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Near-optimal asymmetric binary matrix partitions *
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Abstract

We study the asymmetric binary matrix partition problent thas recently introduced by Alon et
al. (WINE 2013) to model the impact of asymmetric informatan the revenue of the seller in take-
it-or-leave-it sales. Instances of the problem consisnot & m binary matrixA and a probability
distribution over its columns. A partition schenie= (Bs, ..., B,,) consists of a partitioB; for
each rowi of A. The partitionB; acts as a smoothing operator on rothat distributes the expected
value of each partition subset proportionally to all itsrexst Given a schem& that induces a
smooth matrix4?Z, the partition value is the expected maximum column entot 8f The objective
is to find a partition scheme such that the resulting pantitiue is maximized. We presen$Al0-
approximation algorithm for the case where the probahdisgribution is uniform and &l — 1/e)-
approximation algorithm for non-uniform distributionsgsificantly improving results of Alon et
al. Although our first algorithm is combinatorial (and veignple), the analysis is based on linear
programming and duality arguments. In our second resultyg®i a nice relation of the problem
to submodular welfare maximization.

1 Introduction

We study theasymmetric binary matrix partition problem, recently proposed by Alon et al.|[2]. Consider
a matrixA € {0,1}"*™ and a probability distributiom over its columnsp; denotes the probability
associated with colump. We distinguish between two cases for the probability itiistion over the
columns of the given matrix, depending on whether it is unif@r non-uniform. A partition scheme
B = (B, ..., By,) for matrix A consists of a partitiom; of [m] for each rowi of A. More specifically,B;

is a collection ofk; pairwise disjoint subsetB;;, C [m] (with 1 < k < k;) such thaU’,ji:1 Bix, = [m].
We can think of each patrtitioB; as a smoothing operator, which acts on the entries of imd changes
their value to the expected value of the partition subsst ltedong to. Formally, the smooth value of an
entry (¢, j) such thatj € B;; is defined as
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Given a partition schem@ that induces the smooth matrit?, the resulting partition value is the
expected maximum column entry df®, namely,

vB(A,p) = Z p; - mZaxAg.
j€lm]
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The objective of the asymmetric binary matrix partition lgeon is to find a partition schemB such
that the resulting partition value® (A, p) is maximized.

Alon et al. [2] were the first to consider the asymmetric nxapartition problem. They proved
that the problem is APX-hard and provided)&63- and al/13-approximation for uniform and non-
uniform probability distributions, respectively. Theysalconsidered input matrices with non-negative
non-binary entries and presented /- and an{2(1/ log m)-approximation algorithm for uniform and
non-uniform distributions, respectively. This interagticombinatorial optimization problem has appar-
ent relations to revenue maximizationtake-it-or-leave-it sales. For example, consider the following
setting. There aren items andn potential buyers. Each buyer has a value for each item. Blatlects
at random (according to some probability distribution) t@mi for sale and, then, the seller approaches
the highest valuation buyer and offers the item to her at @epegual to her valuation. Can the seller
exploit the fact that she has much more accurate informatimut the items for sale compared to the
potential buyers? In particular, information asymmetriges since the seller knows the realization of
the randomly selected item whereas the buyers do not. Theagpthat is discussed in/[2] is to let the
seller define a buyer-specific signaling scheme. That igdoh buyer, the seller can partition the set of
items into disjoint subsets (bundles) and report this fiantto the buyer. After nature’s random choice,
the seller can reveal to each buyer the bundle that contateetlization, thus enabling her to update
her valuation beliefs. The relation of this problem to asyetnio matrix partition should be apparent.
Interestingly, the seller can achieve revenue from itemsvfach no buyer has any value.

This scenario falls within the line of research that studiesimpact of information asymmetry to
the quality of markets. Akerlof]1] was the first to introduadormal analysis of “markets of lemons”,
where the seller has more information than the buyers regatte quality of the products. Crawford
and Sobel([F] studied how, in such markets, the seller catoixper advantage in order to maximize
revenue. In[[17], Milgrom and Weber provided the “LinkagénPiple” which states that the expected
revenue is enhanced when bidders are provided with moreniiaftion. This principle seems to suggest
full transparency but, ir_[15] and [16] the authors suggeat tareful bundling of the items is the best
way to exploit information asymmetry. Many different frawerks that reveal information to the bidders
have been proposed in the literature.

More recently, Ghosh et al.[_[12] considered full informatiand proposed a clustering scheme
according to which, the items are partitioned into bundled then, for each such bundle, a separate
second-price auction is performed. In this way, the poaiiiyers cannot bid only for the items that
they actually want; they also have to compete for items tiey tlo not care. Hence, the demand for
each item is increased and the revenue generated is moré éf@le [10] present complexity results in
similar settings and Miltersen and Sheffet|[19] considdradtional bundling schemes for signaling.

