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Triangulation de Delaunay de variétés

Résumé : Nous présentons un cadre algorithmique pour construire des triangulations de De-
launay de variétés. L’entrée de l’algorithme est un ensemble de points ainsi que que des cartes lo-
cales euclidiennes indicées par ses points. Les fonctions de transition entre cartes voisines doivent
être bi-Lipschitz avec une constante de Lipschitz proche de 1, mais pas nécessairement lisses. La
principale nouveauté de notre approche est de permettre de traiter des variétés abstraites qui
ne sont pas des sous-variétés d’un espace euclidien. L’algorithme produit un complexe simplicial
qui est le complexe de Delaunay d’un ensemble perturbé des points d’entrée. On peut garantir
que le complexe simplicial fourni est une variété. Dans le cas où les fonctions de transition sont
lisses et que les cartes locales sont définies par l’application exponentielle sur une variété Rie-
mannienne, le complexe calculé est homéomorphe à la variété originale quand l’échantillonnage
est suffisamment dense.

Mots-clés : triangulation de Delaunay, stabilité, algorithme, variété
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4 Boissonnat, Dyer, & Ghosh

1 Introduction

We present an algorithm for triangulating a manifold that may be presented abstractly in terms
of a coordinate atlas. In particular, there is no requirement that the manifold be an embed-
ded submanifold of Euclidean space. This is the principal novelty in our approach. Earlier
work [LL00] proposed a purely intrinsic algorithm for constructing Delaunay triangulations of
manifolds, but this was based on an existence result that has been shown to be fundamentally
flawed [BDG13a]. In fact, the point set must be bounded away from degeneracy by an amount
that is not arbitrarily small. A refinement algorithm for constructing points that admit a De-
launay triangulation was presented in the latter work, but it applies only to submanifolds of
Euclidean space. In this work we construct a Delaunay triangulation on abstract Riemannian
manifolds.

Given a dense sample set on the manifold, we consider a coordinate chart centred at each
sample point. A Delaunay triangulation is made locally, using the Euclidean metric of the
coordinate chart, and these local triangulations assemble to create a global manifold simplicial
complex. The idea has been proposed previously in the context of surfaces [GKS00], but it
suffers from a fundamental problem: no matter how densely the surface is sampled, a Delaunay
triangulation in one coordinate chart need not be isomorphic to the Delaunay triangulation of the
corresponding points in a neighbouring coordinate chart. The problem is that points in a nearly
degenerate, i.e., almost co-spherical, configuration make the Delaunay triangulation unstable
with respect to small perturbations of the metric under consideration.

We overcome this difficulty by perturbing the sample points so that they form a configuration
in which the local Delaunay triangulations are stable. The description of such point sets is based
on the notion of δ-protected Delaunay simplices [BDG13c]. If P ⊂ Rm, then a Delaunay m-
simplex σ is δ-protected if there are no points in P \ σ that are within a distance δ from the
boundary of the Delaunay ball for σ. The stability of Delaunay triangulations with δ-protected
m-simplices can be quantified in terms of δ.

We recently presented a simple perturbation algorithm to produce such point sets in Eu-
clidean space [BDG13b]. It is an extension of an algorithm that had been previously proposed
[ELM+00] for removing poorly shaped simplices from Delaunay triangulations in R3. The al-
gorithm proposed here extends the same idea to the context of non-Euclidean manifolds and
adaptive sampling.

The essential observation that leads to the perturbation algorithm in Euclidean space is that
if P ⊂ Rm is such that there exists a Delaunay m-simplex that is not δ-protected, then there is a
forbidden configuration: a (possibly degenerate) simplex τ ⊂ P that has the property that every
vertex is close to the circumsphere of the opposing facet. The perturbation algorithm guarantees
that the Delaunay m-simplices will be δ-protected by ensuring that each point is perturbed to a
position that is not too close to the circumsphere of any of the nearby simplices in the current
(perturbed) point set. A volumetric argument shows that this can be achieved.

The current framework is built on the notion of local Euclidean coordinate patches and
transition functions between them. We require that the transition functions have low metric
distortion, i.e., they are quantifiably close to being isometries. We exploit another property of
forbidden configurations: their facets have a lower bound on their thickness. This is a quality
measure on a Euclidean simplex that indicates that it is not too close to being degenerate. We
show that the change in the thickness and circumradius of a simplex under the influence of a
transition function can be bounded. With these observations, together with previous results on
the stability of circumcentres with respect to perturbations [BDG13c], we show that if a point
is close to the circumsphere of a thick simplex in one coordinate frame, then we can quantify
how far the corresponding point will be from the circumsphere of the corresponding simplex in

Inria



manifold Delaunay triangulation 5

another coordinate frame.
This analysis permits us to use essentially the same perturbation algorithm as in the Euclidean

case. We perturb each point in turn, sufficiently avoiding all relevant circumspheres. The
perturbation of a point is performed in the Euclidean coordinate patch that is associated with
that point. The metric on the manifold is never explicitly considered, and indeed it need not be
explicitly given: it is approximately implicitly encoded by the local Euclidean metrics and the
transition functions between them.

