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Near-optimal asymmetric binary matrix partitions ∗

Fidaa Abed† Ioannis Caragiannis‡ Alexandros A. Voudouris§

Abstract

We study the asymmetric binary matrix partition problem that was recently introduced by Alon et
al. (WINE 2013) to model the impact of asymmetric information on the revenue of the seller in take-
it-or-leave-it sales. Instances of the problem consist of an n×m binary matrixA and a probability
distribution over its columns. A partition schemeB = (B1, ..., Bn) consists of a partitionBi for
each rowi of A. The partitionBi acts as a smoothing operator on rowi that distributes the expected
value of each partition subset proportionally to all its entries. Given a schemeB that induces a
smooth matrixAB , the partition value is the expected maximum column entry ofAB . The objective
is to find a partition scheme such that the resulting partition value is maximized. We present a9/10-
approximation algorithm for the case where the probabilitydistribution is uniform and a(1 − 1/e)-
approximation algorithm for non-uniform distributions, significantly improving results of Alon et
al. Although our first algorithm is combinatorial (and very simple), the analysis is based on linear
programming and duality arguments. In our second result we exploit a nice relation of the problem
to submodular welfare maximization.

1 Introduction

We study theasymmetric binary matrix partition problem, recently proposed by Alon et al. [2]. Consider
a matrixA ∈ {0, 1}n×m and a probability distributionp over its columns;pj denotes the probability
associated with columnj. We distinguish between two cases for the probability distribution over the
columns of the given matrix, depending on whether it is uniform or non-uniform. A partition scheme
B = (B1, ..., Bn) for matrixA consists of a partitionBi of [m] for each rowi of A. More specifically,Bi

is a collection ofki pairwise disjoint subsetsBik ⊆ [m] (with 1 ≤ k ≤ ki) such that
⋃ki

k=1Bik = [m].
We can think of each partitionBi as a smoothing operator, which acts on the entries of rowi and changes
their value to the expected value of the partition subset they belong to. Formally, the smooth value of an
entry(i, j) such thatj ∈ Bik is defined as

AB
ij =

∑

ℓ∈Bik
pℓ · Aiℓ

∑

ℓ∈Bik
pℓ

.

Given a partition schemeB that induces the smooth matrixAB , the resulting partition value is the
expected maximum column entry ofAB , namely,

vB(A, p) =
∑

j∈[m]

pj ·max
i

AB
ij.
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The objective of the asymmetric binary matrix partition problem is to find a partition schemeB such
that the resulting partition valuevB(A, p) is maximized.

Alon et al. [2] were the first to consider the asymmetric matrix partition problem. They proved
that the problem is APX-hard and provided a0.563- and a1/13-approximation for uniform and non-
uniform probability distributions, respectively. They also considered input matrices with non-negative
non-binary entries and presented a1/2- and anΩ(1/ logm)-approximation algorithm for uniform and
non-uniform distributions, respectively. This interesting combinatorial optimization problem has appar-
ent relations to revenue maximization intake-it-or-leave-it sales. For example, consider the following
setting. There arem items andn potential buyers. Each buyer has a value for each item. Nature selects
at random (according to some probability distribution) an item for sale and, then, the seller approaches
the highest valuation buyer and offers the item to her at a price equal to her valuation. Can the seller
exploit the fact that she has much more accurate informationabout the items for sale compared to the
potential buyers? In particular, information asymmetry arises since the seller knows the realization of
the randomly selected item whereas the buyers do not. The approach that is discussed in [2] is to let the
seller define a buyer-specific signaling scheme. That is, foreach buyer, the seller can partition the set of
items into disjoint subsets (bundles) and report this partition to the buyer. After nature’s random choice,
the seller can reveal to each buyer the bundle that contains the realization, thus enabling her to update
her valuation beliefs. The relation of this problem to asymmetric matrix partition should be apparent.
Interestingly, the seller can achieve revenue from items for which no buyer has any value.

This scenario falls within the line of research that studiesthe impact of information asymmetry to
the quality of markets. Akerlof [1] was the first to introducea formal analysis of “markets of lemons”,
where the seller has more information than the buyers regarding the quality of the products. Crawford
and Sobel [7] studied how, in such markets, the seller can exploit her advantage in order to maximize
revenue. In [17], Milgrom and Weber provided the “Linkage Principle” which states that the expected
revenue is enhanced when bidders are provided with more information. This principle seems to suggest
full transparency but, in [15] and [16] the authors suggest that careful bundling of the items is the best
way to exploit information asymmetry. Many different frameworks that reveal information to the bidders
have been proposed in the literature.

More recently, Ghosh et al. [12] considered full information and proposed a clustering scheme
according to which, the items are partitioned into bundles and then, for each such bundle, a separate
second-price auction is performed. In this way, the potential buyers cannot bid only for the items that
they actually want; they also have to compete for items that they do not care. Hence, the demand for
each item is increased and the revenue generated is more. Emek et al. [10] present complexity results in
similar settings and Miltersen and Sheffet [19] consideredfractional bundling schemes for signaling.