In this work we focus on the simplest binary case of asymmettrix partition which has been
proved to be APX-hard. We present9a10-approximation algorithm for the uniform case and a
(1 — 1/e)-approximation algorithm for non-uniform distributiongoth results significantly improve
previous bounds of Alon et al. [[2]. The analysis of our firggaglthm is quite interesting because,
despite its purely combinatorial nature, it exploits linpeogramming techniques. Similar techniques
have been used in a series of papers on variants of set cogef3@4 /5 6]) by the second author; how-
ever, the application of the technique in the current cdrmexjuires a quite involved reasoning about the
structure of the solutions computed by the algorithm.

In our second result, we exploit a nice relation of the probte submodular welfare maximization
and use well-known algorithms from the literature. Firsg aiscuss the application of a simple greedy
1/2-approximation algorithm that has been studied by Lehmarat. §14] and then apply Vondrak’s
smooth greedy algorithm [20] to achievéla— 1/e)-approximation. Vondrak’s algorithm is optimal in
the value query model as Khot et &l. [13] have proved. In a rporeerful model where it is assumed
that demand queries can be answered efficiently, Feige amdi&o [11] have proved th@t — 1/e+¢)-
approximation algorithms — whetkes a small positive constant — are possible. We briefly dis¢he



possibility/difficulty of applying such algorithms to asymetric binary matrix partition and observe that
the corresponding demand query problems are, in generahaxiP

The rest of the paper is structured as follows. We begin wighipinary definitions in sectiohl 2.
Then, we present oW/ 10-approximation algorithm for the uniform case in secfibom8@ aur(1—1/e)-
approximation algorithm for the non-uniform case in set#b

2 Preliminaries

Let A¥ = {j € [m] : there exists a rowsuch that4;; = 1} denote the set of columns of that
contain at least one 1-value entry, afti= [m]\ A* denote the set of columns dfthat contain only 0-
value entries. In the next sections, we usually refer to ¢he4t and A° as the sets of one-columns and
zero-columns, respectively. Furthermore Agt = {j € [m] : A;; = 1} andA? = {j € [m] : 4;; = 0}
denote the set of all 1- and 0-value entries of rigwespectively. Also, denote by= 3", ,. p; the
total probability of the one-columns. We say that a onetwly is covered by a partition schenig
if there is at least one rowsuch thatd;; = 1 and{j} € B;; such a singletor{;} is called column-
covering bundle. Subsequently, we say that a schBraevers the columns o if every one-column
is covered. Finally, a partition subset is called mixed dantains both 1- and 0-value entries.

The following structural properties were first observedah [

Lemma 2.1. Given a uniform instance of the asymmetric binary matrix partition problem with a matrix
A, thereisan optimal partition scheme with the following properties:

e For each one-column j, there exists exactly one row ¢ with A;; = 1 such that {;} is a column-
covering bundle of B;.

e For each zero-column 7, there exists exactly one row i such that j is contained in the mixed bundle
of B; (and n — 1 rowsin which j is contained in the all-zero bundle).

e For each row 4, B; contains at most one bundle containing all the one-columns (if any) that are
not contained in column-covering bundles of B;. Such a bundle is a mixed one if it contains
zero-columns.

e For each row 1, the zero-columns that are not contained in the mixed bundle of B; forman all-zero
bundle.

The first two properties imply that we can think of the pastitivalue as the sum of the contributions
of the column-covering bundles and the contributions ofzt®-columns in mixed bundles. The third
property should be apparent; the 1-value entries that déonmt column-covering bundles are bundled
together with zeros in order to increase the contributiotheflatter to the partition value. The fourth
property makesB consistent to the definition of a partition scheme where thpidt union of all the
partition subsets in a row should gijze]. Clearly, the contribution of the all-zero bundles to thetiian
value is0.

As we will see later in Sectiolnl 4, we can consider the problémomputing an optimal partition
scheme as a welfare maximization problem. In welfare magdtion, there are: items andn agents;
agent: has a valuation functiom; : 2™ — Rt that specifies her value for each subset of the items.
l.e., for a setS of items, v;(.S) represents the value of agenfor S. Given a disjoint partition (or
allocation)S = (51, 59, ..., S, ) of the items to the agents, whesedenotes the set of items allocated to
agenti, the social welfare is the sum of values of the agents for ¢te af items allocated to them, i.e,
SW(S) = >, vi(S;). The term welfare maximization refers to the problem of catimg an allocation
of maximum social welfare. We will discuss only the variahtle problem where the valuations are
monotone and submodular; following the literature, we hsetérm submodular welfare maximization
to refer to it.



