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1 Markov Random Field Model

The following section will outline the mathematical model in our contact prediction method that is essentially
identical to the plmDCA (Ekeberg et al., 2013) and GREMLIN (Kamisetty et al., 2013) methods.

We eliminate transitive interactions in the observed interaction network by learning a generative model of
the MSA using a Markov Random Field (MRF). Assuming we have an MSA xni (n sequence index, i position
index) with L columns and N sequences, we represent columns in the MSA as the vertices with single-residue
emission potentials εi(a) (with i being a column index and a ∈ {1..20} representing the twenty possible amino
acids) and covariation between columns as the edges with pairwise emission potentials εi,j(a, b) (with i and j
column indices, a and b amino acid indices). The network of co-evolution can then be learned by maximizing
the likelihood of observing the sequences in the input MSA, given the model parameters ε:

L(ε) =
1

Z

N∏
n=1

L∏
i=1

exp

εi(xni ) +
L∑

j=1
j 6=i

εi,j(x
n
i , x

n
j )


 (1)

In order for the underlying probability distribution to be well-defined, a normalization constant Z is
required which represents a sum of the unnormalized probabilities over all 21L possible assignments for
(xn1 , . . . , x

n
L) (20 for amino acids, 1 for gaps). The runtime exponentially growing makes the computation of

L(ε) prohibitive for relevant values of L. We instead optimize a pseudo-likelihood :

pll(ε|X) = log

N∏
n=1

L∏
i=1

p(Xi = xni |(xn1 , . . . , xni−1, xni+1, . . . x
n
L, ε))

=
N∑

n=1

L∑
i=1

log

exp

[
εi(x

n
i ) +

∑L
j=1
j 6=i

εi,j(x
n
i , x

n
j )

]
∑21

c=1 exp

[
εi(c) +

∑L
j=1
j 6=i

εi,j(c, xnj )

]

=

N∑
n=1

L∑
i=1

εi(xni ) +
L∑

j=1
j 6=i

εi,j(x
n
i , x

n
j )− logZn

i

 (2)

Zn
i =

20∑
c=1

exp

εi(c) +

L∑
j=1
j 6=i

εi,j(c, x
n
j )

 (3)

Our new pseudo-likelihood objective function has the great advantage that the normalization constants
Zn
i appearing in it involve only a sum over L terms and can therefore be computed easily.
The gradient of this pseudo-log-likelihood has components:
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∂pll(ε|X)

∂εi,j(a, b)
=

N∑
n=1


I
(
xnj = b

)
·


I (xni = a)−

exp

εi (a) +
L∑

k=1
k 6=i

εi,k (a, xnk)


20∑
c=1

exp

εi (c) +
L∑

k=1
k 6=i

εi,k
(
c, xnk

)




=

N∑
n=1

[
I(xnj = b)

[
I(xni = a)− p(Xi = a|(xn1 , . . . , xni−1, xni+1, . . . x

n
L, ε)

]]
(4)

In order to favor sparse solutions, we additionally add an L2 regularization term R(ε) and maximize
pll(ε|X)−R(ε) using the nonlinear conjugate gradient method:

R(ε) = λsingle

L∑
i=1

‖εi‖22 + λpair

L∑
i,j=1
j 6=i

‖εi,j‖22 (5)

The regularization coefficients λsingle = 1, λpair = 0.2× (L− 1) were set as in the GREMLIN method.

1.1 Post-processing

After a successful optimization, the couplings between residue positions Sij are ranked by the Frobenius
norms of the edge potentials εi,j :

Sij =

√√√√ 20∑
a,b=1

εi,j(a, b)
2 (6)

Like plmDCA (Ekeberg et al., 2013), GREMLIN (Kamisetty et al., 2013) and PSICOV (Jones et al.,
2012), we apply the Average Product Correction (Dunn et al., 2008) to arrive at the final score Cij :

Cij = Sij −
Si,· S·,j
S·,·

(7)

where ”·” denotes averaging over the respective column/row. S·,· is the average over all elements in the
matrix.