In this work we focus on the simplest binary case of asymmetric matrix partition which has been
proved to be APX-hard. We present a9/10-approximation algorithm for the uniform case and a
(1 − 1/e)-approximation algorithm for non-uniform distributions.Both results significantly improve
previous bounds of Alon et al. [2]. The analysis of our first algorithm is quite interesting because,
despite its purely combinatorial nature, it exploits linear programming techniques. Similar techniques
have been used in a series of papers on variants of set cover (e.g. [3, 4, 5, 6]) by the second author; how-
ever, the application of the technique in the current context requires a quite involved reasoning about the
structure of the solutions computed by the algorithm.

In our second result, we exploit a nice relation of the problem to submodular welfare maximization
and use well-known algorithms from the literature. First, we discuss the application of a simple greedy
1/2-approximation algorithm that has been studied by Lehmann et al. [14] and then apply Vondrák’s
smooth greedy algorithm [20] to achieve a(1− 1/e)-approximation. Vondrák’s algorithm is optimal in
the value query model as Khot et al. [13] have proved. In a morepowerful model where it is assumed
that demand queries can be answered efficiently, Feige and Vondrák [11] have proved that(1−1/e+ ǫ)-
approximation algorithms — whereǫ is a small positive constant — are possible. We briefly discuss the
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possibility/difficulty of applying such algorithms to asymmetric binary matrix partition and observe that
the corresponding demand query problems are, in general, NP-hard.

The rest of the paper is structured as follows. We begin with preliminary definitions in section 2.
Then, we present our9/10-approximation algorithm for the uniform case in section 3 and our(1−1/e)-
approximation algorithm for the non-uniform case in section 4.

2 Preliminaries

Let A+ = {j ∈ [m] : there exists a rowi such thatAij = 1} denote the set of columns ofA that
contain at least one 1-value entry, andA0 = [m]\A+ denote the set of columns ofA that contain only 0-
value entries. In the next sections, we usually refer to the setsA+ andA0 as the sets of one-columns and
zero-columns, respectively. Furthermore, letA+

i = {j ∈ [m] : Aij = 1} andA0
i = {j ∈ [m] : Aij = 0}

denote the set of all 1- and 0-value entries of rowi, respectively. Also, denote byr =
∑

j∈A+ pj the
total probability of the one-columns. We say that a one-column j is covered by a partition schemeB
if there is at least one rowi such thatAij = 1 and{j} ∈ Bi; such a singleton{j} is called column-
covering bundle. Subsequently, we say that a schemeB covers the columns ofA+ if every one-column
is covered. Finally, a partition subset is called mixed if itcontains both 1- and 0-value entries.

The following structural properties were first observed in [2].

Lemma 2.1. Given a uniform instance of the asymmetric binary matrix partition problem with a matrix
A, there is an optimal partition scheme with the following properties:

• For each one-column j, there exists exactly one row i with Aij = 1 such that {j} is a column-
covering bundle of Bi.

• For each zero-column j, there exists exactly one row i such that j is contained in the mixed bundle
of Bi (and n− 1 rows in which j is contained in the all-zero bundle).

• For each row i, Bi contains at most one bundle containing all the one-columns (if any) that are
not contained in column-covering bundles of Bi. Such a bundle is a mixed one if it contains
zero-columns.

• For each row i, the zero-columns that are not contained in the mixed bundle of Bi form an all-zero
bundle.

The first two properties imply that we can think of the partition value as the sum of the contributions
of the column-covering bundles and the contributions of thezero-columns in mixed bundles. The third
property should be apparent; the 1-value entries that do notform column-covering bundles are bundled
together with zeros in order to increase the contribution ofthe latter to the partition value. The fourth
property makesB consistent to the definition of a partition scheme where the disjoint union of all the
partition subsets in a row should give[m]. Clearly, the contribution of the all-zero bundles to the partition
value is0.

As we will see later in Section 4, we can consider the problem of computing an optimal partition
scheme as a welfare maximization problem. In welfare maximization, there arem items andn agents;
agenti has a valuation functionvi : 2[m] → R

+ that specifies her value for each subset of the items.
I.e., for a setS of items, vi(S) represents the value of agenti for S. Given a disjoint partition (or
allocation)S = (S1, S2, ..., Sn) of the items to the agents, whereSi denotes the set of items allocated to
agenti, the social welfare is the sum of values of the agents for the sets of items allocated to them, i.e,
SW(S) =

∑

i vi(Si). The term welfare maximization refers to the problem of computing an allocation
of maximum social welfare. We will discuss only the variant of the problem where the valuations are
monotone and submodular; following the literature, we use the term submodular welfare maximization
to refer to it.
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Definition 2.1. A valuation function v is monotone if v(S) ≤ v(T ) for any pair of sets S, T such that
S ⊆ T . A valuation function v is submodular if v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T ) for any pair
of sets S, T such that S ⊆ T and for any item x /∈ T .

An important issue in (submodular) welfare maximization arises with the representation of valuation
functions. A valuation function can be described in detail by listing explicitly the values for each of the
2m possible subsets of items. Unfortunately, this is clearly inefficient due to the necessity for exponential
input size. A solution that has been proposed in the literature is to assume access to these functions by
queries of a particular form. The simplest such form of queries reads as “what is the value of agenti
for the set of itemsS?” These are known as value queries. Another type of queries,known as demand
queries, are phrased as follows: “Given a non-negative price for each item, compute a setS of items for
which the difference of the valuation of agenti minus the sum of prices for the items inS is maximized.”
Approximation algorithms that use a polynomial number of valuation or demand queries and obtain
solutions to submodular welfare maximization with a constant approximation ratio are well-known in
the literature. Our improved approximation algorithm for the non-uniform case of asymmetric binary
matrix partition exploits such algorithms.