Definition 2.1. A valuation function v is monotone if v(S) < »(T") for any pair of sets S, 7" such that
S C T. Avaluation function v is submodular if v(S U {z}) — v(S) > v(T U {z}) — v(T) for any pair
of sets S, T" such that S C T and for any itemx ¢ T

An important issue in (submodular) welfare maximizatioises with the representation of valuation
functions. A valuation function can be described in detgilisting explicitly the values for each of the
2™ possible subsets of items. Unfortunately, this is cleargfficient due to the necessity for exponential
input size. A solution that has been proposed in the litegaiito assume access to these functions by
queries of a particular form. The simplest such form of ggereads as “what is the value of agént
for the set of items5?” These are known as value queries. Another type of quédaesyn as demand
gueries, are phrased as follows: “Given a non-negative fidiceach item, compute a sgbof items for
which the difference of the valuation of agémhinus the sum of prices for the itemss$hs maximized.”
Approximation algorithms that use a polynomial number di@don or demand queries and obtain
solutions to submodular welfare maximization with a constgpproximation ratio are well-known in
the literature. Our improved approximation algorithm foe thon-uniform case of asymmetric binary
matrix partition exploits such algorithms.

3 The uniform case

In this section, we present the analysis of a greedy appuatiam algorithm in the case where the
probability distributionp over the columns of the given matrix is uniform.

Our algorithm uses a greedy completion procedure whictergivcover of the matrix, can complete
the partition schem® by including the zero-columns into mixed bundles such thatdditional parti-
tion value is as high as possible. Formally, the greedy cetigul procedure goes over the zero-columns,
one by one, and adds a zero-column to the mixed bundle ofdhatvhich maximizes the marginal con-
tribution of the zero-column. The marginal contributiom (oearginal partition value) of a zero-column
when it is added to a mixed bundle consistingeafero-columns ang 1-value entries is given by the
guantity
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Alon et al. [2] have shown that, in the uniform case, this dyegompletion procedure yields the optimal
contribution from the zero-columns to the partition val¥#e extensively use this property as well as
the fact thatA (z, y) is non-decreasing with respectgo

So, our algorithm consists of two phases. In the first phealéedcthe cover phase, our algorithm
computes an arbitrary cover of". In the second phase, called the greedy phase, it runs teeygre
completion procedure mentioned above. In the rest of tlumse we will show that this simple algo-
rithm obtains an approximation ratio 8f10; we will also show that our analysis is tight. Even though
our algorithm is purely combinatorial, our analysis extddinear programming duality.

The partition value obtained by the algorithm can be thowdtds the sum of the partition value
from the one-columns in the cover (this is exaetjylus the additional partition value obtained from the
mixed bundles created during the greedy phase. In our asalys distinguish between two main cases.
Denote byp the ratio between the number of 1-value entries in the mixedlles of the optimal solution
and the number of zero-columns. The first case is whenl; in this case, the additional partition value
obtained during the greedy phase of the algorithm is loveemded by the partition value we would
have by creating bundles containing exactly one 1-valueemd either{1/p] or |1/p]| zero-columns.

Lemma 3.1. If p < 1, then the partition value obtained by the algorithm is at least 0.97 of the optimal
one.



Proof. In order to upper-bound the contribution of the zero-colarmihe optimal solution, it suffices to
assume that all mixed bundles have a ratio between 1-valiesand zero-columns equal o Then,
an upper-bound for the optimal partition value is given by

p

OPT<r+(1-r .
B ( ),0+1

On the other hand, we will lower-bound the partition valueuneed by the algorithm by con-
sidering the following (not necessarily optimal) formatiof mixed bundles as an alternative to the
greedy completion procedure used in the greedy phase. Aheng(1 — r) zero-columns, we pick
pm(1 — r) 1-value entries that were not used by the algorithm in theecphase and assign each of
them with either[1/p] or [1/p]| zero-columns in order to create mixed bundles that conthireeo-
columns. Clearly, this process yields an optimal partitiatue if 1/p is an integer. Otherwise, denote
by z = m(1 —r)(1 - p|1/p]) the number of mixed bundles containifty p| zero-columns. Then, the
number of mixed bundles containing/p| zero-columns willbem(1—r)—x = m(1—r)(p[1/p]—1).
Observe that the smooth value of a zero-columg-i in the first case anql—J in the second

. L . +[1/p
case. Hence, we can bound the partition value obtained bglglogithm as follows.

