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Abstract

Harmonic surface deformation is a well-known geo-
metric modeling method that creates plausible de-
formations in an interactive manner. However, this
method is susceptible to artifacts, in particular close
to the deformation handles. These artifacts often cor-
relate with strong gradients of the deformation en-
ergy. In this work, we propose a novel formulation of
harmonic surface deformation, which incorporates a
regularization of the deformation energy. To do so,
we build on and extend a recently introduced generic
linear regularization approach. It can be expressed as
a change of norm for the linear optimization problem,
i.e., the regularization is baked into the optimization.
This minimizes the implementation complexity and
has only a small impact on runtime. Our results show
that a moderate use of regularization suppresses many
deformation artifacts common to the well-known har-
monic surface deformation method, without introduc-
ing new artifacts.

1 Introduction

Surface deformation is an important task in geome-
try processing. Deforming models involves interac-
tive modeling sessions driven by a user, who deforms
an object by manipulating a subset of the surface
vertices. Linear deformation methods [BS08] have
proven effective in this context as they often cre-
ate plausible and realistic-looking deformations, while
still allowing for interactive runtimes. Deformations
are usually modeled as the minimizers of specific de-
formation energies that are defined locally at each
point of the domain and measure a specific distortion
property.

Harmonic surface deformation is a well-known lin-
ear gradient-domain method introduced by Zayer et
al. [ZRKS05] that uses a differential surface represen-
tation to perform global mesh deformations. Defor-
mation constraints are smoothly distributed over the
entire mesh using harmonic functions and surface de-
tails are preserved in the reconstructed deformations.
Furthermore, the method is parameter-free.

Linear methods such as harmonic deformations are
prone to artifacts, as linear energy terms are inad-

equate to accurately model the non-linear physical
forces and processes involved in a deformation. Com-
mon deformation artifacts include flipped triangles (in
the case of planar surfaces), protruding triangles, de-
generate elements, volume loss as well as local and
global shape distortion. Many of those artifacts oc-
cur close to the deformation handles. Figure 1 shows
an example.

A number of non-linear correction methods [Lip12,
AL13,SKPSH13,KABL14] exists that suppress these
artifacts in planar or volumetric settings. These
methods are very powerful as they guarantee artifact-
free deformations, but they typically have a big im-
pact on the runtime. Most importantly, they are not
applicable to deformations of surfaces. Martinez Es-
turo et al. [MRT14] introduce an alternative linear
energy regularization method: a quadratic regulariza-
tion term is proposed that is strongly coupled to the
problem-specific deformation energy. For a number
of problems, this regularization yields to artifact-free
results, albeit it cannot be guaranteed. Technically,
this energy regularization requires only minor mod-
ifications to the algorithm with little impact on the
runtime. The amount of regularization can be ad-
justed using a single parameter.

In this work, we apply linear energy regularization
to the harmonic surface deformation method of Zayer
et al. [ZRKS05]. Hereby, we follow the general ideas
of Martinez Esturo et al. [MRT14]. We demonstrate
that energy regularization enhances harmonic defor-
mation results and suppresses a variety of artifacts.
Our main contributions are:

• We provide an energy-regularized formulation of
harmonic surface deformation.

• We refine the discretization of the energy differ-
ential operator of Martinez Esturo et al. [MRT14]
for better estimates in high curvature regions.

• We evaluate the effectiveness of our approach. In
particular, we demonstrate that moderate use of
energy regularization improves deformation re-
sults by resolving artifacts without introducing
new ones.

This paper is structured as follows: we discuss re-
lated shape editing techniques and correction meth-
ods (Section 2) and review harmonic deformations as
well as energy regularization (Section 3). Then we

1

ar
X

iv
:1

40
8.

33
26

v1
  [

cs
.G

R
] 

 1
4 

A
ug

 2
01

4



Original model Zayer et al. [ZRKS05] β = 0.1 β = 0.2
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Figure 1: Hand. The base of the model is fixed, and each sphere represents a deformation handle, which was
rotated. Harmonic surface deformation is susceptible to protruding triangles and surface self-intersection near
small deformation handles. Low amounts of regularization (β) suppress these artifacts.

introduce our approach to linear energy regulariza-
tion for harmonic surface deformation (Section 4). We
perform a qualitative analysis of our results (Section
5), followed by quantitative evaluation and discussion
(Section 6). Lastly, we present our conclusions and
outlook for future work (Section 7).