3 The uniform case

In this section, we present the analysis of a greedy approximation algorithm in the case where the
probability distributionp over the columns of the given matrix is uniform.

Our algorithm uses a greedy completion procedure which, given a cover of the matrix, can complete
the partition schemeB by including the zero-columns into mixed bundles such that the additional parti-
tion value is as high as possible. Formally, the greedy completion procedure goes over the zero-columns,
one by one, and adds a zero-column to the mixed bundle of that row which maximizes the marginal con-
tribution of the zero-column. The marginal contribution (or marginal partition value) of a zero-column
when it is added to a mixed bundle consisting ofx zero-columns andy 1-value entries is given by the
quantity

∆(x, y) = (x+ 1)
y

x+ y + 1
− x

y

x+ y
=

y2

(x+ y)(x+ y − 1)
.

Alon et al. [2] have shown that, in the uniform case, this greedy completion procedure yields the optimal
contribution from the zero-columns to the partition value.We extensively use this property as well as
the fact that∆(x, y) is non-decreasing with respect toy.

So, our algorithm consists of two phases. In the first phase, called the cover phase, our algorithm
computes an arbitrary cover ofA+. In the second phase, called the greedy phase, it runs the greedy
completion procedure mentioned above. In the rest of this section, we will show that this simple algo-
rithm obtains an approximation ratio of9/10; we will also show that our analysis is tight. Even though
our algorithm is purely combinatorial, our analysis exploits linear programming duality.

The partition value obtained by the algorithm can be thoughtof as the sum of the partition value
from the one-columns in the cover (this is exactlyr) plus the additional partition value obtained from the
mixed bundles created during the greedy phase. In our analysis, we distinguish between two main cases.
Denote byρ the ratio between the number of 1-value entries in the mixed bundles of the optimal solution
and the number of zero-columns. The first case is whenρ < 1; in this case, the additional partition value
obtained during the greedy phase of the algorithm is lower-bounded by the partition value we would
have by creating bundles containing exactly one 1-value entry and either⌈1/ρ⌉ or ⌊1/ρ⌋ zero-columns.

Lemma 3.1. If ρ < 1, then the partition value obtained by the algorithm is at least 0.97 of the optimal
one.
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Proof. In order to upper-bound the contribution of the zero-columns to the optimal solution, it suffices to
assume that all mixed bundles have a ratio between 1-value entries and zero-columns equal toρ. Then,
an upper-bound for the optimal partition value is given by

OPT≤ r + (1− r)
ρ

ρ+ 1
.

On the other hand, we will lower-bound the partition value returned by the algorithm by con-
sidering the following (not necessarily optimal) formation of mixed bundles as an alternative to the
greedy completion procedure used in the greedy phase. Amongthem(1 − r) zero-columns, we pick
ρm(1 − r) 1-value entries that were not used by the algorithm in the cover phase and assign each of
them with either⌈1/ρ⌉ or ⌊1/ρ⌋ zero-columns in order to create mixed bundles that contain all zero-
columns. Clearly, this process yields an optimal partitionvalue if 1/ρ is an integer. Otherwise, denote
by x = m(1− r)(1− ρ⌊1/ρ⌋) the number of mixed bundles containing⌈1/ρ⌉ zero-columns. Then, the
number of mixed bundles containing⌊1/ρ⌋ zero-columns will beρm(1−r)−x = m(1−r)(ρ⌈1/ρ⌉−1).
Observe that the smooth value of a zero-column is11+⌈1/ρ⌉ in the first case and 1

1+⌊1/ρ⌋ in the second
case. Hence, we can bound the partition value obtained by thealgorithm as follows.

ALG ≥ r + (1− r)(1− ρ⌊1/ρ⌋)
⌈1/ρ⌉

1 + ⌈1/ρ⌉
+ (1− r)(ρ⌈1/ρ⌉ − 1)

⌊1/ρ⌋

1 + ⌊1/ρ⌋
.

Now, assuming thatρ ∈ ( 1
k+1 ,

1
k ) for some integerk ≥ 1, we have that⌊1/ρ⌋ = k and⌈1/ρ⌉ = k + 1

and, hence,

ALG ≥ r + (1− r)
1 + ρk(k + 1)

(k + 1)(k + 2)
.

We have

ALG
OPT

≥
r + (1− r) 1+ρk(k+1)

(k+1)(k+2)

r + (1− r) ρ
ρ+1

≥

1+ρk(k+1)
(k+1)(k+2)

ρ
ρ+1

=
(1 + 1/ρ)(1 + ρk(k + 1)

(k + 1)(k + 2)
.

This last expression is minimized (with respect toρ) for 1/ρ =
√

k(k + 1). Hence,

ALG
OPT

≥

(

1 +
√

k(k + 1)
)2

(k + 1)(k + 2)
,

which is minimized fork = 1 to approximately0.97.

For the caseρ ≥ 1, we use completely different arguments. The first idea is to reason about the
solution produced by the algorithm by reasoning about a set of mixed bundles that are obtained by
decomposing the set of mixed bundles computed in the greedy phase. Then, the contribution of the
zero-columns to the partition value in the solution computed by the algorithm is lower-bounded by their
contribution to the partition value in the set of mixed bundles obtained after the decomposition.