ALG >r+(1—-r)(1— le/pJ)% + (1 —=r)(p[1/p] — 1)71 —lt—l{lpjpj .
Now, assuming that € (27, ) for some integek: > 1, we have that1/p| = kand[1/p] = k + 1
and, hence,

1+ pk(k +1)

ALG > r+(1—r)m.

We have
14 pk(k+1 14 pk(k+1
ALG T+ (1 =) i) - o)
OPT= rv(-nt  — 4

(1+1/p)(1 + pk(k+1)
k+Dk+2)

This last expression is minimized (with respecpydor 1/p = \/k(k + 1). Hence,

A _ (14 MW)2

oPT~ (hiDk12)

which is minimized fork = 1 to approximatelyd.97. O

For the case > 1, we use completely different arguments. The first idea i&son about the
solution produced by the algorithm by reasoning about a tatixed bundles that are obtained by
decomposing the set of mixed bundles computed in the grebdgep Then, the contribution of the
zero-columns to the partition value in the solution comguig the algorithm is lower-bounded by their
contribution to the partition value in the set of mixed bursdbbtained after the decomposition.

The decomposition is defined as follows. It takes as inputralleuwith y zero-columns and 1-
value entries and decomposes it igtbundles containing exactly one zero-column and eithey | or
[x/y] 1-value entries. Note thatif/y is not an integer, there will be: — y)[t/y| bundles with[z/y]
1-values entries. The solution obtained after the decoitiposo the solution returned by the algorithm
has a very special structure. Due to the greedy phase ofdbéataim, it turns out that the set of mixed
bundles after the decomposition has a particular structure

5



Lemma 3.2. There exists an integer s > 1 such that each bundle in the decomposition has at least s
and at most 3s 1-value entries.

Proof. Consider the application of the decomposition step to theechbundles that are computed by the
algorithm and let be the minimum number of 1-value entries among the decondpméeed bundles.
This implies that one of the mixed bundles computed by therdalgn hasu zero-columns and at most
(s + 1) — 1 1-value entries. Denoting hy the number of 1-value entries in this bundle, we have that
the marginal partition value when the last zero-coluis included in the first mixed bundle is exactly

v - ((s +Dp—1)°
v+ +p—1) " ((s+2)p—-1)((s+2)p—2)

sinceA(u, v) isincreasing inv andv < (s + 1) — 1. The rightmost expression is decreasing.ix 1
and, hence, the marginal partition valuefs at mostSJ%l.

Now assume for the sake of contradiction that one of the ntixeutiles obtained after the decompo-
sition has at leasts + 1 1-value entries. Clearly, this must have been obtained é&yl#tomposition of
a mixed bundle (returned by the algorithm) witzero-columns and at lea&ls + 1)\ 1-value entries.
Denote by’ the number of 1-value entries in this bundle and let us coengié marginal partition value
if the zero-columnZ would be included in this bundle. This would be

y/2

W +A+ D)+ A)
(35 +1)2\

T (Bs+2)A+1)(3s+2)
(3s 4+ 1)?

~ (3s+3)(3s+2)

Ap,v) =

AN+1,0) =

The first inequality follows since the marginal partitiorlue function is increasing i’ > (3s + 1)\

and the second one follows singe> 1. Now, the last quantity can be easily be verified to be syrictl
higher that_#; and the algorithm should have p#itin this mixed bundle instead. We have reached the
desired contradiction that proves the lemma. O

Now, our analysis proceeds as follows. For every tripteg [0,1],p > 1 and integers > 0, we
will prove that any solution consisting of an arbitrary cogéthe rm one-columns and the decomposed
set of bundles containing at leastind at mosBs 1-value entries yields &/10-approximation of the
optimal partition value. By the discussion above, this wlbo be the case for the solution returned
by the algorithm. In order to account for the worst-case rdomtion of zero-columns to the partition
value for a given triplet of parameters, we will use the failog linear program, which we denote by
LP(r, p, s):

3s k
minimize Z 0
Pt k+1

3s
subjectto: > Oy =1-r
k=s

3s

Zk&k >p(l—r)—r
k=s
Hk > O,k = S,...,3S

The variabled,, denotes the total probability of the zero-columns thatigigdte in bundles withk
1-value entries. The objective is to minimize the contiitnuiof the zero-columns to the partition value

6



obtained from the mixed bundles. The equality constrairdmsehat all zero-columns have to participate
in bundles. The inequality constraint requires that the lbemof 1-value entries in bundles used by the
algorithm is at least the number of 1-value entries in mixaaddbes of the optimal solution minus the 1-
value entries in the cover since for every selection of theecdahe algorithm will have the same number
of 1-value entries available to form mixed bundles. Due &dtnucture of the solution obtained after the
decomposition and the way the linear program is formulated¢can make the following observation.