2 Related Work

The goal of interactive surface deformation is to cre-
ate meaningful deformations while preserving surface
properties such as local details and curvature. Lin-
ear deformation methods play a major role in this
area, since they provide the interactivity and often
produce plausible deformations. Most often, linear
methods represent the surface using its differential
properties [Sor06]. One can distinguish these meth-
ods with respect to their sensitivity regarding rotation
and translation. Rotation sensitive methods such as
Yu et al. [YZX+04] and Zayer et al. [ZRKS05] use the
gradients of affine transformations to construct a de-
formation guidance field, and solve a Poisson problem
for geometry reconstruction. Since translations intro-
duce local changes to the tangent plane of the surface,
these methods are not suitable for shape deformations
that involve large translations. On the other hand,
translation sensitive methods such as [SCL+04] can
handle large translations but not rotations. We re-
fer to the survey of Botsch and Sorkine [BS08] for a
detailed review of linear deformation methods.

Linear techniques often cannot guarantee that the
used deformations are smooth everywhere [JBPS11].
This leads to deformation artifacts such as flipped tri-
angles, protruding elements and volume loss due to
rotations.

Artifacts can be avoided by improving the smoothness

of the transformation interpolation field. However,
bi- or tri-harmonic weights create additional local ex-
trema in the interpolation field that lead to unintu-
itive deformations results. Jacobson et al. [JWS12]
tackle this problem by forcing a desired topology for
the interpolation field. This requires solving a non-
linear conic problem.

Serveral correction methods have been explored as
another means to reducing artifacts in various ge-
ometry processing tasks. Lipman [Lip12] presents a
generic tool for constructing orientation preserving
(i.e., no triangle flips allowed) triangle mesh map-
pings, while limiting worst-case conformal distortion.
This method has non-interactive run times and is only
defined for planar meshes. Schüller et al. [SKPSH13]
propose a specialized optimization based on a bar-
rier energy function to repress zero-area elements and
flipped triangles at interactive rates. Their iterative
scheme solves for an injective mapping to a new mesh
configuration. They guarantee inversion-free map-
pings of planar triangular and volumetric tetrahedral
meshes. Aigerman and Lipman [AL13] extend [Lip12]
to volumetric meshes. Their algorithm takes a defor-
mation created by common deformation techniques
and returns a similar deformation that is injective and
minimizes the distortion of the mesh volumetric ele-
ments. The method is not interactive. Most recently,
Kovalsky et al. [KABL14] present a method based on
linear matrix inequalities for restricting the range of
singular values. It enables, e.g., bounded distortion
mappings of planar or volumetric domains, but is also
computationally to expensive for interactive applica-
tions.

These correction methods guarantee that deforma-
tions are inversion-free, and in some cases even
protrusion-free. However, they all require solving
non-linear systems, which results in loss of interac-
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Original model Zayer et al. [ZRKS05] β = 0.003 β = 0.1 β = 0.2

Figure 2: Horse. Each sphere corresponds to a handle region. The front foot and the head is rotated, while
the rest of the handles are kept fixed. Harmonic surface deformation results in strong distortions close to the
head, which can be seen in the closeups (middle row), and severe volume loss at the leg (bottom row). With
increasing values of β, regularization gradually improves volume conservation close to the foot.

tivity for moderate to large meshes. In contrast, we
follow the recent linear approach to regularization by
Martinez Esturo et al. [MRT14], which has no signif-
icant impact on runtime. While we cannot guarantee
artifacts-free deformations, our method successfully
suppresses usual deformation artifacts. Furthermore,
the correction methods mentioned above are not ap-
plicable to surface meshes embedded in R3. In con-
trast, our method is well-define for surface meshes.