2 GPGPU Architecture

Graphics processing units (GPUs) were designed for executing small programs determining the color value of
each pixel in modern video games and are thus optimized for performing massive amounts of computation in
parallel where similar operations are performed over large arrays of data. Since the release of the NVIDIA
Compute Unified Device Architecture (CUDA) and CUDA C in 2006, accessing the compute power of
GPUs has become increasingly convenient, making GPUs a competitor to traditional CPU-based systems
in appropriate scenarios.

Current NVIDIA GPUs hold many thousand cores grouped together in streaming multiprocessors (SMs).
For example, the NVIDIA GeForce GTX 780 Ti we used for benchmarks in this paper holds 15 SMs with
192 cores each, resulting in 2880 CUDA cores, but future hardware generations will scale by adding more
SMs or altering the number of cores per SM. While the number of cores is much higher than the number
of cores in typical CPUs, the individual CUDA cores have slower clock speeds and cannot run completely
separately. Instead, execution of programs called kernels is grouped in warps of 32 threads that execute
the same instruction in lockstep. Warps are grouped into blocks where a block will always be assigned to a
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single SM. The whole scheme of organizing threads in blocks is called the grid and the user can define the
size of blocks and grids within certain architecture-defined limits. In order to ensure scalability when future
hardware generations add or change SMs, the actual scheduling cannot be affected by the user and will be
performed by the GPU.

Another difference between CPU and GPU is the memory hierarchy. The memories of the GPU differ
mainly in size and speed and therefore their application. Global memory is comparable to the CPU’s main
memory. It is faster than CPU memory but by far the slowest of the GPU memories while being relatively
big (several gigabytes). Data on the global memory can be accessed by the CPU as well as any SM of
the GPU. Therefore it is usually utilised for data transfer between CPU and GPU and data which has
to be shared between multiple SMs. Performance of global memory depends heavily on the kernel’s access
patterns. Maximum bandwidth can only be achieved if the memory operations of one (half-) warp are
coalesced, i.e. sequentially accessing complete 128-byte-aligned memory blocks.

Contrary to global memory, shared memory is unique per SM. It can only be accessed by threads belonging
to the same block. With a maximum of 48 kilobytes of shared memory per block on current GPUs, it is much
smaller than global memory but also much faster. Performance of using shared memory also depends on
access patterns, albeit much less so than for global memory. Shared memory is typically used for inter-thread
communication and fast reordering of global memory.

The fastest available level of memory are the SM-local registers. Although they are designed for local stor-
age within a thread without communication, the new Kepler architecture has introduced shuffle instructions
that allow register exchanges between threads in the same warp. While not currently used for CCMpred,
the constant and texture memories are available as additional subsets of the global memory optimized for
high-bandwidth read-only access in certain access patterns.

3 Parallelization

Looking at the expressions for calculating the objective function and gradient values, it becomes apparent
that certain terms appear at multiple locations and should be precomputed. By first gathering potentials
for each of the nodes and then distributing those summed potentials appropriately, memory access can occur
mostly independently.

In the following, we will describe the two most important computation steps, namely the pre-computation
of summed potentials and the computation of the edge gradients ∂pll(ε|X)/∂εst(a, b), together with how to map
their computation to a parallel algorithm on the GPU. While other computations have to be performed as
well, the vast majority of the computation time is spent on these two kernels. Table S2 gives an overview
of all kernels in CCMpred.

3.1 Decomposition of Likelihood and Gradients

Certain terms in equations (2), (3) and (4) appear at multiple locations in the expressions so it makes
sense to precompute these values before actual computation of the likelihood and gradient values to improve
performance. We start out by defining sumPot(n, a, i) as the sum of potentials around position i with amino
acid a at that position and all other amino acids as in sequence n:

sumPot(n, a, i) = εi(a) +

L∑
j=1
j 6=i

εi,j(a, x
n
j ) (8)

With these values, the partition function Z(n, i) for sequence n at position i can be computed:

Z(n, i) =
21∑
a=1

exp

εi(a) +
L∑

j=1
j 6=i

εi,j(a, x
n
j )

 =
21∑
a=1

exp [sumPot(n, a, i)] (9)

