0)-uniform which means
Pr [ball t is placed on some arbitrary vertex] 6 α

n where 1 6 t 6 n0 = Θ(n) and α = O(1).
Using this property we conclude that for a given set of nodes of size Ω(log n), after allocating n0

balls, the average load of nodes in the set is some constant, with high probability. Next using
witness trees technique we show that if there is a node with load larger than some threshold
then there is collection of nodes of size Ω(log n) where each of them has load larger than some
specified constant. Putting these together implies that maximum load is bounded as required
with high probability.

Besides NBRWs of sub-logarithmic length, we also consider the setting where in each round
t, 1 6 t 6 n, ball t picks a node of G uniformly at random and performs a NBRW on G in L
steps. After that ball t allocates itself on a node with minimum load among the visited nodes
(ties are broken randomly). We show that if G is the disjoint union of a number of cycles
with girth g = Ω(log n), then by setting L = min{g, log n} the maximum load is a constant
with high probability. Furthermore if G is a d-regular, non-bipartite graph, then by setting
L = O(log n/µ) the maximum load is constant with high probability, where µ is the spectral gap
of transition matrix of the random walk on G (see Section 5).

Comparison with Related Works. The setting of our work is closely related to [5].
In this paper in each step a ball picks a node of a graph uniformly at random and performs
a local search to find a node with local minimum load and finally allocates itself on it. They
showed that with high probability the local search on expander graphs obtains a maximum
load of Θ(log log n). In comparison to the mentioned result, our new protocol achieves a further
reduction in the maximum load, while still allocates a ball close to its origin. Our result suggests
a tradeoff between allocation time and maximum load. In fact we show an constant upper bound

for sufficient long walks (i.e. L = (log n)
1+ε
2 , for any constant ε ∈ (0, 1)).

Our work also can be related to the Kenthapadi and Panigrahy’s work where balls pick
a random edge in d-regular graphs with d = nΩ(1/ log logn) and they showed maximum load
Θ(log log n). Godfrey [8] also studied an allocation algorithm where every ball chooses a random
edge e of a hypergraph satisfying some conditions, that is, first the size of each edge is d =
Ω(log n) and Pr [u ∈ e] = Θ(dn) for any bin u. The latter one is called balanced condition. It is
not hard to see that if we have a graph with girth Ω(log n) and set L = Ω(log n), then visited
nodes by a ball generates an hyperedge satisfying aforementioned conditions. Berenbrink et
al. [4] simplified Godfrey’s proof and slightly weakened the balanced condition but since the
both analysis apply a Chernoff bound, it seems unlikely that one can extend the analysis for
L = o(log n).

In a different context, Alon and Lubetzky [2] showed that if a particle starts a NBRW of
length n on n-vertex graph with high-girth then the number of visits to nodes has a poisson

3

distribution. In particular they showed that the maximum visit to a node is at most (1 + o(1)) ·
logn

log logn . Our result can be also seen as an application of the mathematical concept of NBRWs
to task allocation in distributed networks.

Notation. Throughout this paper we assume that G is an n-vertex d-regular graph with girth
at least 10 · L · (logL + log log d), 30r 6 L 6 log n and d > 3 is any arbitrary integer. V (Wt)
denotes the the set of visited nodes by ball t. Let us redefine parameters : r := d2 logd−1 log ne,
η :=

√
r · logd−1 n, κ := bL/ηc and b := bL/rc+ 1. Note that minimum load of a b-choice is the

minimum load of nodes contained in the b-choice.

2 Lower bound

We first state a Chernoff bound inequality and then prove Theorem 1.1.

Theorem 2.1 ([6]). Suppose that Xi, 1 6 i 6 n, be a sequence of independent (or negatively
correlated) and identically distributed zero-one random variables. If we define X :=

∑n
i=1Xi

and µ := E [X], then we have that for every δ, 0 < δ < 1,

Pr [X 6 (1 + δ) · µ] 6 e−
δ2µ
2 ,

Pr [X > (1− δ) · µ] 6 e−
δ2µ
3 .

In particular,

Pr [|X − µ| > δ · µ] 6 2 · e− δ
2µ
3 .

Proof of Theorem 1.1. Let us define K := {w | w be a walk of length L generated by a NBRW}
and s = |K|. Clearly we have s = n·d(d−1)L−1

2 . Let us define the indicator random variable Iw,τ ,
w ∈ K,

Iw,τ :=

{
1 if w is chosen τ times by A,
0 otherwise,

where τ will be specified later. Let us define random variable Iτ =
∑
w∈K Iw,τ . Since in each

round t, 1 6 t 6 n, every w is chosen uniformly at random , Iw,τ ’s are identically distributed.
Thus we get,

E [Iτ] = s·
(
n

τ

)(
1

s

)τ (
1− 1

s

)n−τ
>
(n
τ

)τ
· 1

sτ−1
(1/e) =

n

e · τ τ (d(d− 1))(L−1)(τ−1)
>

n

e · d2τ(logd2 τ+L)
.

We know that L > logd−1 log n and by setting τ =
logd2 n

3·L we have logd2 τ < L. Hence we get

E [Iτ] >
n

e · d2(2τ ·L)
= nΩ(1).

