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Simulationen der elektrostatischen und magnetischen Feldeigenschaften und Tests
der Penning-Ionenquelle von THe-Trap:

Das Experiment Tritium-Helium-Trap (THe-Trap) ist ein Penning-Fallen-
Massenspektrometer, entworfen um das Massenverhältnis von Tritium und Helium-3
mit einer relativen Genauigkeit von 10−11 zu bestimmen. Um diese Genauigkeit
zu erreichen, müssen die Eigenschaften der Penning-Falle sehr gut verstanden sein.
Geometrische Abweichungen vom Idealfall verursachen Terme höherer Ordnung
im elektrostatischen Potential. Ausführliche Simulationen wurden durchgeführt,
um zuerst die Abhängigkeit des Simulationswerkzeuges Comsol-Multiphysics von
der gewählten Auflösung zu testen und dann die Terme höherer Ordnung zu quan-
tifizieren. Die Simulationen waren erfolgreich und in guter Übereinstimmung mit
den experimentellen Beobachtungen. Es war auch möglich den Spiegelladungseffekt
zu simulieren. Der simulierte Spiegelladungseffekt bestätigt den experimentellen
Wert. Ähnliche Untersuchungen wurden durchgeführt, um den Einfluss des ex-
perimentellen Aufbaus auf das Magnetfeld zu untersuchen. Die Einflüsse von
ferromagnetischen Materialien konnten verlässlich bestimmt werden.
Der letzte Teil dieser Arbeit befasst sich mit der Charakterisierung der externen
Penning-Ionenquelle. Hierfür wurde ein neuer Faraday-Becher entworfen und
eingebaut. Das neue Gerät konnte den Ionenstrom der Penning-Ionenquelle messen
und half ihre Betriebsparamter zu optimieren.

Simulations of the electrostatic and magnetic field properties and tests of the
Penning-ion source at THe-Trap:

The Tritium-Helium-Trap (THe-Trap) is a Penning-trap mass spectrometer dedicated
to measure the mass ratio of tritium and helium-3 with a relative precision of 10−11. To
reach this precision, the properties of the Penning-trap must be understood very well.
Geometrical deviations from the ideal case cause higher-order components in the elec-
trostatic potential. Extended simulations have been carried out to investigate first the
dependence of the simulation tool Comsol Multiphysics on the resolution chosen and
then to quantify the higher-order terms. The simulations were successful and in good
agreement with the experimental observations. It was also possible to simulate the im-
age charge effect. The simulated image charge effect confirms the experimental value.
Similar investigations were performed to estimate the influence of the experimental
setup on the magnetic field. The influence of ferromagnetic materials was determined
reliably.
The final part of this thesis is the characterization of the external Penning-ion source.
For this, a new Faraday cup was designed and implemented. The new device can
measure an ion beam from the Penning-ion source and helps to improve their operat-
ing parameters.
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Chapter 1

Introduction

Mass is a fundamental property and knowing an object’s mass is crucial in every branch

of physics. In everyday life, mass is usually measured via the gravitational force, for

example by using bathroom or kitchen scales. Since the gravitational force is the prod-

uct of mass and earth acceleration, the mass can be determined. Unfortunately, this

method cannot be applied to single atoms, because the force measurement is not sen-

sitive enough. But in atomic and nuclear physics the masses of single particles are

needed.

A different mass measurement technique was developed by J. J. Thomson [Tho99], who

measured the charge-to-mass ratio of atomic ions and molecular ions for the first time

in 1897. In his apparatus, charged particles are accelerated and deflected by a com-

bination of magnetic and electric fields. The angle of deflection is proportional to the

charge-to-mass ratio. For this technique, Thomson was awarded the Nobel Prize in

1906. The concept of measuring a charge-to-mass ratio is still in use and has continu-

ously improved [Dem35, Duc50, PvR58]. In the 1960’s, H. G. Dehmelt developed the

Penning-trap technology at the University of Washington, Seattle as a tool to store sin-

gle electrons and to investigate their properties [WED73, WD75]. In 1989, together with

W. Paul, he received the Nobel Prize for “The development of the ion trap technique”

[Deh90, Pau90]. A Penning-trap links the charge-to-mass ratio of a particle to a fre-

quency. A frequency is the most accurately measurable quantity. It can be measured up
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to a precision of 10−17 and is therefore not the limiting factor for mass ratio measure-

ments [Ger11].

Today’s best mass measurements can reach a relative precision of 10−11 [VDJPVLZ06,

Mye13]. A good overview over mass measurements around the world is given in Ref-

erence [Bla06].

Einstein’s famous formula E = mc2 [Ein05] links mass measurements to theoretical pre-

dictions of energy levels. High precision atomic mass measurements, for example, help

to improve theories such as QED by testing the fine structure constant α [KN03] or the

electron binding energy. Here Einstein’s energy-mass-relation is directly used by mea-

suring the weight of an ion at different charge states [RTM+05]. Of course, mass mea-

surements can directly check nuclear mass models [Wei35, BB36, LPT03, AWW+14],

which are needed in nuclear astrophysics [PKTW01, Bos03, Gor05], nuclear structure

studies [Bol01, CBCM05, Hof98, HAA+03], neutrino physics [BBB+02, Lob03, Bor05,

KBB+05] and many more. But the absolute masses are not the only quantities of interest.

Decay energies and particle separation energies, for instance, can be derived from the

atomic mass difference of the mother and the daughter particles [EEH+06, EEH+08].

The energy equivalent of such a mass difference is called the Q-value. The determina-

tion of a Q-value is the main goal of the experiment presented here, the Tritium-Helium-

Trap (abbreviated THe-Trap). It is dedicated to measure the Q-value of tritium with a

relative precision of 10−6, which means, the mass ratio of tritium and helium must be

determined with a relative precision of 10−11. Tritium has a half-life of 12.3 years and

undergoes a β-decay to helium-3 by emitting an electron and an anti-electron neutrino

[AM00]. Except for the mass of the anti-electron neutrino, the masses of all constituents

are directly measurable. It is known from cosmological observations and reactor ex-

periments that the anti-electron neutrino has a mass [KT01, FFI+01, BBC+01], but only

an upper limit has been determined so far. The mass of the anti-electron neutrino is

a crucial piece of information in many cosmological theories and one of the funda-

mental properties that is missing in the Standard Model. An experiment that aims for

the measurement of the anti-electron neutrino mass is the Karlsruhe Neutrino Experi-
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Figure 1.1: Improvements of tritium’s Q-value since its discovery in 1934 [OHR34].
Most measurements are performed with β-spectrometers [HP49] and radio-frequency
spectrometers, for example [SW75]. The today’s most precise measurements are per-
formed by the Penning-trap mass spectrometry method [VDJFS93, NFB+06]. Figure
courtesy of [Str14].

ment (KATRIN) [AKC04, Wol10, Par14]. It will also determine the Q-value of tritium.

Over the last few decades, the accuracy of tritium’s Q-value got improved by orders

of magnitude, as it is shown in Figure 1.1. Currently, the most precise measurement is

Q = (18589.8± 1.2) eV [NFB+06], obtained at SMILETRAP [BCF+02]. THe-Trap aims

to lower the uncertainty of the Q-value to 30 meV in order to provide a consistency

check for KATRIN. To reach this goal, a precise understanding of the properties of THe-

trap is essential.

In this thesis three main topics are discussed. The first is about simulating the electro-

static properties of the Penning-trap used in THe-Trap. For this, extended simulation

studies are performed, and results concerning the shape of the electrostatic potential

are derived (Chapter 4). The finite element simulation tool used, Comsol Multiphysics,

is validated, and the effect of uncertainties in the simulated model of THe-Trap is inves-

tigated. The results obtained with Comsol Multiphysics are compared with those from

simulations with Tosca Vector Fields Opera, which also uses the finite element method.
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Additionally, the image charge effects in a real Penning-trap are investigated in a sim-

ulation. In the second topic (Chapter 5), the magnetic field properties of THe-Trap are

studied. The materials in the experimental setup have some magnetic susceptibility.

The effect on the homogeneity of the magnetic field is simulated to quantify the devia-

tions from the uniform magnetic field. The last part of this thesis is about the external

Penning-ion source available at THe-Trap. The Penning-ion source is designed to create

ions from gas at relatively low pressure of 10−6 mbar. In December 2013, a new cathode

was installed. To test this cathode, as well as to optimize the Penning-ion source, while

it is mounted at the experiment, a Faraday cup was designed and installed within this

thesis. The Faraday cup is also supposed to work as a gas barrier so that less rest gas

from the Penning-ion source contaminates the vacuum of the Penning-trap. The results

of the tests with the new cathode and the progress in optimizing the Penning-ion source

with the new Faraday cup are given in Chapter 6.
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Chapter 2

Theory of Penning-traps

This chapter gives an overview of the underlying physics of the ideal and real Penning-

trap (see Sections 2.1 and 2.2, respectively). Since the real Penning-trap always deviates

from the ideal case these deviations have to be quantified and the effect on the mass

measurement has to be investigated. The strength of the deviations of the electrostatic

potential and the magnetic field is determined by finite element simulations. The con-

cept of the finite element simulations used here is presented in Section 2.3.

2.1 Ideal Penning-trap

An ideal Penning-trap consists of a homogeneous magnetic field and a pure electro-

static quadrupole potential. The Penning-trap can be used to determine the mass of a

particle by linking it to its characteristic oscillation frequency. In a pure magnetic field

this frequency is called cyclotron frequency. In most cases, a mass ratio of particles is

measured and hence only their frequency ratio is of interest. As mentioned in the intro-

duction, the most precisely measurable quantity is a frequency. Today’s best frequency

standards can reach a relative stability of 10−15 [Ger11]. To compare two frequencies,

which are measured at different times, the reference has to be stable over time. With

today’s commercially available frequency standards, which have a relative stability of

better than 10−12 on a time scale of a few seconds [Str14], this is not a limitation for the
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mass (ratio) measurement that take up to a few ten or hundred seconds.

To make the charged particle oscillate and to be able to determine its oscillation fre-

quencies, the ion motion must be confined in all three spatial dimensions. The radial

confinement is due to the magnetic field. If a charged particle is moving with a velocity

~v perpendicular to a homogeneous and time independent magnetic field B0~ez in ab-

sence of an external electric field it experiences the Lorentz force. The resulting circular

movement of the particle is called free space cyclotron frequency

νc =
1

2π

q
m

B0 , (2.1)

where q = ne is the total charge of the ion, with n the charge state, e the elementary

charge and m the mass of the ion. Provided that B0 is known, the q
m ratio can be de-

termined from the measured frequency. Since n is a quantized parameter and usually

known, it is the elementary charge and B0 that remain to be determined. Even though

the elementary charge is known to a precision of 10−8 [Kar08], this is not sufficient

enough for the desired precision in a Penning-trap. Also B0 cannot be determined re-

liably enough. Hence, mass-ratios are measured, where the magnetic field B0 and the

elementary charge e cancels out.

Unfortunately, confining a charged particle to a plane perpendicular to the magnetic

field B0~ez is not enough, because any velocity in direction of the magnetic field will

cause the loss of the particle. Earnshaw’s theorem [Ear42] proves that it is impossible

to store a charged particle in a purely homogeneous and constant magnetic or purely

electrostatic electrostatic potential. Therefore, in a Penning-trap a constant and homo-

geneous magnetic field is combined with an electrostatic quadrupole potential. The

electrostatic quadrupole potential confines the movement along the z-axis and leads to

a harmonic oscillation which is independent of the axial amplitude. In the radial direc-

tion, the movement is confined by the magnetic field B0~ez. The electric field inside the

Penning-trap is generated by hyperbolic electrodes (see Figure 2.1), where a voltage V0

is applied between the endcap electrodes and ring electrode. It is also assumed that
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Figure 2.1: Sketch of an ideal hyperbolic Penning-trap. It consists of a hyperbolically
shaped ring and two endcap electrodes. To be ideal the electrodes must extend to in-
finity. B0 shows the direction of the magnetic field. Figure courtesy of [Str14].

the region inside of the electrodes is free of charge. Hence, it can be described by the

Laplace equation [Jac62] for an electrostatic potential Φ

∆Φ(x, y, z) = 0 . (2.2)

Assuming ideal electrodes which are extended to infinity, these electrodes are equipo-

tential planes of the electrostatic quadrupole potential. Therefore, no higher-order

terms than the harmonic order are expected. The general harmonic potential has a

form of

Φ(x, y, z) = Φ0 +
(
ax2 + by2 + cz2) (2.3)

with Φ0 as a constant potential. To solve the Laplace equation a + b + c has to equal

zero and to obtain a cylindrical symmetric quadrupole potential a = b = − c
2 , this leads
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to

Φ(x, y, z) = Φ0 − c
(

x2 + y2

2
− z2

)
. (2.4)

Hence, the electrode must be hyperbolic (see Figure 2.1) which makes the surfaces of

the electrodes to be equipotential surfaces in the quadrupole potential. Introducing the

characteristic trap dimension

d =
1
2

√
2z2

0 + ρ2
0 , (2.5)

where z0 and ρ0 are the distances from the trap center to the endcap and ring electrodes,

respectively, and inserting the boundary conditions displayed in Figure 2.1 results in a

potential

Φ(x, y, z) = Φ0 −
V0C̃2

2d2

(
x2 + y2

2
− z2

)
. (2.6)

The boundary conditions are that the surfaces of the electrodes are equipotential sur-

faces of a quadrupole potential. C̃2 is a dimensionless coefficient which scales the

quadrupole potential depending on the shape of the electrodes. For an ideal Penning-

trap C̃2 is equal to 1. The basis for the equation of motion for a charged particle in a

Penning-trap is again the Lorentz force

~F = q
(
~E +~̇r× ~B

)
, (2.7)

where ~E is the electrostatic field, derived from the potential via ~E = −~∇Φ. The mag-

netic field ~B is ~B = B0~ez. Using Newton’s second law [NH14] on Equation (2.7) leads

to 
ẍ

ÿ

z̈

 =
qB0

m


ẏ

−ẋ

0

+
qV0C̃2

2md2


x

y

−z

 . (2.8)

8



The way of solving this differential equation is well described in for example [BG86].

The resulting eigenfrequencies are

νz =
1

2π

√
qV0R2

md2 , (2.9)

ν± =
1
2

(
νc ±

√
ν2

c − 2ν2
z

)
. (2.10)

In order to store the particle, the frequencies have to be real. Hence, for a stable motion

νc >
√

2νz and qV0R2 > 0 which are called the stability criteria. These frequencies are

called axial frequency, νz, modified cyclotron frequency, ν+, and magnetron frequency,

ν−. Summing the three eigenfrequencies calculated above in quadrature leads back to

the free space cyclotron frequency [BG86]

ν2
z + ν2

+ + ν2
− = ν2

c =

(
1

2π

qB0

m

)2

. (2.11)

This relation is also called Brown–Gabrielse invariance theorem, since 1986 when it was

discovered by Lowell Brown and Gerald Gabrielse . Typically at THe-Trap ν− is in the

range of a few 100 kHz, νz at 4 MHz and ν+ between 24 – 80 MHz. Hence the following

hierarchy between the frequencies is given νc ≈ ν+ � νz � ν−.

2.2 Real Penning-traps

No matter how well a Penning-trap is designed, there will always be deviations from

the ideal Penning-trap. Deviations are based on technical reasons, for example that

the electrodes are not infinitely large, nor is their shape perfectly hyperbolic. Some

deviations are introduced on purpose, like the endcap electrodes may have holes for the

ion transfer into the trap. The homogeneous magnetic field is for example disturbed by

the magnetic susceptibilities of the materials used. Deviations from the ideal situation

can be quantified analyzing higher-order terms of the polynomial approximation of

the fields. The real shape of the electrostatic potential and magnetic field is obtained
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from simulations and the higher-order coefficients of the polynomial approximation are

obtained from fits. When the frequencies of the ion motion are measured to a precision

of 10−11, even small deviations from the ideal case become visible in the measurement

and can have a significant impact on the measured frequency. This section treats the

deviations of a real hyperbolic Penning-trap by showing how they are described and

by explaining how these deviations influence the trap frequencies.

2.2.1 Electrostatic potential

The above described deviations of the real from the ideal Penning-trap make it nec-

essary to introduce higher-order components to the harmonic potential (see Equa-

tion (2.6)) to describe the real electrostatic potential. If present, these higher-order im-

perfections shift the frequencies of the motions, but compared to the base frequencies

the frequency shifts are usually very small. For parametrizing the imperfection of the

electrostatic potential the solutions of the Laplace equation are taken [KEH+14]

Φn(r, θ) = RnVRingrnPn(cos(θ)) (2.12)

where n is a non-negative integer, Pn(cos(θ)) a Legendre polynomial, Rn gives the

strength of the higher-order terms of the electrostatic potential generated by the ring

electrode and VRing is the voltage applied to the ring electrode. For the parametriza-

tion, it is also assumed that the imperfections are cylindrically symmetric. This is a

valid approximation, because the electrodes are cylindrically symmetric and all their

deviations, for example finite space or holes in the endcap electrodes do not violate this

symmetry. To describe the whole electrostatic potential, including higher-order devia-

tions from the ideal case, the following function is chosen

ΦRing (r, θ) ≈
nmax

∑
n=0

RnVRingrnPn(cos(θ)) , (2.13)
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where nmax gives the highest chosen order to approximate the real electrostatic poten-

tial. The parameter nmax is in the scope of this work between six and ten. In this work,

the contribution of the ring electrode to the electrostatic potential is denoted with Rn

coefficients, where n is the power of the corresponding polynomial approximation. It

should be noted that the Rn have a unit of length−n. In this thesis the unit is mm−n. To

be consistent with other publications, where these coefficients are dimensionless, they

have to be transformed the following way

R̃n = 2dnRn , (2.14)

where d is the characteristic trap dimension given in Equation (2.5) and R̃n the dimen-

sionless ring coefficient.

The electrostatic potentials of the other electrodes (see Chapter 3) are approximated in

the same way. The coefficients related to the guard electrodes are denoted with Dn, for

the endcap electrodes with En and for the skimmer electrodes with Sn. Finally, contri-

butions from all electrodes are summed up to get the full potential

Φtot = ΦRing + ΦGuards + ΦEndcaps + ΦSkimmers . (2.15)

The final coefficient which describes the strength of the higher-order terms in the total

potential containing the contribution of all electrodes is denoted with Cn and consists

of

CnV0 = RnVRing + DnVGuards + EnVEndcaps + SnVSkimmers , (2.16)

where for example Rn and Dn are voltage independent, the resulting Cn is not and

hence the total potential can be tuned by setting different voltages to the electrodes.

A direct connection between VRing or any voltage applied to a single electrode and V0

is difficult, because V0 can be given only in dependency of all other applied voltages.