Finally, we combine sumPot(n, a, i) and Z(n, i) to compute normalized probabilities prob(n, a, i) for ob-
serving amino acid a at position i in sequence n:
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Figure S1: Pre-computation of reused values. Every sequence n in the MSA corresponds to one selection
of columns xnj = b in the εi,j(a, b) matrix. We compute sumPot(n, a, i) values for all n, i and a
by summing over single-node emission potentials εi(a) and selected pairwise emission potentials
εi,j(a, x

n
j ) and then use those sumPot(n, a, i) values to compute Z(n, i) and prob(n, a, i). We

parallelize by launching one block for every n and one thread for every i, thus there are no write
conflicts to sumPot,Z or prob.

prob(n, a, i) = p(Xi = a|(xn1 , . . . , xni−1, xni+1, . . . x
n
L, ε)

=

exp

[
εi(a) +

∑L
j=1
j 6=i

εi,j(a, x
n
j )

]
∑21

c=1 exp

[
εi(c) +

∑L
j=1
j 6=i

εi,j(c, xnj )

]
=

exp [sumPot(n, a, i)]

Z(n, i)
(10)

Especially in the case of prob, the precomputation is advantageous since each of the values will be used
L times to compute equation (4).

3.2 Calculation of Precomputed Values

All above values are precomputed by a single kernel, d compute pc as illustrated in Figure S1. We parallelize
by launching a thread block per sequence n (i.e. N blocks total) and one thread per column i of the MSA
(i.e. L threads per block). Each thread computes the sumPot, Z and prob values for its block’s sequence
and a unique column for all amino acids, i.e. 21 + 1 + 21 = 43 values. By this partitioning, every thread
will write to different memory ranges so no additional synchronization is needed.

Since each column of the sequence has to be accessed exactly L times (once by each thread), we store
sequence information in shared memory. This significantly reduces the number of global memory transactions
because instead of L×L global memory accesses we now have only L loads from global and L×L loads from
shared memory. Using shared memory is also advantageous since every thread of a warp needs to access
the same column at the same time and broadcasting a value is much more efficient from shared than from
global memory.
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Figure S2: Computation of gradients. The prob values precomputed in the last step are added onto the
gradient columns selected by the sequence in the MSA. Additionally, pre-computed pair counts
are added to all gradient values (not shown here). We parallelize by launching one block per
column j and one thread per unique combination of (i, a). Every thread additionally loops over
all n to compute the full gradient for one cell in the gradient matrix.

We also reduced the amount of variables kept in memory. First, every thread computes sumPot(n, a, i)
for all 21 amino acids a. These are stored in a thread local array. In the second step, every thread computes
Z(n, i) as the sum of its 21 local values and stores it directly to global memory. Last, the thread-local
sumPot and Z values can be used to compute the 21 different prob values which are then also stored in
global memory. Finally, only the local sumPot value which has the same amino acid a as the sequence n at
position i is stored to global memory because only this value will be needed for further computations.

3.3 Calculation of Edge Gradients

After pre-computing the required values, CCMpred proceeds with calculating the edge gradients as illus-
trated in Figure S2. Looking at equation (4), we see that the gradient computation can be split into a part
dependent of the current ε and a part that only depends on the sequence data:

∂pll(ε|X)

∂εi,j(a, b)
=

N∑
n=1

{
I
(
xnj = b

)
· I (xni = a)

}
−

N∑
n=1

{
I
(
xnj = b

)
· prob(n, a, i)

}
(11)

Instead of summing over indicator functions in every iteration, we pre-compute these counts once and use
them to initialize the gradients in every iteration, summing only over the changing prob values.

We parallelize by assigning a unique column j to every block and launch threads for each combination of
a column i and an amino acid a. Hence, each block will compute 21× 21× L different gradients for all i, a
and b and one fixed j.