Since Iw,τ ’s are negatively correlated (i.e. Pr [Iw,τ = 1, Iw′,τ = 1] 6 Pr [Iw,τ = 1]·Pr [Iw′,τ = 1]),
applying a Chernoff bound (for instance see Theorem 2.1) yields that

Pr

[
|Iτ −E [Iτ] | > E [Iτ]

2

]
6 e−Ω(E[Iτ]).

4

So we conclude that with probability 1− n−ω(1), there is at least nΩ(1) walks that each of them
is chosen τ times. Let w be the walk that is chosen τ times and since it contains at most L/r+1
different choices (bins), there exists a node in w with load at least τ

L/r+1 = Ω(r logd n/L
2).

3 The algorithm is (α, n0)-uniform

In this section we formally define the notion of (α, n0)-uniformity. After that by showing a
useful lemma we prove the algorithm is (α, n0)-uniform. To avoid lengthy case analysis we do
not optimize the constants.

Definition. Suppose that B be an allocation algorithm on graph G for n balls. Then we say
B is (α, n0)-uniform, if there is n0 = θ(n) so that for any 0 6 t 6 n0,

Pr [ball t+ 1 is allocated in any node u ∈ V (G) by B] 6
α

n
,

where α is some constant.

Note that for any S ⊆ V (G), Emptyt(S) is the number of empty nodes contained in set S
after allocating t balls. If it is clear from the context we do not mention index t in Emptyt(S).
Let Dr

v denotes the set of nodes at distance r from node v ∈ V (G).

Lemma 3.1. Suppose that for every v ∈ V (G), with probability 1−o(n−2), Emptyt(D
r
v) >

|Drv|
2 .

Then for every u ∈ V (G),

Pr [ball t+ 1 is allocated by A in node u] 6
αb
n
,

where 1 6 αb 6 32.

Proof. Let us define Et+1,u, for every u ∈ V (G), to be the event that ball t+ 1 is placed on u.
We call βt+1 is a good b-choice if at least (b− 1)/10 of its nodes are empty and Bt+1(¬Bt+1)
be the event that βt+1 is a good (bad) b-choice. So we have that for every u ∈ V (G),

Pr [Et+1,u] = Pr [Et+1,u|u /∈ βt+1] ·Pr [u /∈ βt+1]︸ ︷︷ ︸
=0

(if u /∈ βt+1, then ball t+ 1 can not be placed on u)

+ Pr [Et+1,u|u ∈ βt+1 and Bt+1] ·Pr [u ∈ βt+1 and Bt+1]

+ Pr [Et+1,u|u ∈ βt+1 and ¬Bt+1] ·Pr [u ∈ βt+1 and ¬Bt+1]

6
10

b− 1
·Pr [u ∈ βt+1] + Pr [u ∈ βt+1 and ¬Bt+1]

=

(
10

b− 1
+ Pr [¬Bt+1|u ∈ βt+1]

)
·Pr [u ∈ βt+1] (1)

where the last inequality follows because if Bt+1 happens, then there are at least (b−1)/10 empty
nodes and since ties are broken randomly, u gets ball t+ 1 with probability at most 10/(b− 1).
Let Ci, , 1 6 i 6 b, be the event that u ∈ βt+1 and u = x(i−1)r, where Wt+1 = (x0, x1, . . . , xL).
Conditioning on Ci, without loss of generality Wt+1 can be viewed as the union of two edge

5

disjoint paths W1
u and W2

u started at u with lengths (i − 1) · r and L − (i − 1) · r respectively.
Since G has girth at least 10L, it locally looks like a d-ary tree and hence the total number of
paths of length L with x(i−1)r = u is

d(d− 1)(i−1)r−1 × (d− 1)L−(i−1)r = d(d− 1)L−1.

On the other hand in each round, A picks a walk of length L from nd(d − 1)L possible walks

randomly. Thus we get Pr [Ci] = d(d−1)L−1

nd(d−1)L−1 = 1
n , and hence

Pr [u ∈ βt+1] =

b∑
i=1

Pr [Ci] =

b∑
i=1

1

n
=
b

n
. (2)

Now let us compute an upper bound for Pr [¬Bt+1|u ∈ βt+1] in (1). Conditioning on event
u ∈ βt+1, we split Wt+1 into paths W1

u and W2
u. We define β1

t+1 = V (W1
u) ∩ βt+1 and β2

t+1 =
V (W2

u) ∩ βt+1, where we have βt+1 = β1
t+1 ∪ β2

t+1. Note that by definition of βt+1 for every
v, v′ ∈ βt+1, we have d(v, v′) = c · r, where c is an integer. Let us order the nodes of β1

t+1 and
β2
t+1 increasingly according to their distance from u. Let |β1

t+1| > 2. Then we assume that
every vj ∈ β1

t+1, 2 6 j 6 |β1
t+1|, is randomly chosen from set Sj ⊆ Dr

vj−1
(because we run a

NBRW of length r from vj−1 to reach vj). It might be happen that vj−1 is not an starting
point for W1

u so we have |Sj | ∈ {d(d − 1)r−1, (d − 1)r}. If |Dr
vj−1
| = |Sj | = d(d − 1)r−1, then

Empty(Sj) = Empty(Dr
vj−1

) otherwise we have

Empty(Sj) > Empty(Dr
vj−1

)− |Dr
vj−1
\ Sj | > Empty(Dr

vj−1
)− (d− 1)r−1.