The decomposition is defined as follows. It takes as input a bundle withy zero-columns andx 1-
value entries and decomposes it intoy bundles containing exactly one zero-column and either⌊x/y⌋ or
⌈x/y⌉ 1-value entries. Note that ifx/y is not an integer, there will be(x− y)⌈t/y⌉ bundles with⌈x/y⌉
1-values entries. The solution obtained after the decomposition to the solution returned by the algorithm
has a very special structure. Due to the greedy phase of the algorithm, it turns out that the set of mixed
bundles after the decomposition has a particular structure.
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Lemma 3.2. There exists an integer s ≥ 1 such that each bundle in the decomposition has at least s
and at most 3s 1-value entries.

Proof. Consider the application of the decomposition step to the mixed bundles that are computed by the
algorithm and lets be the minimum number of 1-value entries among the decomposed mixed bundles.
This implies that one of the mixed bundles computed by the algorithm hasµ zero-columns and at most
(s + 1)µ − 1 1-value entries. Denoting byν the number of 1-value entries in this bundle, we have that
the marginal partition value when the last zero-columnZ is included in the first mixed bundle is exactly

∆(µ, ν) =
ν2

(ν + µ)(ν + µ− 1)
≤

((s+ 1)µ − 1)2

((s + 2)µ − 1)((s + 2)µ− 2)

since∆(µ, ν) is increasing inν andν ≤ (s+1)µ− 1. The rightmost expression is decreasing inµ ≥ 1
and, hence, the marginal partition value ofZ is at most s

s+1 .
Now assume for the sake of contradiction that one of the mixedbundles obtained after the decompo-

sition has at least3s+ 1 1-value entries. Clearly, this must have been obtained by the decomposition of
a mixed bundle (returned by the algorithm) withλ zero-columns and at least(3s + 1)λ 1-value entries.
Denote byν ′ the number of 1-value entries in this bundle and let us compute the marginal partition value
if the zero-columnZ would be included in this bundle. This would be

∆(λ+ 1, ν ′) =
ν ′2

(ν ′ + λ+ 1)(ν ′ + λ)

≥
(3s + 1)2λ

((3s + 2)λ+ 1)(3s + 2)

≥
(3s+ 1)2

(3s+ 3)(3s + 2)
.

The first inequality follows since the marginal partition value function is increasing inν ′ ≥ (3s + 1)λ
and the second one follows sinceλ ≥ 1. Now, the last quantity can be easily be verified to be strictly
higher that s

s+1 and the algorithm should have putZ in this mixed bundle instead. We have reached the
desired contradiction that proves the lemma.

Now, our analysis proceeds as follows. For every triplet,r ∈ [0, 1], ρ ≥ 1 and integers > 0, we
will prove that any solution consisting of an arbitrary cover of therm one-columns and the decomposed
set of bundles containing at leasts and at most3s 1-value entries yields a9/10-approximation of the
optimal partition value. By the discussion above, this willalso be the case for the solution returned
by the algorithm. In order to account for the worst-case contribution of zero-columns to the partition
value for a given triplet of parameters, we will use the following linear program, which we denote by
LP(r, ρ, s):

minimize
3s
∑

k=s

k

k + 1
θk

subject to:
3s
∑

k=s

θk = 1− r

3s
∑

k=s

kθk ≥ ρ(1− r)− r

θk ≥ 0, k = s, ..., 3s

The variableθk denotes the total probability of the zero-columns that participate in bundles withk
1-value entries. The objective is to minimize the contribution of the zero-columns to the partition value
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obtained from the mixed bundles. The equality constraint means that all zero-columns have to participate
in bundles. The inequality constraint requires that the number of 1-value entries in bundles used by the
algorithm is at least the number of 1-value entries in mixed bundles of the optimal solution minus the 1-
value entries in the cover since for every selection of the cover, the algorithm will have the same number
of 1-value entries available to form mixed bundles. Due to the structure of the solution obtained after the
decomposition and the way the linear program is formulated,we can make the following observation.

Informally, the linear program answers (rather pessimistically) the question: how inefficient
can the algorithm be? In particular, given an instance with parametersr and ρ, the quantity
minints LP(r, ρ, s) yields a lower bound on the contribution of the zero-columnsto the partition value
andr+minints LP(r, ρ, s) is a lower bound on the partition value. The next lemma completes the proof
for the caseρ ≥ 1.

Lemma 3.3. For every r ∈ [0, 1] and ρ ≥ 1,

r +min
int s

LP(r, ρ, s) ≥
9

10
OPT.

Proof. We will prove this lemma using LP-duality. The dual of LP(r, ρ, s) is:

maximize (1− r)α+ ((1 − r)ρ− r))β

subject to: kβ + α ≤
k

k + 1
, k = s, ..., 3s

β ≥ 0

As we did in Lemma 3.1, we will bound the optimal partition value as

OPT≤ r + (1− r)
ρ

ρ+ 1
=

ρ+ r

ρ+ 1
.

