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Abstract

We consider offsets of a union of convex objects. We aim for a filtration, a sequence of nested
simplicial complexes, that captures the topological evolution of the offsets for increasing radii. We
describe methods to compute a filtration based on the Voronoi partition with respect to the given convex
objects. The size of the filtration and the time complexity for computing it are proportional to the size of
the Voronoi diagram and its time complexity, respectively. Our approach is inspired by alpha-complexes
for point sets, but requires more involved machinery and analysis primarily since Voronoi regions of
general convex objects do not form a good cover. We show by experiments that our approach results in a
similarly fast and topologically more stable method for computing a filtration compared to approximating
the input by a point sample.

1 Introduction

Motivation The theory of persistent homology has led to a new way of understanding data through its
topological properties, commonly referred as topological data analysis. The most common setup assumes
that the data is given as a finite set of points and analyzes the sublevel sets of the distance function to the
point set. An equivalent formulation is to take offsets of the point sets with increasing offset parameter and
to study the changes in the hole structure of the shape obtained by the union of the offset balls; see Figure 1
for an illustration and informal description. Notice that we postpone the exposition of formal topology
background to the next section.

We pose the question how to generalize the default framework for point sets to more general input
shapes. While there is no theoretical obstacle to consider distance functions from shapes rather than points
(at least for reasonably “nice” shapes), it raises computational questions: How can critical points of that
distance functions be computed efficiently? And how can the topological information be encoded in a
combinatorial structure of small size?

With the wealth of applications of barcodes of point sets, and together with the challenges raised by
the extension from point sets to sets of convex objects, we believe that the latter is a logical next step
of investigation. Our attention to this problem originates from the increasingly popular application of 3D
printing. A common problem in this context is that often available models of shapes contain features that
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Figure 1: From left to right, we see an example shape, three offsets with increasing radii r1 < r2 < r3, and
the 1-barcode of the shape. While being simply-connected initially, two holes have been formed at radius
r1, one of which disappears for a slightly larger offset value while the other one persists for a large range of
scales. At r2, we see the formation of another rather short-lived hole. The barcode summarizes these facts
by displaying one bar per hole. The bar spans over the range of offset radii for which the hole is present. We
can read off the number of holes for radius α by counting the number of bars that have α in their x-range.

complicate the printing process, or turn it impossible altogether. A ubiquitous example is the presence of thin
features which may easily break, and call for thickening. One work-around is to offset the model by a small
value to stabilize it, but the optimal offset parameter is unclear, as it should get rid of many spurious features
of the model without introducing too many new ones. Moreover, one would prefer local thickening [35],
and possibly thickening by different offset size in different parts of the model. A by-product of our work
here is a step toward automatically detecting target regions for local thickening that do not incur spurious
artifacts. Persistent homology provides a barcode which constitutes a summary of the hole structure of the
offset shape for any parameter value (Figure 1) which is clearly helpful for the choice of a good offset value.
We are especially interested in an exact method in this context because any approximate barcode introduces
artificial topological noise in addition to the real noise present in the model, which makes it even more
difficult to choose a suitable offset radius.

Problem definition and contribution We design, analyze, implement, and experimentally evaluate algo-
rithms for computing persistence barcodes of convex input objects. More precisely, we concentrate on the
problem of computing a (simplicial) filtration, a sequence of nested simplicial complexes that undergoes the
same topological changes as the offset shapes. Since the input objects are convex, the Nerve theorem asserts
that the intersection patterns of the offsets (called the nerve) reveal the entire topological information. This
leads to the generalization of Čech filtrations from point sets to our scenario. The resulting filtration has a
size of O(nd+1), where n is the number of input objects contained in d-dimensional Euclidean space. This
size is already problematic for small d and a natural idea to reduce its size is to restrict the offset of each
input object to its Voronoi regions, that is, the portion of the space which is closest to the object. This
approach is again inspired by the analogue case of point sets, where alpha-complexes are preferred over the
Čech complexes for small dimensions. However, the approach for point sets does not directly carry over to
arbitrary convex objects: Voronoi regions of convex objects are not necessarily convex and can intersect in
non-contractible patterns which prevents the application of the Nerve theorem.

We describe the construction of a filtration whose size is asymptotically equal to the complexity of
the Voronoi diagram and yields the desired barcode. Conceptually, we subdivide the input objects into
smaller sub-objects for which all intersections are empty or contractible and the Nerve theorem applies.
Our algorithm computes the nerve of the sub-objects without performing the subdivision explicitly. We
describe its details for R2 and sketch its generalization to convex polytopes in R3. Our algorithm requires
the computation of the Voronoi diagram of the input sites as a preprocessing step. We furthermore describe
how the size of the output can be further reduced by an adaptive subdivision.

Finally, we show the surprising result that in R2, the barcode of convex objects (without subdivision) is
encoded in the barcode of their nerve, despite the presence of non-contractible intersections. The analogue
statement in R3 is not true. While the proof ultimately still relies on the Nerve theorem, it requires a deeper
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investigation of the structure of Voronoi diagrams of convex objects.
We have implemented our algorithm for polygons using the CGAL library and report on extensive ex-

perimental evaluation. In particular, we compare our approach with the natural alternative to replace the
input polygons with sufficiently dense point samples. Although the point sample approach yields very close
approximations to the exact barcode in a comparable running time, we demonstrate that the noise induced
by the sampling results in additional noise on a large range of scales and therefore makes the topological
analysis of the offset filtration more difficult.

Related work Since its introduction in [17], persistent homology has become an active area of research,
including theoretical [7, 8, 12, 13], algorithmic [2, 10, 29, 39], and application [6, 11, 36] results (we only
cite some representative references here). The information gathered by persistence is usually displayed
either in terms of a barcode, e.g. [5], or via a persistence diagram, e.g. [12]. Both representations are
equivalent and we adopt the barcode view in this work.

The textbook [16] describes the most common approaches for computing filtrations of point sets, includ-
ing Čech- and alpha-complexes from above. Another common construction is the Vietoris-Rips complex
which approximates the Čech complex in the sense that it is nested between two Čech complexes on similar
scales; however, it is easy to see that this property does not carry over to the case of arbitrary convex objects.

Topological methods for shape analysis have been extensively studied: a commonly used concept are
Reeb graphs which yield a skeleton representing the connectivity of the shape and can be seen as a special
case of persistent homology in dimension 0; see [4] for ample applications. The full theory of persistent
homology has also been applied to various tasks in shape analysis, including shape segmentation [34] and
partial shape similarity [18]. While these works study the intrinsic properties of a shape through descriptor
functions independent of the embedding, our problem setup rather asks about extrinsic properties, that is,
how the shape is embedded in ambient space.

Voronoi diagrams are one of the most basic objects in computational geometry [1, 14, 19]. Efficient
algorithms for the case of point sets have been designed and implemented in 2D and 3D [31, 33, 38] and
higher dimensions [23]. In the plane, generalizations to convex objects [25] and line segments and circular
arcs [21] have been presented. Generalizations in three dimensions include Voronoi diagrams of (infinite)
lines [22] and approximating the Voronoi diagram of one polyhedron [28]. However, no exact and efficient
method is available for a set of (convex) polyhedra in R3; we refer to [37] for a discussion of the difficulties.

Outline We describe the direct approach to compute barcodes of convex objects, generalizing Čech com-
plexes, in Section 2, introducing the required topological concepts. We describe our more efficient filtration
based on Voronoi diagrams in Section 3 and report on experimental evaluations in Section 4.

2 Topological background

We review standard notation and basic results in persistent homology and dualizations of set covers through
nerves. This assumes some familiarity with basic topological notions, in particular simplicial complexes and
homology groups; the necessary background is covered by the textbook [16] and in more detail by [20, 30].

Persistent homology A filtration is a collection of spaces (Qα)α≥0 with the property that Qα1 ⊆ Qα2

whenever α1 ≤ α2. We say that α is a homologically critical value if Hp(Qα−ε) is not isomorphic to
Hp(Qα) for some p ≥ 0 and any ε > 0 small enough, with Hp(Qα) being the p-th (singular) homology
group of Qα with respect to an arbitrary fixed base field. We assume the usual tameness conditions that the
homology groups of each Qα have finite rank, and the number of homologically critical values is finite. The
inclusion map from Qα1 to Qα2 induces a map Fα1,α2 : HP(Qα1)→ Hp(Qα2) for any p. The collection of
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homology groups (Hp(Qα))α≥0 together with the morphisms F·,· are an example of a persistence module.
An homology class [c]∈Hp(Qα) is born at α , if [c] /∈ imFα−ε,α for any ε > 0. A class [c] born at α dies at β ,
if [c] ∈ imFα−ε,β , but [c] /∈ imFα−ε,β−ε . In this way, every homology class in Hp(Qα) for any α is assigned
to a birth-death interval; the p-th barcode of the filtration (Qα)α≥0 is the set of these intervals. The length of
the birth-death interval is called the persistence of the corresponding homology class. Usually, persistence is
interpreted as a measure of importance for a class, since persistent classes represent the homological features
of the given space that are present on many different scales.