Let E be the event that Emptyt(D
r
vj−1

) > d(d−1)r−1

2 . Then by assumption we have Pr [E] =

1− o(n−2). So for every 2 6 j 6 |β1
t+1| we get

Pr
[
vj ∈ β1

t+1 is empty
]

= Pr
[
vj ∈ β1

t+1 is empty|E
]
Pr [E] + Pr

[
vj ∈ β1

t+1 is empty|¬E
]
Pr [¬E]

>
Empty(Sj)

|Sj |
(1− o(n−2)) + o(n−2) >

1

4
− o(n−2),

where the last inequality follows from previous lower bounds for Empty(Sj) and the fact that
|Sj | ∈ {(d−1)r, d(d−1)r−1}. Similar argument also works for β2

t+1 if |β2
t+1| > 2. So for every v ∈

βt+1 except u we get Pr [v is empty] > 1/5. Let X be the number of empty nodes in βt+1 then
we have that E [X] > (b−1)/5. So we have Pr [X < (b− 1)/10] 6 Pr [|X −E [X] | > E [X] /2] .
Depending on value b we can apply either Chebycheve or Chernoff inequality to get tighter
bound. However if we apply a Chebychev’s bound we get

Pr [X < (b− 1)/10] 6 Pr [|X −E [X] | > E [X] /2] 6
Var [X]

E [X] /4
6

4

E [X]
,

where the last inequality follows because we assume that X is the summation of b−1 independent
Bernoulli random variables where we have Var [X] 6 E [X]. Thus we get the following upper
bound

Pr [¬Bt+1|u ∈ βt+1] = Pr [X < (b− 1)/10|u ∈ βt+1] 6
4

E [X]
6 20/(b− 1), (3)

6

Plugging bounds (2) and (3) in (1) yields that for every u ∈ V (G),

Pr [Et+1,u] 6
30b

n(b− 1)
6

32

n

where the last inequality holds because we assume that L > 30r and consequently b > 30.

Lemma 3.2 (Key Lemma). A is an (α, n/(6eα))-uniform allocation algorithm on G.

Proof. Let us define potential function Φ(t) =
∑
u∈V (G) exp(f tu), where f tu denotes the number

of nonempty nodes of Dr
u after allocating t balls. It is clear that Φ(0) = n. Let us assume

that after allocating t balls we have Φ(t) 6 n · e∆/4, where ∆ = d(d − 1)r−1. Then for every
u ∈ V (G),

ef
t
u 6 Φ(t) 6 elogn+∆/4.

Recall that r = d2 logd−1 log ne. So we get f tu 6 log n+∆/4 < ∆
2 and consequently Emptyt(D

r
u) >

∆
2 . Let us define indicator random variable It+1(u) for every u ∈ V (G) as follows:

It+1(u) :=

{
1 if ball t+ 1 is placed at an empty node in Dr

u,
0 otherwise.

Applying Lemma 3.1 shows that if Emptyt(D
r
u) > ∆

2 , then for every u ∈ V (G)

Pr [It+1(u) = 1] 6
αb · Emptyt(Dr

u)

n
6
αb ·∆
n

.

So we get

E
[
Φ(t+ 1)|Φ(t) 6 n · e∆/4

]
6

∑
u∈V (G)

{
Pr [It+1(u) = 1] · eftu+1 + Pr [It+1(u) = 0] · eftu

}
6

∑
u∈V (G)

(
1 +

αb · e ·∆
n

)
· eftu =

(
1 +

αb · e ·∆
n

)
Φ(t).

Let us define Ψ(t) := min{Φ(t), n · e∆/4}. By using above recursive inequality we have that

E [Ψ(t+ 1)] 6

(
1 +

αb · e ·∆
n

)
Ψ(t).

Thus inductively we have that E [Ψ(t)] 6
(
1 + αb·e·∆

n

)t
Ψ(0). Let us define n0 = n

6eαb
. Then

applying Markov inequality implies that

Pr
[
ΨT0 > n · e∆/4

]
6

(
1 + αb·e·∆

n

)n0

e∆/4
6 e−∆/12

So with probability 1 − n−ω(1), we have Φ(n0) = Ψ(n0) < n · e∆/4. Since Φ(t) is an increasing
function in t, for every 0 6 t 6 n0 we have that Φt 6 n · e∆/4 and hence Empty(Dr

u) > ∆
2 for

every u ∈ V (G). So the application of Lemma 3.1 shows that for any 0 6 t 6 n0 and u ∈ V (G),

Pr [ball t+ 1 is placed on u] 6
αb
n

6
32

n
.

7

z0 z1 z2 z3 z4Wt

η

Figure 1: The first application of Lemma 4.4 gives a family of disjoint walks intersecting Wt denoted by
− ·−. Bold and green lines indicate the intersection of two walks. Second application of the lemma with the
validity property gives the second level of disjoint walks.