Informally, the linear program answers (rather pessicadlif) the question: how inefficient
can the algorithm be? In particular, given an instance withametersr and p, the quantity
minjnes LP(7, p, s) yields a lower bound on the contribution of the zero-colurtmghe partition value
andr + minijns LP(7, p, s) is a lower bound on the partition value. The next lemma cotaplthe proof
for the casey > 1.

Lemma 3.3. For every r € [0, 1] and p > 1,

9
r +min LP(r, p, s) > EOPT

int s

Proof. We will prove this lemma using LP-duality. The dual of :Fp, s) is
maximize (1 —r)a+ (1 —r)p—1))B
subjectto: kf+a < —— i i k =5,..,358

=0

As we did in Lemma_3]1, we will bound the optimal partitionwalas

p__ptr

OPT<r+(1-r .
( )p+1 p+1

Hence, it suffices to show that, for every triplet of paramsete, p, s), there is a feasible dual solution
D that satisfies

9p+r

D> :
T eS|

(1)

The feasible region of the dual is defined by the ligjes- 0, « = 37 — sf anda = 3S+1 — 3s0;
the remaining constraints can be easily seen to be redun@ibattwo important intersections of those

lines are the pointsa, 3) = <S+L1,O) and(a, f) = ( 357 (8+1)(138+1)) with objective values

(s+1)(3s+1)
Dy = ;5(1—r)andD,; = m( - ) +1)(38+ , respectively. We will show that one
of these two points (depending on which has the ighest dnyjattive value) can always be used as a

feasible dual solution in order to prove inequallfy (1). Vitidguish between several cases.

Casel: p— ﬁ < s. In this case observe that; > D, and, thus, it suffices to prove that

(11> 5o

r+ 2)

s+1

Subcase I.1: s = 1. We have that the difference between the left hand side andght hand side of
inequality [2) yields:

1+ 9 p+r

1 9p 9
2 10p+1 2 10(p+1) 2 10(p+1)




Sincep > 1, we have that, — % > 0, and we can lower bound the above quantity using the

constraintr > p;pl (which is obtained from the fact that— ﬁ < 1), as follows:

9p ,o—1<1 9 )_ (p—2)?

2 10(p+1)) 10p(p+1) =

1+7r 9p+r> n
2 10p+1 72 10(p+1) p

Subcase I.2: p— = > 1andp — = < s with s > 1. We have that the difference between the left
hand side and the rlght hand side of mequa[i]y (2) can berdweanded by replacing by p — 1~ note
that the function;? is non-decreasing with respect4¢oHence, we have that

9p+r
=r)=16,51
P 1= 9p+r
Zr—i_p—ﬁ—kl(l_r) 10p+1
10(p+1)(p(1 —=7) = 2r + 1) 10(p(1 —7) = r)(p+ 1)(1 —7)
T+ + DA =) 10(p+1)(p- 5+ —7)
e+ D(p(1 —r) —2r+1)
10(pp+1)(p— 5+ D1 —1)
CB=pr? =P+ Y+ +p
W0+ D(p— 5+ D7)

Now, observe that the quadratic function (with respect)tin the numerator of the above fraction is
positive forr = 0 and negative forr = 1. This means that for = 1 the value of this function is
between its two roots. Hence, singe< %1, it suffices to show that, for = p;pl, the quadratic
function has a positive value. We have:

2
(8—/))('07?1) — (P +p+9) p1+p +p

712((8 P) (" =20 +1) = (0> = p)(P* + p+9) + p* +p°)
2(p — 2)°

- Heo 2

>0

Casell: p— = > s. Here, it holds thaD, > D, and, thus, it suffices to prove that

352 p(l—r)—r 9p+r
GG s T G s S 10,51

Let s denote the (not necessarily integer) value d@iat minimizesD-. Then, by nullifying the partial
derivative of D, with respect tas we have thag has to satisfy the equality

®3)

T+

r 652433
PrT ™ 3542
The value ofD; at § equals
38 +p— 15 33
Dy = (1—7) P Tor (1)

G+DBs+1)



and, thus, it suffices to prove that
35 S 9p+r
35+2 " 10p+1°

r+(1—r)

Now, observe that the functiofi(z) = 35’12 is non-decreasing, and that in the case whieke 6, the

above inequality holds trivially, since

38 9 9

GRS S P
35+ 2 10 10p+1
Otherwise, in the case wheke< 6 we will use different arguments and we will prove directheth

desired inequality

r+(1—r)