An important notion in this context is the distance between persistence modules which allows to define
approximations of barcodes. While such distances can be defined for arbitrary persistence modules [7],
we need only a simplifed setup in our work: For ε > 0, we call two filtrations (Fα)α≥0 and (Gα)α≥0
ε-interleaved, if for any α > 0, it holds that Fα ⊆ Gα ⊆ Fα+ε . Informally speaking, the bars of two ε-
interleaved filtrations are in one-to-one-correspondence to each other, and the birth- and death-values of
corresponding bars differ by at most ε .

Nerves Let P := {P1, . . . ,Pn} be a collection of non-empty sets in a common domain. The underlying
space is defined as |P| :=

⋃
i=1,...,n Pi. We call a non-empty subset {Pi1 , . . . ,Pik} ⊆P intersecting, if⋂k

j=1 Pi j 6= /0. The nerve N (P) of P is the collection of all intersecting subsets. It is clear by definition
that every singleton set {Pi} is in the nerve, and that any non-empty subset of an intersecting set is also
intersecting. The latter property implies that the nerve is a simplicial complex: the singleton sets {Pi} are
the vertices of that complex. Since simplicial complexes are topological spaces, the homology groups of
N (P) are well-defined. We call P a good partition if all sets in the collection are closed and triangulable,
and any intersecting subset yields a contractible intersection.

Theorem 1 (Nerve Theorem). If P is a good partition, |P| is homotopically equivalent to N (P). In
particular, Hp(|P|) = Hp(N (P)) for all p≥ 0.

A case of special importance for us is that all Pi are closed convex sets, in which the Nerve Theorem
applies, because convex sets are contractible and the intersection of convex sets is convex. Of paramount
importance for our work will be that the isomoprhism between the homology groups of |P| and N (P)
commutes with inclusions. This is asserted by the following lemma which is a slightly modified version
of [9, Lemma 3.4].

Theorem 2 (Chazal and Oudot). Let P := {P1, . . . ,Pn} and Q := {Q1, . . . ,Qn} be good partitions with
Pi ⊆ Qi for all i = 1, . . . ,n. Then, the isomorphisms φP : Hp(|P|)→ Hp(N (P)) and φQ : Hp(|Q|)→
Hp(N (Q)) commute with the maps i∗ : Hp(|P|)→ Hp(|Q|) and j∗ : Hp(N (P))→ Hp(N (Q)) that are
induced by canonical inclusions, that is, j∗ ◦φP = φQ ◦ i∗.

Barcodes of shapes Let P1, . . . ,Pn be convex polyhedra in Rd , that is, each Pi is the intersection of finitely
many halfspaces, and let P := P1∪ . . .∪Pn⊂Rd denote their union. We let d(·, ·) denote a distance function;
for simplicity, we consider the case of the Euclidean distance while noting that our results extend to arbitrary
strictly convex distance functions. For a point set A⊂Rd and x∈Rd , we set d(x,A) := miny∈A d(x,y). Then,
d(·,A) : Rd → R is called the distance function from A and Aα := {x ∈ Rd | d(x,A) ≤ α} is called the α-
offset of A. As a notational shortcut, we will write d(x) := d(x,P) when P is obvious from the context. We
call (Pα)α≥0 the offset-filtration of P. We pose the question of how to compute the barcode of this offset
filtration. See Figure 1 for an illustration of these concepts.

We define the analogue of Čech filtrations for unions of convex shapes: The decomposition of P into
subpolygons induces a filtration of nerves. To define it, we let Pα := {P1

α , . . . ,P
n
α}, where Pk

α is the α-offset
of Pk. We write P for P0 for notational convenience. We call (N (Pα))α≥0 the nerve filtration of P (with
respect to P1, . . . ,Pk); it is indeed a filtration because for α1 ≤ α2, N (Pα1)⊆N (Pα2).
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Theorem 3. The p-th barcode of the offset filtration and of the nerve filtration are equal for any p≥ 0.

Proof. The Nerve theorem yields an isomorphism of the homology groups for any parameter α and The-
orem 2 asserts that these ismorphisms commute with inclusion. Using the persistence equivalence theo-
rem [16, p.159], the barcodes are equal.

The nerve only changes for values where a collection of individual polyhedron offsets becomes inter-
secting. We call such an offset value nerve-critical. Since P ⊂ Rd , we can restrict to collections of size
at most d + 1 since the p-th barcode is known to be trivial for p ≥ d. Sorting the nerve-critical values
0 = α0 < α1 < .. . < αm and setting Ki := N (Pαi), the nerve filtration simplifies to the finite filtration

K0 ⊂ K1 ⊂ . . .⊂ Km, (1)

whose barcode can be computed using standard methods; see [17, 39] or [2] for an optimized variant.
Clearly, since Km contains a simplex for any subset of P of size at most d +1, its size is Θ(nd+1).

To complete the algorithmic description, we need to specify how to compute the nerve-critical values.
We assume that the ambient dimension d is a constant. If each input polygon has a constant number of
boundary vertices, the nerve-critical values can be computed in constant time using a brute force approach,
by solving several quadratic inequalities. More effort is needed, however, if the input polygons can be
arbitrarily complex. Were we dealing with polygonal metrics, the problem could be rephrased as a simple
linear program whose constraints can be derived from a Minkowski sum computation. The Euclidean (L2)
case can either be solved by a polygonal metric that approximates the unit disk, or by an LP-type [27]
approach. Since in the sequel, we assume that the input objects have complexity bounded by a constant, we
defer further discussion of the more general case to the full version of the paper.

3 Restricted barcodes

The major disadvantage of the construction of Section 2 is the sheer size of the resulting filtration, Θ(nd+1),
for n convex objects in Rd . Our goal is to come up with a filtration that yields the same barcode and is
substantially smaller in size. Our approach, which we describe next, is reminiscent of alpha-complexes for
point sets, but it requires additional ideas for being applicable to convex objects.

Restricted nerve filtrations We assume for simplicity that the elements of P = {P1, . . . ,Pn} are pairwise
interior-disjoint convex polyhedra. We refer to them as sites from now. For a point p ∈ Rd , the site Pk

is closest if d(p,Pk) ≤ d(p,P`) for any 1 ≤ ` ≤ n. We assume general position, which means that no
point has more than d + 1 closest sites. The Voronoi diagram is the partition of the space into maximal
connected components with the same set of closest sites. The Voronoi diagram is a cell complex in Rd , and
its combinatorial complexity is the number of cells. The Voronoi region of Pk, denoted by V k, is the set of
points for which Pk is one of its closest sites.

The restricted α-offset of Pk is defined as Qk
α := PK

α ∩V k. We set Qα := {Q1
α , . . . ,Q

n
α} and Q :=Q0. In

the same way as in Section 2, we define the restricted nerve filtration as (N (Qα))α≥0 and Q-critical values
as those values where a simplex enters the restricted nerve filtration. The restricted nerve filtration can be
expressed by a finite sequence of simplicial complexes as in (1) that changes precisely at the Q-critical
values. The simplices of that filtration are in one-to-one correspondence with the cells of the Voronoi
diagram, therefore the size of the filtration equals the combinatorial complexity of the Voronoi diagram.
Moreover, the Q-critical value of a simplex associated with a Voronoi cell C is equal to minx∈C d(x) (recall
that d(x) = d(x,P)). A point x for which the minimum is attained is called a critical point of that cell.
Critical points might not be unique for a cell, but they form a connected subset, as will be shown later on.
Note that all critical points of a cell may lie on its boundary.
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Restricting the offsets to Voronoi regions brings a problem: Qα is not necessarily a
collection of convex sets, since V k is not convex in general. For instance, in the situation
depicted on the right, we see three sites A,B,C and the induced Voronoi diagram (in black).
We see that the Voronoi regions of A and B intersect in two segments. This means that the
proof of Theorem 3 breaks down since the restricted offsets do not form a good partition,
and therefore are not guaranteed to give the same barcode as the offset filtration.