4 Construction of witness tree

In this section by showing several preliminary results and applying witness tree technique we
prove our main theorem.

4.1 Interference graph corresponding to the algorithm

Let us define interference graph G whose vertex set is all possible b-choices can be made by
the algorithm and two vertices of G are connected if and only if their intersection is nonempty.
Clearly, in each round of the algorithm a random vertex of G namely βt is chosen and a ball
is placed on a node contained in βt. Therefore execution of the algorithm generates a random
subgraph of G. Suppose that T ⊂ G be a subtree of G, let us define NT := ∪β∈V (T)β and NT
denotes the size of NT . Let T (m, ν) denotes the set of all rooted subtrees of G, on m vertices
with NT > ν.

Lemma 4.1. We have |V (G)| 6 n · d(d − 1)L−1 and the maximum degree of G is bounded by
b2 · d(d− 1)L−1.

Proof. Since G has girth at least 10L, the set of nodes in distance at most L from any node
induces a d-ary tree. So it is clear the the total number of different NBRWs of length L on G
is n · d(d − 1)L−1. On the other hand the number of all possible b-choices is bounded by all
NBRWs of length L so we get

|V (G)| 6 n · d(d− 1)L−1.

Suppose that W = (u0, u1 . . . , uL) denotes a NBRW and v be arbitrary node of G. Recall that
v is an element of the b-choice corresponding toW if and only if v = u(j−1)r for some 1 6 j 6 b.
Since the graph locally looks like a d-ary tree, it is not hard to see the total number of NBRWs
visited node v as (j − 1)r-th node (i.e. u(j−1)r = v) is at most

d(d− 1)(j−1)r−1(d− 1)L−(j−1)r = d(d− 1)L−1.

Since j varies from 1 to b, v can be an element of at most bd(d − 1)L−1 many b-choices and
hence every b-choice intersects at most b2d(d− 1)L−1 other b-choices. So the maximum degree
of G is bounded by

b2 · d(d− 1)L−1.

8

Lemma 4.2. Suppose that A be an (α, n0)-uniform algorithm. Then the probability that during
allocation of first n0 balls a set of b-choices of size m, chosen by A, builds a tree T ∈ T (m, ν)
and every node in NT has load at least c is at most n · b2m ·

(
n0α·e
n·c

)c·ν
.

Proof. Let us first count the total number of rooted subtrees of G with m vertices or equivalently
m− 1 edges. It was shown that the total number of different shape rooted trees on m vertices
is 4m (For example see [10]) (we say two rooted trees have different shapes if they are not
isomorphic). Let ∆ be the maximum degree of G. Since for any given shape there are |V (G)|
ways to choose the root and there are at most ∆ ways to choose an edge, we have that |T (m, ν)| 6
4m · |V (G)| ·∆m−1. Let us fix an arbitrary tree T ∈ T (m, ν). Suppose that p1 be the probability
that given tree T is built by the algorithm and p2 be the probability that every node in NT has
load at least c. There are at most n0 6 n ways to choose one ball per vertex of T and hence
at most nm ways to choose m balls to construct T . On the other hand, every vertex of T (or a
b-choice) appears with probability 2

n·d·(d−1)L−1 . Therefore we get

p1 6 nm ·
(

2

n · d · (d− 1)L−1

)m
=

(
2

d(d− 1)L−1

)m
.

Since A is (α, n0)-uniform, the probability that every node in NT has load at least c is bounded
by

p2 6
∞∑
q=0

(
n0

c · (ν + q)

)(
α · (ν + q)

n

)c·(ν+q)

6
∞∑
q=0

(
e · n0

c · (ν + q)

)c·(ν+q)

·
(
α · (ν + q)

n

)c·(ν+q)

6
∞∑
q=0

(n0 · α · e
n · c

)c·(ν+q)

6 2 ·
(n0 · α · e

n · c
)c·ν

Since balls are mutually independent, p1 · p2 is an upper bound for the probability that using
m balls T is built and every node in NT has load at least c. Therefore we conclude that tree
T ∈ T (m, ν) with prescribed conditions exists with probability at most

|T (m, ν)| · p1 · p2 6 4m|V (G)| ·∆m−1

(
2

d(d− 1)L−1

)m
·
(n0α · e
n · h

)h·ν
.

Using Lemma 4.1 results into

n · 8m · b2m ·
(n0α · e
n · c

)c·ν
.

4.2 Intersection of non-backtracking walks

In this subsection we show that if βt has a certain minimum load up to round t then walk Wt

corresponding to βt has been intersected by a family of disjoint walks before round t with high
probability. Before proving our main lemma, let us define some notions. Suppose that n(`) be
the maximum number of times that an arbitrary path of length `, 2 logd−1 log n 6 ` 6 L, is

9

traversed by balls. Let E(`, k) be the event that indicates n(`) <
2k logd−1 n

` . Note that a path of
length at most L between any pairs of nodes let say u and v is unique (because girth of G is at
least 10L) and hence we denote it by [u, v]. Moreover we have that the intersection of two walks
W and W ′ of lengths L is either empty or there is [u, v] =W∩W ′ where u, v ∈ V (W)∩V (W ′).
For every u, v ∈ V (W), [u, v] ⊆ W is called a subpath of W. The height of ball t in node u is
the number balls that are placed on u before ball t.