Hence, it suffices to show that, for every triplet of parameters (r, ρ, s), there is a feasible dual solution
D that satisfies

r +D ≥
9

10

ρ+ r

ρ+ 1
. (1)

The feasible region of the dual is defined by the linesβ = 0, α = s
s+1 − sβ andα = 3s

3s+1 − 3sβ;
the remaining constraints can be easily seen to be redundant. The two important intersections of those

lines are the points(α, β) =
(

s
s+1 , 0

)

and(α, β) =
(

3s2

(s+1)(3s+1) ,
1

(s+1)(3s+1)

)

with objective values

D1 = s
s+1(1 − r) andD2 = 3s2

(s+1)(3s+1) (1 − r) + ρ(1−r)−r
(s+1)(3s+1) , respectively. We will show that one

of these two points (depending on which has the highest dual objective value) can always be used as a
feasible dual solution in order to prove inequality (1). We distinguish between several cases.

Case I: ρ− r
1−r ≤ s. In this case observe thatD1 ≥ D2 and, thus, it suffices to prove that

r +
s

s+ 1
(1− r) ≥

9

10

ρ+ r

ρ+ 1
. (2)

Subcase I.1: s = 1. We have that the difference between the left hand side and the right hand side of
inequality (2) yields:

1 + r

2
−

9

10

ρ+ r

ρ+ 1
=

1

2
−

9ρ

10(ρ+ 1)
+ r

(

1

2
−

9

10(ρ+ 1)

)

7



Sinceρ ≥ 1, we have that12 − 9
10(ρ+1) ≥ 0, and we can lower bound the above quantity using the

constraintr ≥ ρ−1
ρ (which is obtained from the fact thatρ− r

1−r ≤ 1), as follows:

1 + r

2
−

9

10

ρ+ r

ρ+ 1
≥

1

2
−

9ρ

10(ρ+ 1)
+

ρ− 1

ρ

(

1

2
−

9

10(ρ+ 1)

)

=
(ρ− 2)2

10ρ(ρ + 1)
≥ 0

Subcase I.2: ρ− r
1−r > 1 andρ− r

1−r ≤ s with s > 1. We have that the difference between the left
hand side and the right hand side of inequality (2) can be lower-bounded by replacings by ρ− r

1−r ; note
that the function s

s+1 is non-decreasing with respect tos. Hence, we have that

r +
s

s+ 1
(1− r)−

9

10

ρ+ r

ρ+ 1

≥ r +
ρ− r

1−r

ρ− r
1−r + 1

(1− r)−
9

10

ρ+ r

ρ+ 1

≥
10(ρ+ 1)(ρ(1 − r)− 2r + 1)r

10(ρ + 1)(ρ− r
1−r + 1)(1 − r)

+
10(ρ(1 − r)− r)(ρ+ 1)(1 − r)

10(ρ + 1)(ρ− r
1−r + 1)(1 − r)

−
9(ρ+ 1)(ρ(1 − r)− 2r + 1)

10(ρ+ 1)(ρ − r
1−r + 1)(1− r)

=
(8− ρ)r2 − (ρ2 + ρ+ 9)r + ρ2 + ρ

10(ρ + 1)(ρ− r
1−r + 1)(1 − r)

.

Now, observe that the quadratic function (with respect tor) in the numerator of the above fraction is
positive for r = 0 and negative forr = 1. This means that forr = 1 the value of this function is
between its two roots. Hence, sincer ≤ ρ−1

ρ , it suffices to show that, forr = ρ−1
ρ , the quadratic

function has a positive value. We have:

(8− ρ)

(

ρ− 1

ρ

)2

− (ρ2 + ρ+ 9)
ρ− 1

ρ
+ ρ2 + ρ

=
1

ρ2
(

(8− ρ)(ρ2 − 2ρ+ 1)− (ρ2 − ρ)(ρ2 + ρ+ 9) + ρ4 + ρ3
)

=
2(ρ− 2)2

ρ2

≥ 0

Case II: ρ− r
1−r ≥ s. Here, it holds thatD2 ≥ D1 and, thus, it suffices to prove that

r +
3s2

(s+ 1)(3s + 1)
(1− r) +

ρ(1− r)− r

(s+ 1)(3s + 1)
≥

9

10

ρ+ r

ρ+ 1
. (3)

Let ŝ denote the (not necessarily integer) value ofs that minimizesD2. Then, by nullifying the partial
derivative ofD2 with respect tos we have that̂s has to satisfy the equality

ρ−
r

1− r
=

6ŝ2 + 3ŝ

3ŝ+ 2
.

The value ofD2 at ŝ equals

D2 = (1− r)
3ŝ2 + ρ− r

1−r

(ŝ+ 1)(3ŝ + 1)
= (1− r)

3ŝ

3ŝ+ 2

8



and, thus, it suffices to prove that

r + (1− r)
3ŝ

3ŝ + 2
≥

9

10

ρ+ r

ρ+ 1
.

Now, observe that the functionf(x) = 3x
3x+2 is non-decreasing, and that in the case whereŝ ≥ 6, the

above inequality holds trivially, since

r + (1− r)
3ŝ

3ŝ+ 2
≥ r +

9

10
(1− r) ≥

9

10

ρ+ r

ρ+ 1
.

Otherwise, in the case wheres < 6 we will use different arguments and we will prove directly the
desired inequality

3s2

(s+ 1)(3s + 1)
(1− r) +

ρ(1− r)− r

(s+ 1)(3s + 1)
+ r −

9

10

ρ+ r

ρ+ 1
≥ 0.