352 p(l—r)—r 9p—|—7“>

GG D D T e D T 010

The left hand side of this inequality can be lower-boundefbbmwvs:

3s” pl—r)—r 9 ptr
GG D ) @ s T T 041
B 352 +p % —r( 32 +p+1 N 9 _1>
C (Bs+1)(s+1) 10(p+1) (B3s+1)(s+1)  10(p+1)

10p? — (=352 4+ 365 — 1)p + 30s> 10p? — (40s — 10)p + 275> —4s +9
0Bs+ D+ Dp+1) < 10(3s + 1) (s + 1)(p+ 1) )
10p? — (=352 4 365 — 1)p + 3052
10B3s+1)(s+1)(p+1)

B <10p2 — (40s — 10)p + 27s% — 45+ 9 N 1352 — 165 — 13/2 )
10Bs+1)(s+1)(p+1) 108s +1)(s +1)(p+ 1)
_10p% — (—=3s? +36s — 1)p +30s?  10p* — (40s — 10)p + 40s% — 205 + 5/2
T 0Bs+ DG+ )+ 1035+ 1)(s+ 1)(p + 1)

Now observe that the quadratic functidfp? — (40s — 10)p + 40s% — 20s + 5/2 is positive for any
value ofp > 1. This means that we can use the inequalities pf;jl andp > s (which are implied

by the constrainp — 1= > s) and have that

352 (1)1t p(l—r)—r T_gp_%—r
(s +1)(3s +1) (s +1)(3s +1) 10p+1
10p? — (—3s% 4 365 — 1)p + 30s?
- 103s+1)(s+1)(p+1)
p—s (10p* — (40s — 10)p + 40s% — 20s + 5,2
_p—s+1< 10B8s+1)(s+1)(p+1) )

In order to simplify some of the terms, notice that it suffic@show that

5
(10p® — (=35> +36s — 1)p+30s%) (p—s+1) — (p— s) <1Op2 — (405 — 10)p + 40s* — 205 + 5)

3 5
= (3% +4s+1)p% — <333 + 118> +7s + 5) p+ 1053 + 105 + 55
>0

— )

which is true sinces? + 4s + 1 > 0 and the discriminant of this quadratic function with respeg
equalsds® — 54s% — 117s* — 6753 + 252 + 11s + 9/4 which is negative fos € {1,2,...,5}. O

9



The next statement summarizes the discussion in this sectio
Theorem 3.4. The algorithm always yields a 9/10-approximation of the optimal partition value.
Our analysis is tight as our next counter-example suggests.

Theorem 3.5. There exists an instance of the uniform asymmetric binary matrix partition problem for
which the greedy algorithm computes a partition scheme with value (at most) 9/10 of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix f@mtiproblem that consists of the
matrix

0 0
10
10

=
O O O

1 00

with p; = 1/4 for ¢ = 1,2, 3,4. The optimal partition value is obtained by covering the-onkimns
using the 1-value entries in the first two rows and then bagdéiach of the two zero-columns with a
pair of 1-value entries in the third and fourth row, respesii. This yields a partition value &f/6. The
greedy algorithm may select to cover the one-columns usiadltvalue entriegls; and A4. This is
possible since the greedy algorithm has no particularraitfor breaking ties when selecting the full
cover. Given this full cover, the greedy completion proaeduill assign each of the two zero-columns
with one 1-value entry. The partition value is thefi, i.e.,9/10 times the optimal partition value. O

4 Asymmetric binary matrix partition as submodular welfare maximiza-
tion

In general, the partition value can be thought of as the suancaitribution to the partition value from
each row. In particular, given a sétconsisting of a set of 0-value entrisn A? and a set of column-
covering 1-value entrieS N Aj, the contribution to the partition value of raiican be described by the
function

2 jesnAv Pi 2 jeat\s Pi
> jesnar Pi+ jear\sPi

Ri(S) = Z pj+

: +
JESNA;

Then, the partition scheme can be thought of as a collecfidisjpint setsB; (with one set per row) such
that B; contains those columns whose entries achieve their maxismooth value in rowi. Hence,
the partition value of the partition scheni@is v3(A,p) = > ic[n i(Bi). Hence, the problem is
essentially equivalent to welfare maximization where &g act as the agents who will be allocated
bundles of items. The set of items consists of two kinds ofh#e one-items corresponding to one-
columns and zero-items corresponding to zero-columns.