Lemma 4.3. Let k > 3 be an arbitrary number. Then we have Pr [E(`, k)] > 1− n−k+2.

Proof. Let us fix an arbitrary path [u, v] of length `. Since G is a d-regular graph with
girth at least 10L, then the total number of different paths of length L containing [u, v] is∑
a+b=L−` (d− 1)a+b = (L − ` + 1) · (d − 1)L−`. Since the total number of diffrent NBRWs of

length L is n ·d · (d− 1)L−1 , the probability that in some round t, 1 6 t 6 n, we get [u, v] ⊂ Wt

is at most
2(L− `+ 1)(d− 1)L−`

n · d · (d− 1)L−1
=

2(L− `+ 1)(d− 1)

n · d · (d− 1)`
6

2L

n(d− 1)`
.

Thus the probability that [u, v] is traversed for τ times is at most(
n

τ

)(
2L

n(d− 1)`

)τ
6
(e · n

τ

)τ (2L

n(d− 1)`

)τ
=

(
2e

τ

)τ (
1

(d− 1)`−logd−1 L

)τ
6

1

(d− 1)
τ·`
2

,

where the last inequality follows from 2 logd−1 L 6 2 logd−1 log n 6 `. By setting τ =
2k·logd−1 n

`
and union bound over all paths of length ` whose size is at most n · d · (d − 1)`−1 < n2, we

conclude that with probability 1− n−k+2, n(`) <
2k logd−1 n

` .

Recall that κ = bL/ηc.
Lemma 4.4. Let k > 3 and h > 2 are arbitrary integers. Assume that L > 5 · η and in some
round t, the minimum load of βt = {ui | 0 6 i 6 b − 1} is at least 32kh. Conditioning on
event E(η/4, k), there exists a family of b-choices let say Ft = {βtj | 1 6 j 6 κ, tj < t} (or
equivalently a family of walks F ′ = {Wtj | 1 6 j 6 κ, tj < t}) satisfying following conditions:

I. Every βtj , 1 6 j 6 κ, has minimum load at least 16k(h− 1), ∅ 6= βtj ∩βt ⊆ V (Wtj ∩Wt)
and Wtj ∩Wt ⊂ [zj−1, zj] ⊂ Wt where bηc 6 d(zj−1, zj) 6 dηe.

II. For every pair of i and j, 1 6 i 6= j 6 κ, βti ∩ βtj =Wti ∩Wtj = ∅.

Proof. We partition Wt into edge disjoint subpaths Pj := [zj−1, zj], 1 6 j 6 κ, where bη/rc 6
|V (Pj) ∩ βt| 6 dη/re. Let Pjc = [xj , yj] be a subpath of Pj containing at least η/(2r) choices
from βt and each of [zj−1, xj] and [yj , zj] has length at least η/4. By the assumption, we know
that the nodes of Pjc , 1 6 j 6 κ, totally have at least 32kη/(2r) = 16k

√
logd−1 n/r balls at

hight at least 32k(h− 1). It implies that set V (Pjc), 1 6 j 6 κ, had to be hit at least this many
times before round t. We call a walk hitting V (Pjc), let say W, is a bad path if W∩Wt contains
zj−1 or zj . Since G has girth at least 10L, a bad walk must contain at least one of [zj−1, xj]
and [yj , zj]. Conditioning on event E(η/4, k), implies that with probability at least 1− n−k+2,
[zj−1, xj] or [yj , zj] is traversed at most

8k logd−1 n/η 6 8k
√

logd−1 n/r

10

times. So the total number of bad walks is bounded by 16k
√

logd−1 n/r with high probability.
Therefore there is a ball (placed on a node in V (Pjc)) with height at least 16k(h − 1) so that
its corresponding walk, namely Wtj , is not bad. In the following we show that for every pair i
and j, 1 6 i 6= j 6 κ, Wti ∩Wtj = ∅ and consequently βti ∩ βtj = ∅. Toward a contradiction
let us assume that there exist i and j so that v ∈ V (Wti) ∩ V (Wtj). By definition of Wti and
Wtj we have that (V (Wti)∪V (Wtj))∩{zi, zi−1, zj , zj−1} = ∅ and hence v /∈ {zi, zi−1, zj , zj−1}.
Let x ∈ V (Wtj)∩ V (Wt) and y ∈ V (Wtj)∩ V (Wt). Then [x, y] contains at least one node from
{zi, zi−1, zj , zj−1}. On the other hand [x, v] ∪ [v, y] is different path from x to y with length at
most 2L which contradicts our assumption about girth of G. For a geometric view of walks, see
Figure 1.