The left hand side of this inequality can be lower-bounded asfollows:

3s2

(s + 1)(3s + 1)
(1− r) +

ρ(1− r)− r

(s + 1)(3s + 1)
+ r −

9

10

ρ+ r

ρ+ 1

=
3s2 + ρ

(3s+ 1)(s + 1)
−

9ρ

10(ρ+ 1)
− r

(

3s2 + ρ+ 1

(3s+ 1)(s + 1)
+

9

10(ρ+ 1)
− 1

)

=
10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s + 1)(s + 1)(ρ+ 1)
− r

(

10ρ2 − (40s − 10)ρ + 27s2 − 4s+ 9

10(3s + 1)(s + 1)(ρ+ 1)

)

≥
10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s + 1)(s + 1)(ρ+ 1)

− r

(

10ρ2 − (40s − 10)ρ + 27s2 − 4s+ 9

10(3s + 1)(s + 1)(ρ+ 1)
+

13s2 − 16s − 13/2

10(3s + 1)(s + 1)(ρ+ 1)

)

=
10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s + 1)(s + 1)(ρ+ 1)
− r

10ρ2 − (40s − 10)ρ + 40s2 − 20s+ 5/2

10(3s + 1)(s + 1)(ρ+ 1)

Now observe that the quadratic function10ρ2 − (40s − 10)ρ + 40s2 − 20s + 5/2 is positive for any
value ofρ ≥ 1. This means that we can use the inequalitiesr ≤ ρ−s

ρ−s+1 andρ ≥ s (which are implied
by the constraintρ− r

1−r ≥ s) and have that

3s2

(s+ 1)(3s + 1)
(1− r) +

ρ(1− r)− r

(s+ 1)(3s + 1)
+ r −

9

10

ρ+ r

ρ+ 1

≥
10ρ2 − (−3s2 + 36s − 1)ρ+ 30s2

10(3s + 1)(s + 1)(ρ + 1)

−
ρ− s

ρ− s+ 1

(

10ρ2 − (40s − 10)ρ+ 40s2 − 20s + 5/2

10(3s + 1)(s + 1)(ρ + 1)

)

.

In order to simplify some of the terms, notice that it sufficesto show that

(

10ρ2 − (−3s2 + 36s − 1)ρ+ 30s2
)

(ρ− s+ 1)− (ρ− s)

(

10ρ2 − (40s − 10)ρ + 40s2 − 20s +
5

2

)

= (3s2 + 4s+ 1)ρ2 −

(

3s3 + 11s2 + 7s +
3

2

)

ρ+ 10s3 + 10s2 +
5

2
s

≥ 0,

which is true since3s2 + 4s + 1 > 0 and the discriminant of this quadratic function with respect to ρ
equals9s6 − 54s5 − 117s4 − 67s3 + 2s2 + 11s + 9/4 which is negative fors ∈ {1, 2, ..., 5}.

9



The next statement summarizes the discussion in this section.

Theorem 3.4. The algorithm always yields a 9/10-approximation of the optimal partition value.

Our analysis is tight as our next counter-example suggests.

Theorem 3.5. There exists an instance of the uniform asymmetric binary matrix partition problem for
which the greedy algorithm computes a partition scheme with value (at most) 9/10 of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem that consists of the
matrix

A =









1 0 0 0
0 1 0 0
1 1 0 0
1 1 0 0









with pi = 1/4 for i = 1, 2, 3, 4. The optimal partition value is obtained by covering the one-columns
using the 1-value entries in the first two rows and then bundling each of the two zero-columns with a
pair of 1-value entries in the third and fourth row, respectively. This yields a partition value of5/6. The
greedy algorithm may select to cover the one-columns using the 1-value entriesA31 andA42. This is
possible since the greedy algorithm has no particular criterion for breaking ties when selecting the full
cover. Given this full cover, the greedy completion procedure will assign each of the two zero-columns
with one 1-value entry. The partition value is then3/4, i.e.,9/10 times the optimal partition value.

4 Asymmetric binary matrix partition as submodular welfare maximiza-
tion

In general, the partition value can be thought of as the sum ofa contribution to the partition value from
each row. In particular, given a setS consisting of a set of 0-value entriesS ∩ A0

i and a set of column-
covering 1-value entriesS ∩A+

i , the contribution to the partition value of rowi can be described by the
function

Ri(S) =
∑

j∈S∩A+

i

pj +

∑

j∈S∩A0
i
pj

∑

j∈A+

i \S pj
∑

j∈S∩A0
i
pj +

∑

j∈A+

i \S pj
.

Then, the partition scheme can be thought of as a collection of disjoint setsBi (with one set per row) such
thatBi contains those columns whose entries achieve their maximumsmooth value in rowi. Hence,
the partition value of the partition schemeB is vB(A, p) =

∑

i∈[n]Ri(Bi). Hence, the problem is
essentially equivalent to welfare maximization where the rows act as the agents who will be allocated
bundles of items. The set of items consists of two kinds of items: one-items corresponding to one-
columns and zero-items corresponding to zero-columns.

Lemma 4.1. For every row i, the function Ri is non-decreasing and submodular.