Within each thread, we loop over all sequences n. In every iteration, b is set to the amino acid at
position j in the current sequence. We load prob(n, a, i) and then add it onto the gradient values. This
loop corresponds to the second sum in Equation (11). Since i and a are unique per thread, j is unique per
block, and b depends on j, there are no conflicting memory accesses. Furthermore, all memory accesses are
coalesced because consecutive threads have consecutive combinations of i and a.
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3.4 Maintaining Symmetry

In order to have favorable memory access to all pairwise emission potentials εi,j(a, b), it is important that
they are stored in memory in linear order. Although emission potentials are symmetric (i.e. εi,j(a, b) =
εj,i(b, a)) and it would only be necessary to store one triangle of the symmetric matrix, we can achieve
better performance by having two copies of every variable for efficiently accessing them both in horizontal
and vertical stripes of the matrix. In order for the numerical optimization to be well-behaved, we therefore
require a re-symmetrization step where the value of every gradient is added onto its symmetric counterpart:

εi,j(a, b) = εi,j(a, b) + εj,i(b, a) (12)

This operation is achieved using a standard matrix transpose kernel that adds both values onto another
instead of switching them.

3.5 Padding

Another technique for ensuring favorable memory access patterns on the GPU is to align variables in global
memory to 128-byte boundaries so that 32 float variables can be accessed by the 32 threads of a warp in a
single coalesced read, thus maximizing memory throughput. An easy way to ensure the 128-byte alignment
in our model is to use a 32-amino-acid indexing scheme for some of the amino acid indices in our εi,j values,
leaving the potentials and gradients for a ∈ {21..32} zero so they do not affect the model.

While somewhat less memory efficient (see section 4 for details) than a non-padded version, we observe
that the padded GPU implementation is 1.37 times faster than our non-padded implementation for typical
input alignment dimensions and thus use the padded indexing scheme by default. Users who want to increase
the maximal size of the model computable on their graphics hardware can choose to re-compile CCMpred
with padding disabled.

4 Memory Considerations

The amount of available GPU RAM limits the maximal model size that can be computed on the GPU. The
L2× 212 +L× 20 variables of the model and gradients need to be stored on the GPU, together with N ×L
sumPot values, N ×L Z values and N ×L×21 prob values. Since we also perform the optimization through
nonlinear conjugate gradients on the GPU and we have to store some additional intermediate values, a
total of 4 × L2 + 2 × 20 × L + 23 × N × L numbers need to be stored. We use a 32-bit floating point
representation since we found the numerical accuracy to be sufficient. Adding these numbers up, we arrive
at the approximate maximum model sizes for different GPU RAM sizes (using N = 5000) shown in Table S1.
As an example, the NVIDIA GeForce GTX 780 Ti, a typical consumer-grade graphics card with 3 GBs of
GPU RAM using our fast padded implementation will be able to compute models with up to 519 residues, a
model size that already covers more than 98% of domains in SCOP (Figure S3 shows a histogram of SCOP
domain lengths). The NVIDIA Tesla K40, the currently available GPU with the most RAM will be able to
compute models for up to 1059 residues, covering 99.9% of SCOP. For models larger than what fits onto the
available graphics card, users can fall back to our CPU implementation since non-GPU RAM is generally
abundant.

5 Benchmarking Details

All benchmarks were run on the same computer with dual Intel Xeon E5–2620 six-core processors, 48 GBs of
RAM and a NVIDIA GeForce GTX 780 Ti running Scientific Linux version 6.4. We measure the total (wall
clock) time expired for each of the programs by running them with the UNIX ‘time’ command. All programs
that supported multi-threaded computation were started with 6 threads to simulate the full usage of a single
six-core processor. To demonstrate that CCMpred can also scale well to large MSAs, we run models that
exceed the RAM on the NVIDIA GeForce GTX 780 Ti on an NVIDIA Tesla K40 which is somewhat slower
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GPU RAM Lmax % SCOP Lpad
max % SCOP

1 GB 353 90.4 291 81.8

2 GB 512 98.2 420 95.2

3 GB 635 99.4 519 98.4

5 GB 829 99.8 676 99.5

6 GB 911 99.9 743 99.7

8 GB 1057 99.9 861 99.9

12 GB 1302 99.9 1059 99.9

Table S1: Approximate maximal model sizes for different amounts of available GPU memory and percentage
of domains in SCOP (Andreeva et al., 2008) covered by that maximal model size. The padded
version has a faster run time at the cost of a slightly higher memory requirement.
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Figure S3: Domain length distribution in SCOP (Andreeva et al., 2008). More than 98% of domains have a
length smaller than 500.
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Figure S4: Runtimes on real multiple sequence alignments from the PSICOV data set. Since runtimes are
linearly dependent on the number of input sequences, we normalize the runtime to N = 1000
sequences.

for single-precision float computations since it uses ECC memory. The corresponding points in the runtime
plot of the main paper are shown greyed out.