Lemma 4.5. Let γ = 600kdr · logd−1 n/L
2e, where k > 3 is an arbitrary number. Suppose

that 30 · r 6 L 6 5 · η and in some round t, the minimum load of βt = {ui | 0 6 i 6 b − 1}
is at least h · γ, where h > 2 be any integer. Conditioning on event E(L/20, k), there exists a
family of b-choices let say Ft = {βtj | 1 6 j 6 5, tj < t} (or equivalently a family of walks
F ′ = {Wtj | 1 6 j 6 5, tj < t}) satisfying following conditions:

I. Every βtj , 1 6 j 6 5, has minimum load at least (h− 1) · γ, ∅ 6= βtj ∩ βt ⊆ V (Wtj ∩Wt)
and Wtj ∩Wt ⊂ [zj−1, zj] ⊂ Wt where bL/5c 6 d(zj−1, zj) 6 dL/5e.

II. For every pair of i, j, 1 6 i 6= j 6 5, βti ∩ βtj =Wti ∩Wtj = ∅.

Proof. Let us partition Wt into edge disjoint subpaths Pj := [zj−1, zj], 1 6 j 6 5, where
[zj−1, zj] is a subpath of Wt and bL/5c 6 d(zj−1, zj) 6 dL/5e. Let Pjc = [xj , yj] be subpath of
Pj containing at least b/15 of nodes of βt and on the other hand each of [zj−1, xj] and [yj , zj]
has length at least L/20. By the assumption, we know that the nodes of Pjc , 1 6 j 6 5, totally
have at least h · γ · b/15 balls. It implies that set V (Pjc), 1 6 j 6 5, had to be hit at least

h · γ · b/15 > h · 40 · k · logd−1 n/L

times before round t. We call a walk hitting V (Pjc), let say W, is a bad path if W∩Wt contains
zj−1 or zj . Since G has girth at least 10L, a bad walk must contain at least one of [zj−1, xj]
and [yj , zj] otherwise bad path cannot hit path [xj , yj]. Conditioning on event E(L/20, k), path
[zj−1, xj] ([yj , zj]) is traversed at most 20 ·k logd−1 n/L times. Therefor the total number of bad
walks is less than 40 ·k logd−1 n/L. On the other hand there are γb/15 = 40k logd−1 n/L balls at
height higher than γ(h−1) in Pjc , so there exists a ball at height at least γ ·(h−1) whose chosen
b-choice βtj , has minimum load at least γ(h−1) andWtj is not a bad walk. In the following we
show that for every pair i and j, 1 6 i 6= j 6 5, Wti ∩Wtj = ∅ and consequently βti ∩ βtj = ∅.
Toward a contradiction let us assume that there exist i and j so that v ∈ V (Wti)∩V (Wtj). By
definition of Wti and Wtj we have that V (Wti) ∪ V (Wtj) ∩ {zi, zi−1, zj , zj−1} = ∅ and hence
v /∈ {zi, zi−1, zj , zj−1}. Let x ∈ V (Wtj)∩V (Wt) and y ∈ V (Wtj)∩V (Wt). Then [x, y] contains
at least one node from {zi, zi−1, zj , zj−1}. On the other hand [x, v]∪ [v, y] is different path from
x to y with length at most 2L which contradicts our assumption about girth of G.

4.3 Proof of Theorem 1.2

In this subsection, based on witness tree technique we prove our main result and Corollary 1.
Recall that E(`, k) is the event that any path of length ` is traversed less than 2k logd n

` during
allocation of n balls.

11

Proof. By applying Lemma 3.2 we have A is (α, n/(6eα))-uniform. Let a be smallest positive
integer where n > a · bn/(6eα)c. We divide the allocation process to a phases and bound the
maximum load attained by A after allocating n0 balls. In what follows according to L we
consider two cases:

Case 1. Let L > 5η. We bound the probability that there is a node with l∗ > 32kh+ c, after
allocating n0 balls where h = dlog log n/ log(κ − 3)e, κ = bL/ηc, k > 3 and c is an arbitrary
constants. So we have

Pr [l∗ > 32kh+ c] = Pr [l∗ > 32kh+ c|E(η/4, k)] ·Pr [E(η/4, k)] +

Pr [l∗ > 32kh+ c|¬E(η/4, k)] Pr [¬E(η/4, k)] .

By Lemma 4.3 we have Pr [¬E(η/4, k)] < n−k+2 and hence the second term is bounded by n−k+2.
In what follows we bound the first term. Let us assume that in some round t, 1 6 t 6 n0, βt
has minimum load at least 32kh + c. Set R = βt. Conditioning on E(η/4, k) and applying
Lemma 4.4 for R implies that there exists a family of disjoint b-choices of size κ namely L1

where every β ∈ L1 has minimum load at least 32k(h − 1) and β ∩ R 6= ∅. (Every β ∈ L1 is
called a child of R.) So the first application of Lemma 4.4 gives a tree in the interference graph
G with κ disjoint leaves. To continue the building process of the tree, we again apply Lemma
4.4 for every leaf β in the tree which gives κ > 5 children (b-choices) for β. We say a child is
valid if its corresponding walk is disjoint from the corresponding walk of its grandfather and we
only append valid children to their parents. Since L > η, we have

10L(log(L · log d)) > 10 · L log
√

logd−1 n log d > 5L log logn > 5Lh.