Subdivision From now on, we focus on the case d = 2, that is, the sites are interior-disjoint polygons
in the plane. For simplicity of analysis, we also assume that the number of edges (and vertices) on the
boundary of each convex site is bounded by a small constant. We leave the more detailed analysis for future
work. Reconsidering the counterexample from above, the reason for the non-contractible intersections was
a small site sitting in between two lengthy sites. A natural idea is to split the lengthy sites into smaller
sub-sites in a way that every piece of the original bisector is associated with a distinct pair of sub-sites. In
the example above, it would suffices to cut A and B along a common horizontal line that goes through the
interior of C. It should not be surprising that a sufficiently fine splitting will always avoid non-contractible
intersection, but the question remains how many splits are necessary. We show that a total number of v
sub-sites suffices, where v is the combinatorial complexity of the Voronoi diagram. Afterwards, we will
see that the nerve filtration induced by the sub-sites can be computed entirely from the combinatorial data
provided by the Voronoi diagram of the original sites, which means that the subdivision does not have to be
performed explicitly for the computation.

Fix a site S and let V denote its Voronoi region. We will not subdivide S directly, but rather subdivide its
ε-offsets Sε , where ε is an arbitrarily small value. We refer to Sε as ε-site, and define the map π : ∂V → ∂Sε ,
which assigns to each v ∈ ∂V its closest point on Sε . We note that ε only exists conceptually, and the value
never needs to be specified in the algorithm.

Lemma 4. The map π is well-defined and injective.

Proof. We shall first show that π is well-defined, that is, every p ∈ ∂V is closest to a single point q ∈ ∂Sε .
Assume by contradiction that it is not, so there are q1,q2 ∈ ∂Sε such that d(p,q1)= d(p,q2) and that distance
is minimal over all points in ∂Sε . Then a disk of radius d(p,q1) centered at p touches Sε at q1 and q2 and
intersects no other points of Sε in its interior. This however implies that Sε is not convex, due to the disk
being strictly convex, which leads to a contradiction.

Assume by contradiction that π is not injective. So there are p1, p2 ∈ ∂V such that p1 6= p2 and π(p1) =
π(p2) = q. As described above, there exist two disks, one centered at p1 and one centered at p2, that touch
Sε at q. The tangents to the two disks at q are also tangent to Sε at q. However due to ε-offsetting, Sε has one
unique tangent at any point. This implies that the two disks are the same, thus contradicting p1 6= p2.

The injectivity of π is of high importance to showing the correctness of our method, and is the main
reason for subdividing Sε instead of S. Injectivity is lost if π maps to ∂S instead of ∂Sε .

Next, we are going to split the ε-sites. The bisector of two sites is the set of points which have the same
distance to both sites. The boundary of any Voronoi region consists of a set of bisector segments, each being
a connected subset of a bisector of two sites. For each bisector segment, choose an arbitrary point in its
interior, called its anchor. For each Voronoi region, choose a point in the interior of its site, called the center
of the Voronoi region. For a bisector segment with anchor a bounding the Voronoi cell V of an ε-site Sε , we
let π(a) denote its inner anchor on Sε . Because of injectivity, no two inner anchors coincide. We connect
each inner anchor on S to the center of S by a straight line segment. Clearly, these segments split the ε-site
into sub-sites which we refer to as refined sites. See Figure 2 for an illustration of a subdivision, and an
illustration of the problems of the construction when directly performed on an original input site S without
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Figure 2: Left: Example of the subdivision. The shaded area denotes the ε-offset of the site drawn in dark.
The inner anchors are drawn on the boundary and are connected to the center by thick (red) line segments
and to the anchor by a bisector drawn as thin (red) segment. Right: If the inner anchors would have been
taken on the boundary of the site directly (without the ε-offset), two inner anchors would coincide, and the
construction would not yield a partition into Voronoi regions.

ε-offset. We define a refined Voronoi region to be the Voronoi region of a refined site. The refined Voronoi
regions form a good partition, as shown in the next lemma.

Lemma 5. The refined Voronoi regions form a good partition.

Proof. Any such region is contractible, accounting for subsets of size one. We show that the intersection of
a pair (W 1,W 2) of refined Voronoi regions is contractible: If two refined regions belong to the same original
region, their intersection is either only the center or one or two paths from the center to an anchor and thus
contractible. If the refined regions come from different original regions, say W 1 from V 1 and W 2 from V 2,
their intersection is a subset of V 1∩V 2. Assume that it is non-contractible. Then, the intersection contains
at least one point of two distinct bisector segments that are both subsets of the bisector of V 1 and V 2. That
implies that W 1 contains a path on the boundary of V 1 connecting these two bisector segments. This means
that it contains a complete bisector segment between them, which is a contradiction because we have placed
a single anchor on any bisector segment.

The case of three and more intersecting pieces follows from the cases of pairs. We refer to Appendix A
for details.

From Lemma 5 it follows that for a large enough α , such that any α-offset of a refined site fills its refined
Voronoi region, the restricted α-offsets of the refined sites form a good partition. We would like to prove
that the property holds for any α . Intersections between restricted offsets of refined sites can only occur on
the boundary of their Voronoi regions, along a shared bisector segment. The following Lemma examines
the intersection of an offset of a refined site and a bisector.

Lemma 6. Let B be the bisector of the two sites R1 and R2, and let ρ : B→ R be a function that assigns to
a point x ∈ B the value d(x,R1). Then the sublevel sets of ρ form a connected subset.

Proof. Fix α > 0 and consider the sublevel set ρ−1(−∞,α) on B. Assume for a contradiction that it con-
sists of two components. Since ρ is continuous and goes to ∞ when we follow the bisector to either side,
disconnectedness of the sublevel set implies that there are at least 4 points on B with ρ-value α . These four
points lie on the intersections of the Minkowski sums R1⊕Bα and R2⊕Bα , where Bα is the disk of radius
α centered at the origin. This, however, contradicts the pseudo-disk property of Minkowski sums of convex
sets [26] which states that the boundaries can only intersect twice.

We can now prove that the restricted offsets of the refined sites form a good partition.
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Figure 3: Removing degeneracies. From left to right: Several refined sites of a single input site meet at the
center (1st). We resolve this by replacing the center point with a center site of small diameter. (2nd). At
anchors, the Voronoi regions of four refined sites meet (3rd). We can replace the anchor by a pair of anchors
for opposite regions (with small distance between the anchors) to resolve the degeneracy (4th).

Lemma 7. For any α ≥ 0, the restricted α-offsets of refined sites form a good partition.

Proof. For α < ∞, we consider only the intersection of two restricted offsets; the case of higher-order
intersections follows again from the results of Appendix A. Assume that R1 and R2 are refined sites whose
restricted alpha-offsets intersect. The intersection is a subset of the intersection I of their Voronoi regions
and I is connected, as we have proved in Lemma 5. Let B be the bisector of R1 and R2. The function
ρ : B→R as defined above has the property that any sublevel set is connected (Lemma 6). The intersection
of the restricted α-offsets of R1 and R2, however, is equal to I∩ρ−1[0,α], and therefore homeomorphic to
the intersection of two intervals.

The union of α-offsets of the restricted sites equals the union of (α + ε)-offsets of the original sites.
Therefore, the barcodes are the same up to an ε-shift. Moreover, for each offset value, we have a good
partition which implies that the restricted nerve filtration of the refined sites yields the same barcode. It is
important to remark that this property holds for any choice of anchor points. Also, note that our construction
yields a degenerate setup as more than 3 Voronoi regions meet at a point. However, resolving these cases is
an easy task – we refer to Figure 3 for further explanations.

Computing the nerve We explain now how to compute the nerve of the refined sites just constructed.
We assume that our input consists of a planar subdivision (represented as a doubly-connected edge list, or
DCEL for short [14, Ch.2]) which represents the Voronoi diagram and consists of vertices, edges, and faces.
The edges represent the bisector segments, which may be composed of several different curves, the faces
represent Voronoi regions. The vertices represent points where bisector segments intersect. By our general
position assumption, every finite vertex is incident to exactly three faces. For simplicity, we assume that
unbounded edges have distinct infinite endpoints which are incident to two faces. Every vertex, edge and
face can access incident features efficiently. We assume that every (finite) vertex and every edge also has
stored its critical value, that is, the critical value for the collection of sites that are incident to it. The output
is a filtration, that is, a sequence of simplices sorted by filtration values such that every prefix is a simplicial
complex. We incorporate the handling of degeneracies as described in Figure 3 — this is essential in order
to guarantee a small size of the resulting filtration. We shall now describe the algorithm.

