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ABSTRACT

Motivation: Recent breakthroughs in protein residue–residue contact

prediction have made reliable de novo prediction of protein structures

possible. The key was to apply statistical methods that can distinguish

direct couplings between pairs of columns in a multiple sequence

alignment from merely correlated pairs, i.e. to separate direct from

indirect effects. Two classes of such methods exist, either relying on

regularized inversion of the covariance matrix or on pseudo-likelihood

maximization (PLM). Although PLM-based methods offer clearly

higher precision, available tools are not sufficiently optimized and

are written in interpreted languages that introduce additional over-

heads. This impedes the runtime and large-scale contact prediction

for larger protein families, multi-domain proteins and protein–protein

interactions.

Results: Here we introduce CCMpred, our performance-optimized

PLM implementation in C and CUDA C. Using graphics cards in the

price range of current six-core processors, CCMpred can predict

contacts for typical alignments 35–113 times faster and with the

same precision as the most accurate published methods. For users

without a CUDA-capable graphics card, CCMpred can also run in a

CPU mode that is still 4–14 times faster. Thanks to our speed-ups

(http://dictionary.cambridge.org/dictionary/british/speed-up) contacts

for typical protein families can be predicted in 15–60 s on a con-

sumer-grade GPU and 1–6 min on a six-core CPU.

Availability and implementation: CCMpred is free and open-source

software under the GNU Affero General Public License v3 (or later)

available at https://bitbucket.org/soedinglab/ccmpred

Contact: johannes.soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Evolutionary pressure to maintain a stable protein structure

gives rise to correlated mutations between contacting residue

pairs. These correlated mutations can be observed in a multiple

sequence alignment (MSA) of the protein family and can be used

to predict residue–residue contacts. A recent breakthrough

was achieved by applying methods from statistics and statistical

physics that aim at disentangling direct couplings from mere
correlations between MSA columns (Ekeberg et al., 2013;

Kamisetty et al., 2013; Marks et al., 2011; Weigt et al., 2009).
This has resulted in a boost in contact prediction accuracy,

thanks to which it is now possible to reliably predict protein
structures using only sequence information if enough homolo-

gous sequences are available (Hopf et al., 2012; Marks et al.,
2011; Nugent and Jones, 2012). Currently, 30% of Pfam families

meet a reasonable criterion of having three homologous se-
quences per residue in the chain (see Supplementary Section 7

for details).
Modern contact prediction methods differ by their strategy in

the disentangling step: the most accurate class of methods

(Ekeberg et al., 2013; Kamisetty et al., 2013) such as plmDCA
(Ekeberg et al., 2013) and GREMLIN (Kamisetty et al., 2013)

learn the direct couplings as parameters of a Markov random
field by maximizing its pseudo-likelihood, which has runtime

complexity of O(NL2) where N is the number of homologous
sequences in the MSA and L its number of columns. The less

accurate methods based on sparse covariance matrix inversion
such as PSICOV (Jones et al., 2012) or Mean Field Direct

Coupling Analysis use the sequence information only in a pre-
processing step, while the main computation in O(L3) is inde-

pendent of N. This makes them fast for short alignments (small
L) but slow for large alignments. Whereas most protein families

used for benchmarking so far have been relatively short, in prac-
tice, longer alignments are more relevant, for example, to predict

interdomain or even interprotein contacts (Ovchinnikov et al.,
2014). Still, existing methods would take �29 CPU years to com-

plete large-scale studies such as the computation of contact
predictions for the 30% of Pfam with sufficient sequence cover-

age (see Supplementary Section 7).

2 RESULTS

CCMpred implements the approach taken in plmDCA
and GREMLIN, which is based on maximizing the pseudo-

likelihood of an L2-regularized Markov random field (see
Supplementary Information for details). After successful opti-
mization, the couplings are ranked by the Frobenius norms of

the pairwise potentials and the average product correction
(Dunn et al., 2008) is applied to compute the final score.

As explained in the Supplementary Information, the task of
computing the gradient of the pseudo-likelihood represents an

almost ideal use-case for GPUs, as the computations can be run
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efficiently in parallel on the thousands of GPU processors with

little idling due to memory access limitations.

We compare the runtimes and precisions of CCMpred with

two other pseudo-likelihood maximization (PLM)-based tools,

plmDCA (plmDCA-symmetric 3, plmDCA-asymmetric 1) and

GREMLIN (version 2.01), and with the covariance matrix in-

version-based tool PSICOV. The recently published FreeContact

(Kaj�an et al., 2014) software is much faster than PSICOV but

clearly less accurate than plmDCA and GREMLIN and was not

included here.

2.1 Precision

For benchmarking the precision of contact prediction methods,

we use the same set of 150 Pfam families with �1000 sequences

and high-resolution structures (�1.9 Å) with identical input

alignments as used in the PSICOV (Jones et al., 2012) method.

We rank the list of predicted contacts and determine the fraction

of physical contacts (C� distance � 8 Å) when selecting increas-

ing numbers of contacts. Figure 1 shows that CCMpred is

among the top tools.

2.2 Runtimes

For runtime benchmarks, we generated synthetic MSAs with

3000 sequences and 50, 100, . . . , 1000 columns (real alignments

show similar speedups but exhibit more variance in their

runtimes—see Supplementary Fig. S4 for details). Because

GPUs and CPUs differ in their numbers of cores, frequency

per core, etc., we attempt to make a fair comparison by compar-

ing runtimes for hardware of similar price. We ran the GPU

version of CCMpred on an NVIDIA GeForce GTX 780 Ti, all

CPU-based methods on an Intel Xeon E5–2620 six-core proces-

sor. Alignments with L4500 were run on a Tesla K40 GPU with

12 GB RAM (gray points).
Figure 2 shows the runtime of the methods for increasing

alignment length. PSICOV is the fastest CPU method for small

L, as its runtime is independent of sequence count. However, for

L � 150, CCMpred becomes faster than PSICOV for alignments

with typical numbers of sequences (N � 3000). At typical align-

ment lengths of L=300, the CCMpred GPU code is 35 times

faster than plmDCA, 113 times faster than GREMLIN and 16

times faster than PSICOV. On the same data, our CPU version is

4.3 times faster than plmDCA, 14 times faster than GREMLIN,

8.3 times slower than our GPU code and 2.0 times faster

than PSICOV. For plmDCA and our CPU version, we use

all six cores. PSICOV and GREMLIN do not support multi-

threading and, therefore, ran on a single core. However, even

if implementations with perfect scaling existed (dividing runtimes

by six), GREMLIN would still not be as fast as the CPU version

of CCMpred. Our GPU code would be faster than a parallelized

PSICOV at L4150, and our CPU code would be faster at

L4600.

3 CONCLUSION

CCMpred is a fast GPU and CPU implementation of a

top-performing PLM-based contact prediction approach that

runs in a fraction of the time of comparably accurate methods.

The speed increase is particularly important for long proteins

and large-scale applications. Because CCMpred is free and

open-source software, we hope that it also can serve as a basis

for further methods development in this field.
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