Also, CnV0 are directly connected to each other and cannot be calculated individually.
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If the coefficient Cn with n > 2 is unequal to zero, this leads to amplitude dependent

frequency shifts. These are explained in Reference [KEH+14].

In the following, a few characteristic electrostatic parameters for the trap are intro-

duced. The first is the guard constant, cguard which is the ratio of the changes in voltage

applied to the ring and guard electrode, to keep the harmonic part of the trap con-

stant. If the ring voltage is shifted and the electrostatic quadrupole potential should

not change, the following equation should hold

VRingR2 + VGuardD2
!
=
(
VRing + ∆VRing

)
R2 + (VGuard + ∆VGuard) D2 (2.17)

⇒ ∆VGuard

∆VRing
= −R2

D2
=: cGuard (2.18)

where VRing and VGuard are the voltages applied to the ring and guard electrodes, re-

spectively, and ∆VGuard and ∆VRing are their changes. It is worth noting that a trap,

where D2 is equal to zero, is called orthogonal, because a change in VGuard does not

change the C2-coefficient. The main intention of the guard electrodes is to cancel out

higher-order field components resulting from deviations to the ideal trap, usually R4.

Therefore, the optimal voltage is defined as

VGuard = − R4

D4
VRing . (2.19)

But also higher than fourth-order terms occur and since the ratio of for example R4/D4,

R6/D6, . . . is not the same, the resulting Cn cannot be zero for all n, but at least C4 can be

minimized.

2.2.2 Magnetic field

As mentioned in Section 2.1, the magnetic field in the ideal Penning-trap is homoge-

neous and stable. Unfortunately, it is technically very challenging to construct a mag-

netic field that is uniform and additionally constant at a 10−11 level for minutes or

hours. Also, a magnetic field can never be shimmed to be perfectly homogeneous.
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Higher-order terms in the magnetic scalar potential Ψ can be described similarly by

Legendre polynomials [KEH+14]

Ψn(r, θ) = − Bn

n + 1
rn+1Pn+1 (cos(θ)) , (2.20)

where the Bn’s give the strength of the higher-order distortion, like in Section 2.2.1 and

again the deviations of the magnetic potential from the uniform case are assumed to

be cylindrically symmetric. The magnetic field is given by the negative gradient of the

potential ~Bn(ρ, z) = −~∇Ψn. This calculation is performed in Reference [KEH+14] and

the axial component of the magnetic field turns out to be

B(z)(ρ, z) = Bn

bn/2c

∑
k=0

(−1)k

22k
n!

(n− 2k)!(k!)2 zn−2k ρ2k (2.21)

The upper limit of the sum is defined by the floor function

⌊n
2

⌋
=


n
2 if n is even,

n−1
2 if n is odd.

The coefficients Bn must be the same for the axial and radial component of the mag-

netic field, to obey Maxwell’s equation. ~∇ · ~B = 0 is valid in every case and because

there are no currents in the center of the trap except for the moving ion, whose mag-

netic influence is negligible, ~∇× ~B = 0 holds true as well. Therefore, it is enough to

determine these coefficients for one component. The radial component of the magnetic

field as well as the full derivation is given in Reference [KEH+14]. Also in Reference

[KEH+14] the resulting amplitude dependent first order frequency shift can be found,

if Bn is unequal to zero for n > 0.

2.2.3 Image charge shift

One frequency shift which is not based on imperfections of the magnetic field or the

electrostatic potential, is caused by image charge effects. In Section 2.1 the space inside
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the ideal Penning-trap is treated as source free, so there are no electric charges within

the volume. This is of course wrong for the real Penning-trap, because the measure-

ment concept is based on trapping a charged particle. This charged particle, confined

in the trap, causes image charges on the surface of the surrounding electrodes. These

image charges add an additional electrostatic potential which acts back on the charged

particle and causes frequency shifts. In the following, the mathematical treatment of the

image charge effect in a sphere and in a hyperbolic Penning-trap is explained which is

based on Reference [Ket14].

The image charge frequency shift was estimated for the first time for hyperbolic

Penning-trap electrodes in Reference [VDJMFS89]. The problem itself is not to calcu-

late the actual frequency shift, but to know how the electrostatic field generated by the

image charge looks like. In Reference [VDJMFS89], the Penning-trap electrodes were

approximated by a sphere with a radius of ρ0, while ρ0 is used as defined in Figure 2.1.

The analytic solution of the field created by the image charge inside a sphere at the

location of the point like charge is

Eimage(r) =
1

4πε0

qar

(a2 − r2)2 , (2.22)

where r = |~r| is the distance of the point-like charge from the center of the sphere and

ε0 the vacuum permittivity. The parameter a is the radius of the sphere and q = ne is

the total charge of the ion, where n is an integer and e the elementary charge. The image

charge field is spherically symmetric. Hence, without loss of generality, the field along

the x-axis is from now on discussed. For an easier treatment and to compare the results

obtained later, Equation (2.22) is approximated by a Taylor expansion to the n-th order

along the x-axis

Eimage(x) ≈ q
4πε0

n

∑
k=1

k
x2k−1

a2k+1 =
q

4πε0a2

(
x
a
+ 2

x3

a3 + 3
x5

a5 + . . .
)

. (2.23)

If the sphere radius a� |x|, then the image charge shift is proportional to the displace-

ment of the ion in any direction, like Hooke’s law [Dem05], but here the force is not
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acting back to the center but pushes the ion towards the electrode. Therefore, the image

charge field in a sphere can be approximated by a Taylor series to the first order

Eimage(x) ≈ q
4πε0a3 x = nExx , (2.24)

where q = ne and Ex = e
4πε0a3 .

The real image charge field inside of a hyperbolic Penning-trap violates spherical sym-

metry, because the electrodes are not spherical symmetric. This leads to the fact that

the prefactor Ex which is used in the sphere-case, cannot be used further in the hyper-

bolic Penning-trap case. Hence, the image charge field needs to be approximated in the

different directions individually

~Eimage(x, y, z) = n
(
Exx~ex + Eyy~ey + Ezz~ez

)
, (2.25)

where the Ei are the individual electrostatic field gradients. They represent the elec-

tric field gradient of one positive elementary charge. This approximated field for the

hyperbolic electrodes looks in principle like the field in the sphere and follows the con-

cept that the image charge field is proportional to the displacement of the ion from the

center. Higher-order terms are present in reality as well when the amplitude of the mo-

tion becomes comparable to the distance of the electrodes, but they are suppressed by

small motional amplitudes. Due to the small effect, around 10−10, on the frequencies

of the ion motion only the linear term is treated. This term does not vanish in the limit

of small amplitudes. In contrast to Equation (2.23), where an analytical solution for

the prefactors exists, here the Ei’s must be determined otherwise. Later, they are calcu-

lated by a finite element simulation. This opens the opportunity to take the geometry

of hyperbolic electrodes, including deviations from the ideal shape into account. The

electrostatic field component of the image charge effect should be the same in the x-

and y-direction as the Penning-trap electrodes are cylindrically symmetric. Therefore,

the following can be defined Eρ ≡ Ex = Ey. Using Newton’s second law leads to an
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additional term

n
q
m
Eρ

x

y

 (2.26)

in the radial equation of motion. Assuming the image charge causes a perturbation ερ,

this changes the radial equation of motion (see Equation (2.8)) to

ẍ

ÿ

 = ωc

 ẏ

−ẋ

+
ω2

z
(
1 + ερ

)
2

x

y

 , (2.27)

where ερ is chosen as n 2qEρ

mω2
z
. Using that

∣∣ερ

∣∣� 1 and the relation νc ≈ ν+ + ν− [BG86]

finally gives a radial frequency shift of

∆ν± = ∓n
Eρ

2πB0
. (2.28)

A similar ansatz is taken for the axial motion and leads to an axial frequency shift of

∆νz = −n
q
m
Ez

8π2νz
. (2.29)

Due to the used frequency detection system which keeps the axial frequency constant

(see References [PZVDJ07, Hö10, Str14]), Equation (2.28) becomes

∆ν± ≈ ∓n
2Eρ + Ez

4πB0
. (2.30)

For mass measurements the free cyclotron frequency is needed (Equations (2.1) and

(2.11)). The shift of the free cyclotron frequency, obtained by using the invariance theo-

rem, is calculated as

∆νc ≈ ±∆ν± . (2.31)

Again, the relation νc ≈ ν+ + ν− is used. The full derivation is given in Refer-
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ence [Ket14].

In general, νz and ν+ decrease and ν− increases due to the image charge shift. The

image charge shift ∆νc is also defined as νcReal = νcIdeal + ∆νc, where νcReal is the by the

image charge perturbed and only measurable frequency. Calculated by the invariance

theorem νc drops below the value of the ideal trap without image charge effect.

2.3 Finite element simulation

This section gives a brief introduction to simulations with the finite element method.

Many physical problems that can be described by partial differential equations (PDE),

like the Maxwell equations cannot be solved analytically for every case. Often the

boundary conditions are so complex that they prevent the finding of an exact solution.

For example, the electrostatic potential produced by hyperbolic electrodes with finite

size and holes in the endcap electrodes cannot be derived analytically. One method of

obtaining an approximate solution for those PDE’s is the finite element method (FEM)

[GN08, Ryl13, WSV14].

The FEM is a numerical method and consists of four steps. Before the simulation starts,

the problem must first be described, for example the geometry of the THe-Trap elec-

trodes has to be modeled in a computer and the boundary conditions like the applied

voltages have to be set. Then, the geometry of the problem is divided in many small

subdomains. This is called meshing. The quality of the approximation of the geometry

by the mesh depends on the selected mesh size. This leads to the term “resolution” in

the simulation. The finer the mesh, the higher the resolution is. Hence, the resolution

is proportional to the inverse of the mesh size. Next, all mesh cells are connected to

each other obeying the globally set boundary conditions, like the voltages at the elec-

trodes and the boundary conditions to the neighboring cells. This leads to an equation

system and is presented in a matrix A. The dimension of A is n × n, where n is the

number of mesh cells. The last step is solving this equation system. This is the most

time-consuming step. The matrixA becomes very large because, in the simulation here,

17



often meshes with a million cells or more are used. Due to the fact that the direct bound-

ary conditions only affect the neighboring cells the matrix is a so called sparse matrix.

Depending on its size and dimension different methods for solving this equation sys-

tem can be applied. These are for example the Gaussian elimination for solving a linear

equation directly, or the conjugate gradient method and generalized minimal residual

method as iterative solvers [PTVF92, EM07]. Here, in the performed simulation only a

direct solver is applied. This avoids that the simulation result also depends on the step

size of the iterative solver, apart from the resolution of the simulation.

Developing a piece of software which offers an easy way of implementing the geometry

of THe-Trap and which has efficient algorithms to create and solve the equation system

would have been impossible within the time frame of this thesis. Fortunately, there al-

ready exists a piece of software designed for these purposes, Comsol Multiphysics. It is

a commercially available tool which allows to import external Computer-Aided Design

(CAD) models and to create new models directly in a graphical user interface. For the

electrostatic potential and magnetic field simulation packages are available, where the

boundary conditions, like voltages, charges, magnetic field and many more can be set

in an easy way. After the simulation, the result can be displayed in plots directly in

Comsol Multiphysics, and these plot can be saved as a picture, or the mesh including

the coordinates and the simulated values (electrostatic potential, electric field strength

etc.) can be exported and analyzed further by external tools. More information is given

in Reference [Com14b].
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Chapter 3

Experimental setup THe-Trap

This chapter explains the experimental setup of THe-Trap. In Section 3.1 an overview

of how THe-Trap looks like in general is given. Also the deviations of the real trap

electrodes from the ideal trap electrodes are introduced. The materials with different

thermal shrinking coefficients and magnetic susceptibilities used are denoted. These

different shrinking coefficients lead to relative changes in the position of the electrodes

when the experiment is cooled down to 4 K. The materials used also have magnetic sus-

ceptibilities that deviate from the susceptibility of vacuum and hence cause magnetic

distortions. Section 3.2 presents the external Penning-ion source. This source can be

used to generate ions of any gaseous element outside of the actual Penning-trap elec-

trodes. In Section 3.3 the custom-designed Faraday cup is presented. This Faraday cup

was designed for analyzing and optimizing the Penning-ion source, while it is mounted

at the experiment. It is also designed to reduce the gas flow from the Penning-ion source

to the actual Penning-trap electrodes.

3.1 THe-Trap

Tritium-Helium-Trap was designed at the University of Washington, Seattle, and

shipped to the Max-Planck-Institut für Kernphysik in Heidelberg in 2008 [VDJPVLZ06].

It is dedicated to measure the mass ratio of tritium and helium-3 with a precision of
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10−11. An overview of the experimental setup is shown in Figure 3.1. THe-Trap con-

sists of a part that is operated at room temperature which starts at the electrical connec-

tions and goes to the top. The parts below the electrical connections are located inside

a magnet charged to 5.26 T. This part contains the trap chamber with the hyperbolic

Penning-trap electrodes and the cryogenic electronics which are cooled down to 4 K. A

more detailed sketch of the contents of the trap chamber is displayed in Figure 3.2. The

trap chamber contains an ion capture segment and two Penning-traps. The ratio of ρ0/z0

describes ratio of the distance from the center to the ring- and endcap electrode, respec-

tively and should be 1.16 in the ideal case [BG86], but it is 1.22. Furthermore, the holes

in the endcap electrodes for injecting and ejecting the ions are deviating from the ideal

shape, too. These imperfection lead to higher-order terms in the electrostatic potential

(see Section 2.2.1). To tune the electrostatic potential guard electrodes are used. The

guard electrodes are radially cut in half (not shown in Figure 3.2). This allows to insert

radio frequencies for manipulating, exciting and especially for coupling the radial to

the axial motion of the ion [SBB+91, KBK+95]. The skimmer electrodes shown protect

the vacuum from rest gas at the Penning-ion source and reflect the electron beam cre-

ated by the field emission point (FEP). This electron beam is used to create ions in the

actual Penning-trap. In general, there are two methods available to load ions in the

trap. Commonly the FEP that is located below the experiment trap is used. For this, a

high voltage is applied to the FEP and a voltage between FEP, and EbSkim accelerates

the emitted electrons to the experiment trap. They are reflected at the EtSkim electrode.

Since the generated electron beam does not stay fully focused, it also hits the endcap

electrodes. There, atoms from the rest gas that are frozen on the electrodes are released

and can be ionized by the electron beam. Unfortunately, this method also creates elec-

tron patch charges on the endcap electrodes which changes the electrostatic behavior.

This is one of the limiting factors for the mass measurements presently.

For avoiding these patch potentials and also to reduce the amount of tritium that will

be introduced to the experiment, THe-Trap has an external Penning-ion source installed

(see Section 3.2). Ions created here are sent down to the ion capture segment. Properly
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Figure 3.1: Experimental setup of THe-Trap. On top, a turbo molecular pump is
mounted. Beneath it is the Penning-ion source, followed by the header containing the
electrical connections for the wires going down to the cryogenic electronics. The rest of
the experiment is inside a of 5.26 T [Str14] magnet with a cold bore. At the bottom is the
trap chamber which is displayed enlarged at the right-hand side. Finally, at the very
bottom the cryogenic electronics with the amplifier and the resonator with the induc-
tor coil are located. Macor spacer ring elements are marked. The color coding for the
enlarged trap chamber is that all white colored parts are made of Macor, light salmon
colored are made of oxygen-free high thermal conductivity copper (OFHC) and green
yellow colored components are made of phosphor bronze. This means that the trap
electrodes are made of phosphor bronze, the skimmer and the feedthrough flange of
OFHC and the supporting structure, for instance the spacer rings of Macor. The holes
in the spacer ring guide the wires for the electrical connections of the electrodes. The
explanation of the naming is given in Figure 3.2.
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Figure 3.2: Schematic drawing of the content of the trap chamber, introduced in Fig-
ure 3.1. The abbreviations C and E stand for Capture trap and Experiment trap, respec-
tively, and t and b for top and bottom. The field emission point is abbreviated by FEP.
Figure from [Str14].

switching of the voltages at the ion capture segment and the following skimmer elec-

trodes will hopefully lead in the future to an ion transfer to the capture trap.

Due to the cooldown of the lower part of the experimental setup, the dimensions of the

trap electrodes change. A length ` at room temperature is transformed in the following

way

`′ = (1− αmaterial) · ` , (3.1)

where `′ is the new length at 4 K and αmaterial the thermal shrinking coefficient of

the material for the transition from room temperature to 4 K. Unfortunately, there is

not much data available regarding the thermal properties of the materials used (Ma-

cor [Cor13], copper and phosphor bronze). Some thermal shrinking coefficients are

found in Reference [VDJ91] and validated by the References [RAJ54, CWr64, Cla68,

Whi73, Eki06, Spr13, Cor13]. In the end, the following thermal expansion coefficients

are used: αmacor = 0.0018 and αcopper = αphosphor bronze = 0.00326 because these are the

values given by the manufacturer of the Penning-traps. During the investigation the

values could be confirmed but mostly an uncertainty is not given. The spread of αcopper

is 0.0031 – 0.0050 (see References [Whi73] and [RAJ54], respectively) and for αMacor
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Table 3.1: Overview of characteristic trap parameters. The different materials and their
thermal expansion coefficients are taken into account for the thermal shrinking. The
parameters rE and rC denote the radius of the hole in the endcap electrodes in the ex-
periment and capture trap, respectively. The estimate of the uncertainties is taken from
Reference [Pin07]. Here the upper limit of the uncertainty is shown.

Room temperature Cryogenic Temperature
Trap parameter length Trap Parameter length

ρ0 2.78(1) mm ρ′0 2.77(1) mm
z0 2.28(1) mm z′0 2.27(1)mm
d 2.13(3) mm d′ 2.13(3) mm
rE 201(5)µm r′E 200(5)µm
rC 250(5)µm r′C 249(5)µm

z′0b 2.29(1) mm

0.0018 – 0.0024 (see References [VDJ91] and [Cor13], respectively). Characteristic trap

parameters at room temperature and 4 K are given in Table 3.1. Values at room temper-

ature are found in Reference [VDJ90] and at 4 K in [Pin07]. They agree with each other,

when the thermal shrinking coefficient is used except for ρ0. It should be noted that ρ0

in Reference [VDJ90] is found to be 2.74 mm. In newer CAD drawings ρ0 = 2.78 mm is

found. Because ρ′0 = 2.77 mm is used in all publications of this group, ρ0 = 2.78 mm

and ρ′0 = 2.77 mm are used for the simulation. Unfortunately, it cannot be stated yet

which value is correct and the values deviate significantly. z′0 describes the hyperbolic

shape of the endcap electrode at 4 K. Since Macor has a different thermal shrinking co-

efficient than copper, z′0 does not describe the distance of the endcap electrode to the

center of the trap. For this z′0b is introduced. Based on Equation (3.1), z′0b can be calcu-

lated as follows

z′0b =
(
1− αCopper

) (2.29− 0.51)︸ ︷︷ ︸
ring

− (1.08 + 3.61 + 6.73)︸ ︷︷ ︸
endcap

+ (1− αMacor) · 11.92︸ ︷︷ ︸
Macor holder

,

(3.2)

where all lengths are in millimeter and the values are taken from Figure 3.3.