For every vertex vi of the Voronoi diagram of the input sites, and each face fx that is incident to it, we
create a nerve vertex v̄i,x representing a refined site. In particular, we create three nerve vertices per finite and
two nerve vertices per infinite vertex. For each face fx, we create an additional nerve vertex v̄x, representing
the refined site around the center as in Figure 3. For each nerve vertex v̄i,x we add the nerve edge v̄i,xv̄x. We
traverse the boundary of each face fx. For every two neighboring vertices vi,v j on the boundary we add the
nerve edge v̄i,xv̄ j,x and the nerve triangle v̄i,xv̄ j,xv̄x. All simplices created so far get filtration value 0.

Next we iterate over all edges of the Voronoi diagram. For an edge e with critical value w incident to
vertices v1 and v2 and faces fx and fy, we fetch the four nerve vertices representing the incident refined sites:
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v̄1,x, v̄1,y, v̄2,x, and v̄2,y. Note that the edges v̄1,xv̄2,x and v̄1,yv̄2,y were already created in the previous step. We
create the nerve edges v̄1,xv̄1,y, v̄2,xv̄2,y, and v̄1,xv̄2,y, and the nerve triangles v̄1,xv̄1,yv̄2,y and v̄1,xv̄2,xv̄2,y (the
nerve edge v̄2,xv̄1,y and its two incident nerve triangles are not added to resolve degeneracies as on the right
of Figure 3). They all get w as their filtration value.

Finally, we iterate over the finite vertices of the diagram. For each vertex vi with critical value w, let
v̄i,x, v̄i,y, v̄i,z denote the associated nerve vertices. All nerve edges between them were created in the previous
step. We create the nerve triangle v̄i,xv̄i,yv̄i,z with filtration value w. That ends the description of the algorithm.

The Voronoi diagram of the polygons is a subset of the Voronoi diagram of the line segments bounding
the polygons, and therefore it can be computed in time O(n logn) and is of size O(n). We perform a constant
number of operations per face, edge and vertex of the diagram leading to a total running time of O(n logn).
The following theorem shows that the outcome is correct.

Theorem 8. The barcode of the filtration computed by the algorithm above equals the barcode of the offset
filtration of the original sites.

Proof. We first show that the algorithm computes a filtration that is ε-interleaved with the nerve filtration
of the refined sites: As noted, the barcode for the refined sites is independent of the chosen anchor points.
Assume that we place every anchor sufficiently close to the critical point of the segment. Then, the refined
sites around that anchor become intersecting for a radius between w and w+ ε where w is the critical value
of the segment. Our algorithm assigns value w to them, thus changing the filtration value by at most ε . This
is sufficient to prove that the filtrations are ε-interleaved.

To finish the proof, note that the offset filtration equals the offset filtration of the refined sites up to an
ε-shift, so both filtrations are ε-interleaved. The barcodes of the offset and nerve filtration of refined sites
are equal by Lemma 7. The latter is ε-interleaved with the filtration formed by the algorithm. It follows that
the two barcodes in question are 2ε-interleaved, that is, the bars are in one-to-one correspondence such that
corresponding bars have the same length up to a function in ε . However, neither barcode depends on ε , and
ε can be chosen arbitrarily small, so the barcodes must be the same.

Size and optimizations For an input of n sites, let Cn denote the maximal complexity of the Voronoi
diagram, that is, its total number of sites, bisector segments, and Voronoi vertices. The algorithm described
above creates one refined site per face of the diagram, representing its center site, and 3 refined sites per
vertex of the diagram, thus creating at most 3Cn refined sites. The restricted nerve that we construct creates
exactly one simplex per feature of the Voronoi diagram of the refined sites. Its complexity is therefore C3Cn .
Since Cn ≤ c ·n for some constant c, the complexity of the nerve is bounded by 3c2n and thus stays linear.

We can lower the constant with small effort. Note that it is sufficient to place an anchor only between
two bisector segments that come from the same bisector. Such anchors can be identified by a simple greedy
traversal of the boundary of a Voronoi region. The proof of Lemma 5 carries over and ensures the correctness
of the barcode. Also, the combinatorial nerve construction algorithm can be easily adapted to this sparse
subdivision.

In order to bound the number of anchors required for the sparse subdivision, we an-
alyze in more detail what causes two sites to have a non-contractible intersection. Note
that a non-contractible intersection only happens when a bisector between two sites con-
tributes two or more bisector segments to the Voronoi diagram. In short, this only happens
if the bisector is split by another site that “sits between” the sites that define the bisector.
Precisely, we observe that the intersection of two sites V i, V j consists of k connected
components (with k≥ 1) if and only if the complement of V i∪V j induces k−1 bounded
regions. We call these bounded regions surrounded region induced by V i and V j. A
surrounded region is again the union of one or more Voronoi regions and can therefore
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contain nested surrounded regions (induced by two Voronoi regions within the surrounded regions). On
the right, we see an example where the left and right sites induced two surrounded regions, the upper one
containing a nested surrounded region. By showing that there cannot be more than n surrounded regions in
total, we get the following bound.

Lemma 9. The sparse subdivision yields a collection of at most 4n refined sites. In particular, its nerve
filtration is of size C4n.

Proof. We first bound the number of surrounded regions by n: if a surrounded region has no nested sur-
rounded region, we charge it to some Voronoi region that is contained in it. If it does have a nested sur-
rounded region, we charge it to one of the Voronoi regions that induces a nested surrounded region. In this
way, every Voronoi region is charged at most once, which implies the bound.

In view of the definition of surrounded regions, the sparse subdivision cuts a polygon in two parts
whenever it detects a surrounded region. Since a surrounded region is induced by 2 Voronoi regions and
there are at most n surrounded regions, there are at most 2n splits in total, resulting in 3n refined sites.
Additionally, we have to place refined sites in the center of each original site to ensure generic position,
increasing the size by at most n.

We can go further: By investigating the structure of surrounded regions more carefully, we can prove
that subdividing the sites is not necessary!

Theorem 10. For convex polygonal sites in R2, the 0- and 1-barcode of the restricted nerve filtration are
equal to the 0- and 1-barcode of the offset filtration, respectively.

Figure 4: A
ghost sphere

In light of this result, one may wonder why we consider the subdivision approach at
all. One reason is that the equivalence of Theorem 10 does not extend to higher dimen-
sions. For instance, in the situation depicted on the right, we see four sites in R2 where
every triple of Voronoi regions intersects, but there is no common intersection of all four
of them. Consequently, their nerve consists of the four boundary triangles of a tetrahe-
dron and therefore carries non-trivial 2-homology. We refer to such homology classes as
“ghost features”. In the planar case, the offset filtration can clearly not form any void (a
3-dimensional hole) and we can therefore safely ignore all ghosts. In R3, however, the 2-
barcode carries information about the offset and the ghosts need to be distinguished from
real features. If ghost features had infinite persistence, we could simply filter them out, because any real
2-homology class dies eventually, just because the enclosed void is filled eventually. We can quite easily,
however, construct an example of a ghost with finite lifetime: We create 4 triangular prisms with vertical
axis in z-direction. All prisms start at level z = 0, and their bottom triangles form a situation like in Figure 4,
that is, they create a ghost. We let the two outer prisms extend up to z = 1, and the two inner prisms to
extend to 1− ε . Considering the Voronoi diagram, we can observe that their four Voronoi regions have a
common intersection at a very high z-level. That means, for a sufficiently large offset value, the tetrahedron
will be filled and the ghost feature dies.

Another reason for considering the subdivision approach is that the refined nerve filtration obtained using
it allows the computation of the barcode in near-linear time using a combination of Alexander duality and
union-find as in [15]. This seems unclear for the unsubdivided filtration because the additional 2-homology
prevents a direct application of Alexander duality. Therefore, one has to fall back to the general (and slower)
persistence algorithm which balances out the advantage of a smaller filtration size partially.

The proof of Theorem 10 requires substantially more algebraic machinery than what we have introduced;
we refer to Appendix A for details and only sketch the main ideas for brevity. A non-contractible intersection
of two restricted offsets of sites A and B is caused by a surrounded region containing one or more other
interior sites. The crucial observation is that the (unrestricted) offsets of A and B (with same radius) fill
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the entire surrounded region. This implies that we can mark all interior sites as inactive, meaning that we
remove them from consideration when the offset radius exceeds a certain threshold without changing the
union of the offsets. For any α , the restricted offsets of active sites form a good partition, and their union
covers the same space as the union of all sites, asserting that the homology of the nerve of restricted active
offsets equals the homology of the offsets of the input sites for all α ≥ 0.

The first major result we show is that the nerve of restricted active offsets has the same 0- and 1-
homology as the nerve of all restricted offsets. The statement is incorrect for 2-homology (Figure 4 is a
counterexample). The proof (for 1-homolgy) is based on an explicit construction that transforms any 1-
cycle in the nerve of all sites to an homologous cycle that only includes active sites. This results show that
for each α , the 0- and 1-homology of the α-offsets of the input sites and their (restricted) nerves are equal.