3 Background

In this Section, we continue to review the formal de-
tails required in our work. We consider triangulated
surface meshesM = (T ,V, E) defined by sets of ver-
tices i ∈ V, oriented edges E ⊂ V2, and triangles
T ⊂ V3. Coordinates of vertices i ∈ V are denoted
by xi ∈ R3. A missing subscript either indicates a
vector of stacked coefficients, e.g., x ∈ R3|V|, the vec-
tor of stacked vertex coordinates xi, or a matrix of
component-wise coefficients, e.g., X ∈ R|V|×3. For a
triangle t ∈ T , Xt ∈ R3×3 denotes the column-wise
concatenation of the coefficients of its vertices. Using
the notations

||y||2N = yTNy and ||Y||2N = Tr
(
YTNY

)
, (1)

we denote (squared) vector and matrix norms that are
induced by symmetric and positive definite matrices
N. (Tr(·) denotes the trace of a matrix.)

For the piecewise linear functions on M a discrete
gradient operator G ∈ R3|T |×|V| can be assembled
from local per-triangle gradient operators Gt: for tri-
angles t = (i, j, k) ∈ T with normalized normals nt,
the local gradient operators are given by

Gt =

(xj − xi)
T

(xk − xi)
T

nt
T

−1−1 1 0
−1 0 1
0 0 0

 , (2)

see, e.g., [BS08]. Given a scalar function on M de-
fined by the vertex-based coefficients u ∈ R|V|, Gu is
the vector of stacked and constant per-triangle gradi-
ents. Note that gradients computed by G are defined
in a common coordinate system.

3.1 Harmonic Guidance for Surface
Deformation

Zayer et al. [ZRKS05] propose a variant of gradient-
domain deformations in which local deformation con-
straints are propagated using harmonic functions.
Deformed surfaces are reconstructed from manipu-
lated surface gradients by minimizing the global de-
formation energy

E(x) =
∑
t∈T

At ||GtXt − Zt||2F (3)

subject so suitable boundary constraints. Here, At
denotes the area of triangle t, ||M||2F = Tr

(
MTM

)
is the (squared) Frobenius norm of M, and Zt ∈
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R3×3 are prescribed component-wise guidance gradi-
ents that are constant per triangle. Dense guidance
gradients are computed from user-specified transfor-
mations associated to a set of handle regions. In
[ZRKS05], harmonic functions h(x) given by solutions
of the Poisson equation Lh = 0 are used for the global
propagation of the sparse set of given transformations.
Here, L = GTAG is a discretization of the Laplace-
Beltrami operator [BS08], in which A is a diagonal
matrix of replicated triangle areas. Please, see Zayer
et al. [ZRKS05] for further details on the quaternion-
based propagation of transformations using harmonic
functions. As minimizers of (3) are characterized by
the same differential operator, in practice a single fac-
torization of L can be used to perform both transfor-
mation propagation and energy minimization.

Drawbacks. Linear deformation methods are sus-
ceptible to various artifacts. This is because the
physical energies involved in deformations are non-
linear by nature, and are only approximated by lin-
ear methods [BS08]. Specifically, harmonic surface
deformation is susceptible various deformation arti-
facts, which are in particular related to the size of the
handle regions. Small deformation handles are likely
to cause protruding and intruding triangles. Large
deformation handles cause local shape distortion on
the boundary between the constrained and free mesh
areas. Other artifacts include volume loss close to
deformation handles when the deformation includes
large rotations and local surface intersection. It was
observed [MRT14] that these artifacts correlate with
large spatial variation in the optimized energy on the
domain.

3.2 Linear Energy Regularization

Martinez Esturo et al. [MRT14] propose a generic lin-
ear energy regularization scheme that suppresses geo-
metric artifacts in a number of different applications.
It is applicable to regularize problem-specific squared
energies of the general form

EP(u) = ||Eu− c||2A (4)

over d-dimensional piecewise linear functions defined
by vertex-based coefficients u ∈ Rd|V|. Here, E ∈
Rn|T |×d|V| is a problem-specific linear energy operator
that maps unknown functions u to triangle-constant
local energies of dimension n, c are problem-specific
energy constants, and A is a diagonal matrix of repli-
cated triangle areas that performs domain-wide inte-
gration of triangle-constant quantities. Energies EP
are regularized by introducing a regularization term