The effect of the thermal shrinking on the electrode geometry is displayed in Figure 3.3.
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Table 3.2: Magnetic susceptibilities for the materials used in the experiment at 4 K. A
general uncertainty of 20 % is assumed. It should be noted that nickel’s magnetization
saturates at 0.645 T [Stu12].

Material Susceptibility
Macor 2 · 10−5 [LFLM90]
Nickel 6 · 10+2 [Com14a]
OFHC −9 · 10−6 [Eki06]

Phosphor Bronze −6 · 10−6 [Eki06]
Titanium 2 · 10−4 [Eki06]
Tungsten 7 · 10−5 [Eki06]

It should be noted that the ring electrode is shrinking and comes closer to the trap cen-

ter, while the ring electrode is shifting upwards. This leads to the fact that the surface

of the endcap electrode is not an equipotential surface of a quadrupole potential any-

more. A countersink is indicated in the endcap electrode hole. This widens the hole

for the experiment trap from a radius of 152.5(5)µm to 200.2(5)µm. The countersink is

255µm deep. The purpose of the countersink is that if the electron beam from the FEP

widens up, it does not hit the inner surface of the endcap electrodes. This would lead

to patch charges and further electrostatic field distortions. Since the FEP is only located

at the experiment trap, a countersink for the capture trap is installed. Further, magnetic

susceptibilities of the important parts of the experimental setup are given in Table 3.2.

An estimation of the uncertainty is difficult, but again the values should be within 20 %

of the provided values.

3.2 Penning-ion source

THe-Trap is equipped with an external Penning-ion source which was first described in

[Pin07] and was further investigated by [Hö10] and [Tre11]. The Penning-ion source al-

lows the ion production of any gaseous element outside of the Penning-trap electrodes.

For the final goal of this experiment, the measurement of the Q-value of tritium, the

external ion source has the advantage that the trap region will be less exposed to tri-

tium gas. This is crucial because tritium is radioactive, and a contamination of the trap
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Figure 3.3: Schematic drawing (not to scale) of a cut through the upper right part of
the Penning-trap electrodes, including the Macor mounting for the guard electrodes.
The shape of the electrodes after cooling down to 4 K is indicated with gray lines. The
corresponding arrows are also gray. This shown effect is not to scale. All given dimen-
sions are in millimeters and based on Reference [VDJ90]. Values for z0, z′0b, ρ0 and ρ′0
are given in Table 3.1.
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located on top. On the right-hand side the circuit diagram of the Penning-ion source
including a usable set of voltages is given. This picture is taken from [DBH+11].

.

electrodes with tritium has to be prevented under any circumstance. If tritium gas con-

taminates the trap, tritium itself will prevent precise measurements, because of rest gas

interactions with the charged tritium. Like hydrogen, tritium gets absorbed by the trap

electrodes and thus it is hard to remove again. But also the emitted β decay electrons

will ionize other rest gas particles, thereby loading the trap with additional ions and the

resulting ion-ion interaction will prevent a precise mass measurement as well. With a

half life of 12.3 years, the contamination would not reduce significantly in the expected

life time of the experiment. Another advantage is that by creating the ions outside of

the Penning-trap electrodes, less or no patch charges are created on the electrodes.

The schematics and electrical circuit of the ion source can be found in Figure 3.4. Ions

are produced as follows. First, gas is inserted through the gas inlet. Applying proper

voltages (shown in parenthesis in Figure 3.4) and a heating current for the thoriated
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tungsten filament creates an electron beam towards the anode. A thoriated tungsten

filament is chosen because a bare tungsten filament would require a too large heating

current which would be out of the specification of the feedthroughs used. Before, a

barium dispenser cathode was used that got poisoned quickly and could not generate

enough electrons if it was used at a pressure higher than 10−6 mbar. The emitted elec-

trons are accelerated downwards and forced on a spiral orbit by an external magnetic

field. While electrons hit the gas molecules, the inserted gas is ionized. The external

magnetic field is produced by a solenoid which has a strength of 10 mT at the center of

the ion source with 1 A of current [Pin07]. The solenoid is wound around the vacuum

envelope of the ion source, indicated in blue at the left-hand side of Figure 3.4. In Ref-

erence [Pin07] it is shown that the magnetic field of the superconducting magnet drops

to roughly 4 mT at the location of the Penning-ion source and hence cannot influence

the magnetic field by the Penning-ion source solenoid significantly. To investigate the

properties of the thoriated tungsten filament and to optimize the production of the ion

beam a Faraday cup was designed and installed right below the ion source.

3.3 Custom made Faraday cup

This section is about the design of a custom made Faraday cup. The purpose of this

cup is to analyze and optimize the Penning-ion source, as well as to reduce the risk of

contaminating the traps with tritium. The Faraday cup is placed directly under the ion

source. A sketch is shown in Figure 3.5. The Faraday cup can be moved in and out

of the beam line. The design is chosen such that, when the Faraday Cup is moved in

the beam line completely, the diameter of the beam line is reduced from the full tube

diameter of 16 mm to 2.1 mm. This is one of the precautions taken to minimize the

risk of contaminating the traps with tritium. Further gas barriers at the mounting arm

prevent that the gas can take other paths to the traps.

For analyzing the Penning-ion source, the Faraday cup consists of a collimator plate

and a cup plate (detailed technical drawing is given in Figure 3.6). The collimator plate
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Figure 3.5: The custom-designed Faraday cup consists of two plates which have an
electrical connection to the outside of the vacuum. The collimator-plate has two holes
(see also Figure 3.6), each with a cylinder on top to reduce the gas flow further. The
cup-plate has one hole which is located under the left hole of the collimator-plate. In
(a), the Faraday cup is moved in completely and additionally working as a gas barrier.
For the investigation of the ion beam, produced by the Penning-ion source, the Faraday
cup is moved out by 5.5 mm, seen in (b). Then, the collimator’s second hole is placed
in the middle of the beam line and the current that flows in the middle of the beam
tube is detected at the cup-plate. The Faraday cup can be moved in continuous steps,
too. It is pulled out of the beamline completely, called fully-out, for pumping. All
dimensions are in mm. In (c) a picture of the Faraday cup including the two plates with
the cylinders on top from the front is shown.
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is located closer to the Penning-ion source than the cup plate and has two holes, each

with a diameter of 2.5 mm. On top of each hole a cylinder with a height of 6 mm and an

inner diameter of 2.1 mm is welded. The cup plate is located 1 mm under the collimator

plate and has one hole with a diameter of 2.5 mm that is placed under the hole closer to

the mounting arm. Both plates are electrically insulated from each other and each has

an electrical connection via feedthroughs to the outside of the vacuum. It is useful to

measure the current at both plates, because the ratio in the current measurement can be

compared with the geometrical ratio of the surface area of the plates that can be seen in

a top view. From this further conclusions on the width of the beam can be drawn. The

cup is designed to be operated in one of three positions.

1. “Fully-in” as shown in Figure 3.5 (a): This position is used to load the trap. The

beam of the ions from the source has a direct access through the cup. The diameter

of the beam line is reduced to 2.1 mm and ions flying in the center of the beam line

can reach the Penning-traps.

2. “Diagnostics” as shown in Figure 3.5 (b): The cup is moved out by 5.5 mm from

the fully-in position and the right hole of the collimator plate is located in the

center of the beam line. All ions that would have passed in the fully-in position

will be detected by measuring the current at the cup plate. In this position, the

Penning-ion source is optimized.

3. “Fully-out”: The cup is pulled completely out from the beamline. This position is

used when the setup is being pumped.

When the Faraday cup is moved along its axis, the spatial distribution of the ion beam

can be measured along that axis.
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Figure 3.6: On the left side the collimator and on the right side the cup plate is shown.
The right hole in the collimator and the hole in the cup are located in the center of
the vacuum tube if the Faraday cup is moved in completely. The plates are made of
stainless steel and 1 mm thick. The two notches at each plate are for fixing the plates in
the mounting arm. All dimensions are given in mm.
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Chapter 4

Simulations of the electrostatic

properties of the THe-Trap

Penning-trap

In the previous chapters, the reasons of the deviations from an ideal Penning-trap are

discussed, their deviations approximated by higher-order Legendre polynomials and

quantified by the corresponding coefficients. The Legendre polynomials are chosen

because they are the solutions for the occurring Laplace equation [Jac62]. This chapter

presents the results of extended simulations to determine the values of the higher-order

coefficients. For a better understanding, the influences of each electrode on the electro-

static potential is investigated separately. In Section 4.1 the final results of the simula-

tion and the resulting fit-coefficients are given. For this, all known systematic shifts are

taken into account and moreover, the reliability of chosen simulation parameters like

the mesh size is verified. This section is followed by the explanation of the determina-

tion of the statistical and systematic uncertainties (see Sections 4.1.2 and 4.1.3, respec-

tively), as well as the uncertainty induced by inaccuracies of the simulated model (see

Sections 4.1.4 – 4.1.6). The results obtained with Comsol Multiphysics are compared

with those obtained with Vector Fields Opera in Reference [Sch11] (see Section 4.2). In
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addition to the determination of the influence of the deviations, the image charge effect

is simulated, and from this the related frequency shift is calculated (see Section 4.3). In

Section 4.4, the conclusions from the simulation for the experiment are given.

For the numerical simulations Comsol Multiphysics 4.2 up to version 4.4 including the

“AC/DC Module” and the “CAD Import Module” is used. The software is run on a

server having the following system properties:

• Operating system: Scientific Linux 6.2

• RAM: 256 GB

• Intel® Xeon® CPU E5-2670 0 @ 2.60 GHz .

4.1 Final coefficients

In this section the final results of the simulations on the electrostatic properties of the

THe-Trap electrodes are presented, using the best approximation of the geometry that

could be made (see Section 4.1.1). The simulations are carried out to investigate how the

deviations in the shape of the electrodes from the ideal case influence the electrostatic

potential. It is the first time that the electrostatic properties of THe-Trap are investigated

so thoroughly. Most of the coefficients have never been determined before. Hence, the

result itself is most important. Additionally, great efforts are taken to estimate the un-

certainty of the simulation result. These uncertainties are just investigated to give an

estimate of the reliability of the fit-coefficients. This has never been done before for

THe-Trap. The definitions of fit-coefficient are given in Table 4.1. For testing the reli-

ability of the fit-coefficients, various tests and consistency checks are performed with

the simulation. To investigate the software’s numerical stability, a resolution study is

performed (Section 4.1.2). In this study, the dependency of the fit-coefficient on the res-

olution chosen is investigated. The deviations between different resolutions are taken

as statistical uncertainty.

To check if the results obey the linearity of Maxwell’s equations, the potential generated
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Table 4.1: Definitions of the fit-coefficients for fitting the electrostatic potential created
by the corresponding electrode with Equation (2.13). The index n is a non negative
integer indicating the order of the Legendre polynomial. If n is even, for example both
endcap electrodes are set to 1 V. For n odd, only the upper endcap electrode is set to 1 V.

Coefficients Electrode(s)
mm−n

Sn Skimmer(s)
En Endcap(s)
Dn Guard(s)
Rn Ring

by setting the endcap electrodes to 1 V individually and added up later should be the

same as when both endcap electrodes are set to 1 V (see Section 4.1.3). These deviations

are taken as systematic uncertainty.

Also, great effort is taken to figure out the influence of geometrical uncertainties on the

fit-coefficients. The guard electrodes are moved along the z-axis and fillets are added

to the otherwise sharp inner edges of the guard electrodes (Section 4.1.4).

The electrostatic potential of each electrode is simulated with and without taking the

thermal shrinking into account. The radius of the hole in the endcap is varied and the

influence of the countersink is evaluated. The final uncertainty caused by inaccura-

cies of the simulated model is chosen to be 50 % of the shift due to the added fillets

to the guard electrode edges, similarly 50 % of the shift due to uncertainty of thermal

shrinking, the guard position having an uncertainty of 50µm and the hole radius in the

endcap electrodes of 5µm. These individual uncertainties are summed up by Gaussian

error propagation and lead to the final model uncertainty, given in the fourth column

of Table 4.2 and 4.3. The final uncertainty given in parenthesis additionally includes the

statistical and systematic uncertainty, but compared to the model uncertainty the statis-

tical and systematic uncertainties are negligible. It turns out that for all fit-coefficients,

the uncertainty due to the model uncertainties is two or more orders of magnitude big-

ger than the uncertainty due to statistical or systematic influences. This success of the

simulation is based on the use of a two-dimensional model with cylindrical symmetry

instead of a three-dimensional one (see Section 4.2). It is possible to reduce the numer-
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ical influence so far that the uncertainties are dominated by the simulated model and

not by the numerical precision of the simulation.

Choosing 50 % of the fillet shift as uncertainty is a conservative choice, allowing bend-

ing radius between 2.5 – 7.5µm. If it were larger, it would be visible in the technical

drawings [VDJ90], and smaller would require more precise manufacturing than it was

available. Also the uncertainty of the thermal shrinking coefficient is unknown. But the

found spread of the thermal shrinking coefficients of up to 50 % leads to the conclusion

that the shift of the coefficients due to thermal shrinking should have the same uncer-

tainty. All these model uncertainties should just give an estimate of the influence of the

different simulation parameters. The number of adjustable parameters are so high that

only a few can be tested to see their influence on the result. Testing more parameters

would not improve the result because the simulation model would not necessarily be-

come a better description of the real experiment. For this the exact parameters of the

experiment must be known.

In general, the relative model uncertainties are generally 5 % or slightly larger. At first

glance, this seems to be disappointing, but this is not the fault of the simulation but the

massive influence of the model uncertainties. In the next sections the shifts due to the

model changes are given and can be adapted, if necessary. Therefore also coefficients,

such as D5 or R6 are given which do not significantly deviate from zero, but maybe

the choice of the model uncertainties is too conservative and in the future it turns out

that the fit-coefficients are significant. In the simulation itself the fit-coefficients can be

obtained clearly and deviate significantly from zero in the fit. The relative change of ev-

ery coefficient by every model uncertainty like the guard electrode position or thermal

shrinking is given. Also the weighting factor for the final uncertainty is presented and

if it turns out in the future that the uncertainty is estimated too conservatively, then it

is possible to calculate the new final uncertainty with new weighting factors based on

the values given here.

As expected, the skimmer Sn-coefficients are many orders of magnitude smaller

than the coefficients of the other electrodes, because the skimmer electrodes are well
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Table 4.2: Final fit-coefficients of the electrostatic simulations of the capture trap, with
a hole radius of 250µm in the endcap electrodes. The full precision with the statistical
and systematic uncertainties is given in Appendix A. There, also coefficients of seventh
and eighths order are given which are not significant if model uncertainties are taken
into account. More information in the text.

Value Absolute uncertainties
Stat Sys Model

/ mm−n / mm−n / mm−n / mm−n

S1 2.47(89) · 10−06 1.00 · 10−14 1.54 · 10−10 8.87 · 10−07

S2 3.0(10) · 10−06 1.60 · 10−12 1.26 · 10−08 1.08 · 10−06

S3 8.4(30) · 10−07 8.60 · 10−14 5.36 · 10−11 2.99 · 10−07

S4 8.7(31) · 10−07 9.00 · 10−12 3.54 · 10−09 3.08 · 10−07

E1 1.65944(67) · 10−01 1.70 · 10−11 4.66 · 10−08 6.62 · 10−05

E2 1.0987(60) · 10−01 1.00 · 10−10 1.14 · 10−06 5.96 · 10−04

E3 1.038(80) · 10−02 1.50 · 10−10 1.67 · 10−08 8.02 · 10−05

E4 2.07(17) · 10−04 5.70 · 10−10 3.15 · 10−07 1.68 · 10−05

E5 −1.809(73) · 10−04 6.80 · 10−10 4.26 · 10−09 7.29 · 10−06

E6 −2.341(80) · 10−05 2.70 · 10−09 7.87 · 10−08 7.82 · 10−07

D1 3.18(33) · 10−03 1.20 · 10−12 4.18 · 10−08 3.30 · 10−04

D2 −2.46(52) · 10−04 6.10 · 10−10 1.12 · 10−08 5.20 · 10−05

D3 −6.02(35) · 10−04 1.00 · 10−11 8.57 · 10−09 3.32 · 10−05

D4 −5.33(36) · 10−04 3.40 · 10−09 6.30 · 10−09 3.61 · 10−05

D5 −3.21(138) · 10−05 4.70 · 10−11 5.63 · 10−10 1.38 · 10−05

D6 2.59(19) · 10−05 1.60 · 10−08 1.40 · 10−08 1.87 · 10−06

R2 −1.0963(63) · 10−01 3.70 · 10−10 7.41 · 10−07 6.32 · 10−04

R4 3.26(27) · 10−04 2.10 · 10−09 2.11 · 10−07 2.64 · 10−05

R6 −2.68(148) · 10−06 9.80 · 10−09 4.37 · 10−08 1.48 · 10−06
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Table 4.3: Final fit-coefficients of the electrostatic simulations of the experiment trap
electrodes, with a hole radius of 200µm including countersink in the endcap elec-
trodes. The full precision with the statistical and systematic uncertainties is given in
Appendix A. There, also coefficients of seventh and eights order are given which are
not significant if model uncertainties are taken into account. More information in the
text.