To finish the proof, we have to show that the induced isomorphisms commute with inclusions. This
case is not covered by Theorem 2 because the offsets do not form a good partition. Instead, we consider
the nerve “filtration” of restricted active sites as an intermediate structure. It is not a filtration in the sense
of this paper because sites disappear from the nerve when becoming inactive, so the simplicial complexes
are not nested. Still, the nerves can be connected by simplicial maps instead of inclusions and the concept
of barcodes extends to this setup. As second major result, we show that the isomorphism induced by the
Nerve theorem between offsets sites and nerve of restricted active offsets commutes with these simplicial
maps. The proof requires the study of this isomorphism in detail and extends the proof of Theorem 2 in this
generalized setting.

Restricted barcodes in 3D While Theorem 10 does not generalize for higher-dimensional shapes, the
ideas of the subdivision approach presented in this section carry over to this setup. In three dimensions for
example, we consider the boundary surface of the Voronoi region of each input convex site and carefully
subdivide it into vertices, edges and faces. While the subdivision is more intricate than in the plane, one can
harness standard tools in computational geometry to obtain a subdivision whose faces are simply connected.
This surface subdivision in turn induces a subdivision of the input convex polyhedra in very much the same
way as in the planar case. For lack of space, we omit further details. Notice that for higher dimensions,
Voronoi diagrams for restricted types of non-point sites are available. Our first implementation target would
be the case of lines in space [22], which we leave for future work.

4 Experimental results

Implementation details We implemented the planar subdivision algorithm as described in Section 3. The
algorithm requires computing the combinatorial structure of the Voronoi diagram, and the critical value of
each feature. We solve the first task by computing the Delaunay graph for all line segments belonging to
the input polygons, using CGAL’s 2D Segment Delaunay Graphs package [24]. We restrict our attention to
features of the graph for which no two defining segments belong to the same polygon and remove duplicates.
For the critical values, we explicitly compute the actual curves and vertices of the Voronoi diagram and
compute the minimal distance to their nearest polygonal sites. We did not use any of the optimizations
mentioned in Section 3 for our experimental results. We note that more than half of the running time is used
for computing the Delaunay graph and therefore the potential gain from the optimizations is limited.

For a proof of concept, we implemented the unrestricted nerve filtration described in Section 2. For the
computation of critical values, we proceed in a brute-force manner, that is, we take the minimum distance
over all pairs or triplets of line segments of the input polygons.

We also implemented an approximation of the barcode through point samples: Fixing some ε > 0, we
calculate a finite point set whose Hausdorff-distance to the input is at most ε . We achieve that by placing
a grid of side length

√
2ε in the plane and taking as our sample the centers of all grid cells which are
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Number of vertices
Approach 42 213 1060 2104 4217

Subdivision

Filtration time 0.052 0.26 1.442 3.103 6.523
Persistence time 0 0 0.001 0.003 0.006

Total time 0.052 0.26 1.443 3.106 6.529
Filtration size 314 2102 12458 25056 50388

Unrestricted nerve

Filtration time 0.602 69.13 9920 - -
Persistence time 0 0.033 23.11 - -

Total time 0.602 69.16 9943 - -
Filtration size 175 20875 2604375 - -

Point sample (ε = 1)

Filtration time 0.013 0.047 0.217 0.435 0.805
Persistence time 0 0 0.001 0.001 0.003

Total time 0.013 0.047 0.217 0.437 0.808
Filtration size 803 2101 9021 14235 22393

Point sample (ε = 0.5)

Filtration time 0.023 0.07 0.312 0.594 1.045
Persistence time 0 0 0.003 0.006 0.01

Total time 0.024 0.07 0.315 0.6 1.055
Filtration size 2577 6707 28273 45635 72275

Point sample (ε = 0.1)

Filtration time 0.304 0.765 3.22 5.106 7.975
Persistence time 0.007 0.016 0.081 0.132 0.213

Total time 0.310 0.781 3.3 5.238 8.188
Filtration size 48741 120359 505833 792395 1226827

Table 1: Running time and filtration size with respect to input size. The results are averaged over 5
runs. Some results for the unrestricted nerve approach are omitted as execution did not finish within a
reasonable time. Times are measured in seconds, and are highlighted in bold font.

intersected by some input polygon. We can compute this sample efficiently by taking the Minkowski sum
of each polygon and a square with side length

√
2ε , and performing batch point location queries for a grid

of points in the bounding rectangle of that polygon. We compute the alpha-filtration on the point sample,
using Delaunay triangulations from CGAL’s 2D Triangulation package. We note that the size of the resulting
filtration is linear with respect to the number of sampled points.

In all variants, after computing the filtration, we obtain the barcode using the PHAT software library [3].

Time analysis We compare the three approaches for several inputs of increasing sizes, and report on
their running times and the size of the filtration. For generating the input, we considered a square of side
length 100. We added random polygons inside the square using the following repetitive process. We ran-
domly pick a point inside the square, and create a rectangle centered at that point with a random width and
height. We then randomly select 5 points inside that rectangle and take the polygon to be their convex hull.
If the polygon does not intersect any of the polygons that were previously added, we add it to our input. An
illustration of an input is shown in Figure 5. All experiments were run on a 3.4GHz Intel Core i5 processor
with 8GB of memory.

The experimental results are shown in Table 1. We observe that computing the filtration takes much
more time than converting the filtration into a barcode. This is in sync with the common observation that
despite worst-case cubical complexity, the barcode computation scales well in practice. Moreover, we get
the expected result that the unrestricted nerve yields large filtrations and running times compared to the
subdivision approach. In particular, for sufficiently large inputs, the time to compute the barcode from the
unrestricted filtration is an order of magnitude higher than the total time in the restricted case, so even a
smarter way for computing critical values will not be helpful.

Comparing the running time of the restricted nerve approach with that of the point sampling approach
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(a) Polygons used as input
(b) Exact barcode of the poly-
gons

(c) A point set approximation
of the input polygons (d) Barcode of the point set

Figure 5: A comparison between an exact barcode and an approximated barcode. An illustration of polygons
used as input for our experiments is shown in (a). There are 250 polygons with a total of 1060 vertices, inside
a square of side length 100. The exact barcode of the polygons, computed using the subdivision method, is
shown in (b). Red bars represent connected components and blue bars represent holes. It can be observed
that all connected components are born at offset 0, since no connected components are created as the offset
increases. When increasing the offset, connected components merge and therefore die, and holes are created
and then die as they get filled. (c) shows an illustration of a point set approximation of the input polygons,
with ε = 0.5. Each point is displayed as a pixel of size

√
2ε . In (d) we see the barcode of the approximation

point set, which is an approximation of the exact barcode of the polygons. The approximated barcode
contains many more bars compared to the exact barcode. Noise, in the form of short bars, can be observed
throughout the entire barcode.

is difficult as it depends on the choice of ε . What approximation quality is reasonable generally depends on
the application and the input. However, we can observe that the overhead of computing Voronoi diagrams
of convex polygons instead of points is rather small, and we get the exact barcode in the same time as a
“reasonable” approximation of the input. Of course, it should be admitted that our simple point-sampling
approach could be significantly improved by sampling only the boundary of polygons instead, and even
more by making the sample density adaptive to the local feature size [32] of the polygons. This however
would require post-processing of the barcode to filter out topological features in the interior of polygons.

Quality of the barcodes The barcode obtained using the point sampling approach approximates the actual
barcode of the input. The Stability theorem [12] ensures that the two barcodes have a distance of at most ε .
Still, the question arises how much noise is introduced by the approximation. We remind the reader about
our motivation to produce barcodes of shape: We want to identify offset values that minimize the number
of short-lived homological features. Figure 5 shows an exact barcode and an approximated barcode for the
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same input. We see that the exact barcode contains some short bars throughout the entire barcode. The
approximated barcode contains many more such bars, some originating from real features in the input, and
some as artifacts of the approximation. It seems (at best) very difficult to identify the real features from the
approximate barcode, which speaks in favor of using the exact approach in such types of applications.
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A Proof of Theorem 10: Tisk-theory

The main goal of this section is to give a proof of Theorem 10. On the way, we will also give arguments that
complete the proofs of Lemma 5 and Lemma 7.

For that, we first slightly abstract from offsets and Voronoi regions, and define a class of objects that
includes all of them.