So G has girth at least 5Lh. Therefore as long as we apply Lemma 4.4 for h levels and append
valid children, we do not have any cycle in the construction of the tree (See right picture 1).
Now we claim that always there exists at least two valid children. Let β′ be the father of β
and W (W ′) is the corresponding walk to β (β′). Then the condition (I) in the statement of
Lemma 4.4 shows that W ∩W ′ = [z, z′] is of length at most dηe. On the other hand applying
Lemma 4.4 for β gives a family of walks (or equivalently b-choices) F = {Wj | 1 6 j 6 κ},
where Wj ∩ W ⊂ Pj . Since all Pj ’s are edge disjoint and of length at most dηe, we conclude
that at most 3 walks in F intersects W ′. So application of Lemma 4.4 for any leaf gives at least
κ−3 valid children. Therefore applying Lemma 4.4 for h levels gives a tree T ⊂ G with height h
whose leaves are disjoint b-choices and every node in NT has load at least c. Let ET be the event
that such a tree T exists. The above construction shows that if event ’l∗ > 32kh+ c | E(η/4, k)’
happens, then event ’ET | E(η/4, k)’ happens so we have

Pr [l∗ > 32kh+ c | E(η/4, k)] Pr [E(η/4, k)] 6 Pr [ET | E(η/4, k)] Pr [E(η/4, k)]

= Pr [ET ∩ E(η/4, k)] 6 Pr [ET] .

Let m be the number of vertices of T . Since internal nodes of T have degree at least κ− 2 > 3,
then the number of its leaves is at least m/2. Moreover, by construction, it has at least

κ · (κ− 3)h−1 > log n

12

leaves. Thus we have m > 2 log n. By Lemma 3.2, we have that A is (α, n/(6eα))-uniform and
hence using Lemma 4.2 yields,

Pr [ET] 6 n · 8m · b2m
(e · α

6eα · c
)c·b·m/2

= n · 8m · e2m log b

(
1

6c

)c·b·m/2
6 n · em(3+2 log b−c·b/2) < n−2k,

where the last inequality follows by letting any constant c > 6k. So with probability 1−n−2k−
n−k+2, in the allocation of first n0 balls, we have l∗ 6 16kh + c. Therefore at the end of the
allocation process the maximum load is bounded by a · l∗ with high probability.

Case 2. Let 30r 6 L 6 5η. Similar to previous case we find an upper bound for the probability
that a node has load at least (h+1)γ, where γ = 600·kdr · logd−1 n/L

2e, h = 2dlogL+log log de.
To do so we know that

Pr [l∗ > (h+ 1)γ] = Pr [l∗ > (h+ 1)γ | E(L/20, k)] ·Pr [E(L/20, k)] +

Pr [l∗ > (h+ 1)γ | ¬E(L/20, k)] ·Pr [¬E(L/20, k)] .

By Lemma 4.3 we have Pr [¬E(L/20, k)] < n−k+2. So the second term is bounded by n−k+2.
Let us assume that in some round t, 1 6 t 6 n0, βt has minimum load at least (h + 1)γ. Set
R = βt. Similar to the case where L > 5η, conditioning on E(L/20, k) and applying Lemma 4.5
gives a tree in interference graph G. By assumption, G has girth at least

10L(logL+ log log d) > 5Lh.

Therefore applying Lemma 4.5 for h levels gives a tree T ⊂ G with height h whose leaves
are disjoint b-choices and every node in NT has load at least γ. Let ET be the event that such a
tree T exists. The above construction shows that if event ’l∗ > (h+ 1)γ | E(L/20, k)’ happens,
then event ’ET | E(L/20, k)’ happens so we have

Pr [l∗ > (h+ 1)γ | E(L/20, k)] Pr [E(L/20, k)] 6 Pr [ET | E(L/20, k)] Pr [E(L/20, k)]

= Pr [ET ∩ E(L/20, k)] 6 Pr [ET] .

Let m be the number of vertices of T . Since internal nodes of T have degree at least 3, then the
number of its leaves is at least m/2. Moreover, by construction, it has at least

5 · 2h−1 > 22 log(L log d) > L · log d

leaves. Thus we have m > 2L log d. By Lemma 3.2, we have that A is (α, n/(6eα))-uniform and
hence using Lemma 4.2 yields,

Pr [ET] 6 n · 8m · b2m
(

e · α
6 · e · α · γ

)γ·b·m/2
= n · 8m · e2m log b

(
1

6 · γ

)γ·b·m/2
6 n · em(3+2 log b−γ·b/2) < n−2k,

where the last inequality follows because γ > 600k and

m(2 log b− γb/2) 6 −mbγ/4 6 −2k(L log d)(r logd−1 n/L
2)(L/r) < −2k log n.

13

So with probability 1− n−2k − n−k+2, in the allocation of first n0 balls, we have l∗ 6 (h+ 1)γ.
Therefore at the end of allocation process the maximum load is bounded bounded by a · l∗ with
high probability.

Proof of Corollary 1. By assumption about girth of G denoted by g we have

g > (log n)
1+ε
2 > 20(log n)

1+δ
2 log log n > 10L(logL+ log log d).

On the other hand L > 5η. So by applying Theorem 1.2 , we conclude that the maximum load
is bounded by O(log log n/(log(L/η)) = O(1/δ) with high probability.