ER(u) = ||D (Eu− c)||2B (5)

that measures squared variations of local en-
ergies. For piecewise constant local ener-
gies, pointwise energy variations are esti-
mated by the sparse differential operator D.

e

l(e) r(e)

For each pair of neighboring triangles,
it can be discretized along all inter-
nal edges e ∈ Ei from the set of non-
boundary edges Ei ⊆ E : let l(e) and
r(e) denote the left and right triangle
at e, respectively. Then, for scalar local energies
(n = 1), the nonzero coefficients of D are given by

Det =

{
1 if l(e) = t
−1 if r(e) = t

, for all internal edges e ∈ Ei
and triangles t ∈ T . For vector-valued local ener-
gies (n > 1), the differential operator is given by a
component-wise replication, which can be expressed
asD⊗In using the Kronecker product ⊗ and the n×n
identity matrix In. The constant estimates of point-
wise local energy variations are integrated using the
diagonal matrix B of replicated internal edge lengths.

The total regularized energy is given by a weighted
combination of both terms

Eβ(u) = (1− β)EP(u) + β ER(u) = ||Eu− c||2Wβ

(6)

that can be expressed compactly using the β-weighted
norm

Wβ = (1− β)A+ βDTBD . (7)

The amount of regularization is steered by β ∈ [0, 1).
Note that this formulation of energy regularization is
also valid for energies in the components of the un-
known functions u, which are then given by Eβ(U) =

||EU−C||2Wβ
. Please, see Martinez Esturo et al.

[MRT14] for further details and applications on this
energy regularization scheme.

4 Enhancing Harmonic Surface
Regularization

We continue to show that the concept of energy regu-
larization is applicable to harmonic surface deforma-
tion in a straightforward way. For this, we rewrite the
component-wise deformation energy (3) to the equiv-
alent formulation

E(X) = ||GX− Z||2A (8)

using the global gradient operator G, the matrix Z of
all stacked prescribed gradients, and diagonal matrix
A of replicated triangle areas. Note that the local
energies correspond to the to the summed terms of
(3). Comparing our problem-specific energy (8) and
the regularizable generic energy (4), we obtain the
correspondences that the generic energy operator E
is given by the gradient operator G, the constant en-
ergy term C is given by the gradient field Z, and the
dimension of the local energies is n = 3. Hence, the
energy-regularized version of the deformation energy
(8) is given by

Eβ(X) = ||GX− Z||2Wβ
(9)
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by simply applying the weighted norm Wβ for energy
integration and smoothness estimation. Technically,
to apply regularization, this substitution of A for Wβ

allows for a straightforward implementation. Specifi-
cally, the remainder of the original harmonic surface
deformation approach is unchanged, in particular the
harmonic function-based transformation propagation
for the guidance gradients Z.

Our experiments demonstrate that this simple energy
modification suppresses a variety of deformation ar-
tifacts of the original energy formulation (see Sec-
tion 5). Still, the original discretization of the en-
ergy differential operator D is defined independently
of the local surface curvature, which leads to poor es-
timates of energy variation in high curvature regions.
We continue to provide a refined differential operator
discretization that is based on surface curvature and
yields better estimates of energy variation.

Curvature-based Energy Differential Opera-
tor. Martinez Esturo et al. [MRT14] estimate the
variation of local energies by finite differences of their
respective local energy residuals (Section 3.2). In our
application of gradient-domain deformations, the en-
ergy residual Et of a triangle t is given by the devi-
ation between the deformed mesh gradients and the
gradients of the guidance field:

Et = GtXt − Zt . (10)

The (squared) energy variation between two neigh-
boring triangles t1 and t2 is now simply given by
||Et1 −Et2 ||2F .
This estimation works well if both triangles are
aligned and therefore also the residuals in the columns
of Et1 and Et2 live in the same tangent space, e.g., for
planar meshes. However, if the tangent spaces are not
aligned, this estimation is likely to break. The effect is
particularly noticeable at sharp edges of a curved sur-
face, where areas of low energy values along the edge
are surrounded by higher energy values. This results
in a less smooth energy distribution across edges of
high curvature.