Definition 11. A piecewise-algebraic path is a simple path in R2 which consists of a finite number of arcs,
where each arc is a semi-algebraic curve. A piecewise-algebraic loop is such a path that is homeomorphic to
a circle. A set D⊂ R2 is a bounded tisk if D is the closed bounded region induced by a piecewise-algebraic
loop. D is an unbounded tisk if it is the closed region induced by an unbounded piecewise-algebraic path.
Two tisks A, B with boundary curves a, b, are called interior-disjoint if A∩B = a∩b.

We remark that every Voronoi region as well as any restricted offset is a tisk, because their boundaries
consist of line segments, circular arcs, and parabolic arcs.

We consider the intersection of two interior-disjoint tisks A and B. Let a and b denote the boundary
curves of A and of B respectively. The curve a is partitioned into interior-disjoint segments, alternating
between segments that belong to a∩b (such a segment may degenerate to a point), and segments that belong
to a \ b. The symmetric property holds for b. The partition points are denoted by Vab. Note that Vab is
empty if and only if A and B are non-intersecting, or both are unbounded and their union is the whole space.
Note also that by choosing an arbitrary orientation on a or on b, we can define a total order on Vab. These
definitions are illustrated in Figure 6.

Definition 12. The connected components of Clos(R2 \A∪B) are called complementary regions of (A,B).
A surrounded region is a complementary region that is bounded.

Note that this definition of surrounded regions agrees with the definition given in Section 3 for the
special case that tisks are Voronoi regions. Every surrounded region is a tisk whose boundary loop involves
two consecutive points of Vab connected by one segment in a \ b and one segment in b \ a. An unbounded
complementary region might or might not be a tisk, depending on the whether A and B are bounded. For
instance, if both A and B are bounded, there is only one unbounded complementary region, and it is the
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Figure 6: Examples of interior-disjoint intersecting tisks. On the left, their complement is composed into
three surrounded regions and one unbounded region. On the right, the complement is composed into two
surrounded regions and two unbounded regions. The points on Vab are highlighted, and a possible ordering
is given.

complement of a tisk. We can easily see that every surrounded region of (A,B) contains exactly two points
of Vab. Every unbounded complementary region contains one or two points of Vab; more precisely, if there
is only one unbounded region, it contains two points of Vab, and if there are two such regions, they contain
one point of Vab each. See again Figure 6 for illustrations of these concepts.

Lemma 13. Assume that a∩ b = A∩B is non-empty. Then, it is contractible if and only if (A,B) does not
induce a surrounded region.

Proof. “⇐” follows directly from the definition: Assume that a∩ b is non-contractible. Then, a∩ b de-
composes into at least two connected components, and there exist consecutive points v,v′ ∈ Vab which are
connected by segments in a\b and b\a. The tisk enclosed by this loop is a surrounded region.

For “⇒”, contractibility implies that Vab consists of exactly two points, and both lie in the unbounded
complementary region, so there are no points in Vab left to form a surrounded region.

Next, we consider a collection S of pairwise interior-disjoint tisks. We assume generic position, that
is, no more than three tisks intersect in a common point. Three tisks A,B,C of S with boundary curves
a,b,c intersect in at most two points; this follows from the observation that a∩ b∩ c ⊆ Vab (because any
intersection of c in the interior of a segment of a∩ b would imply that C is not interior disjoint to A or B),
combined with the fact that C must be contained in some complementary region of (A,B), each of which
contains at most 2 points of Vab.

A Ba ∩ b

a ∩ c

b ∩ c

Figure 7: Illustration of the proof of Lemma 14. The set C has to be bounded by the outer cycle, which
implies that either C has an inner hole (contradicting the tisk-property) or it contains A and B (contradicting
interior-disjointness).

Lemma 14. If any pair in S is empty or contractible, then every triple in S is empty or a single point.
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Proof. Consider a triple A,B,C with boundary curves a,b,c and non-empty intersection. We assume that
a∩ b is contractible. That implies that |Vab| ≤ 2. Wlog, we can assume that |Vab| = 2, because otherwise,
a∩ b∩ c ⊆ Vab contains of at most one point and we are done. Let Vab = {v1,v2}. There exists a segment
of a∩ b connecting v1 to v2. Assume first that A is unbounded: then, there exist two segments in a \ b,
one emenating at v1, one at v2. Since c cannot intersect a in the interior of a∩ b, a∩ c must be a subset of
a\b. However, a∩ c contains v1 and v2, therefore, it consist of at least two connected components. This is
a contradiction to the assumption that a∩ c is contractible. A symmetric argument implies that B must be
bounded.

We are left with the case that both A and B are bounded. Then a\b and b\a are segments that connect
v1 and v2. Since a∩ c and b∩ c are contractible, it follows that the loop of c is the union of these segments.
However, that loop encloses both A and B, which contradicts the interior disjointness the tisks.

We can apply this Lemma to complete the proof of Lemma 5 (for the special case of Voronoi regions)
and the proof of Lemma 7 (for the special case of restricted offsets).

A

B

C

D
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F

G
H
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Figure 8: A and B induce two surrounded regions. The left one has the four members C,D,E,F , the right
one the four members G,H, I,J. The left region is filled but not simple, because C and E induce a nested
surrounded region. This nested region, in turn, is filled and simple. The right region is simple, but not filled;
note that the uncovered hole is not a surrounded region.

For the upcoming definitions, see also Figure 8. For a surrounded region R induced by A and B, we call
a tisk S in S a member of R if S ⊆ R. Note that a surrounded region might have an arbitrary number of
members, including no member at all. We let MR denote the set of members of R, and Mext

R := MR∪{A,B}
the set of extended members. We call a surrounded region R filled, if the union of its members equals R (in
this case, R must have at least one member). We define a simple surrounded region of S to be a surrounded
region such that no other surrounded region is contained in it.

The following property will be of special importance; we will refer to it as the “guarding principle”.

Lemma 15. For a collection of tisks S in generic position and a surrounded region R, there is no intersec-
tion of a member of R with an element of S \Mext

R .

Proof. Let R be induced by the tisks A and B, and let a, b their boundaries. Assume by contradiction the
existence of such an intersection. Then, there must be a tisk C ∈Mext

R that intersects the boundary of R. It is
easy to see that this intersection cannot take place within a \ b (because A and C are interior-disjoint and a
is simple), and the same way for b\a. It follows that C intersects the boundary of R at v ∈ a∩b. However,
by assumption, C intersects a fourth tisk D ∈ MR at point v. So, v is an intersection of four tisks which
contradicts our genericity assumption.

An equivalent statement is that if R is induced by A and B, the set {A,B} constitutes a separator in
NrvS , separating the elements within R and the elements outside of R.

We now state the first main theorem that will be needed for the proof of Theorem 10. As usual, we let
|S | denote the underlying space of S , which is the union over all tisks in S .
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Theorem 16. Let S be a collection of tisks in generic position such that every surrounded region is filled.
Then H1(Nrv(S )) = H1(|S |).

The idea of the proof is to “clear out” surrounded regions one after the other by removing the members
within a surrounded region and charging the surrounded region to one of the two tisks that surround it. These
operations do not change the underlying space. Moreover, as we will show, there cannot be any non-trivial
1-homology in the nerve of a surrounded region. Finally, by the guarding principle, removing the member
of a surrounded region does not affect the connectivity of remaining tisks. These properties will be enough
to ensure the isomorphism. We give the details of the single steps next.
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Figure 9: Illustration of the transformation in the proof of Lemma 17. On the left, we see a simple sur-
rounded and filled region R with members C, D, E. In the middle, we shrink A and B to local neighborhoods
around R, ignoring possible further surrounded regions. On the right, we disconnect one of the two intersec-
tions of A′ and B′ without disconnecting (A′,C) or (B′,C). The obtained subdivision has only contractible
intersections.

Lemma 17. Let R be a surrounded region that is simple and filled. Then, H1(NrvMext
R ) = 0.

Proof. Let the surrounded region R be induced by (A,B), and we set M := Mext
R for notational convenience.

First of all, note that we can restrict A and B to a local neighborhood around R without changing the nerve of
M. Formally, replace A by A′, which is the intersection of A with an ε-offset of R (for ε > 0 small enough),
and same for B. We set M′ := MR∪{A′,B′}. Clearly, NrvM = NrvM′. See Figure 9 (middle).