5 Balanced allocation using long random walks

In this section we consider the following allocation algorithm. In each round t, 1 6 t 6 n, ball t
chooses a node from V (G) uniformly at random and performs a NBRW in L many steps. Then
the ball allocates itself on a node with minimum load among visited nodes by the ball (ties are
broken uniformly at random). Let us denote the algorithm by B .

5.1 Cycles

Let us first state a result proved by Godfrey [8]. Godfrey considered a setting where n balls are
sequentially allocated into n bins where every ball t comes with a set of choices called βt and
the ball is placed on a bin in βt with minimum load (ties are broken randomly). βt satisfies a
balanced condition which means Pr [u ∈ βt] = Θ(|βt|/n) for any bin u in the ground set. Then
he showed if every βt, 1 6 t 6 n satisfies in the mentioned condition and |βt| = Ω(log n), then
the maximum load is a constant with high probability. Using this result it is easy to prove the
following:

Proposition 5.1. Let G be union of disjoint cycle(s) with girth g = Ω(log n) and size n. If we
set L = min{g, log n}, then with high probability the maximum load attained by B on G is a
constant.

Proof. The probability that a node of G is visited by ball t, 1 6 t 6 n, is Θ(L/n) and the
number of visited nodes by a NBRW of length L on G is at least L. So applying the mentioned
result implies that the maximum load is a constant.

5.2 Arbitrary d-regular graphs

Let G be any non-bipartite d-regular graph on n nodes and P be the transition matrix corre-
sponding to a non-backtracking on G with following eigenvalues:

1 = λ1 > λ2 > λ3 . . . > λn > −1

The quantity µ = 1 − λ2 is called the spectral gap of P . Let q be an arbitrary probability
distribution over V (G) and π be uniform distribution over V (G). We define the π-norm q as

14

follows

||q||π =

√ ∑
u∈V (G)

q2(u)/π(u).

The following theorem was proved by Gilman [7].

Theorem 5.2 ([7],Theorem 2.1). Let A ⊆ V (G) and τL be the number of visits of any random
walk of length L with starting distribution q to set A. Then we have

Pr [τL − L · π(A) > ξ] 6 (1 + ξµ/10L)||q||πe−ξ
2µ/20L,

where π(A) =
∑
u∈A π(u) and µ is the spectral gap of the transition matrix.

Proposition 5.3. Let L = 100 log n/µ(G) . Then with probability 1 − n−Ω(1), the maximum
load attained by B on G is a constant.

Proof. Let us define At, 1 6 t 6 n, to be the number of nodes having load at least 4 after
allocating t 6 n balls. Clearly for all t we have |At| 6 n/4 and hence π(At) 6 1/4. Since in
each round every ball picks a node uniformly at random, the starting distribution of NBRW is
uniform and hence we have ||π||π = 1. Let us set L = 100 log n/µ and ξ = L/2. Then applying
Theorem 5.2 shows that

Pr [τL > L · π(At) + L/2] 6 (1 + µ/20)e−Lµ/80

So in each round 1 6 t 6 n, with probability at least 1− n−4, τL 6 3L/4 and hence every ball
visits a node with load less than 4.

Acknowledgment. The author wants to thank Thomas Sauerwald for introducing the
problem and several helpful discussions.

References

[1] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random
walks mix faster. Communications in Contemporary Mathematics, 9:585–603, 2007.

[2] Noga Alon and Eyal Lubetzky. Poisson approximation for non-backtracking random walks.
Israel J. Math., 174(1):227–252, 2009.

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM
J. Comput., 29(1):180–200, 1999.

[4] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel. Balls into bins with
related random choices. J. Parallel Distrib. Comput., 72(2):246–253, 2012.

[5] Paul Bogdan, Thomas Sauerwald, Alexandre Stauffer, and He Sun. Balls into bins via
local search. In Proc. 24th Annual ACM-SIAM Symp. Discrete Algorithms (SODA), pages
16–34, 2013.

[6] D.P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

15

[7] David Gillman. A chernoff bound for random walks on expander graphs. SIAM J. Comput.,
27(4):1203–1220, 1998.

[8] Brighten Godfrey. Balls and bins with structure: balanced allocations on hypergraphs. In
Proc. 19th Annual ACM-SIAM Symp. Discrete Algorithms (SODA), pages 511–517, 2008.

[9] Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on graphs. In
Proc. 17th Annual ACM-SIAM Symp. Discrete Algorithms (SODA), pages 434–443, 2006.

[10] Donald Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Adison-Wesley, third edition, 1997.

[11] Micheal Mitzenmacher, Andréa W. Richa, and Ramesh Sitaraman. The power of two ran-
dom choices: A survey of technique and results. In Handbook of Randomized Computation
Volume 1, pages 255–312, 2001.

[12] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589, 2003.

16

	1 Introduction
	2 Lower bound
	3 The algorithm is (, n0)-uniform
	4 Construction of witness tree
	4.1 Interference graph corresponding to the algorithm
	4.2 Intersection of non-backtracking walks
	4.3 Proof of Theorem ??

	5 Balanced allocation using long random walks
	5.1 Cycles
	5.2 Arbitrary d-regular graphs