Value Absolute uncertainties
Stat Sys Model

/ mm−n / mm−n / mm−n / mm−n

S1 4.1(15) · 10−07 1.90 · 10−15 1.15 · 10−10 1.48 · 10−07

S2 5.1(18) · 10−07 4.20 · 10−13 6.30 · 10−10 1.81 · 10−07

S3 1.41(50) · 10−07 1.70 · 10−14 3.92 · 10−11 5.02 · 10−08

S4 1.48(52) · 10−07 2.30 · 10−12 1.80 · 10−10 5.22 · 10−08

E1 1.66032(67) · 10−01 2.60 · 10−11 3.02 · 10−08 6.57 · 10−05

E2 1.0996(60) · 10−01 7.40 · 10−11 2.55 · 10−07 5.97 · 10−04

E3 1.041(80) · 10−02 2.30 · 10−10 1.09 · 10−08 8.04 · 10−05

E4 2.31(19) · 10−04 4.10 · 10−10 7.20 · 10−08 1.86 · 10−05

E5 −1.732(70) · 10−04 1.00 · 10−09 2.80 · 10−09 6.95 · 10−06

E6 −1.733(52) · 10−05 1.90 · 10−09 1.87 · 10−08 5.07 · 10−07

D1 3.18(33) · 10−03 1.80 · 10−12 4.11 · 10−08 3.30 · 10−04

D2 −2.48(53) · 10−04 6.80 · 10−10 6.52 · 10−09 5.24 · 10−05

D3 −6.02(35) · 10−04 1.60 · 10−11 8.22 · 10−09 3.32 · 10−05

D4 −5.34(36) · 10−04 3.80 · 10−09 1.30 · 10−09 3.61 · 10−05

D5 −3.2(14) · 10−05 7.20 · 10−11 4.74 · 10−10 1.38 · 10−05

D6 2.58(19) · 10−05 1.80 · 10−08 2.40 · 10−08 1.86 · 10−06

R2 −1.0971(63) · 10−01 3.00 · 10−10 1.16 · 10−06 6.32 · 10−04

R4 3.02(26) · 10−04 1.70 · 10−09 3.37 · 10−07 2.62 · 10−05

R6 −8.5(17) · 10−06 8.00 · 10−09 8.45 · 10−08 1.65 · 10−06
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screened by the adjacent endcap electrode. This also explains why some of the Sn-

coefficients in Table 4.3 are almost compatible with zero. The influence of the different

hole radii in the endcap electrodes is visible, as seen in Tables 4.2 and 4.3. The influence

of the hole radius in the other coefficients is not visible within the final uncertainty.

Statistically these influences are clearly visible in the simulation, as it is shown later.

The guard electrodes are designed to cancel out the R4 coefficient and to have only a

small D2 coefficient compared to R2. Unfortunately, D2 has an uncertainty of 21 % due

to model uncertainties, which leads to a similar uncertainty when the conclusions for

the experiment are drawn in Section 4.4. The other important fit-coefficients R2, R4 and

D4 that are used in the daily work at the experiment have an uncertainty of roughly

10 % or less. Hence, simulating the electrostatic properties of the THe-Trap electrodes

is successful.

4.1.1 Simulated model

For simulating the electrostatic properties of the THe-Trap electrodes, the electrodes

must be modeled in the simulation as accurately as possible. This section describes the

properties of the model used. For the modeling, the dimensions of the electrodes must

be known. Unfortunately, the only way to get this information is a section view of the

CAD model and References [VDJ90, VDJ91]. It is very difficult to measure the dimen-

sions of the geometry, when the electrodes are assembled and impossible when they are

cooled down to 4 K. Possible errors in the relative position of the electrodes or the ab-

solute size will occur in the two-dimensional model again. Therefore, the dependency

of the fit-coefficients on the model parameters is tested and from this possible uncer-

tainties in the fit-coefficients are assumed. A sketch of the two-dimensional model in

Comsol Multiphysics is given in Figure 4.1. In the simulation the cylindrical symmetry

of the electrode geometry is used. For this the slits in the guard electrodes are ignored.

Using the rotational symmetry reduces the dimensions of the simulation from three to

two and saves hours or even days of computation time. It is not shown that the en-

tire simulated model is surrounded by a box which is 8.2 mm wide and 20 mm high.
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The rim of this box is defined to be at ground potential and gives the global boundary

condition of the simulation. The dimensions of the box are chosen so that the defined

ground potential does not change the potential in the center of the trap.

To ensure that the surfaces of the electrodes are hyperbolic, the trap electrodes are mod-

eled in Comsol Multiphysics based on the dimensions given in Table 3.1. The software

offers tools to form geometries based on mathematical formulas which guarantee the

exact shape.

After the simulation, the nodes of the mesh including their coordinates (ρ,z) along with

the electrostatic potential values are exported and fitted by Equation (2.13). All points

that are used for fitting are inside a rectangle with a height of 1 mm and a width of

0.5 mm (see Figure 4.1). This choice is reasonable, because the motional amplitudes

of the ion are usually a few 10µm [Str14] or less when they are cooled. The final fit-

coefficients (see Table 4.2 and Table 4.3) are obtained by fitting the electrostatic poten-

tial with a sum of Legendre polynomials up to the tenth order, as defined in Equa-

tion (2.12). Here in the two-dimensional case the coordinates are r2 = ρ2 + z2 and

cos(θ) = z/
√

ρ2 + z2.

4.1.2 Resolution study

The resolution study is for proving that the simulations will converge to the same value

regardless of the mesh chosen. For this, the resolution in the whole simulation is in-

creased stepwise, which means that the mesh size becomes smaller and thus more

points will fall within the fit area. The electrostatic field of the skimmers, endcaps,

guards and the ring electrode is simulated. To obtain a symmetric setup regarding the

mirror symmetry to the z = 0 plane (see Figure 4.1), for example both skimmer or both

endcaps are set to 1 V and for an asymmetric setup only the upper electrode is set to

1 V. The setup is always treated with cylindrical symmetry. How the ring electrode fit-

coefficient R2 changes as a function of the mesh size is shown in Figure 4.2. All plots

are created with gnuplot [Gnu14]. This study of the behaviour at different resolutions is

performed for every electrostatic potential produced by the individual electrodes (see

38



Figure 4.1: Cutview of the THe-Trap Penning-trap electrodes. The full trap is obtained
by rotating the view around the z-axis. The skimmer electrodes are simplified, their
hole is removed because their influence on the electric potential in the center of the trap
is heavily screened by the endcap electrodes. The outer part of the other electrodes
is removed because their outer parts do not influence the electrostatic potential in the
center of the trap significantly. For clarity, only a coarse mesh is shown. The actual
mesh used in the simulations is up to 102 times finer, and 104 times more points in the
fit-area. The electrodes are assumed to be field-free and hence are not meshed.
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Figure 4.2: R2 fit-coefficient (see Table 4.1) extracted for different resolutions, when a
tenth order Legendre polynomial fit (see Equation (2.13)) is applied. The higher the
number of datapoints in the fit-area is, the higher the resolution gets. The simulation
is done with the geometry shown in Figure 4.1. The uncertainty of the fit is calculated
as explained in Section B.1. Gaps in the plot come from failed meshes attempts. More
information in the text.

Table 4.1) so that each neighboring point to the right has an increase of 20 % in the num-

ber of datapoints in the fit-area. The gaps in the plot come from failed meshing. The

scatter of R2 from the lowest to the highest resolution value is around 2 · 10−5. To take

into account that the simulation results still scatter or possibly have not fully converged

in other cases, five resulting coefficients with the highest resolution are averaged using

the uncertainty of the coefficients as weight. The standard deviation of this average

is given as statistical uncertainty. Higher orders than tenth Legendre polynomial for

fitting were tried, but the next additional higher fit-coefficients are compatible with

zero. The clear convergence of the simulation is based on the use of a two-dimensional

model. Before, a three-dimensional model was tried and the numerical stability is way

worse (see Section 4.2).

The meshing algorithm of Comsol Multiphysics failed four times at high resolutions

due to a so called “inverted mesh failure”. Comsol Multiphysics starts to build the

mesh at multiple points in the model. When the mesh grows, these meshes from the
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different starting points meet each other. Before the meshing starts upper and lower

limits of the mesh size are set. Hence, the algorithm cannot reduce the mesh size so

far that the mesh cells fit for sure. If the meshes cannot match each other, the simula-

tion tries to rebuild the mesh with a different configuration. If the mesh is too fine, the

algorithm needs too many iteration steps to find a proper mesh and thus stops. The

self-written analysis software is able to determine these cases reliably and the influence

on the final result is negligible. It can be concluded that in the two-dimensional case

the fit-coefficients converge and the resulting statistical uncertainty is much smaller

than the model uncertainty and hence can be neglected.

4.1.3 Consistency checks

Except for the uncertainty due to different resolutions chosen (see Section 4.1.2) it is

also reasonable to check if the result given by Comsol Multiphysics obey the linear-

ity of Maxwell’s equations. Hence two consistency checks are made. The first check

makes use of the fact that electrostatic potentials can be superimposed. To verify the

electrostatic potential, first the upper endcap is set to 1 V, then the lower endcap is

set to 1 V, and finally both endcaps are set to 1 V. Superimposing the potential ob-

tained from the first and second simulations, should give the electrostatic potential

of the last simulation (see Figure 4.3). Every time the electrostatic potential is fitted by

the Legendre polynomials. The deviation of the fit-coefficients from each other in the

different cases is taken as systematic uncertainty for the even fit-coefficients. In Fig-

ure 4.3 (d) the deviations from the linearity of Maxwell equations is shown. It should

be noted that they are at the 10−15 V level. The visible structures are not explained

yet, but the deviations shown are so small that their influence on the fit-coefficient is

completely dominated by the model uncertainties. For estimating the systematic un-

certainty of the odd fit-coefficients, the following is assumed. For example, the po-

tential generated by the upper endcap electrode ΦUpper endcap(z, ρ) should be equal to

ΦLower endcap(−z). Hence, first ΦUpper Endcap(z) is simulated and then fitted, followed

by ΦLower endcap(z). The resulting coefficients should be EnUpper endcap = EnLower endcap for n
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Figure 4.3: Models used as explained in Section 4.1. In the upper left figure (a) the
electric potential is displayed with the upper endcap electrode set to 1 V, while in the
upper right one (b) 1 V is set to the lower endcap electrode. These should sum up to the
electrostatic potential in the lower figure (c), where both endcap electrodes are set to 1 V.
The difference of the electrostatic potential in figure (c) from the sum of the electrostatic
potentials in figure (a) and (b) is displayed in figure (d) and shows to which precision
the result of the simulation obey the linearity of Maxwell’s equations.
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Figure 4.4: Model used as explained in Section 4.1. This test uses the mirror symmetry
of the model with respect to the z = 0 plane (see Figure 4.1). The electric potential in
the left and right figure should have the same absolute value and differ just by a factor
of (−1) for odd fit-coefficients. A plot of the differences looks qualitatively the same as
in Figure 4.3 and hence is not given again.

even and EnUpper endcap = −EnLower endcap for n odd. This concept is displayed in Figure 4.4.

Another consistency check is EnUpper endcap = EnLower endcap = 1/2EnBoth encdaps for n even. Sym-

metric setups are also fitted once with odd coefficients and once without, and here

never an influence is found. These methods work only for the electrostatic potential

of the guard, skimmer and endcap electrodes. The geometry of the ring electrode is

symmetric with respect to z = 0 plane and therefore it always generates a symmetric

electrostatic potential. Fitting with and without odd coefficients of the Legendre poly-

nomial shows no difference in the resulting even coefficients and the odd coefficients

are compatible with zero. To estimate the systematic uncertainty here, all other elec-

trodes are set to −1 V. This should be the same as setting the ring electrode at 1 V. It

provides a good tool so that the analysis of the quality of the simulation does not only

rely on the behavior of the simulation through changing the resolution, but also checks

if the result obeys the linearity of the Maxwell equations. In most of the cases the

systematic uncertainty is larger than the statistical uncertainty. The reason for the sys-

tematic uncertainty is unknown but it is probably based on limited numerical precision

or on the meshing algorithm. Although the geometry is made to be perfectly symmet-
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ric regarding mirroring at the z = 0 plane, Comsol Multiphysic’s meshing algorithm

starts simultaneously at different points to build the mesh. It is not mandatory that the

resulting mesh is symmetric. On top the limitation of the numerical precision adds up

of course. But even though the systematic uncertainty is up to 10000 times larger than

the statistical uncertainty, they are always 1000 times less than the model uncertainties

and hence can safely be omitted.

4.1.4 Influence of the guard electrodes

This section describes how the uncertainties of the guard electrodes propagate through

the simulation into the resulting electrostatic potential. It is shown how smoothing the

edges of the guard electrodes and moving the guard electrodes axially changes the elec-

tric potential.

When the guard electrodes are constructed in Comsol Multiphysics the edges are sharp.

To some degree, this is compensated for by the mesh which cannot reproduce edges

with a bending radius of zero. But still, the edges are much sharper than they are in

reality and this affects the electrostatic potential in the trap center. Therefore a fillet

with a radius of 5µm is added to the inner edge, as shown in Figure 4.5. This edge is

chosen because it is the closest to the trap center. It changes the mesh significantly at

the edges of the guard electrodes but not in the center of the trap. The value of 5µm

is used because the manufacturing tolerances are of the same order [VDJ90]. The rel-

ative change of the fit-coefficients in case this fillet is added is given in Table 4.4. In

Table 4.2 and 4.3 the fit-coefficients are simulated with fillet added to the inner guard

electrode edge. As expected, the biggest shift occurs for the Dn-coefficients, which

all decrease by roughly 1.5 %. The coefficients with and without fillets are related via

Dwith fillet = (1 +Frel)Dwithout fillet, where Frel is the shift factor. There is no large devia-

tion from this 1.5 % value for all Dn. Due to the results of Section 4.1.2, a mesh influence

can be excluded as a reason for this change, so this deviation must stem from the shape

change of the guard electrodes caused by the usage of the fillet. Probably the very small

bending radius increases the strength of the higher-order terms. If the fillets are added,
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Figure 4.5: Zoom into the inner edge of the guard electrodes in the geometry shown
in Figure 4.1, including just a coarse mesh for clarity. In the left picture the edge has a
bending radius of zero. Since the mesh cannot reproduce this bending radius it rounds
the edge a little. In the right picture a fillet with a radius of 5µm is introduced.

the strength of these higher-order terms drop. Also, as expected, Sn and En do not

change in the regime of a few percent, because their electrostatic potential is not much

affected by the shape of the guard electrodes. The only other change in a range of a

few percent occurs for R4, which decreases by 1.2 %. The reason for this is unknown,

but possibly because the guards are close to the ring electrode, the shape of the guard

electrode also matters for the higher-order terms of the potential generated by the ring

electrode. Anyhow, this shift compensates for the shift of D4 almost completely. In

general, adding the fillet of 5µm is an improvement of the model, since the machining

tolerances of the real electrodes are of the same order of magnitude. The exact bending

radius of the inner edges is unknown, but it is known that there is a bending radius and

5µm is in the right order. Even today manufacturing tolerances are not much better.

Hence, adding the fillets shifts the fit-coefficients in the right direction. To give an un-

certainty for this shift is difficult. A bending radius of more than 10µm would be visible

in the technical drawing [VDJ90] and below 2.5µm was technically not possible when

the electrodes were manufactured. Hence, the bending radius is likely to be between

2.5 – 7.5µm, and hence half of the observed shift due to adding the fillets contributes to
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Figure 4.6: Rotationally symmetric model as described in Figure 4.1. The ring is set to
1 V. On the left hand side, the guards are at their normal position, on the right hand side
the guard electrodes are moved exemplarily 300µm closer to the ring electrode, which
has a visible impact on the electrostatic potential, at least near the guard electrodes.

the final model uncertainty of the fit-coefficients, shown in Tables 4.2 and 4.3.

As a next test the potential is calculated when the guards are moved closer and fur-

ther away from the ring electrode as displayed in Figure 4.6. It is expected that such

a displacement will affect coefficients of every electrode. To give an example, the ef-

fect on the R2 coefficient is shown in Figure 4.7. For each specific guard position a

resolution study is performed and the statistical uncertainty is calculated as explained

in Section 4.1.2. The guards are moved by ±150µm in steps of 50µm. On the fitted

coefficients (see Figure 4.7) a linear fit is applied with f(z) = aG z + b. The resulting

aG-coefficients for each Sn, En, Dn and Rn are given in Table 4.4. The product aG · z de-

scribes by which total amount the corresponding coefficient changes, if the guard elec-

trodes are moved by z from their default position. Within the chosen limits of±150µm,

the linear approximation is valid. For even larger displacements, a quadratic term be-

comes visible, but these kind of large shifts are geometrically unrealistic, and hence the

quadratic term is ignored. For the final fit-coefficients an uncertainty of 50µm in the

guard position is assumed. This is again a conservative choice, because the distance be-

tween the guard and ring electrode is measured to be around 1 mm and the uncertainty
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Table 4.4: Dependence of the fit-coefficients on adding fillets and position shifts to the
guard electrodes. See text for the definitions of aG, Prel and Frel. The second column
gives the relative shift of the final fit-coefficients (Tables 4.2 and 4.3), if the guard elec-
trodes position is shifted by 50µm. The third column gives the relative shift of the
fit-coefficients, if the fillets with a radius of 5µm are added to the inner edges of the
guard electrodes.

aG Position shift Fillet shift
mm−1−n Prel Frel

S1 2.88 · 10−10 3.49 · 10−05 −1.11 · 10−03

S2 1.94 · 10−11 1.90 · 10−06 −3.91 · 10−04

S3 5.52 · 10−11 1.95 · 10−05 −1.10 · 10−03

S4 5.81 · 10−12 1.97 · 10−06 −3.69 · 10−04

E1 −1.31 · 10−03 3.94 · 10−04 1.39 · 10−04

E2 2.24 · 10−05 1.02 · 10−05 −1.18 · 10−05

E3 −6.30 · 10−04 3.02 · 10−03 −4.07 · 10−04

E4 1.87 · 10−04 4.04 · 10−03 −1.87 · 10−02

E5 1.81 · 10−04 5.22 · 10−03 1.32 · 10−03

E6 −1.98 · 10−06 5.72 · 10−03 −1.42 · 10−02

D1 5.71 · 10−03 8.98 · 10−02 −1.49 · 10−02

D2 −2.37 · 10−04 4.77 · 10−02 −1.44 · 10−02

D3 −1.10 · 10−04 9.12 · 10−03 −1.49 · 10−02

D4 −5.55 · 10−04 5.19 · 10−02 −1.49 · 10−02

D5 −2.76 · 10−04 4.28 · 10−01 −1.50 · 10−02

D6 2.76 · 10−05 5.35 · 10−02 −1.49 · 10−02

R2 2.07 · 10−04 9.41 · 10−05 1.15 · 10−05

R4 5.15 · 10−04 8.51 · 10−02 −1.22 · 10−02

R6 −2.52 · 10−05 1.48 · 10−01 −1.49 · 10−02
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Figure 4.7: R2 fit-coefficient (see Table 4.1) at different distances of the guard electrodes
from the ring electrode. The solid line is a linear fit to the data. The simulation is
done with the geometry shown in Figure 4.1. The uncertainty of each individual point
is calculated as explained in Sections 4.1.2 and 4.1.3. A positive guard displacement
means that the guards are shifted further away from the ring electrode, a negative the
opposite. At zero the guard electrode position is as in Figure 4.1.

is assumed to be 5 % of this value. In the assembling procedure possibly some play

is introduced and position shifts occur. For completeness, this would shift the endcap

electrodes as well. But since not all shifts can be investigated, only the guard position

shift is taken into account. Probably this one is overestimated, but it should give a

sense for the influence of model uncertainties on the final fit-coefficients. The second

column in Table 4.4 shows the relative shift factor Prel of the fit-coefficients, if the guard

electrodes are shifted by 50µm. The coefficients with and without shift are related via

Dwith shift = (1 + Prel)Dwithout shift, where Prel is the shift factor. The fit-coefficients in

Table 4.2 and 4.3 are given without the 50µm shift. Like in the case of the added fillet,

the Dn change the most and here they change even more. This is reasonable, because

the electrostatic potential in the center of the trap generated by the guard electrodes

depends of course on the distance of the guard electrodes. The shift of R4 is also sig-

nificant and, again, larger than by adding the fillets. This validates the claim that the

electrostatic potential by the ring electrodes depends also on the shape and distance of
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the guard electrodes, because they are only 1 mm apart. Again, D4 and R4 are shifted

in the same direction, but here they do not compensate each other completely. The Sn

coefficients are less affected, because the electrodes are further away and covered up by

the endcap electrode. Fortunately, the main coefficients R2, R4, D2 and D4 are changed

by a few percent or even less, because from these coefficients direct conclusions for the

experiment are drawn in Section 4.4.