We want to prove the claim using the Nerve theorem; however, the intersection of A′ and B′ is non-
contractible. We perform another local surgery to avoid this problem: Let v be one of the two intersection
points of A∩ B∩ R, and let C ∈ MR be the member adjacent to this point (C exists because R is filled,
and C is unique because only three tisks intersect in one point). We can separate A′ and B′ locally around
v with a small distance while leaving the pairwise intersections with C intact (again, because we assume
non-degeneracy, A′∩C is a non-degenerate segment). Let A′′, B′′ be the replacements, and let M′′ := MR∪
{A′′,B′′}; note that A′′ and B′′ are still connected at the second intersection point of A∩B∩R; it follows that
NrvM′′ has the same edges of NrvM; in fact, the nerves are the same, except that the triangle ABC ∈ NrvM
might or might not have a counterpart in NrvM′′. See Figure 9 (right).

It is enough to show that H1(NrvM′′) = 0. Any pair of tisks in M′′ has a non-contractible intersection:
we explicitly constructed A′′ and B′′ to have non-contractible intersection, and if any pair in M′′ had a non-
contractible intersection, it would introduce a surrounded region inside R which contradicts the assumption
that R is simple. By Lemma 14, this implies M′′ is a good partition and the Nerve theorem applies. So,
NrvM′′ is homotopically equivalent to |M′′|, which is a topological disk because R is filled. It follows that
H1(NrvM′′) = 0, as required.

Recall that MR is the set of member of a surrounded region R and let SR denote the set S \MR. We
define a map

φR : S →SR
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mapping each member of R to A, and any other tisk to itself. We have the induced simplicial map

Nrv(S )→ Nrv(SR),

which maps a simplex σ = (S0, . . . ,Sk) ∈Nrv(S ) with Si ∈S to the simplex (φR(S0), . . . ,φR(Sk)). Slightly
abusing notation, we also write φR for this map on the nerve level. Note that φR(Si) might be equal to φR(S j),
so φR may map a k-simplex to an `-simplex with `≤ k.

We need to argue that φR is well-defined, that is, φR(σ) ∈ Nrv(SR). For that, observe that if σ does not
contain any member of R, it stays in the nerve when removing R, and φR(σ) = σ . On the other hand, if σ

contains any member of R, it can only contain extended members of R by the guarding principle. Therefore,
φR(σ) = (A) or φR(σ) = (A,B), and both are in Nrv(SR).

Being a simplicial map, φR induces a map

φ
∗
R : H1(Nrv(S ))→ H1(Nrv(SR))

of homology groups. We show that this map is an isomorphism if R is simple and filled.
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Figure 10: Illustration of the transformation in the proof of Lemma 18. A and B induce a simple and filled
surrounded region R with members C,D, . . . ,J. The red curve represents a cycle c in the Nrv(S ): the edges
in the cycle are defined by the intersections that the curve crosses. In this example, the cycle consists of
three loops, each of a different type: The loop DJ+JI+ IH +HD consists of extended members of R (type
(1)) is transformed into the trivial cycle. The loop AK+KL+LA consists of elements of S \MR and is thus
preserved. The third loop AF+FG+GH+HB+BM+MA is of mixed type. The path AF+FG+GH+HB
consists only of extended members and is replaced by AB. The blue curve shows the resulting cycle c′.

Lemma 18. If a surrounded region R is simple and filled, the map φ ∗R is an isomorphism.

Proof. SR ⊆S implies immediately that the map is surjective. The support of a d-chain is the union of
all vertices that are boundary vertices of at least one simplex in the chain. For injectivity, we claim for any
1-cycle c in NrvS , there is an homologous cycle that is only supported by vertices in SR. Indeed, this
statement implies injectivity: Assume that [c1], [c2] ∈ H1(Nrv(S )) are such that φ ∗R([c1]) = φ ∗R([c2]). Then,
we can replace the representatives c1, c2 by c′1,c

′
2 supported by SR. Since φR is the identity on SR, we have

[c1] = [c′1] = φ
∗
R([c

′
1]) = φ

∗
R([c

′
2]) = [c′2] = [c2].

To prove the remaining claim, we fix a 1-cycle c in NrvS . c decomposes into a collection of “simple”
loops, that is, loops in which every vertex is traversed only once. There are three possibilities for such a
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loop: Its support lies (1) entirely in Mext
R , (2) entirely in S \MR, or (3) contains elements of both MR and

S \Mext
R . In the latter case, both A and B must be in the support (because A and B are the only entry points

into Mext
R from the outside by the guarding principle), and the loop splits into two parts at A and B, one that

is supported entirely by Mext
R and one entirely supported by S \MR. See also Figure 10.

We construct c′ from c as follows: Iterating over all loops of c, we remove loops of type (1), and leave
loops of type (2) unchanged. For loops of type (3), we replace the subpath supported by Mext

R with the edge
AB. Note that after these replacements, c′ is indeed supported by vertices in S \MR = SR.

It remains to prove that [c] = [c′]. We show that every loop transformation yields a homologous cycle.
For type (1), note that the loop is a cycle in NrvMext

R . By Lemma 17, such a cycle is null-homologous, so
removing the loop does not change the homology type. For type (2), there is nothing to do. For type (3),
consider the subpath of the loop inside Mext

R ; if it consists only of the edge AB, the loop remains unchanged.
Otherwise, the concatenation of the path with the edge AB induces a cycle in Nrv(Mext

R ). Using Lemma 17,
the loop is null-homologous, thus we can one path by the other without changing the homotopy type.

We complete the proof of the first main statement next.
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Figure 11: Illustration of the transformation in the proof of Theorem 19. The situation is a slight variation of
Figure 8. We have three surrounded regions, two induced by (A,B), and one by (C,E) and they are all filled.
We first remove the simple surrounded region induced by (C,E). We charge the hole when removing the
region to one of the surrounders, say C, transforming it into C′ (2nd figure). This turns the left surrounded
region of (A,B) simple as well. We perform the same operation twice and transform A into A′ (3rd figure)
and finally into A′′ (4th figure). After that, the collection has no more surrounded region.

Theorem 19. Let S be a collection of tisks in generic position such that every surrounded region is filled.
Then H1(Nrv(S )) = H1(|S |).
Proof. We assume that S induces at least one surrounded region. In that case, it must also induce a simple
one, and we let R denote it and (A,B) be the pair in S that causes R. By Lemma 18, because R is filled,
we have H1(Nrv(S )) = H1(Nrv(SR)). Now, we set A′ := A∪R and consider S ′

R, where we replace A
with A′ (Figure 11). We note that NrvS ′

R = NrvSR, because the extension of A did not introduce any new
connection. This implies in particular that H1(Nrv(S )) = H1(Nrv(S ′

R)) Moreover, |S ′
R|= |S |, because A′

occupies exactly the space that has been occupied by the members of R. Finally, the surrounded regions of
S ′

R are equal to the surrounded regions of S , except that the simple region R was removed. In other words,
representing the surrounded region by a forest where R1 is an ancestor of R2 if R1 ⊆ R2, the surrounding
forest of S ′

R equals the surrounding forest of S with one leaf removed.
By iterating this construction, we find a collection S ∗ of tisks such that H1(Nrv(S )) = H1(Nrv(S ∗)),

|S | = |S ∗|, and S does not induce any surrounding region. The last property, however, implies that all
pairwise intersections are contractible. Therefore, Lemma 14 applies and we can use the Nerve Theorem,
which states that Nrv(S ∗) is homotopically equivalent to |S ∗|. In particular, their homology groups are
isomorophic. Putting everything together, we have that

H1(Nrv(S )) = H1(Nrv(S ∗)) = H1(|S ∗|) = H1(|S |)
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Finally, we consider filtrations of tisks according to the following definition.

Definition 20. A family of tisks (Sα)α≥0 is called a tisk-inclusion if Sα ⊆ Sα ′ for α ≤α ′. A collection of tisk-
inclusions (S α)α≥0 = ({Sα

1 , . . . ,S
α
N})α≥0 is called a tisk-filtration. For each α ≥ 0, it defines a collection

of tisks at scale α . A tisk-filtration is called sane if for every α , the collection of tisks is interior-disjoint, in
generic position, and all its surrounded regions are filled.

For a sane tisk-filtration (S α)α≥0, Theorem 19 establishes an isomorphism between the first homology
group of Nrv(S α) and |S α | for every α > 0. On the other hand, for α1 ≤ α2, we have natural inclusions
from |S α1 | to |S α2 | as well as inclusions on their nerves. We show next that these inclusions commute
with the isomorphisms.

Theorem 21. For a sane tisk-filtration (S α)α≥0 and α1 ≤ α2, the diagram

H1(|S α1 |) � � // H1(|S α2 |)

H1(Nrv(S α1))

ψ∗
OO

� � // H1(Nrv(S α2))

ψ∗
OO

commutes, where ψ∗ is the isomorphism as constructed in Theorem 19.