We adjust the discretization of the operator D
to also be applicable to high curvature regions
by locally compensating for curvature. Similar
local alignments of tangent spaces is used, e.g.,
by Crane et al. [CDS10], for the computation
of connections relating neighboring tangent spaces.

e

l(e) r(e)

nr

nl

Re

For the n = 3 dimensional local en-
ergy residuals (10), our refined energy
differential operator DR is a |Ei| × |T |
matrix of 3×3 block matrices. For each
internal edge e ∈ Ei, we use the rota-
tion Re that aligns the normals of its
left and right triangles nr,nl such that nr = Renl.
Then, the nonzero blocks of DR are given by DR

et ={
Re if l(e) = t
−I3 if r(e) = t

for all internal edges e ∈ Ei and

triangles t ∈ T . This way, DR compensates for lo-
cal curvatures: residuals that are similar relative to
their respective tangent spaces are not estimated to
be different anymore. Note that this operator refine-
ment simplifies to the original formulation for planar
meshes. It reduces the sparseness of the resulting lin-
ear system only by a constant factor, which does not
impair resulting runtimes. However, it is only ap-
plicable to this particular case of n = 3 dimensional
local energy residuals. For different values of n the
discretization should therefore fall back to the D op-
erator of [MRT14].

Implementation. The operators G, DR, A, and
B as well as L are assembled once when the surface
mesh is loaded. For each deformation of the model the
guidance field Z is computed and the corresponding
normal equations

G
T

WβGX = G
T

Wβ Z (11)

of (9) are solved for the coordinatesX of the deformed
mesh. The norm Wβ is assembled for a given β
value using the refined differential operatorDR. After
elimination of positional hard boundary constraints,
the system (11) is symmetric positive definite and it
is solved using a Cholesky factorization with fill-in
reducing reordering [GJ+10]. Similar to [ZRKS05],
this factorization can be reused for different guidance
fields Z as long as the handle configuration and β
values are unchanged.

5 Results

We evaluate our approach qualitatively on a num-
ber of different models. The models presented have
3 − 36.6k vertices. Deformations are performed us-
ing single and multiple handles, varying sizes of the
handle regions and the regularization weight β.

Energy Visualization. We use color to visualize
the squared magnitude of local triangle-constant en-
ergies ||Et||2F . Energies are linearly mapped to the
color space (shown in Figure 1) by setting the maxi-
mum of the color interval to correspond to the 95th
percentile of the energy values. The top 5% of the
energy values is clipped to allow visualization of the
variation of lower energies with higher contrast.

Small Deformation Handles. For small handle
regions, harmonic surface deformation tends to cre-
ate artifacts such as protruding triangles and local
surface intersections close to the handles. We show
two examples of these artifacts: the Hand deforma-
tion (Figure 1) is created by fixing the base of the
model, and a single vertex on each finger acts as the
deformation handle. All handles are rotated inwards,
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Original Zayer et al. β = 0.1 β = 0.2
model [ZRKS05]

Figure 3: Cactus 2. Single vertices at the bottom and
at the top of the cactus are fixed, and a single vertex
is pulled away from the cactus body. Regularization
results in deformations free of protruding triangles.

Original model Zayer et al. β = 0.25
[ZRKS05]

Figure 4: Cow. The handle on face is fixed, and the
horns are rotated upwards. Regularization helps pre-
serve the volume near the base of the horns.

resulting in protruding triangles and local surface in-
tersections near the deformation handles. Regulariza-
tion (β > 0) suppresses these artifacts. Similar arti-
facts to protruding triangles, albeit of smaller mag-
nitude, occur if handle regions include up to several
dozen vertices. In the Cactus 2 example shown in
Figure 3, single vertices on the base and the top are
fixed, and a single vertex on the side of the cactus
is used as a deformation handle. The deformation
suffers from large protruding triangles. Introducing
regularization corrects this artifact. For both defor-
mations, even low amounts of regularization result in
a smoother energy distribution, affecting more trian-
gles in the mesh. This way the optimization favors
more global changes to the mesh instead of local con-
centrations of energies, which result in the observed
local artifacts.