Lemma 4.1. For every row i, the function R; is non-decreasing and submodular.
Proof. We will show that the functiorR; is non-decreasing and has decreasing marginal utilites, i
¢ (monotonicity) for every se$ and itemz ¢ S, it holds thatR;(S) < R;(S U {xz});

¢ (decreasing marginal utilities) for every pair of séts" such thatS C T and every itemx & T,

10



In order to simplify notation, let us define the functiansS) = Zjesmﬁ pj, B(S) = >_jcsna0 p; and
v(S) = zje A+\s Dj- We can rewrite the functio®; as

P CRTC)
Bil8) = ol8) + ey o6y

Let S, T C [m] be two sets of columns such th&tC 7" and letx be a column that does not belong
to set7’. We distinguish between two cases depending.oifi z € A;", observe that

e a(SU{z}) = a(S) +p, ande(T U {z}) = a(T) + pa;

o B(SU{z}) = B(S) andB(T'U{x}) = B(T);

o (S U{a}) = () — ps andy(T U{z}) = ¥(T) — pa-
Using the definition of functiorRk;, we have

Y(S) — pa 7(S)
RSV Le}) ~ BulS) = pe + B(S) (ﬁ(S) R 1 ST w<s>>
- pxB(S)’
: = GBS T109) - (BS) +75) —pn)
> g — p=B(5)*
2P~ 8 1A M)BES) AT — o)
> pr — pB(T)?
2 Pe = GO 1 A0 (BT) + 1) — pa)

= Ri(T'U {z}) — Ri(T).

The first inequality follows sincey is clearly non-increasing an C 7' and the second inequality
follows by applying twice (withu = +(7") anda = ~(T') — p., respectively) the fact that the function
f(z) = &, for a > 0 is non-decreasing.

If insteadz € A?, observe that

o a(SU{z}) =a(S) anda(T U{z}) = a(T);
o B(SU{z}) = B(S) + ps andB(T U {z}) = B(T) + pa;
e %(5U {}) = 4(S) andy(T' U {xr}) = (7).

Hence, we have

Ri(S U {2}) - Ri(S) = ~(5) ( B(S) + pa B(S) )

B(S) +7(S) +ps  B(S) +7(5)
_ P
(B(S) +~(9))(8(
- pay(5)?
~ (B(T) +~(9)(B(T
(
(

S)?
S) +(S) + pz)
)

) +7(5) + pz)
> Pz T)2
— (B(T) +A(D)(BT) ++(T) + pa)

— R(T U{z}) - Ri(T).

Again, the inequality follows sincg is clearly non-decreasing arfl C T and the second inequality
following by applying twice (witha = 5(T) anda = B(T') + p., respectively) the fact that the function
F(2) = . . .

11



We have completed the proof thRt has decreasing marginal utilities. In order to establismoro
tonicity, it suffices to observe that the quantity at the tilghnd side of the second equality in each of
the above two derivations starting witty (S U {z}) — R;(.S) is non-negative. O

Lehmann, Lehmann and Nisan [14] studied the submodulaavesthaximization problem and pro-
vided a simple algorithm that yieldsla2-approximation of the optimal welfare. Their algorithm eon
siders the items one by one and assigns if@émthat agent so that the marginal valuation (the additional
value from the allocation of itenj) is maximized. In our setting, this algorithm can be impletee
as follows. It considers the one-columns first and the zetorens afterwards. Whenever considering
a one-column, one of its 1-value entries forms a column+dogebundle (such a decision definitely
maximizes the increase in the partition value). Whenevasicering a zero-column, it includes it to a
mixed bundle so that the increase in the partition value isimized. Using the terminology of Alon et
al. [2], the algorithm essentially starts with an arbitrapver of the one-columns and then it runs the
greedy completion procedure. Again, we will use the ternedyefor this algorithm.

Theorem 4.2. The greedy algorithm for the asymmetric binary matrix partition problem has approxi-
mation ratio at least 1/2. Thisbound istight.

Proof. The lower bound holds by the equivalence of the greedy dlgorith the algorithm studied by
Lehmann et al.[[14]. Below, we prove the upper bound. In paldr, we show that for every > 0,
there exists an instance of the problem in which the greeglyridhm obtains a partition scheme whose
value is at most /2 + ¢ of the optimal one.