All MATLAB code (GREMLIN and plmDCA) was compiled using MATLAB R2012b and the ‘mex’
compiler, PSICOV was compiled with GCC 4.7.2 and CCMpred was compiled with GCC 4.7.2 and the
NVIDIA CUDA SDK Version 5.0

6 Benchmark on Biological Multiple Sequence Alignments

While real-world multiple sequence alignments show the similar overall speedups as synthetically generated
alignments, their runtimes exhibit more variation due to various effects changing the number of necessary
line search evaluations until the next step can be found during optimization. Figure S4 nonetheless shows
the runtimes for the 150 protein families in the PSICOV data set. Table S3 gives the sums of runtimes for
all families for each method. CCMpred.GPU gets a speedup of 37.8x compared to the next-fastest method
plmDCA.Asymmetric, confirming our results on synthetic alignments.

7 Utility of Fast Contact Prediction

The ultimate goal for residue-residue contact prediction methods would be to predict structural constraints
for all known protein families where enough sequence information is present. We estimate that roughly a
third of all families in the Pfam database (Finn et al., 2014) can already be predicted using a reasonable
sequence coverage threshold of N/L ≥ 3.0 (see Figure S5). Through the rapid development of faster and
cheaper DNA sequencing methods, we expect the sequence coverage of many families to increase rapidly and
improvements in contact prediction methods will likely reduce the sequence coverage threshold over which
predictions of reasonable accuracy can be made. Since contact prediction is therefore of relevance for more
and more families, it is interesting to estimate how much processing time a prediction of all sufficiently-
covered protein families would take. Since we know that the runtimes of MRF-based contact prediction
methods scale in O(NL2), we estimate the expected runtimes for every protein family in Pfam using a
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Method M Total runtime (s) Runtime relative to CCMpred.GPU

CCMpred.GPU 3120 1.0

CCMpred.6Core 21702 7.0

plmDCA.Asym.6Core 117841 37.8

GREMLIN.1Core 248817 79.7

PSICOV.1Core 30236 9.7

Table S3: Runtimes on real-world protein data set of 150 PSICOV test cases.
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Figure S5: Number of Pfam families with sequence coverage above a given N/L threshold, out of the total
14831 Pfam families (as of June 2014)

regression model fitted to our experimentally determined runtimes.
Figure S6 shows the estimated cumulative contact prediction runtimes in (single-core) CPU years for all

Pfam family alignments with a sequence coverage N/L larger than different thresholds t. For the currently
typical thresholds of t = 3 or t = 5, the runtime of the next-fastest method of highest accuracy is at 29-24
CPU years while CCMpred would take approximately 211-175 days on one GPU. A single contact prediction
run on a 256-core cluster would consequently take competing methods at least a month of computation
time at full utilization. While a single contact prediction run is still feasible using existing CPU-based
methods, real-world applications will require the computation of contact predictions from multiple sequences
alignments generated with different parameters. Indeed, the EVfold webserver (Marks et al., 2012) will
generate alignments for varying alignment E-value cutoffs before using a heuristic to choose an alignment.
It might additionally be advantageous to optimize parameters such as a minimal coverage filter, sequence
identity threshold for reweighting, and many others. Depending on how many such settings are tried, the
total runtimes can easily increase by a factor of 10-100 in realistic scenarios. A fast contact prediction method
is therefore essential to make such studies feasible. Another important benefit of fast contact prediction
methods is that they can be more broadly applied, either on an experimentalist’s workbench that can now
run predictions in a reasonable time or by providing a webserver that will have quicker turnaround times
and will require fewer hardware resources. By these speedups, contact prediction can become a new tool
applicable for exploratory research. We also hope that since CCMpred is available as open source code, it
might serve as a fast foundation for further methods development.
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