Large Deformation Handles. Harmonic surface
deformation is commonly used with large deformation
handles, as careful design of these constraints can lead
to pleasing deformations. However, the boundary of
large handle regions is also susceptible to artifacts.
The Cactus 1 model in Figure 5 is based on a bench-
mark deformation from [BS08]. The base of the model
is fixed, and the top is rotated and translated. Us-
ing the original method by Zayer et al. [ZRKS05], the
boundary between the constrained and free mesh re-
gions exhibits strong changes of the directions of mesh
normals, distorting the local shape. Our regulariza-
tion reduces distortions of local geometry close to this

boundary, creating a smooth transition between the
constrained and free mesh regions.

Strong Rotations. Strong rotations, especially on
elongated limbs, are a challenge for a number of defor-
mation methods [KS12]. Using harmonic surface de-
formation, strong rotations usually cause loss of vol-
ume. This effect is illustrated in Figures 4 and 2. The
foot of the Horse is rotated. In the resulting deforma-
tion, most of the lower leg suffers from volume loss,
creating a “candy wrapper”-like artifact. Low values
of regularization are effective at preserving some of
the limb’s volume to create more plausible results. In
the Cow deformation, the horns are rotated upwards
while the front of the face is fixed. This deformation
is even more challenging, as the region deformed is
small and the mesh geometry is rather coarse. Regu-
larization helps to restore some of the lost volume.

6 Evaluation and Discussion

In this section, we perfom a quantitative evaluation of
our approach. Deformations are created for β ∈ [0, 1),
using a higher sampling rate for lower β values, for
which we usually observe the strongest changes of the
deformation. Please, see the accompanying video for
the deformations at these β values.

Maximal Isometric and Conformal Errors.
Two error measures proved to be most useful for
evaluating deformation quality (see, e.g., [LZX+08]):
the local per triangle isometric error eisot is given by
the sum of squared deviations from 1 of the singu-
lar values of the deformation gradient. The local per
triangle conformal error econf

t is computed by half
of the squared sum of the pairwise differences be-
tween the singular values of the deformation gradient.
The maximal isometric (conformal) error, max(eisot )
(max(econf

t )), is given by the maximal value of the
isometric (conformal) error over all triangles. Both
of these error measures indicate strong distortions of
the mesh geometry. They are also loosely related to
artifacts such as protruding or intruding elements, de-
generate triangles, and surface self-intersections. We
also examined the total (integrated and normalized)
isometric and conformal errors as possible indicators
for deformation quality evaluation, but these proved
ineffective.

Figure 6 shows the behavior of the maximal isometric
and conformal errors for different values of β. In al-
most all tested deformations, regularization strongly
decreases the maximal isometric and conformal er-
rors. The behavior of these error measurements is
different for the Cactus 1 example of Figure 5, as
they slightly increase with regularization. The reason
is that deformations defined using large handle re-
gions usually don’t result in artifacts associated with
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Zayer et al. [ZRKS05] β = 0.003 β = 0.1 β = 0.2

Figure 5: Cactus 1. The entire base and top regions are constrained. The base is fixed and the top is translated
and rotated. The transition between the constrained and free mesh regions is apparent both in the energy domain
and in the irregularities of mesh normal directions. Low regularization weights create smoother transitions and
less distortions on the handle boundary, while preserving the global shape of the deformation.

large local isometric and conformal errors. Addition-
ally, we note that no new local maximal errors are
introduced for moderate β values, meaning that de-
formation quality does not derogate for higher β val-
ues. We also confirm this behavior in all other tested
examples, as the total deformation energy of the reg-
ularized deformation defined in (3) stays within the
same order of magnitude as the original deformation.