Proof. The proof is lengthy and requires us to study the isomorphisms induced by the Nerve theorem, in
a similar spirit as in [9]. We let R(1)

1 , . . . ,R(1)
h1

denote the the surrounded regions of S α1 and R(2)
1 , . . . ,R(2)

h2

those of S α2 . Clearly, h1 ≤ h2 and we can label the surrounded regions such that R(1)
i = R(2)

i for 1≤ i≤ h1.
Recall that in the construction of ψ∗ (Theorem 19), we repeatedly remove tisks from surrounded regions
and charge their area to one of its surrounding tisks. After removing all surrounded regions, we arrive at a
collection (S αi)∗ from S αi with the same underlying space, and a simplicial map

φi : Nrv(S αi)→ Nrv((S αi)∗),

which induces an isomporphism φ ∗i between the 1-st homology groups. Moreover, because (S αi)∗ has no
surrounded regions, the Nerve theorem defines an isomorphism

θ
∗
i : Hi(Nrv(S αi)∗)→ Hi(|S αi)∗|).

Finally, there is a natural simplicial map

γ : Nrv((S α1)∗)→ Nrv((S α2)∗)

where we map a tisk that is not surrounded at α1, but surrounded at α2 to one of its surrounding tisks (in
other words, γ can be seen as the restriction of φ2 to Nrv((S α1)∗)). Putting everything together, we have
the following diagram

H1(|S α1 |) ⊆ // H1(|S α2 |)

H1(|(S α1 |)∗) ⊆ // H1(|(S α2)∗|)

H1(Nrv(S α1)∗)
γ∗ //

θ ∗1

OO

H1(Nrv(S α2)∗)

θ ∗2

OO

H1(NrvS α1)
⊆ //

φ∗1

OO

H1(NrvS α2)

φ∗2

OO

(2)
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where ⊆ means that the corresponding map is induced by inclusion. We show that every square in this
diagram commutes. This is immediately clear for the upper square from the top. For the lower square, we
observe that the corresponding diagram on the simplicial level already commutes, by definition of γ .

For the middle square, we need to investigate the isomorphism θ ∗i in more detail. (Note that we cannot
apply Theorem 2 because γ∗ is not induced by inclusion) We still want to follow the approach from [9,
Lemma 3.4], [20, Sec. 4G]. A technical difficulty is that these results require open covers of the underlying
space, while we cover with closed spaces. However, we can just replace any tisk in (S αi)∗ by an offset of
itself with a sufficiently small ε-value and restrict the offset to the underlying space. This yields an open
cover U αi , with same underlying space and the same nerve as (S αi)∗ – this is possible because we assume
our tisks to be bounded by finitely many algebraic sets which rules out pathological cases where tisks come
arbitrary close to each other without intersecting. With that, we have the diagram

H1(|(S α1 |)∗) ⊆ // H1(|(S α2)∗|)

H1(|U α1 |) ⊆ // H1(|U α2 |)

H1(Nrv(U α1))

θ ∗1

OO

γ∗ // H1(Nrv(U α2))

θ ∗2

OO

H1(Nrv(S α1)∗)
γ∗ // H1(Nrv(S α2)∗)

where the upper and lower square obviously commute, and we only need to show that the middle square
commutes. Set Xi := |U αi | for convenience, and let U (i)

1 , . . . ,U (i)
ni denote the elements in the open cover

U αi . Let ∆ni−1 denote the standard simplex of dimension ni− 1. We define a space ∆Xi ⊆ Xi×∆ni−1 as
follows: Any non-empty subset σ ⊂ {1, . . . ,ni} defines a simplex [σ ] of ∆ni−1 choosing the corresponding
vertex set. Also, σ induces a (possibly empty) set U (i)

σ =
⋂

j∈σ U (i)
j . We set

∆Xi :=
⋃

/0 6=σ⊆{1,...,ni}
U (i)

σ × [σ ].

Our next goal is to define a map that connects ∆X1 and ∆X2. Note first that γ : Nrv((S α1)∗)→Nrv((S α2)∗)
is defined through a vertex map from one nerve to the other, by identifying surrounded tisks with one of their
surrounders. By assigning indices and tisks, γ can be encoded as a map γ : {1, . . . ,n1} → {1, . . . ,n2}. Note
that the individual tisks are only growing when surrounded regions are eliminated; therefore, we have that
U (1)

k ⊆ U (2)
γ(k). γ also extends to a surjective map from ∆n1−1 to ∆n2−1 in a natural way, and we have that

U (1)
σ ⊆U (2)

γ(σ). Therefore, the map
ξ : ∆X1→ ∆X2

which maps (x,v) to (x,γ(v)) is well-defined.
Finally, let Γi denote the barycentric subdivision of NrvU αi and note that γ also extends to a map

γ ′ : Γ1→ Γ2 in a natural way. Now we consider the following diagram
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X1
� � // X2

∆X1
ξ //

p1

OO

q1

��

∆X2

p2

OO

q2

��
Γ1

γ ′ // Γ2

where pi is the natural projection from ∆i to Xi and qi is the map obtained by contracting every U (i)
σ to

a single point, say x0. Both squares commute: For the first square, this is immediately clear, because a
point (x,v) ∈ ∆X1 is mapped to x ∈ X2, regardless of how to follow the diagram. For the second square, let
(x,v) ∈ ∆X1 and note that q2(ξ (x,v)) = q2(x,γ ′(v)) = (x0,γ

′(v)) and γ ′(q1(x,v)) = γ ′(x0,v) = (x0,γ
′(v)).

We consider the diagram

Ck(Γ1)
γ ′p // Ck(Γ2)

Ck(NrvU α1)

h1

OO

γp // Ck(NrvU α2)

h2

OO

of k-chain groups, where γp, γ ′p are chain maps for dimension p induced by γ and γ ′ (see [30, p.72]). hi is the
chain map defined by mapping a k-simplex σ ∈ NrvU α1 to the chain of k-simplices that are incident to the
vertex σ̂ representing σ in Γi. It is again straight-forward to see that the diagram commutes: Fix a k-simplex
σ . If σ is contracted, that is, two of its boundary vertices are identified, every simplex of Γ1 incident to σ̂ is
also contracted. It follows that γ ′p(h1(σ)) = 0 = h2(γp(σ)). On the other hand, of σ is not contracted, every
simplex in the barycentric subdivision that is incident to σ̂ is mapped to a non-trivial k-chain, and it is easy
to verify that γ ′p(h1(σ)) = h2(γp(σ)) also in this case.

Summarizing the previous two steps, we have the commutative diagram

H1(X1)
i // H1(X2)

H1(∆X1)
ξ //

p∗1

OO

q∗1
��

H1(∆X2)

p∗2

OO

q∗2
��

H1(Γ1)
γ ′ // H1(Γ2)

H1(NrvU α1)

h∗1

OO

γ // H1(NrvU α2)

h∗2

OO

According to [20, Prop.4G.2 and 4G.3], the maps pi and qi are isomorphisms, and according to [30,
Thm.13.3 and 17.2], hi is an isomorphism. It follows that with θ ∗i := p∗i ◦ (q∗i )−1 ◦h∗i , the middle square of
(2) commutes, which completes the proof.

We apply the previous theorem on the case of restricted offset filtrations and prove Theorem 10:

Theorem 22. For convex polygonal sites in R2, the 0- and 1-barcode of the restricted nerve filtration are
equal to the 0- and 1-barcode of the offset filtration, respectively.
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Proof. For the 1-barcode, it is enough to show that the restricted offset filtration yields a sane tisk-filtration
according to Definition 20. By assumption, the restricted offsets are in generic position and interior-disjoint.
It remains to show that for any α , any surrounded region is filled.

Consider a region R surrounded by A and B with boundary curves a and b. Let v1, v2 denote the points
on the boundary of R that lie in a∩b. Assume wlog that d(v1)≤ d(v2) =: w. We have to show that the union
of the restricted w-offset sites cover R. For that, it suffices to show that the unrestricted w-offsets of A and B
cover R, what we show next. It can easily be seen that the bisector of A and B has a segment within R that
connects v1 and v2. With Lemma 6, we have that d(x)≤ w for all x on that bisector segment. Moreover, for
any x on the part of a \ b that bounds R, we must have d(x) ≤ w as well. Combining these two properties,
the “half-region” of R bounded by a\b and the bisector segment satisfies d(x)≤ w on its boundary and by
convexity of the distance function, d(x)≤ w in the whole region. Applying the same argument on the other
half-region, we get the result.

The result for the 0-barcode is obtained by proving that an analogue version of Lemma 18 also holds
for 0-homology. The proof for that is similar, but simpler than for the 1-homology case. We omit further
details.
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