4.1.5 Thermal shrinking

The design of the trap electrode geometry is documented in Reference [VDJ90]. These

design values are specified for the trap electrodes at room temperature. When the

Penning-traps are used in the experiment, they are at 4 K. This cooldown changes the

geometry as explained in Section 3.1. Due to the different thermal shrinking coefficients

of oxygen-free high thermal conductivity copper (OFHC) and Macor, these changes are

not a pure rescaling of the trap electrodes, but also their position relative to each other

changes. This leads to the problem that the surface of the endcap electrodes is not an

equipotential surface of a quadrupole potential anymore. In this section the changes of

the electrostatic potential, when the trap is cooled down from room temperature to 4 K,

are discussed.

It should be noted that if the geometry is just rescaled because it assumed that all ma-

terials have the same thermal shrinking coefficient α, the resulting change of the di-

mensionless fit-coefficients is not statistically significant. The new fit-coefficients can

be calculated via the relation Rnshrunken = (1− αcopper)nRnnot shrunken . In the case with dif-

ferent shrinking coefficients the effect is tremendous. In Table 4.5 the factor is given by

which the fit-coefficients change, if thermal shrinking is taken into account. Calculating

the coefficients after shrinking can be done as follows:

If the shift factor is called S , then Rnshrunken = (1 + Sn)Rnnot shrunken . For the simulation of

the fit-coefficients in Table 4.2 and 4.3 thermal shrinking is applied. To be compatible

with the uniform shrinking the resulting shift should be between−0.33 % for n = 1 and

−1.62 % for n = 6. For none of the fit-coefficients, this is the case. The Sn coefficients
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Table 4.5: Relative change of the fit-coefficients in %, with thermal shrinking applied.
The different thermal shrinking coefficients of copper and Macor are taken into account.
The shift factor S can be obtained by dividing the values with 100. More information
in the text.

S1 S2 S3 S4 E1 E2 E3 E4 E5 E6
71.8 71.0 71.1 70.7 −0.01 −1.09 −1.43 16.0 −7.93 0.54

R2 R4 R6 D1 D2 D3 D4 D5 D6
−1.15 3.12 22.4 10.4 41.1 10.9 8.66 4.54 9.71

are changed the most with about 70 %. This is probably based on the fact that their

absolute value is the smallest one. While the second order ring coefficient R2 is shifted

by 1.2 %, the fourth and sixth order coefficient are shifted by 3 % and 22 %, respectively.

D2 is shifted by 40 %. This comes from the different kind of materials that is used in

the trap setup. Due to the difference in z′0 and z′0b (see Table 3.1) the endcap electrode

surfaces are not an equipotential plane in a quadrupole potential anymore. The simu-

lation shows that the thermal shrinking and especially the shift of the endcap position

has to be taken care of. In future traps, the Macor holder should be designed in the

way that after the cooldown the endcap electrode surface is an equipotential surface

of a quadrupole potential. Now, the relative change of the fit-coefficients of up to 40 %

compared to the non-shrunken trap electrodes influences the conclusions for the exper-

iment, such as the guard constant and the optimal guard voltages (see Section 2.2.1)

up to 40 % as well. For the final fit-coefficients Sn, En, Dn and Rn (see Tables 4.2 and

4.3) half of the shift due to the thermal shrinking is taken as contribution for the model

uncertainty. This choice is reasonable because the thermal shrinking coefficients have a

spread of up to 50 % and the given uncertainty for the fit-coefficient should just give an

estimate of their reliability.

4.1.6 Effect of the holes in the endcap electrodes

For any ion transfer between the traps, the ion must pass through the holes in the end-

caps. The transfer was and still is a challenging task, and hence the idea came up to

enlarge the holes in the experiment trap. This section discusses the influence of the
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Figure 4.8: R2 fit-coefficient (see Table 4.1) with different radii of the hole in the endcap
electrodes. The solid blue line is a cubic fit to the data. The simulation is done with the
geometry shown in Figure 4.1. For each datapoint also a resolution study as described
in Section 4.1.2 is done. The vertical lines indicate the hole radii of the different traps.

hole in the endcap electrodes on the fit-coefficients. For this, the radius of the hole

in the endcap electrodes is varied from 0 to 300µm. For each voltage setup defined

in Table 4.1, a resolution study is performed like in Section 4.1.2. For R2, the results

are plotted in Figure 4.8. The coefficients have a cubic dependence on the hole radius.

Thus, for fitting a cubic polynomial of the kind f(r) = aH r3 + bH is used. The result-

ing aH and bH-coefficients for different voltage setups and different fit-coefficients are

given in Table 4.6. In the second and third column of Table 4.6, the relative shift H of

the fit-coefficients is shown, if the hole radius is increased by 5µm. The coefficients

are related as follows Rnnew = (1 +H)Rnold , where Rnnew has the enlarged hole. For the

experiment trap Rnold is 200µm and for the capture trap 300µm. This is taken as contri-

bution for the final fit-coefficient as model uncertainty (see Tables 4.2 and 4.3), because

the uncertainty of the hole radius is of the same size. It is a proof of the reliability of the

simulations that the cubic dependency of the fit-coefficients on the radius of the hole

in the endcap electrodes as predicted in Reference [BG86] is now confirmed by simu-

lations. The most dominant effect occurs for the En fit-coefficients. They shift 0.03 ‰
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Table 4.6: Dependency of the fit-coefficients on the hole radius in the endcap electrodes.
The coefficients aH and bH are defined in the text. The fourth and fifth column show the
relative change of the final fit-coefficient for the capture and experiment trap (Tables 4.2
and 4.3), respectively, if the hole radius is varied by 5µm.

Coeffn aH bH C. trap E. trap
mm−3−n mm−n Hc He

E1 −1.15 · 10−2 1.661 · 10−1 −6.48 · 10−5 −4.15 · 10−5

E2 −1.12 · 10−2 1.100 · 10−1 −9.53 · 10−5 −6.09 · 10−5

E3 −3.86 · 10−3 1.044 · 10−3 −3.49 · 10−4 −2.23 · 10−4

E4 −3.21 · 10−3 2.569 · 10−4 −1.40 · 10−2 −8.33 · 10−3

E5 −1.02 · 10−3 −1.648 · 10−4 5.29 · 10−3 3.54 · 10−3

E6 −8.25 · 10−4 −1.066 · 10−5 3.30 · 10−2 2.86 · 10−2

D1 1.77 · 10−4 3.178 · 10−3 5.21 · 10−5 3.34 · 10−5

D2 3.08 · 10−4 −2.508 · 10−4 −1.17 · 10−3 −7.45 · 10−4

D3 5.93 · 10−5 −6.024 · 10−4 −9.24 · 10−5 −5.91 · 10−5

D4 8.67 · 10−5 −5.347 · 10−4 −1.52 · 10−4 −9.74 · 10−5

D5 1.56 · 10−5 −3.232 · 10−5 −4.56 · 10−4 −2.90 · 10−4

D6 2.17 · 10−5 2.556 · 10−5 7.86 · 10−4 5.06 · 10−4

R2 1.07 · 10−2 −1.098 · 10−1 −9.12 · 10−5 −5.83 · 10−5

R4 3.05 · 10−3 2.779 · 10−3 8.78 · 10−3 6.05 · 10−3

R6 1.90 · 10−4 −1.485 · 10−5 −2.70 · 10−1 −5.44 · 10−2
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– 20 ‰ for both traps. This is expected because if the hole radius changes, the surface

of the electrode changes. The influence seems to grow with the order n. This is prob-

ably based on the fact that En decreases with increasing order and hence, the relative

shift grows. The same occurs for R6. It shifts relatively by −17.3 % for the capture and

−5.44 % for the experimental trap and R6 passes zero roughly at 270µm hole radius.

The Dn are less affected by the hole radius, probably because the guard electrodes are

screened by the side of the endcap electrodes. The dependency of the Sn could not be

determined reliably, because there the screening by the endcap electrodes is way larger.

But the absolute values of Sn are so small that those are already challenging to deter-

mine. If they are more screened by the endcap electrodes because of a smaller hole,

these coefficients are lost in numerical uncertainties.

Additionally, the influence of the countersink in the endcap electrodes is investigated.

For this, the electrostatic potential of the endcap electrodes is simulated once with and

without the countersink. The countersink behaves in the same way as a bigger hole in

the endcap does. No additional higher-order terms are visible or other shifts occur that

are larger than the statistical and systematic uncertainties.

4.2 Vector Fields Opera - Tosca 13.0 vs. Comsol Multiphysics

4.2a

Another test of Comsol Multiphysics’ reliability is the comparison of the results ob-

tained with a two-dimensional model with those obtained with a three-dimensional

model. For the three-dimensional case, there already exist fit-coefficients from simu-

lations performed with Vector Fields Opera [Sch11]. There, a CAD model was used

that is based on the technical hand-drawings which were used for manufacturing the

trap electrodes. In this section this CAD model is used in Comsol Multiphysics again

to evaluate the results with Vector Fields Opera and to check if the applied rotational

symmetry in Section 4.1 brings any benefits. It should be noted that in the CAD model

the segmentation of the guard electrodes is also removed to avoid meshing problems.
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Figure 4.9: R2 and R4 fit-coefficients (see Table 4.1) at different resolutions, when a sum
to the sixth-order of Legendre polynomial (see Equation (2.13)) is applied as fit. The
resolution of the simulation is increasing with the “Datapoints in the fit-volume”. The
simulation is done with the CAD geometry shown in Reference [Sch11]. The uncertain-
ties are calculated as explained in Section B.1.

In the following, a resolution study is performed as explained in Section 4.1.2, but

no further tests, for example guard displacements. After the simulation has finished,

the coordinates of the mesh, including the electrostatic potential values, are exported

and fitted by Equation (2.13), as in the two-dimensional case in Section 4.1.2. The

fit is applied on datapoints inside of a cylinder whose geometrical center is equal to

the origin of the simulation. The cylinder has a diameter of 1 mm and a height of

1 mm, similar to the rectangle in the two-dimensional case (see Section 4.1.2), rotated

around the symmetry axis (see Figure 4.1). The fit function is used as defined in Equa-

tion (2.13), where in the three-dimensional case the coordinates are r2 = x2 + y2 + z2

and cos(θ) = z/
√

x2 + y2 + z2. The fit-coefficients are named in Table 4.1. A sum to

the sixth-order of Legendre polynomials is chosen as fit function. As in Section 4.1.2,

the R2-coefficient is chosen to be the displayed case (see Figure 4.9). At the step to the

highest resolution a large scatter is visible. Overall, there is no clear convergence to a

certain value, unlike for the two-dimensional simulation. This indicates that the sim-

ulation is still unstable and dependent on the resolution. It becomes more obvious for
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R4. First it seems that the simulation converges for 104 elements in the fit volume, but

then a jump of 15 – 20 % occurs. At the same number of datapoints in the fit-volume,

the two-dimensional simulation has converged already. But the comparison is not com-

pletely fair because the datapoint density is higher in the two-dimensional case. The

reason for this scatter is unknown, but due to the three dimensions in the simulation,

the linear equation system (LES) that needs to be solved in the simulation grows with

the power of three with the number of points in the fit volume, instead of two as for

the two-dimensional case. Even though the number of datapoints used for fitting is the

same as in the two-dimensional case, at this resolution the three-dimensional model

around the fit-volume needs a lot more mesh cells to be approximated as accurately

as in the two-dimensional case. This is known under the name of “curse of dimen-

sionality”. Hence the LES becomes way larger than in the two-dimensional case and

depending on the algorithm for solving the LES, possibly variables that are needed to

store the intermediate data in the process have an overflow. Also, when the values that

are stored in the variables become larger the absolute precision drops [BM08] and the

numerical uncertainty increases. It is plausible that the overflow is corrected to some

degree due to underlying software, so it does not affect the R2 and D2 as much as R4.

It was not possible to increase the resolution further, because the simulations failed for

a higher number of points. The reason for this is also unknown. One explanation is

that the size of a mesh becomes too small and numerical uncertainties dominate or the

Java runtime environment, where Comsol Multiphysics runs, fails if more than 16 GB

of RAM is used.

Compared with the simulations performed with the two-dimensional model the sta-

tistical uncertainties are up to three orders of magnitude larger (see Table 4.7). The

sixth-order coefficient is not given, because due to its uncertainty it is almost compat-

ible with zero. The two-dimensional simulation is a lot better: even the tenth-order

fit-coefficient is statistically significant. This validates the choice to simulate the elec-

trostatic properties with the two-dimensional model.

Table 4.7 shows the comparison of R2, R4 and D2, D4 obtained with different simulation
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Table 4.7: Comparison between Tosca, Comsol-3D and Comsol-2D. The values for Tosca
are taken from [Sch11], the values for Comsol-3D are explained here, and values for
Comsol-2D are taken from Table 4.3.

Coeff. Tosca Comsol-3D Comsol-2D
/ mm−n

R2 −0.11118(2) −0.1111902(2) −0.10995768209(7)
R4 ·104 3.0(2) 2.649(6) 3.02494(2)
D2 ·104 −2.13(4) −1.976(1) −2.482813(7)
D4 ·104 −4.88(4) −4.861(4) −5.34031(4)

programs. The values in the column denoted “Tosca” are based on Reference [Sch11],

Comsol-3D results are from the simulation with the three-dimensional model explained

here, and the values for Comsol-2D are from Table 4.3. For Comsol-3D the same model

as in Comsol-2D is used, additionally rotated by 360◦ around the z-axis. In the simu-

lations using Tosca Vector Fields Opera an investigation of the systematic uncertainties

did not take place. Hence for all fit-coefficients only the statistical uncertainty is given.

Tosca and Comsol-3D are consistent with each other for R2, R4 and D4. For D2 they

deviate by 8 %. Nevertheless for both the same model is used and thus the differences

are mainly due to different meshing algorithms. Especially the guard electrodes have

sharp edges which need to be reproduced by the mesh. The statistical uncertainties of

Comsol-3D are one order of magnitude smaller than in Tosca. This is expected, because

in Tosca Vector Fields Opera the meshing algorithm needed manually-set fixed points

to be able to mesh the model. These manually-set fixed mesh points propagate through

the simulation and are evident as structure in the residuals of the fits. Compared with

Tosca, the meshing algorithm in Comsol Multiphysics is more robust. There is no need

to set manually fixed points to help Comsol Multiphysics build the mesh for the simu-

lation. Also no structure is found in the residuals of the fits. In the three-dimensional

simulation the mesh never failed, and in the two-dimensional simulation it failed four

times at very high resolutions. Also the opportunity to fit multidimensional Legendre

polynomials on the raw data of the simulation directly solves a problem that occurred

in Reference [Sch11]. In that work, a one dimensional polynomial is used for fitting the
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electrostatic potential along the z-axis. It was necessary to interpolate the potential val-

ues on the z-axis, because the potential is only calculated at the position of the vertices

of the mesh. This leads to the problem that neither the mechanism of the interpola-

tion nor the total number of mesh cells in the Tosca Vector Fields Opera simulation are

known. However the assumed overflow (see Figure 4.9) increases the uncertainty. It

can be said that Tosca and Comsol-3D give the same result within the combined uncer-

tainty, but Comsol-3D is better.

The deviation of the two-dimensional and three-dimensional model is both statisti-

cally and systematically significant. The relative deviation between Comsol-3D and

Comsol-2D varies between 1 % for R2 and 21 % for D2. This is caused by the model

systematic shifts that are already taken into account in the Comsol-2D case. This is

not as bad as it seems at first glance. The whole comparison should compare Tosca

with Comsol-3D, because there the same model is used. Between Comsol-3D and

Comsol-2D the absolute value is not of the main interest. Here, the same fit routines are

used to estimate the statistical error and it turns out that the two-dimensional model is

more reliable, because the numeric influence could be reduced and the statistical un-

certainty dropped by one order of magnitude. From the options available, it can be

concluded that Comsol 2D is the most suitable tool to simulate the electrostatic prop-

erties of THe-Trap. Even though it is not proven that the numerical influence on the

fit-coefficients is removed completely in the two-dimensional simulation, compared to

the three-dimensional case, it is heavily suppressed. With the two-dimensional simula-

tion, it is possible to simulate higher-order-terms (n > 4) reliably which are otherwise

hidden by statistical and systematic uncertainties of the three-dimensional simulation.

4.3 Image charge simulations

In the sections before, the simulations investigated electrostatic effects that are based

on the deviation from the ideal Penning-trap electrodes. The image charge effect, ex-

plained in Section 2.2.3, occurs in the ideal as well as in the real Penning-trap. In this
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section the simulated image charge shift for THe-Trap including the uncertainties is

presented. For the simulation the same model as in Section 4.1 is used. In addition

to the electrostatic simulations before, here a point-charge with one elementary charge

is placed in the trap. This point-charge violates the cylindrical symmetry, if it is not

placed on the z-axis and hence a three-dimensional model of the THe-Trap electrodes

is needed. To obtain this model, the two dimensional model described in Section 4.1 is

rotated by 360◦ around the z-axis. In the simulation, the point-charge is moved in steps

of 100µm from −500µm to 500µm along the x-, y- and z-axes. As usual, the origin

of the coordinate system is in the center of the Penning-trap electrodes. In each step,

first, the electric field of the point-charge and the resulting surface charge density on

the surface of the electrodes is simulated. Then the point-charge is removed, and based

on the surface charge density the resulting image charge field is calculated. The electric

field components of the image charge field are evaluated at the former position of the

point-charge. After the whole sweep from−500µm to 500µm is performed, the electric

field components are fitted by f (xi) = cix3
i + Eixi, where i denotes the direction of the

displacement of the point-charge. The cubic term is just taken to improve the fit quality.