Proof. We will show that the functionRi is non-decreasing and has decreasing marginal utilities, i.e.,

• (monotonicity) for every setS and itemx 6∈ S, it holds thatRi(S) ≤ Ri(S ∪ {x});

• (decreasing marginal utilities) for every pair of setsS, T such thatS ⊆ T and every itemx 6∈ T ,
it holds thatRi(S ∪ {x})−Ri(S) ≥ Ri(T ∪ {x})−Ri(T ).

10



In order to simplify notation, let us define the functionsα(S) =
∑

j∈S∩A+

i
pj, β(S) =

∑

j∈S∩A0
i
pj and

γ(S) =
∑

j∈A+

i \S pj. We can rewrite the functionRi as

Ri(S) = α(S) +
β(S) · γ(S)

β(S) + γ(S)
.

Let S, T ⊆ [m] be two sets of columns such thatS ⊆ T and letx be a column that does not belong
to setT . We distinguish between two cases depending onx. If x ∈ A+

i , observe that

• α(S ∪ {x}) = α(S) + px andα(T ∪ {x}) = α(T ) + px;

• β(S ∪ {x}) = β(S) andβ(T ∪ {x}) = β(T );

• γ(S ∪ {x}) = γ(S)− px andγ(T ∪ {x}) = γ(T )− px.

Using the definition of functionRi, we have

Ri(S ∪ {x}) −Ri(S) = px + β(S)

(

γ(S)− px
β(S) + γ(S)− px

−
γ(S)

β(S) + γ(S)

)

= px −
pxβ(S)

2

(β(S) + γ(S)) · (β(S) + γ(S)− px)

≥ px −
pxβ(S)

2

(β(S) + γ(T ))(β(S) + γ(T )− px)

≥ px −
pxβ(T )

2

(β(T ) + γ(T ))(β(T ) + γ(T )− px)

= Ri(T ∪ {x}) −Ri(T ).

The first inequality follows sinceγ is clearly non-increasing andS ⊆ T and the second inequality
follows by applying twice (witha = γ(T ) anda = γ(T ) − px, respectively) the fact that the function
f(z) = z

z+a for a ≥ 0 is non-decreasing.
If insteadx ∈ A0

i , observe that

• α(S ∪ {x}) = α(S) andα(T ∪ {x}) = α(T );

• β(S ∪ {x}) = β(S) + px andβ(T ∪ {x}) = β(T ) + px;

• γ(S ∪ {x}) = γ(S) andγ(T ∪ {x}) = γ(T ).

Hence, we have

Ri(S ∪ {x})−Ri(S) = γ(S)

(

β(S) + px
β(S) + γ(S) + px

−
β(S)

β(S) + γ(S)

)

=
pxγ(S)

2

(β(S) + γ(S))(β(S) + γ(S) + px)

≥
pxγ(S)

2

(β(T ) + γ(S))(β(T ) + γ(S) + px)

≥
pxγ(T )

2

(β(T ) + γ(T ))(β(T ) + γ(T ) + px)

= Ri(T ∪ {x})−Ri(T ).

Again, the inequality follows sinceβ is clearly non-decreasing andS ⊆ T and the second inequality
following by applying twice (witha = β(T ) anda = β(T )+ px, respectively) the fact that the function
f(z) = z

z+a with a ≥ 0 is non-decreasing.
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We have completed the proof thatRi has decreasing marginal utilities. In order to establish mono-
tonicity, it suffices to observe that the quantity at the right-hand side of the second equality in each of
the above two derivations starting withRi(S ∪ {x})−Ri(S) is non-negative.

Lehmann, Lehmann and Nisan [14] studied the submodular welfare maximization problem and pro-
vided a simple algorithm that yields a1/2-approximation of the optimal welfare. Their algorithm con-
siders the items one by one and assigns itemj to that agent so that the marginal valuation (the additional
value from the allocation of itemj) is maximized. In our setting, this algorithm can be implemented
as follows. It considers the one-columns first and the zero-columns afterwards. Whenever considering
a one-column, one of its 1-value entries forms a column-covering bundle (such a decision definitely
maximizes the increase in the partition value). Whenever considering a zero-column, it includes it to a
mixed bundle so that the increase in the partition value is maximized. Using the terminology of Alon et
al. [2], the algorithm essentially starts with an arbitrarycover of the one-columns and then it runs the
greedy completion procedure. Again, we will use the term greedy for this algorithm.

Theorem 4.2. The greedy algorithm for the asymmetric binary matrix partition problem has approxi-
mation ratio at least 1/2. This bound is tight.

Proof. The lower bound holds by the equivalence of the greedy algorithm with the algorithm studied by
Lehmann et al. [14]. Below, we prove the upper bound. In particular, we show that for everyǫ > 0,
there exists an instance of the problem in which the greedy algorithm obtains a partition scheme whose
value is at most1/2 + ǫ of the optimal one.

Let k > 0 be a positive integer andα significantly higher thank. Consider the instance of the
asymmetric binary matrix partition that consists of the following (k + 1)× (k + 1) matrix

A =















1 0 · · · 0 0
0 1 · · · 0 0
...

...
. ..

...
...