Let k& > 0 be a positive integer and significantly higher thark. Consider the instance of the
asymmetric binary matrix partition that consists of thédwing (k + 1) x (k + 1) matrix

1 0 0 0
0 1 0 0
A= A
00 --- 10
1 1 1 0

wherep; = ,ﬁ%@ fori € [k] andpgiq1 = k_%a So, the firstt columns and rows ofi form an identity
matrix, the last column has only O-value entries and ther@agtconsists of: 1-value entries in the first
k columns. In order to lower-bound the optimal partition ealoonsider the partition scheme consisting
of a full cover of the one-columns by the 1-value entries mfirst% rows and a bundle containing the
whole (k+1)-th row. The optimal partition value is lower-bounded by ¥a&ue of this partition scheme.
By simple calculations, we obtain

On the other hand, the greedy algorithm may select first tercthek one-columns using the 1-value
entries in the last row and, then, bundle the zero-columathtay with only one 1-value entry in some
of the firstk rows. The patrtition value of the greedy algorithm is then

GREEDY = w_
(k+ a)(a+1)

Hence, the ratio between the two partition values is

GREEDY _ (k+a)(k+ (k+1)a)
< .
OPT — (k% +2ak)(a+1)
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Pick an arbitrarily smalb > 0; then, there exist a value far (significantly higher thark) so that the

above ratio satisfie %EPEI.DY < ’?2—21 + 6. The theorem follows by picking sufficiently large and
sufficiently small. O

Can we hope for a better approximation guarantee by stantitiga particular full cover? Recall
that, in principle, this might be possible in the uniformeas Lemma 2]1 indicates. Interestingly, this
is not the case in general as the following statement sugjgest

Lemma 4.3. For every e > 0, there exists an instance of the asymmetric binary matrix partition problem
in which any fully covered solution yields a partition value that is at most 8/9 + e of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix fi@ntpproblem consisting of the matrix

N

Il
— o O =
O = = O
—_— o o o
OO OO

with column probabilitieg; = % fori =1,2,3 andpy = % for 5 > 0. Observe that there are
four fully covered solutions (depending on the selectiothefcolumn-covering bundle in the first two
columns) and, in each of them, the zero-column is bundledtbey with a 1-value entry. Hence, by
making calculation, we obtain that the partition value iesh cases i@%. In contrast, consider
the solution in which the 1-value entriels; and Ay, form column-covering bundles in rowisand?2,
the entriesAs, and Ass are bundled together in ro&/and the entriesdy;, A43, and A4 are bundled
together in rowd. It can be verified that the partition value now becor@?@%. Clearly, the ratio
of the two partition values approach&d from above a@ tends to infinity. Hence, the theorem follows
by selectings sufficiently large for any giveila > 0. O

We can use the more sophisticated smooth greedy algorithivbbgirak [20], which uses value
queries to obtain the following.

Corollary 4.4. There exists a (1 — 1/e)-approximation algorithm for the asymmetric binary matrix
partition problem.

One might hope that due to the particular form of functidys better approximation guarantees
might be possible using thd — 1/e + ¢)-approximation algorithm of Feige and Vondrak][11] which
requires that demand queries of the form

given a priceg; for every itemj € [m], select the bundl& that maximizes the difference
R;(S) — Zjes 45

can be answered in polynomial time. Unfortunately, in outirsg, this is not the case in spite of the
very specific form of the functiom®;.

Lemma 4.5. Answering demand queries associated with the asymmetric binary matrix partition prob-
lem are NP-hard.

Proof. We use reduction fromARTITION to show that the following (very restricted) decision versi
DQ of a demand query is NP-hard.

DQ: Given al x m binary matrixA, probabilitiesp; and prices; for columnj € [m], is
there a seb C [m] such thati?;(S) — >, q; > 5/18?

13



We start from an instance ofARTITION consisting of a collectior® of ¢ items of integer sizev;,
wa, ..., wy and the question of whether there exists a subset C of items such that

E wj = E wj = 1 E wj.
2
jey jEC\Y jec

DefineW =" ._~w;. Given this instance, we construct an instance of DQ with- ¢ + 1 as follows.

jeC
The binary matrix4 consists of a single row that contaih&-value entries with associated probabilities
517y 91 - o @nd a 0-value entry with associated probabiliff2. Set the prices ag; = fg"v{, for

7=1,...,1 anqu_l =0.
By the definition of the functior;, given a sefS C [t + 1], we have

1
1 —WZ' {\S Wi 5
Ri(S)—Z% = oW Z wj + 1 S - Z wj

1 .
= ey 2taw Xsems® W E,
2 2 > W
— § _ = w; + 57 ;e[t]\s J y
Jel\s +22 jeins Wi

Now, consider the functiofi(z) = 2 — &% + 57%;; the equality above implies that

Rz(s)—ZQjZf Z w

Jjes JE[I\S

By nullifying the derivative of functionf, we obtain that is has a unique maximunrat W/2. Since
f(W/2) = 5/18, the instance of DQ is equivalent to asking whether therst&x setS such that
> jei\s Wi = W/2, which is equivalent to asking whether there exists a seeais of total sizéV/2
in the instance of ARTITION. O
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