In the calculations later on it is neglected, because it is dominated by the linear term for

small ion amplitudes and would require a more complicated mathematical treatment,

which would not lead to an improved result of Ei because the change of the result is

smaller than its uncertainty. Since Ex and Ey are simulated individually, the resulting

Eρ is calculated as Eρ = 1/2
(
Ex + Ey

)
. The final result including the uncertainties is

given in Table 4.8. The reached accuracy of 2 % for Eρ and Ez is excellent. It has to

be taken into account that in order to obtain the image charge shift, two simulations

have to be performed, where the second is based on the result of the first one, and the

uncertainty of the simulations add up. Also the need for a three-dimensional model

decreases the accuracy of the simulation, as seen in the electrostatic simulations before.

In Table 4.8 the influence of the different sources of uncertainty like thermal shrinking,

hole radius in the endcap and systematic deviations is given. To estimate the systematic

uncertainty, Comsol Multiphysics is tested on a case with a known analytic solution.
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Table 4.8: Final values and uncertainties of electric field gradients Eρ, Ez and ∆νc for
the experiment trap. The image charge shift ∆νc is calculated by Equation (2.31) with
B0 = 5.26 T. The second column gives the final value including the final uncertainty.
The third and the fourth column give the uncertainty due to thermal shrinking and hole
radius in the endcap electrode, respectively. The fifth column describes the uncertainty
of the fit which determines Ei (see Table 4.9) and the sixth column gives the uncertainty
due to systematic deviation in the spherical simulation. The frequency shift ∆νc is given
per elementary charge. More details in the text.

Final Uncertainty
Value thermal hole stat systematic

Eρ /mVm−2 42.3(9) 0.8 0.06 0.04 0.4
Ez /mVm−2 80.4(1.3) 1.0 0.04 0.05 0.8
∆νc /mHz −2.50(3) 0.029 0.0019 0.0014 0.017

This is the image charge field effect inside a sphere. Investigating the image charge ef-

fect for different hole radii in the endcap electrodes and assuming an uncertainty of the

hole radius of 5µm also leads to a 1 % uncertainty for Ei. Taking the thermal shrinking

into account and using 50 % of the shift due to thermal shrinking as uncertainty leads

to 2 % uncertainty of Ei.

In the following the individual investigations are explained in more detail. Even

though for the image charge effect in a real Penning-trap no analytic description exists,

the image charge effect of a point-charge in a sphere (see Section 2.2.3) has an analytic

solution. Hence this case is simulated with Comsol Multiphysics for a sphere with a

radius of r = 2.77 mm, which is equal to the distance from the center to the ring elec-

trode ρ′0 of THe-Trap. This tests the general reliability of the simulation of the image

charge effect. For the simulation, the point-charge is moved along the x-axis within

±500µm in 100µm steps. The x-axis is chosen without loss of generality. To compare

the simulation with the analytical solution, the electric field components obtained from

the simulation with the point-charge being placed at different positions are fitted by a

cubic polynomial f (x) = aSpherex3 + bSpherex, where x is the position of the point-charge

and aSphere and bSphere the fit-coefficients. The influence of the cubic coefficient is clearly

visible (see Figure 4.10), but only at ion amplitudes that are unlikely and even there the

cubic term is dominated by the linear term, and hence the cubic term is safely omitted.
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Figure 4.10: Electrostatic field component of the image charge in the x-direction, if
the ion is placed at different positions along the x-axis. For the simulation, a sphere
with a radius of 2.77 mm is assumed. The analytical solution is calculated from Equa-
tion (2.23).

The constant and quadratic term can be neglected due to symmetry reasons. The ana-

lytical prediction for bSphere is 67.77 mV/m2, based on Equation (2.23). The uncertainty

of the analytical prediction, which is based on the uncertainty of the elementary charge

and the vacuum permittivity is negligible on the here given precision. The simulated

value is 67.28(1)mV/m2, if a cubic polynomial is used for fitting and 68.1(3)mV/m2,

if only the linear term is used. The uncertainties denoted in parenthesis are the 1 σ

uncertainty of the fit. The deviation of bSphere between the simulation, where aSphere is

taken into account for the fit, and the analytical prediction is 0.9 %. The deviation of

the cubic term is 2.7 %. To obtain the coefficient, a resolution study is performed. As

in Section 4.2 already, the three-dimensional simulation is still visibly influenced by the

resolution chosen, even at the highest available resolution. But the result approaches

the analytical solution. Hence, the coefficients simulated at the highest resolution are

taken.

In the following, for the linear coefficient also in the simulation of the Penning-trap

case an systematic uncertainty of 1 % is assumed. Even though the deviation of the

hyperbolic geometry in THe-Trap from a sphere is obvious, it is difficult to estimate the
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Table 4.9: Simulated electrostatic field gradient components of the experiment trap of
THe-Trap created by an elementary point charge at different positions and fitted by a
cubic polynomial with and without thermal shrinking being applied.
The 1 σ uncertainty of the fit is given in parenthesis. More details in the text.

Model Ex Ey Ez
mV/m2 mV/m2 mV/m2

Design 41.44(4) 41.44(5) 82.38(5)
4 K 42.24(7) 42.25(4) 80.36(5)

systematic uncertainty of the simulation in a different way. The applied tests from the

electrostatic simulations (Section 4.1.3) are not usable here, because all electrodes are

grounded.

In the next test, the three-dimensional model of the THe-Trap electrodes is used. To

estimate how model uncertainties affect the result also the non-shrunken trap elec-

trodes are simulated. The result is given in Table 4.9. As expected, Ex and Ey are

compatible within the fit uncertainty because even though the cylindrical symmetry

is broken by the point-charge, the resulting image charge effect should be the same for

displacements in the x- and y-direction. Therefore the relation Ex = Ey ≡ Eρ intro-

duced in Section 2.2.3 is validated. The difference between Ez and Eρ in the shrunken

and not shrunken model is significantly larger than the statistical uncertainty. The

shift of the Ez and Eρ goes in different directions, because during the cool-down the

ring electrode surface comes closer to the trap center while the endcap electrodes are

shifted further away. For the final cyclotron shift, half of the deviation of Eρ and Ez

between the shrunken and not shrunken case is taken as uncertainty. The reasons

for this choice are the same as in the investigation of the thermal shrinking effect on

the fit-coefficients (see Section 4.1.5). That is the biggest input with 1.6 % of the to-

tal value of Eρ and Ez, but compared with the electrostatic simulations before, where

for example D2 changed by 40 % upon thermal shrinking, the image charge simula-

tions seem to be more robust against the influence of the model uncertainties. To in-

vestigate the other geometric influences, the hole radius in the endcap electrodes in

the shrunken model is varied from 0µm to 300µm in 50µm steps and a quadratic
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dependency is found to be Eρ(r̃) =
(
5.8(1.2) · 10−6 r̃2 µm−2 + 42.25(3)

)
mVm−2 and

Ez(r̃) =
(
−1.78(23) · 10−5 r̃2 µm−2 + 80.92(8)

)
mVm−2, where r̃ is the radius of the hole

in the endcap electrode. The 1 σ uncertainty of the fit is given in parenthesis. A

quadratic dependency is expected because the image charge effect depends on the sur-

face area where the image charge effect occurs and the area of the hole in the endcap

depends quadratically on the radius. Also Ez changes more rapidly than Eρ if the hole

radius is enlarged because the endcap electrodes generate mainly an electrostatic field

gradient in z-direction (Ez). The uncertainty of the gradients for the experiment trap

having a hole radius of 200µm including the countersink with an uncertainty of 5µm

is given in the fourth column of Table 4.8. In general, it can be stated that the im-

age charge simulation is successful. Even though a three-dimensional model has to be

used, the statistical uncertainty is negligible and the deviation in the spherical test case

is sufficiently low with 1 % to assume that the simulation gives a reasonable result. The

result obtained here is compared with experimental values in Section 4.4.

4.4 Conclusions for the experiment

In the previous section the method to obtain the final fit-coefficients to describe higher-

order terms in the electrostatic potentials as well as the investigations to prove their

reliability were discussed. It turned out that the influence of the mesh size and the un-

certainties based on the violation of the superposition principle in the electrostatics are

negligible. The effect of uncertainties in the simulated model on the final fit-coefficients

are orders of magnitude higher. Nevertheless, it is possible to reliably determine the fit-

coefficients up to fourth order. These coefficients are also used to calculate trap-specific

parameters (see Section 2.2.1). In the following, based on the final fit-coefficients of the

experiment trap these specific parameters are calculated and compared with the exper-

imental values.

The simulated guard constant, cguard, defined in Equation (2.18) turned out to be

−440(95) for the experimental trap. This is based on the 21 % uncertainty of D2 which
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is caused by the uncertainty of the thermal shrinking effect. An extra measurement of

the guard constant at the experiment gives a result of −806(30). This is a deviation of

89 % or ∼ 4 σ of the simulation result. This significant difference cannot be explained

by any failure in the simulation. Probably a detail is missing in the simulated model

causing the D2 to shift even further. It is shown that especially this coefficient is sensi-

tive to model changes. But so far there is no indication which detail is missing. Further

experimental effects like patch charges and high radial amplitudes are not taken into

account and can also at least partly explain the deviation. The patch charges were not

simulated because for this the amount and the distribution of the patch charges must

be known. Unfortunately there is not any reliable piece of information available about

this but first tests of simulating this effect have shown that the result depends strongly

on the distribution and amount of patch charges.

The optimal guard voltage is introduced in Section 2.2.1. In THe-Trap mass measure-

ments with 16O5+ using 12C4+ as a reference mass are performed to test and understand

the apparatus [SEH+14]. These ions are used because their mass ratio is known very

well. For 12C4+, a ring electrode voltage of −87.63 V and a guard electrode voltage

of −42.98 V is used [Str14]. From the simulated R4 and D4 the optimal guard volt-

age should be −49(5) V. This is a deviation of 12 % or approximately 2 σ of the simu-

lation. For 16O4+, a ring electrode voltage of −93.46 V and a guard electrode voltage

of −46.36 V is used [Str14]. Here, the simulation predicts an optimal guard voltage

of −53(6) V. This is a deviation of 13 % or 1.1 σ. The optimal guard voltage for 16O5+

almost agrees with the simulation within 1 σ. In the experiment the optimal guard volt-

age is not independent of the ion species, as it should. This indicates that there are

other effects involved that are not taken into account. Possibly further deviations of the

geometry or also patch charges can cause this difference. Even though the simulation

gives a result of the optimal guard voltage which is in the right order of magnitude,

it not possible to predict the optimal guard voltage by a simulation because, in the ex-

periment, the guard voltages has to be adjusted to a few 10 meV to be optimal. This

requires a 100 times better precision in the simulated fit-coefficients. From the statisti-
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cal and systematic uncertainty this is possible, but it will not be possible to describe the

model simulated accurately enough. Also, the fact that the simulated optimal guard

voltages is systematically too high indicates that possibly some effects in the model are

overlooked.

The simulated image charge shift turned out to be 2.50(3)mHz per elementary charge

for the experimental trap. The uncertainty of 1 % is sufficiently low, because the im-

age charge shift in the experiment is a 10−10 effect. An uncertainty of 1 % is therefore

at a level of 10−12. The result is in perfect agreement with the experimental value. In

Reference [VDJPVLZ06], where a trap is used that has the same geometry as THe-Trap,

the image charge shift was measured as 2.23(9)mHz per charge at a magnetic field of

5.9 T, which corresponds to 2.5(1) mHz per charge in the lower magnetic field of THe-

Trap. Simulating the image charge effect in the THe-Trap geometry directly confirms

this measurement. This helps the experiment directly, because the image charge effect

is a systematic frequency shift that has to be corrected for.

In general, the simulated values agree well with the experiment. The largest deviation

occurs in the guard constant. The D2 has shown its strong dependence on model pa-

rameters, and it could be that there are other influences that have not been taken into

account yet.

It is shown that increasing the hole radius in the endcap – which may help in the trans-

port of the ion – will also increase the non-harmonic part of the electrostatic potential.

Generally, the simulation can be used for a better understanding of electrostatic prop-

erties of the trap geometry and to estimate, if a measured effect is of the right order of

magnitude. The reliability of the simulated coefficients, as for example Rn and Dn is

probably not good enough to be used for correcting the measured data for some effects

that are for example described in Reference [KEH+14]. For this, the knowledge of the

real trap geometry itself is insufficient.
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Chapter 5

Magnetic field simulations

In this chapter the influence of the THe-Trap setup on a homogenous magnetic field

is discussed. As introduced in Section 2.2.2, the higher order field deviations of the

magnetic field shift the frequencies of the ions. For these simulations a full three-

dimensional CAD model as described in [Sch11] is used, because also other parts of

the setup in addition to the already introduced electrodes can influence the magnetic

field. Unlike in the electrostatic simulations, the exact dimensions of structures used

are not of high relevance, but the amount and the magnetic the susceptibility of the

material is. Therefore, the existing CAD model is suitable. For the simulation the con-

cept of superimposing magnetic fields is used. Each part of the beam line and the trap

electrodes (see Section 3.1) is simulated individually, while all others are removed com-

pletely from the simulation model. It is assumed that the distortion by the individual

parts is so small that the change in the boundary conditions for the other simulated

parts can safely be ignored.

The used magnetic susceptibilities χ are given in Table 3.2. The relative permeability

µr is defined as µr = 1 + χ. Unfortunately, the crucial parameter χ has an uncertainty

of 20 %. This uncertainty is based on the fact that the exact amount of the constituents

of the alloys used are unknown and this can have a massive influence on the resulting

χ. Independent of the chosen mesh size, the simulation result is more precise than 20 %

and hence a resolution study, as in Section 4.1.2 to investigate the influence of the mesh
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Figure 5.1: Deviation from B0 around the center of the experiment trap caused by the
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influences of all parts that have a significant impact. Insignificant parts, like the ion
capture segment and FEP, are not included.

size on the result is deemed unnecessary and thus is not performed.

The results of the simulation are fitted with the function defined in Equation (2.21) up

to second order. The fit is applied along the z-axis only and hence radial terms (ρ-terms)

can be neglected. The actual fit function looks as follows

B̃(z)(z) = B̃0 + B̃1 z + B̃2 z2 . (5.1)

All coefficients are normalized to the constant magnetic field term B0, where B̃i = Bi/B0.

It is assumed that the constant term B0 is equal to 1 T and pointing upwards, as indi-

cated in Figure 2.1. This function is fitted on the simulation results for the trap center of

the capture and experiment trap in a range of ±0.5 mm around the center. This range

is chosen because the ion amplitude is well within this limit (see Reference [Str14]).

The statistical significant contribution to the magnetic field distortion in the experiment

trap is shown in Figure 5.1. The impact is considered to be statistically significant, if the

value of the resulting fit-coefficient, obtained from fitting Equation (2.21) to the simu-

lated magnetic field, is statistically significantly different from zero. Therefore many
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parts, as for example the ion capture segment, the feedthrough flange and most of the

holding structure made of Macor displayed in Figure 3.1, are not listed. Due to their

large distance from the trap center their influence is negligibly small. For all parts ex-

cept for ERing the B̃1-coefficient dominates. This is caused by the individual positions

with respect to the trap center (see Figure 3.2). ERing has only a B̃2-coefficient due to its

symmetrical position and shape around the trap center. The resulting fit-coefficients for

the experiment and the capture trap are given in Table 5.1. To estimate the systematic

uncertainty, it can be assumed that for example the change of the magnetic field by the

ring electrode of the experimental trap in the center of the experiment trap should be

the same as the change of the magnetic field by the ring electrode of the capture trap in

the center of the capture trap. The deviation is taken as uncertainty of the simulation.

For B̃2 only the ring electrode appears to have a significant impact. For B̃1 multiple part

contributions are found which are shown in Figure 5.1. Summing up the B̃1 terms and

calculating the resulting uncertainty by Gaussian error propagation leads to a value

that is compatible with zero within the calculated uncertainty. This is not unexpected,

because the experiment and capture trap are made to be symmetric regarding their hor-

izontal plane. This leads to the fact that for example the B̃1 created by the upper endcap

electrode is canceled out by the B̃1 of the lower endcap electrode. That symmetry is only

broken by CbCap (see Figure 3.2). But its B̃1-term is partly compensated by the other

electrodes and the remaining B̃1-term is not significant. The parts of the experimen-

tal setup which violate this symmetry further, for example beamline and feedthrough

flange, do not create a significant B̃1. The different absolute value of EbCap and EtCap,

as well as CbSkimmer and CtSkimmer is within 2σ and hence not significant. A sim-

ulation of the whole trap geometry at once is not possible, because building the mesh

failed every time. This is caused by the mounting holes in the setup which are already

included in the CAD model, and whose properly remodeling in the mesh is difficult.

To avoid this, every single hole must be closed or an approximation of the whole setup

has to be modeled in Comsol Multiphysics. The 0.4 % relative uncertainty of B̃2 is un-

derestimated.
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Table 5.1: Influence of different parts of the experiment setup on the magnetic field at
the center of the experiment and capture trap. In the simulation the magnetic field is
pointing upwards. The names are defined in Figure 3.2. The magnetic susceptibilities
used for the individual materials are given in Table 3.2. The abbreviation OFHC stands
for oxygen-free high thermal conductivity copper and PB for phosphor bronze. The
coefficients B̃1 and B̃2 are defined in Equation (5.1).

Name Material Experimental Trap Capture Trap
B̃1 B̃2 B̃1 B̃2

·10−4 m−1 ·10−1 m−2 ·10−4 m−1 ·10−1 m−2

CbCap PB −1.41(36) - 4.66(24) -
CtCap PB - - −4.66(24) -
CbSkimCap Macor - - −3.08(6) -
CtSkimCap Macor - - 2.88(5) -
CbSkimmer OFHC - - 1.21(7) -
CtSkimmer OFHC - - −1.33(2) -
CbGuard OFHC - - −2.83(8) -
CtGuard OFHC - - 2.81(12) -
CbSpacerRing Macor - - 1.43(1) -
CtSpacerRing Macor - - −1.45(4) -
CRing PB - - - −2.64(1)
EbCap PB 4.42(24) - -
EtCap PB −4.42(24) 1.77(36) -
EbSkimCap Macor −3.02(6) - -
EtSkimCap Macor 2.83(5) - -
EbSkimmer OFHC 1.14(7) - -
EtSkimmer OFHC −1.31(2) - -
EbGuard OFHC −2.91(8) - -
EtGuard OFHC 2.93(12) - -
EbSpacerRing Macor 1.43(1) - - -
EtSpacerRing Macor −1.47(2) - - -
ERing PB - −2.63(1) - -

Σ −0.38(53) −2.63(1) −2.64(1) −0.36(53)
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Table 5.2: Influence of a nickel coating used in the feedthroughs, when the nickel coat-
ing has saturated. The influence coefficients do not scale for stronger magnetic fields.
The used magnetic susceptibility for nickel is given in Table 3.2. The coefficients B̃1 and
B̃2 are defined in Equation (5.1). The last column gives the total volume of nickel in the
simulation. The dimensions of the nickel coating are given in the text.