0 0 · · · 1 0
1 1 · · · 1 0















wherepi = 1
k+α for i ∈ [k] andpk+1 = α

k+α . So, the firstk columns and rows ofA form an identity
matrix, the last column has only 0-value entries and the lastrow consists ofk 1-value entries in the first
k columns. In order to lower-bound the optimal partition value, consider the partition scheme consisting
of a full cover of the one-columns by the 1-value entries in the firstk rows and a bundle containing the
whole(k+1)-th row. The optimal partition value is lower-bounded by thevalue of this partition scheme.
By simple calculations, we obtain

OPT≥
k2 + 2αk

(k + α)2
.

On the other hand, the greedy algorithm may select first to cover thek one-columns using the 1-value
entries in the last row and, then, bundle the zero-column together with only one 1-value entry in some
of the firstk rows. The partition value of the greedy algorithm is then

GREEDY=
k + (k + 1)α

(k + α)(α + 1)
.

Hence, the ratio between the two partition values is

GREEDY
OPT

≤
(k + α)(k + (k + 1)α)

(k2 + 2αk)(α + 1)
.
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Pick an arbitrarily smallδ > 0; then, there exist a value forα (significantly higher thank) so that the
above ratio satisfiesGREEDY

OPT ≤ k+1
2k + δ. The theorem follows by pickingk sufficiently large andδ

sufficiently small.

Can we hope for a better approximation guarantee by startingwith a particular full cover? Recall
that, in principle, this might be possible in the uniform case as Lemma 2.1 indicates. Interestingly, this
is not the case in general as the following statement suggests.

Lemma 4.3. For every ǫ > 0, there exists an instance of the asymmetric binary matrix partition problem
in which any fully covered solution yields a partition value that is at most 8/9 + ǫ of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem consisting of the matrix

A =









1 0 0 0
0 1 0 0
0 1 0 0
1 0 1 0









with column probabilitiespi = 1
β+3 for i = 1, 2, 3 andp4 = β

β+3 for β > 0. Observe that there are
four fully covered solutions (depending on the selection ofthe column-covering bundle in the first two
columns) and, in each of them, the zero-column is bundled together with a 1-value entry. Hence, by
making calculation, we obtain that the partition value in these cases is 4β+3

(β+1)(β+3) . In contrast, consider
the solution in which the 1-value entriesA11 andA22 form column-covering bundles in rows1 and2,
the entriesA32 andA33 are bundled together in row3 and the entriesA41, A43, andA44 are bundled
together in row4. It can be verified that the partition value now becomes4.5β+5

(β+2)(β+3) . Clearly, the ratio
of the two partition values approaches8/9 from above asβ tends to infinity. Hence, the theorem follows
by selectingβ sufficiently large for any givenǫ > 0.

We can use the more sophisticated smooth greedy algorithm byVondrák [20], which uses value
queries to obtain the following.

Corollary 4.4. There exists a (1 − 1/e)-approximation algorithm for the asymmetric binary matrix
partition problem.

One might hope that due to the particular form of functionsRi, better approximation guarantees
might be possible using the(1 − 1/e + ǫ)-approximation algorithm of Feige and Vondrák [11] which
requires that demand queries of the form

given a priceqj for every itemj ∈ [m], select the bundleS that maximizes the difference
Ri(S)−

∑

j∈S qj

can be answered in polynomial time. Unfortunately, in our setting, this is not the case in spite of the
very specific form of the functionRi.

Lemma 4.5. Answering demand queries associated with the asymmetric binary matrix partition prob-
lem are NP-hard.

Proof. We use reduction from PARTITION to show that the following (very restricted) decision version
DQ of a demand query is NP-hard.

DQ: Given a1 ×m binary matrixA, probabilitiespj and pricesqj for columnj ∈ [m], is
there a setS ⊆ [m] such thatRi(S)−

∑

j∈S qj ≥ 5/18?
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We start from an instance of PARTITION consisting of a collectionC of t items of integer sizew1,
w2, ...,wt and the question of whether there exists a subsetY ⊆ C of items such that

∑

j∈Y

wj =
∑

j∈C\Y

wj =
1

2

∑

j∈C

wj .

DefineW =
∑

j∈C wj . Given this instance, we construct an instance of DQ withm = t+1 as follows.
The binary matrixA consists of a single row that containst 1-value entries with associated probabilities
w1

2W , w2

2W , ..., wt

2W and a 0-value entry with associated probability1/2. Set the prices asqj =
5wj

18W for
j = 1, ..., t andqt+1 = 0.

By the definition of the functionRi, given a setS ⊆ [t+ 1], we have

Ri(S)−
∑

j∈S

qj =
1

2W

∑

j∈S\{t+1}

wj +

1
4W

∑

j∈[t]\S wj

1
2 +

1
2W

∑

j∈[t]\S wj
−

5

18W

∑

j∈S\{t+1}

wj

=
2

9
−

2

9W

∑

j∈[t]\S

wj +

∑

j∈[t]\S wj

2W + 2
∑

j∈[t]\S wj
.

Now, consider the functionf(z) = 2
9 −

2z
9W + z

2W+2z ; the equality above implies that

Ri(S)−
∑

j∈S

qj = f





∑

j∈[t]\S

wj



 .

By nullifying the derivative of functionf , we obtain that is has a unique maximum atz = W/2. Since
f(W/2) = 5/18, the instance of DQ is equivalent to asking whether there exists a setS such that
∑

j∈[t]\S wj = W/2, which is equivalent to asking whether there exists a set of items of total sizeW/2
in the instance of PARTITION.
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