Space of Regularized Deformations. We ob-
serve that the initial introduction of regularization
(β > 0) has strong effects on deformations suf-
fering from strong artifacts for β = 0. After
this initial reaction interval, regularization creates
gradual changes to the mesh geometry, indicated
both by our deformation results (e.g., in Figures 2
and 5) and by the behavior of the error measures
max(eisot ),max(econf

t ) in Figure 6. As the regulariza-
tion energy becomes more dominant with increasing
β values, max(eisot ),max(econf

t ) also slightly increase.
For very high values of β > 0.9, the regularized en-
ergy formulation strongly deviates from the original
problem, which can create new artifacts. In our ex-
perience, choosing a fixed value of β ≈ 0.2 usually
suppresses artifacts effectively without negatively af-
fecting the mesh geometry. This means that a con-
stant regularization can simply be added to existing
implementations without exposing users to a new pa-
rameter. In addition, although the linear system (11)
has to be refactored when β changes, examining dif-
ferent β values can usually be done at interactive rates
due to the high performance of sparse linear solvers.
Hence, the space of regularized deformations can also
be explored interactively.

Curvature-based Differential Operator. Fig-
ure 7 demonstrates the benefits of using our
curvature-based energy differential operator on the
Accordion mesh with highly curved edges. The
method by Zayer et al. [ZRKS05] suffers from lo-
cal shape distortion near the deformation handle.
The differential operator by Martinez Esturo et al.

[MRT14] estimates the energy variation between
neighboring triangles ineffectively, resulting in global
shape distortions. Our curvature-based operator esti-
mates the energy differential more effectively, result-
ing in a deformation which has the same geometry
as the solution by Zayer et al. [ZRKS05], but sup-
presses the local artifact. The deviation of Martinez
Esturo et al. [MRT14] from our results increases with
higher regularization weight. For smooth meshes, us-
ing our curvature-based differential operator has neg-
ligible effects, as vertex coordinates were only affected
marginally.

Performance. Regularization affects the runtime
in two ways: it reduces the sparsity of the linear
system (11) being solved and it requires a one-time
operation to setup of the curvature-based differential
operator DR. Our measurements on an Intel Core i7
2.2GHz system indicates that the effect of regular-
ization on interactive runtime is insignificant for all
tested meshes: For example, factorization time of the
linear system for the Cactus model (|V| = 10k) is ≈
0.04 seconds for both β = 0 and β > 0, its solution
time is ≈ 0.003 seconds. Similarly, factorization time
for the Hand model (|V| = 36.6k) is ≈ 1.13 seconds
for β = 0 and ≈ 1.14 seconds for β > 0 with a so-
lution time of ≈ 0.1 seconds. Hence, changing the
regularization weight to examine different regulariza-
tion weight can be done interactively.

7 Conclusions

In this work, we have provided an energy regular-
ized formulation of harmonic surface deformation.
Our approach expands the capabilities of the orig-
inal method, allowing the creation of artifact-free
deformations for a wider range of deformation con-
straints and handle configurations. Our formulation
of a curvature-based differential energy operator im-
proves the estimation of energy differentials in high-
curvature mesh regions. This reduces geometric dis-
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Original model Zayer et al. Martinez Esturo Ours
[ZRKS05] et al. [MRT14]

β = 0.4 β = 0.4

Figure 7: Accordion. The base is fixed and two vertices on the top row are rotated. Harmonic surface regular-
ization [ZRKS05] creates an artifact near the deformation handles. Martinez Esturo et al. [MRT14] suppress
the artifact, but distorts the global mesh shape. Our curvature-based differential operator creates a smooth,
artifact-free deformation without distorting the mesh geometry.

tortions introduced by the original energy differen-
tial operator around these regions. The evaluation of
our results demonstrates that even low regularization
weights can effectively suppress many deformation ar-
tifacts without negatively affecting the performance
of the original method. In addition, no new artifacts
are created,

Future work. An interesting direction for future
work is the application of energy regularization to
other (non-linear) surface deformation approaches,
e.g., to the work of Jacobson et al. [JBK+12], who
observe similar artifacts. In addition, since artifacts
are usually localized close to handle regions, a local
energy smoothness formulation could achieve better
control on deformation artifacts.

Acknowledgment. The Horse, Hand, and Cow
models are provided by the AIM @ Shape project.
The Cactus model courtesy of Botsch and Sorkine
[BS08].
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