Nickel coating Experiment trap Capture trap Amount
thickness B̃1 B̃2 B̃1 B̃2

/ µm ·10−1m−1 m−2 ·10−1m−1 m−2 mm3

50 −1.71 4.85 −0.23 0.44 104
25 −1.55 4.40 −0.20 0.38 52

The only purpose of the simulation is to give a rough estimate of the influence of the

different parts of the experimental setup on the magnetic field. For more reliable values

greater effort in analyzing the materials used is needed.

A measurement with a single ion led to an experimental B̃1 of 17·10−4 m−1 [Str12]. This

deviation cannot be explained by incorrectly chosen magnetic susceptibilities. Clearly

something is missing. A B̃2 value has not been measured so far, but is in progress and

will be published in Reference [Hö15]. In Seattle a B̃2 of 0.08 m−2 was measured [VL04],

but afterwards the experiment was shipped to Heidelberg and the value is not reliable

anymore. It should be noted that there are other influences on the magnetic field, such

as manufacturing imperfections in the coils of the superconducting solenoid and possi-

bly alloys used that are not known so far. Also some parts of the beamline are welded

and this can influence the magnetic susceptibility as well [AJ86]. For an estimate, it is

assumed that all 24 feedthroughs in the feedthrough flange are covered by a 50µm and

in a second estimate by a 25µm nickel coating. This coating is represented by a cylin-

der with a height of 7 mm and an outer radius of 2 mm. Nickel is sometimes added

to improve the soldering properties of the feedthroughs. The resulting magnetic field

terms are given in Table 5.2. In this case these results are not to scale to the 5.3 T magnet

used. Nickel is a ferromagnetic material. The field inside of the nickel coating saturates,

when it is exposed to external fields that have a strength of a few Tesla. For nickel at

4 K the maximal magnetization is found to be 0.645 T [Stu12].

As expected, the ferromagnetic material has an influence which is one order of mag-
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nitude larger for B̃2. In addition, a significant B̃1 occurs in the experimental trap. The

effect on the magnetic field in the capture trap is smaller, because it is 41 mm further

away. Since these massive B̃-coefficients are not seen experimentally, it looks like no

nickel coating was used in the feedthroughs. But it shows that even a tiny amount of

ferromagnetic material as a constituent of an alloy can significantly influence the mag-

netic field.

In general, the simulation gives reasonable results that agree with the applied consis-

tency checks but the simulation does not confirm the experimental value. It is shown in

the simulations that the different parts of the THe-Trap setup cannot create the experi-

mentally seen higher order magnetic field distortions, if the assumed magnetic suscep-

tibilities are correct. Also already tiny amounts of ferromagnetic alloys can change the

magnetic field more than it has been experimentally seen. This leads to the conclusion

that with the simulation, assumed or feared contaminants by ferromagnetic materials

can be investigated and, for the nickel coating at the feedthroughs, also excluded. To

correct for the effects explained in Section 2.2.2 with the simulated B̃-coefficients is not

possible, because the knowledge on the alloys used and on the magnetic susceptibilities

is not sufficient. Probably other effects are more dominant like soldering and welding,

magnetic materials or inhomogeneities in the magnet itself.
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Chapter 6

Characterization of the Penning-ion

source

THe-Trap is equipped with an external Penning-ion source. This ion source helps to

reduce the contamination of the traps with the gas to be ionized, by creating the ions

outside of the actual Penning-traps. Especially for the use of tritium gas this is crucial

because the emission of β-decay electrons ionize rest gas and releases particles from

the electrodes. The ionized rest gas interacts with the ion of interest and disturbs the

measurement at a level of 10−9 which is 1000 times higher than the aimed precision.

When ions are created in the Penning-traps directly an electron beam is emitted by the

FEP and accelerated towards the trap center of the experiment Penning-trap. The beam

spreads out and hence not all electrons are reflected by the EtSkimmer electrode and

a few hit and stick to the surface of the endcap electrode. These are the patch charges

which influence the electrostatic potential and their creation can be prevented by using

the external Penning-ion source.

This chapter is about the characterization of the external Penning-ion source, using the

the Faraday cup described in Section 3.3. At first a cathode for creating milliamperes

of electron current is analyzed in Section 6.1 and in Section 6.2 a beam of 4He ions is

produced, investigated and optimized. The vacuum part of the experiment where the
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Penning-ion source is located is separated by a gate valve from the vacuum part where

the Penning-traps are located. This avoids spoiling the vacuum with the gas from the

Penning-ion source.

It should be noted that the main focus is not put on the efficiency of the Penning-ion

source, but to analyze the Penning-ion source for the first time while it is mounted

at the experiment, and to investigate the dependency of the created ion beam on the

operating parameters of the Penning-ion source. The efficiency is not of such a big

interest because all is needed in the trap is a single ion.

6.1 Cathode characterization

To generate ions in the Penning-ion source, first an electron beam is produced by ap-

plying a current of roughly 2 A through a thoriated tungsten filament (see Section 3.2).

The emitted electrons are accelerated by setting proper voltages to the electrodes and

by electron impact ionization the ions are created. This section discusses the character-

ization of the thoriated tungsten filament used as cathode. The filament has a diameter

of 0.15 mm and contains 1 % thorium.

The characterization is one of the first tests of the functionality of the custom-designed

Faraday cup. For measuring the current at the Faraday cup a Keithley 6514/E picoam-

peremeter is used. It is of interest how stable the electron emission is on the scale of a

few minutes up to an hour, as this is the timescale for loading ions. The timescale of

an hour is of interest for testing and optimizing ion loading procedures. For investigat-

ing the stability of the thoriated tungsten filament, different heating currents is applied

and the current of the extracted electron beam is measured at the collimator-plate. Be-

fore the measurement is started, 1.9 A are applied to the filament to preheat the ion

source. The Penning-ion source is operable after a few minutes. After each measure-

ment, the heating current is switched off for one minute. It is observed that the heating

current drops by roughly 2 % over the first 30 minutes, even when the voltage of the

heater source is kept constant. But it does not effect the emitted electron current (see
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Figure 6.1: The electron current measured at the collimator plate as a function of time
for different heating currents applied to the thoriated tungsten filament cathode.

Figure 6.1). An explanation is that the thoriated tungsten filament heats up its sur-

rounding structure. It takes some minutes to reach an thermal equilibrium. The heated

surrounding structure also acts back on the thoriated tungsten filament and increases

its temperature further. If the electrical resistance rises with the filament’s temperature

which is a likely behaviour for metal wires, and the voltage is kept constant the heat-

ing current has to drop. Another explanation is that the thoriated tungsten filament

expands thermally, becomes thinner and hence has a bigger electrical resistance. Also

in this case the heating current drops. The measured electron current is stable within

a drift of less than 5 % for all chosen heating currents and durations, and less than 2 %

after the first 5 minutes, except for 2.1 A. The strong drift for an applied heating cur-

rent of 2.1 A, with an increase of 13 %, can be repeated in other measurements within

two following days. This effect is clearly not an error in the measurement and is well

reproducible. Possibly the thorium atoms rearrange themselves over a longer period of

time. It is shown in Reference [Lan23] that the amount of thorium influences the emis-

sion current by many orders of magnitude and due to the heating of the filament, the

thorium atoms at the surface move and evaporate. Also, the thickness of the thoriated

tungsten filament can change over time by thermal expansion.
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Figure 6.2: In red, electron current measured at the collimator-plate with different heat-
ing currents applied to the cathode. For each datapoint after increasing the heating
current by 0.05 A, five minutes are spent waiting for the filament to reach its thermal
equilibrium. In blue, the average of the stability measurement of each heating current,
taken from Figure 6.1. The measurement for the red curve took place a few days af-
ter the measurement for the blue curve. The uncertainties of the datapoints are one
standard deviation of the average of each time stability measurement.

A week later the characteristic emission curve of the filament is taken (see Figure 6.2).

It qualitatively shows a behavior that is expected from Figure 6.1. The electron current

measured at the collimator-plate rises with increased heating current, reaches its max-

imum and finally decreases a little bit. For an easier comparison the average for each

individual heating current of Figure 6.1 is plotted in Figure 6.2. While the value of the

actual characterization is taken five minutes after setting the heating current and rep-

resents only one measurement, the average of the time stability measurement includes

possible drifts. At first glance, this comparison seems to be unreasonable, but the drift

of the electron emission current in a range from five minutes to an hour in the stabil-

ity measurement is less than 2 %. Hence the emitted electron current can be assumed

as constant. At the steepest slope, the measurements are shifted by 0.3 A to higher

heating currents, which is a relative shift of roughly 16 % in the heating current. This

shift cannot be explained by measurement uncertainties. Here the characteristic curve

of the filament has changed. The characteristic curve reaches approximately the same
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maximum as in the stability measurement, but at different heating currents. At the

same heating current both curves deviate by up to a factor of 7. This fluctuation from

measurement to measurement in different weeks is probably based on fluctuations in

the amount of thorium at the surface of the filament. After a short amount of time,

mostly minutes, the filament reaches an equilibrium and is stable for the next hours,

but through the cooldown and the next heating up the thorium atoms at the surface

are rearranged or the thickness of the thoriated tungsten filament changes by thermal

expansion. This leads to the conclusion that the electron emission of the tungsten fila-

ment is stable for several minutes to hours. Probably the electron emission current is

even stable for a longer time than hours. This could offer the opportunity to keep the

ion source running, while a mass measurement takes place and so the characteristic of

the Penning-ion source does not change within one mass measurement. Then it should

be possible to load the ions remotely from a computer. This has the advantage that

loading the ions can be automatized.

Overall the Faraday cup has shown its principal functionality and the thoriated tung-

sten filament works nicely. It provides an intense beam of electrons that can reliably

be detected with the Faraday cup. When the Penning-ion source is set up each time,

the emission current is stable mostly within 5 %, and this is sufficient for the further in-

vestigations of the ion beam. This is an improvement compared to the barium cathode

which was characterized by M. Tremer [Tre11]. There, the electron emission current

fluctuated by a factor of two over two hours.

6.2 Ion beam optimization

After characterizing the cathode, further tests of the Penning-ion source with an elec-

tron beam are performed. It was tried to increase the emitted electron current as far

as possible. The setup which provides the most intense electron beam is given in Ta-

ble 6.1 in optimization step #0. It turns out that after some iterations the ratio of the

electron beam measured at the cup- and collimator-plate is around 0.1 and the total
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Table 6.1: Overview of the settings applied at the Penning-ion source during the opti-
mization of the ion beam. Fields marked with “. . . ” are scanned and with “–” are not
set or applied in this optimization step. Measurement # 0 was done with an electron
beam, all other measurement with 99.99 % of pure helium injected into the Penning-ion
source. The Einzel lenses E1–E5 are given in Figure 3.4. For the measurements 5 and 6
the voltage V1 is −185 V and V2 is 13 V.

Optimi- Pressure Cup position Heating current Solenoid current
zation/# mbar mm A A

0 1 · 10−10 5.5 1.9. . . 2.4 0
... Optimizing for example the solenoid current, VAnode

5 9 · 10−7 0. . . 24 2.6 1.5
6 3 · 10−7 . . . 3 · 10−4 4.5 2.25 1.5

Optimi- VAnode Vgrid Velectrons Vrepel Veinzel E1 E2 E3 E4 E5
zation/# V V V V V V V V V V

0 100 – 200 80 200 V2 V2 V2 V2 V2
... and the other parameters
5 100 20 205 80 198 V1 V2 V1 V2 V1
6 100 20 205 80 198 V1 V2 V1 V2 V1

current measured at the collimator is around 70µA. The Faraday cup is operated in the

diagnostic position. The ratio is defined as Icup/Icollimator. The area of the cup-plate that

faces the beam in the diagnostic position is 1.052π mm2. The area of the collimator is

(90− 2π · 1.052)mm2. For this it is approximated that the collimator-plate has an area

of 90 mm2 facing the beam, if it is in the diagnostic position, and from this the area of the

holes must be subtracted. The ratio between the area of the cup- and collimator-plate is

0.04. Because the ratio is around 0.1, probably the electron beam is already focused or

cut by the geometry of the einzel lenses.

Next, the electron beam is used to create ions and the ion current is optimized. For

this 99.99 % pure helium gas is let in. Near the turbomolecular pump, which is located

next to the Penning-ion source, a pressure of 9 · 10−7 mbar is measured. It is higher in

the ion source itself. The total current at the cup-plate as well as the ratio between the

plates is observed while tuning the voltages of the electrodes. The important optimiza-

tion steps can be seen in Table 6.1. After four iterations with inserting gas and before
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Figure 6.3: Ion current measured at the cup-plate as a function of displacement from
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finding the optimal pressure for the ion source, the spatial distribution of the beam is

measured. For this, the ion current at the cup-plate is measured at different positions

of the Faraday cup in the beamline. First, the cup is in the fully-in position, denoted

with 0 mm in Figure 6.3 and then moved out in 0.5 mm steps. The result is shown in

Figure 6.3. A maximum is visible at 4.5(2) mm which is 1 mm off from the beamline

axis and the full width at half maximum (FWHM) is 7.5(4) mm. Optimally, the beam

should have its maximum at position 5.5 mm. Another hint for a tilted beam is that

the same beam intensity read at 0 mm is reached again at 8 mm. Since the Faraday cup

is used in a vacuum tube of 16 mm in diameter, this should occur at 13.5 mm. This is

based on the following idea. If the Faraday cup is fully in, the center of the outer hole

(right in Figure 3.5) of the collimator-plate is 2.5 mm away from the wall. Hence, if the

Faraday cup is pulled out by 13.5 mm, this hole is at the opposite wall of the vacuum

tube and 13.5 mm and 2.5 mm add up to the 16 mm of the beam tube diameter. Beyond

13.5 mm the beam current drops to almost zero as expected because the plates become

fully covered by the vacuum tube. That the current does not completely drop to zero is

caused by the fluctuating readout of the Keithley picoamperemeter. At the moment, it
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cannot be said, if the reason for the poor FWHM is a misalignment perpendicular to the

moving axis or a tilt of the whole beam line. It seems that some effort is needed before

the first ion can be caught in the trap.

Because of the ion optical parameters, a much smaller FWHM of the ion beam is ex-

pected. The shift of the ion beam with respect to center of the beam tube by 1 mm can

be explained by a misalignment of the Penning-ion source. There are screws available

to adjust the alignment of the ion source with respect to the Faraday cup and the beam

line. Unfortunately, to adjust the Penning-ion source the vacuum must be broken. Also

a reason for the shift could be an inhomogeneous distribution of materials around the

ion path. It has been already tested that if some amount of iron is placed at the beam

line, it gets magnetized by the superconducting magnet and therefore influences the

path of ions.

Because tritium is radioactive, the use of the gas should be minimized. Thus the pres-

sure dependency of the ion source is of interest. To investigate this dependency, helium

gas with 99.99 % purity is let in through an adjustable needle valve. The pressure in

the ion source chamber is left to stabilize for a few minutes before the measurement

is started. The results are plotted in Figure 6.4. The first value is taken with no gas

inserted to observe the rest gas ionization. The beam current is largest in the pressure

regime of 10−6 − 10−5 mbar. Overall, when the pressure is increased by a factor of 100,

the beam current increases only by a factor of seven. The observed ratio of the currents

measured at the cup and collimator-plate is around 0.05 regardless of the pressure. This

is worse compared to the measurement with the electron beam only. This is caused by

the heavier mass of the ions and the larger energy spread. Therefore, focusing is more

difficult for ions than for electrons. Probably the whole beam is misaligned, as it is

already indicated by Figure 6.3. The decreasing ion current for pressures larger than

10−5 mbar supports the hypothesis that the beam is weakly focused. At higher pres-

sures more ions are created in the Penning-ion source, but due to ion-ion interaction

and ion-atom collisions the beam spreads up faster and less ions reach the cup- and

collimator-plate. But this pressure regime is not of interest for loading the trap because
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it would spoil the vacuum in the center of the trap electrodes. This would lead to a

short lifetime of the ions which is at the moment in the range of weeks to month and

could drop to minutes or even less. Also this pressure of tritium gas would stop the

experiment completely because the electrodes would get contaminated with tritium

gas and the emitted β-electron would ionize rest gas in the trap. The resulting ion-ion

interaction would prevent any further measurements at a 10−11 level.

6.3 Conclusion

The Faraday cup has proven its principal functionality, and the new thoriated tungsten

filament works nicely. It makes the work with the ion source much easier compared

with the barium tungsten dispenser cathode which was used before. The risk of poi-

soning the cathode by restgas is negligible and complex heating procedures as in Ref-

erence [Pin07] can be skipped.

The work with the helium ion beam is also successful. It was demonstrated that a he-

lium ion beam can be created and its intensity measured with the Faraday cup. In the

measurement of the spatial distribution of the Faraday cup it can be seen that the max-

79



imum is not very sharp which indicates that the beam has a rather defocused shape,

evident from Figure 6.3. The ratio between the beam current measured close to the

wall and the maximum is 1/2. The beam diverges after leaving the ion optics of the

Penning-ion source because the ion optics focuses too weakly. Also the beam appears

to be misaligned towards the arm of the Faradaycup feedthrough.

The measurement of the pressure dependency of the Penning-ion source helps the ex-

periment as well. In the future, the idea is to insert helium-3 or tritium gas in pulses.

So, it is important to know at which pressure the ion source works best, and it has to

be taken care that the neutral gas is pumped away quickly. The regime, where the ion

source works best, is too high for the operation with tritium because too much tritium

gas would reach the trap. But with this measurement, it is also shown that the ion

source works already at pressures slightly higher than 10−7 mbar. But already the rest

gas level of 3 · 10−7 mbar which is probably based on the released gas particles when the

electron beam hits the electrodes in the ion source, will lead to a problem and reduce

the lifetime of the ion. Additionally, helium and tritium are more difficult to pump than

for example oxygen. Also a problem is that if an ion beam is created by ionizing mostly

rest gas, the beam is not very pure and beside the gas contamination the contamination

with other ions can occur. It should be also taken into account that the created ion beam

of 1 nA, which means that roughly 1010 ions/s are sent downwards, can be enough to

get a few ions into the ion capture segment. The efficiency of the ion transfer in a prop-

erly aligned beamline is at 10−2 to 10−3, described by Reference [Pin07]. But observing

the ratio of the current at the cup-plate to the current measured at the collimator-plate

in this optimization indicates again that the beam is tilted or shifted. It is likely that

this tilt will cause the loss of almost all ions and that here further investigations are

needed. The experimental setup offers the opportunity to align the Penning-ion source

with respect to the Penning-traps. One hope is also that the magnetic field of the super-

conducting solenoid helps to focus the beam because all we need is a single ion in the

trap.

All in all, the Faraday cup has proven its functionality. It helps to optimize the ion

source settings, while the source is mounted at the experiment and there is definitely a

good chance to use the Penning-ion source at the experiment.
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Chapter 7

Conclusion and outlook

The topics of this thesis were investigating the deviations of the electrostatic potential

and magnetic field from the ideal case, and the optimization of the external Penning-ion

source. The electrostatic field coefficients Sn, En, Dn and Rn of the polynomial approxi-

mation were derived with sufficient precision. The analysis code can easily be adapted

for other projects. The numerical uncertainties have been lowered to insignificant lev-

els. The current uncertainty of the coefficients is dominated by the uncertainties in the

simulated model, such as thermal shrinking, guard electrode position and hole sizes

in the endcap electrodes. Here mathematical relations between fit-coefficients and the

model parameters are found. For example, the Rn depends on the third power of the

hole radius in the endcap electrode. In Appendix A, the fit-coefficients of the polyno-

mial approximation of the electrostatic potential are given with statistical and system-

atic uncertainties. The individual model uncertainties are chosen conservatively. If it is

possible to decrease the model uncertainties, for example through a better knowledge

of the THe-Trap electrode geometry, it is possible to give the final fit-coefficients with

a higher accuracy by using the derived mathematical relations. For other experiments

in the future, Comsol Multiphysics offers the opportunity to simulate the electrostatic

properties in advance and, for example, take thermal shrinking into account.

The image charge simulation of the spherical case is successful and the deviation from

the analytic solution is only about 1 %. Hence, the image charge simulation in a trap
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with hyperbolic electrodes is reliable. The results obtained here depend only weakly

on changes in the geometry, and even conservative approximations of the model un-

certainties lead to less than 2 % uncertainty of the image charge effect. It is a very good

result that the simulated image charge effect confirms the experimental value, which

was measured in a similar trap and estimated for THe-Trap.

The image charge has been investigated in different Penning-traps by using different

approaches Reference [Por01, SWB13], and it will be an interesting test to simulate these

Penning-traps with Comsol Multiphysics and to compare the results. Measuring the

image charge effect experimentally is challenging because tests with different number

of ions in the trap have to be performed. Here, approximating the effects of ion-ion

interactions and determining the number of ions in the trap is difficult. Maybe the

simulation can help to increase the accuracy or at least give a strong test of the mea-

surement results.

The magnetic field deviations from the homogeneous field case are approximated by

higher order Legendre polynomials whose scaling factors are named B̃1 and B̃2. In the

simulation of the magnetic field, it turned out that the experimentally seen B̃1 and B̃2

cannot be explained by the experimental setup and the known magnetic susceptibili-

ties. The results themselves are reasonable and it does not seem that they are heavily

influenced by statistical or systematic uncertainties. Even though the results are not as

deeply investigated as in the electrostatic case, they are too far off from the measured

B̃1 of 17 · 10−4 m−1 to be explained by simulation problems. But if there is an improved

knowledge of the magnetic susceptibilities of the individual components, or of the in-

homogeneity of the magnetic field due to imperfections of the superconducting magnet

itself, further simulations can help to understand the magnetic field of THe-Trap better.

It should also be tried to simulate the whole model at once to avoid that uncertain-

ties in the fit to determine B̃1 and B̃2 individually for each part of the geometry add

up. To determine the dependency of these coefficients on the magnetic susceptibility,

simulations with the same geometry but different magnetic susceptibilities should be

performed. This can help to estimate the influence of the uncertainty of the magnetic
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susceptibilities on B̃1 and B̃2.

The external Penning-ion source was characterized for the first time while being

mounted on the experiment with a custom-designed Faraday cup, built within this

thesis. The new thoriated tungsten filament has proven to create an intense electron

beam. The Faraday cup is an improvement for the experiment. It was proven to work

well, and it provides valuable information about the Penning-ion source, such as the

intensity and the position of the beam. The characterization revealed the beam to be

misaligned, either because of tilt or because of a parallel offset. This misalignment has

to be minimized for shooting the ions down to the Penning-traps. One method of align-

ing the Penning-ion source with respect to the Penning-traps is to use the mounting

screws of the Penning-ion source. Another option is to adjust the ball joint below the

ion source. This ball joint allows to tilt the whole room temperature part with respect

to the lower cryogenic part. The functionality of the Faraday cup as gas barrier will be

tested by loading ions from the Penning-ion source. Monitoring the storage time of the

ions in the trap gives an estimate of vacuum quality, and from this it can be concluded,

whether the Faraday cup works as a gas barrier or not. This test has not been done

yet, because at the moment the experiment is working well, ions are created by using

the field emission point (FEP) and lifetimes of weeks to months are achieved. If the

test fails, the experiment has to be pulled out of the magnet and heated up, pumped

and cooled down to achieve a good vacuum again. Since a new cryogenic amplifier is

tested at the moment and further changes in the electronics have to be done in the near

future, testing the Faraday cup as a gas barrier will be performed soon before pulling

the experiment. Comsol Multiphysics offers other tools that may help to estimate the

gas flow from the ion source to the Penning-traps. With these tools, it should be also

possible to simulate the ion flight from the Penning-ion source to the Penning-traps, but

for this the knowledge on the magnetic field outside of the magnet has to be improved.
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Appendix A

Final fit-coefficients

This appendix gives the fit-coefficients Sn, En, Dn and Rn with their full statistical pre-

cision. The statistical uncertainty is denoted with ()stat and the systematic with ()sys.

The statistical uncertainty is the standard deviation of the weighted average of the fit-

coefficients determined at the five highest resolutions. The systematic uncertainty is

derived from violations of the linearity of the Maxwell equations. Further information

about the statistical and systematic uncertainty is given in the Sections 4.1.2 and 4.1.3,

respectively. The simulation model used is the same as in Section 4.1, including ther-

mal shrinking and fillets at the inner edges of the guard electrodes. All given values

have the unit of mm−n, where n is the order of the fit-coefficient. Table A.4 gives the

fit-coefficients of a trap geometry without holes in the endcap electrodes. Hence, no Sn

are given. But maybe it is useful for other estimates and hence can be found here.

93



Table A.1: Final fit-coefficients of the electrostatic simulations of the capture trap, with
a hole radius of 250µm in the endcap electrodes.

Value
S0 4.654 967 23(14)stat(1957349)sys · 10−6

S1 2.470 682 456 1(10)stat(1543669)sys · 10−6

S2 3.037 674 9(16)stat(126047)sys · 10−6

S3 8.411 426 88(86)stat(53648)sys · 10−7

S4 8.726 211(90)stat(35398)sys · 10−7

S5 2.258 293 6(39)stat(1423)sys · 10−7

S6 2.242 22(42)stat(889)sys · 10−7

E0 4.170 518 088 424(86)stat(18161047)sys · 10−1

E1 1.659 441 636 22(17)stat(46634)sys · 10−1

E2 1.098 722 203 1(10)stat(114064)sys · 10−1

E3 1.038 216 929(15)stat(1671)sys · 10−2

E4 2.069 703 3(57)stat(31512)sys · 10−4

E5 −1.809 436 3(68)stat(426)sys · 10−4

E6 −2.341 35(27)stat(787)sys · 10−5

E7 9.512 98(205)stat(95)sys · 10−6

E8 −3.920 3(59)stat(142)sys · 10−6

D0 1.135 580 853 5(52)stat(91577)sys · 10−2

D1 3.180 855 666 7(12)stat(417635)sys · 10−3

D2 −2.459 313 7(61)stat(1120)sys · 10−4

D3 −6.015 029 89(10)stat(8570)sys · 10−4

D4 −5.333 737(34)stat(63)sys · 10−4

D5 −3.207 641 0(47)stat(563)sys · 10−5

D6 2.591 9(16)stat(14)sys · 10−5

D7 6.981 92(14)stat(20)sys · 10−6

D8 2.296(36)stat(20)sys · 10−6

R0 5.715 883 205 15(32)stat(1045153)sys · 10−1

R2 −1.096 289 399 3(37)stat(74077)sys · 10−1

R4 3.256 313(21)stat(2111)sys · 10−4

R6 −2.680 8(98)stat(437)sys · 10−6

R8 1.598 4(222)stat(82)sys · 10−6
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Table A.2: Final fit-coefficients of the electrostatic simulations of the experiment trap,
with a hole radius of 200µm in the endcap electrodes.

Value
S0 7.766 920 77(36)stat(973908)sys · 10−7

S1 4.116 722 773(19)stat(1148389)sys · 10−7

S2 5.094 028 5(42)stat(62991)sys · 10−7

S3 1.412 236 34(17)stat(39171)sys · 10−7

S4 1.477 123(23)stat(1795)sys · 10−7

S5 3.831 685 1(76)stat(10399)sys · 10−8

S6 3.839 0(11)stat(49)sys · 10−8

E0 4.171 838 695 273(64)stat(4043184)sys · 10−1

E1 1.660 318 075 07(26)stat(30242)sys · 10−1

E2 1.099 576 820 91(74)stat(255099)sys · 10−1

E3 1.041 161 935(23)stat(1093)sys · 10−2

E4 2.311 288 5(41)stat(7199)sys · 10−4

E5 −1.731 817(10)stat(28)sys · 10−4

E6 −1.733 05(19)stat(187)sys · 10−5

E7 1.134 480(312)stat(58)sys · 10−5

E8 −2.545 3(43)stat(40)sys · 10−6

D0 1.135 216 317 0(58)stat(83161)sys · 10−2

D1 3.179 500 990 3(18)stat(411277)sys · 10−3

D2 −2.482 813 5(68)stat(652)sys · 10−4

D3 −6.019 557 09(16)stat(8218)sys · 10−4

D4 −5.340 307(38)stat(13)sys · 10−4

D5 −3.219 582 8(72)stat(474)sys · 10−5

D6 2.576 2(18)stat(24)sys · 10−5

D7 6.953 68(22)stat(11)sys · 10−6

D8 2.273(40)stat(35)sys · 10−6

R0 5.714 618 782 18(26)stat(1551992)sys · 10−1

R2 −1.097 108 181 8(30)stat(115870)sys · 10−1

R4 3.024 944(17)stat(3371)sys · 10−4

R6 −8.511 2(80)stat(845)sys · 10−6

R8 2.74(18)stat(28)sys · 10−7
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Table A.3: Final fit-coefficients of the electrostatic simulations of the experiment trap,
with a hole radius of 152µm in the endcap electrodes without countersink.

Value
S0 6.100 520 06(11)stat(1099466)sys · 10−8

S1 3.238 398 200(13)stat(2240403)sys · 10−8

S2 4.016 230 9(12)stat(72245)sys · 10−8

S3 1.117 264 02(11)stat(76974)sys · 10−8

S4 1.172 796 2(69)stat(21009)sys · 10−8

S5 3.055 196 9(52)stat(20861)sys · 10−9

S6 3.074 62(32)stat(544)sys · 10−9

E0 4.172 602 085 044(19)stat(4061394)sys · 10−1

E1 1.660 823 655 26(17)stat(87531)sys · 10−1

E2 1.100 074 902 08(23)stat(252105)sys · 10−1

E3 1.042 882 914(14)stat(3024)sys · 10−2

E4 2.454 329 9(13)stat(7169)sys · 10−4

E5 −1.685 625 2(66)stat(813)sys · 10−4

E6 −1.365 707(60)stat(1870)sys · 10−5

E7 1.245 85(20)stat(20)sys · 10−5

E8 −1.695 7(14)stat(41)sys · 10−6

D0 1.135 008 333 8(51)stat(56239)sys · 10−2

D1 3.178 719 253 0(12)stat(412749)sys · 10−3

D2 −2.496 591 6(59)stat(295)sys · 10−4

D3 −6.022 238 10(10)stat(9114)sys · 10−4

D4 −5.344 283 2(332)stat(74)sys · 10−4

D5 −3.226 766 2(46)stat(685)sys · 10−5

D6 2.563 39(155)stat(16)sys · 10−5

D7 6.936 377(139)stat(35)sys · 10−6

D8 2.221 7(350)stat(69)sys · 10−6

R0 5.713 896 250 91(57)stat(289609)sys · 10−1

R2 −1.097 578 571 0(67)stat(23674)sys · 10−1

R4 2.889 889(37)stat(711)sys · 10−4

R6 −1.197 7(17)stat(14)sys · 10−5

R8 −5.41(39)stat(25)sys · 10−7
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Table A.4: Final fit-coefficients of the electrostatic simulations of the experiment trap
without a hole in the endcap electrodes.

Value
E0 4.173 199 428 872 4(70)stat(174955)sys · 10−1

E1 1.661 223 441 58(15)stat(518)sys · 10−1

E2 1.100 467 924 537(82)stat(220)sys · 10−1

E3 1.044 260 217 0(127)stat(99)sys · 10−2

E4 2.568 908 23(46)stat(103)sys · 10−4

E5 −1.648 036 60(584)stat(11)sys · 10−4

E6 −1.065 985 7(214)stat(18)sys · 10−5

E7 1.338 383 6(1774)stat(15)sys · 10−5

E8 −9.860 93(481)stat(19)sys · 10−7

D0 1.134 842 449 6(45)stat(43021)sys · 10−2

D1 3.178 099 216 9(10)stat(404445)sys · 10−3

D2 −2.507 578 2(53)stat(76)sys · 10−4

D3 −6.024 372 551(89)stat(76284)sys · 10−4

D4 −5.347 469(30)stat(37)sys · 10−4

D5 −3.232 593 1(41)stat(434)sys · 10−5

D6 2.556 2(14)stat(11)sys · 10−5

D7 6.922 028(124)stat(55)sys · 10−6

D8 2.270(31)stat(75)sys · 10−6

R0 5.713 315 411 56(45)stat(32409)sys · 10−1

R2 −1.097 960 328 6(52)stat(57)sys · 10−1

R4 2.778 601(29)stat(34)sys · 10−4

R6 −1.490 3(14)stat(11)sys · 10−5

R8 −1.285(31)stat(76)sys · 10−6
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Appendix B

Multidimensional least square fit

This appendix introduces the fit algorithm used for fitting the results of the electrostatic

simulations (see Section 4) and quantifying the higher-order Legendre terms. Due to

the lack of suitable tools for fitting multidimensional Legendre polynomials as Equa-

tion (2.13), an own fit routine is developed. The code is based on ideas from Refer-

ence [Bra11]. It should be noted that the evaluated Legendre polynomials are scalars,

but with two variables z and ρ. For the self coded fitting routine, the least square

method is chosen. The principal idea of the least square fit is that the squared dis-

tance between the points and the fit function is minimized. The fit functions f j (~x) can

be arbitrary and take note that the function itself will not be changed during the pro-

cess, only the coefficient in front the function are determined. Hence, even complicated

functions can be chosen for fitting and it is still a linear fit concerning the coefficients.

The index j denotes one of the applied fit functions. In one fit, many functions can be

chosen. The full fit function is given by

g(~xi) =
m

∑
j=1

cj f j(~xi) , (B.1)

where m is the number of chosen individual functions f j, and cj are the coefficients

of the fit function which need to be determined The sum over the squared distance
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between the points and the full fit function g (~xi) is

χ2 =
n

∑
i=1

wi (g(~xi)− yi)
2 , (B.2)

where n is the total number of points in the fit, yi is the measured data at position ~xi. It

is not necessary that it denotes the order of the function. The parameter wi is a weight

factor and defined as wi =
1

σ2
yi

, where σyi is the standard deviation of yi.

In the least square fit the squared distance must be minimized:

∂χ2

∂ck

!
= 0⇒

m

∑
j=1

cj

n

∑
i=1

wi f j(~xi) fk(~xi) =
n

∑
i=1

wiyi fk(xi) . (B.3)

Equation (B.3) is a linear Equation system (hereafter LES), where cj are the unknown

variables. This LES needs to be solved and for that, a shorter notation is introduced

ak,j =
n

∑
i=1

wi f j(~xi) fk(~xi) = (A)k,j (B.4)

bk =
n

∑
i=1

wiyi fk(~xi ) (B.5)

cj = (~c)j . (B.6)

Equation (B.4) is called fitmatrix from now on. With these new notations (Equations

(B.4), (B.5) and (B.6)), the LES is rewritten as

A ·~c =~b⇔ ~c = A−1 ·~b , (B.7)

where A is a m×m-matrix. From Equation (B.7) it turns out that the coefficients of the

fit functions are:

cj =
m

∑
k=1

a−1
j,k bk , (B.8)

and they can be calculated by inverting the fitmatrix (see Equation (B.4)).
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B.1 Uncertainty calculation

The uncertainty calculation of the fit is based on the idea how much the coefficient cj

changes if yl is varied. For this, cj is derived with respect to yl

∂cj

∂yl
=

m

∑
k=1

a−1
j,k

∂bk

∂yl
=

m

∑
k=1

a−1
j,k wl fk (xl) . (B.9)

For the uncertainty, it is now necessary to calculate the covariance matrix which is de-

fined as

cov
(
ci, cj

)
=

n

∑
l=1

∂ci

∂yl

∂cj

∂yl
σ2

yl
. (B.10)

Inserting Equation (B.10) in Equation (B.9) leads, after some transformations, to

cov
(
ci, cj

)
= a−1

i,j ⇒ σci =
√

a−1
i,i . (B.11)

In the simulations, the error of yi is unknown, but it can be assumed that the error

is constant for all yi. The error will be chosen so that the reduced χ2 which is χ2

ndf , is

equal to one because then the fit is statistically optimal. ndf stands for the number of

degrees of freedom and is the number of individual fit coefficients m, see Equation (B.1)

subtracted from the number of fit points n, see Equation (B.2), so ndf = n−m. For this

again a new notation is introduced, assuming that the weight factor w is the same for

all ~xi

χ2 = w
n

∑
i=1

(g (~xi)− yi)
2 ≡ wD2 , (B.12)

Ã =
n

∑
i=1

f j (xi) fk (xi) ≡
A
w

, (B.13)

b̃k =
n

∑
i=1

yi fk (xi) ≡
bk

w
. (B.14)
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If the reduced χ2 should be equal to one, then

χ2 = wD2 !
= ndf ⇒ w =

ndf
D2 . (B.15)

The weight factor w is set, so that the fit is best. This is a reasonable choice in this case

because the fit functions are Legendre polynomials. They are the solution of the simu-

lated cases and hence should be the best fit for the problem. Based on this optimization

of the weight, the uncertainty of the determined fit-coefficients can be calculated as

A−1 =
1
w

Ã−1 =
D2

ndf
Ã−1 , (B.16)

⇒ cov
(
ci, cj

)
=

D2

ndf
ã−1

i,j , (B.17)

⇒ σci =
√

cov (ci, ci) =

√
D2

ndf
ã−1

i,i (B.18)

Hence, the fit error of the coefficients is calculated by Equation (B.18).
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