The output is a manifold abstract simplicial complex which is the Delaunay complex asso-
ciated with the perturbed points on the manifold. We show that if a (smooth) Riemannian
manifold, is sufficiently densely sampled, then the algorithm will produce an output mesh that
is homeomorphic to the original manifold: a Delaunay triangulation.

Much recent work in computational geometry has focused on the reconstruction problem,
which means inferring properties of a compact manifold based on a finite set of sample points.
Giesen and Wagner [GW04] constructed a graph on the sample points in ambient space, from
which they could infer the dimension and obtain a crude estimate of geodesic distances on the
underlying submanifold. Cheng et al. [CDR05] presented the first algorithm to construct a
simplicial complex that is homeomorphic to the submanifold from which the input point set was
sampled. The running time of this algorithm depends exponentially on the ambient dimension,
and Boissonnat and Ghosh [BG11] presented an algorithm that avoids this problem by working
locally on estimates to the tangent spaces of the sample points.

These algorithms are all reconstruction algorithms, which means they only assume a finite
point set as input. The point set is assumed to lie on or near a submanifold of Euclidean space.
In contrast, we present here a triangulation algorithm which assumes complete knowledge of
the manifold, but makes no reference to an ambient space. Our algorithm can be viewed as a
generalisation of an earlier anisotropic meshing algorithm [BWY11] that required affine transition
functions and a global reference coordinate patch.

We benefited from ideas and cautions presented in Gallier’s notes [Gal11].
We first review the algorithm in the Euclidean setting (Section 2), and then present a com-

prehensive overview of the algorithm extended to manifolds with curvature, its analysis, and its
output guarantees (Section 3). The details of the calculations are presented in Section A.

2 Review of the algorithm for flat manifolds

We review the perturbation algorithm [BDG13b] for points in Euclidean space. The algorithm
for more general manifolds is a natural extension of this.

We consider a finite set P ⊂ Rm. A simplex σ ⊂ P is a finite collection of points: σ =
{p0, . . . , pk}. We work with abstract simplices, and in particular x ∈ σ means x is a vertex of σ.
The dimension of a simplex is one less than the number of vertices, and a j-dimensional simplex
is a j-simplex. The dimension, if it is important, may be indicated with a superscript, as in σm.
The notation σ ≤ τ indicates that σ is a face of τ (i.e., a subset), and σ < τ means that it is
a proper face. The join of two simplices, τ ∗ σ, is the union of their vertices. By the standard
abuse of notation, a point p may represent the 0-simplex {p}.

If σ ⊂ Rm, then we freely talk about standard geometric properties, such as the diameter,
∆(σ), and the length of the shortest edge L(σ). For p ∈ σ, σp is the facet opposite p, and D(p, σ)
is the altitude of p in σ, i.e., D(p, σ) = d(p, aff(σp)).

The thickness of σj is defined as

Υ(σj) =

{
1 if j = 0

minp∈σj
D(p,σj)
j∆(σj) otherwise.

RR n° 8389



6 Boissonnat, Dyer, & Ghosh

It is a measure of the quality of the simplex. If Υ(σ) = 0, then σ is degenerate. We say that σ
is Υ0-thick, if Υ(σ) ≥ Υ0. If σ is Υ0-thick, then so are all of its faces.

A circumscribing ball for a simplex σ is any m-dimensional ball that contains the vertices
of σ on its boundary. A degenerate simplex may not admit any circumscribing ball. If σ
admits a circumscribing ball, then it has a circumcentre, C(σ), which is the centre of the unique
smallest circumscribing ball for σ. The radius of this ball is the circumradius of σ, denoted
R(σ). A degenerate simplex σ may or may not have a circumcentre and circumradius; we write
R(σ) < ∞ to indicate that it does. In this case we can also define the diametric sphere as the
boundary of the smallest circumscribing ball: Sm−1(σ) = ∂B(C(σ), R(σ)), and the circumsphere:
S(σ) = Sm−1(σ) ∩ aff(σ). If σ ≤ τ , then S(σ) ⊆ S(τ), and if dimσ = m, then S(σ) = Sm−1(σ).

A ball B(c, r) is open, and B(c, r) is its closure. The Delaunay complex, Del(P) is the
(abstract) simplicial complex defined by the criterion that a simplex belongs to Del(P) if it has
a circumscribing ball whose intersection with P is empty. An m-simplex σm is δ-protected if
B(C(σm), R(σm) + δ) ∩ P = σm.

A point set whose Delaunay m-simplices are δ-protected has quantifiable stability properties
with respect to perturbations of the points, or of the metric [BDG13c]. In order for comparisons
between radii, edge lengths, and δ, to be meaningful, we introduce a common “unit”. Let ε be
an upper bound on the circumradii of the Delaunay balls centred in conv(P), and let µ0ε be
the minimum distance between distinct points in P. Since P is finite, ε and µ0 exist, with the
only additional required assumptions on P being that aff(P) = Rm, and that the points in P are
distinct.

If D ⊂ Rm, then P is ε-dense for D if d(x,P) < ε for all x ∈ D. If no domain is specified, P
is ε-dense if it is ε-dense for

Dε(P) = {x ∈ conv(P) | d(x, ∂conv(P)) ≥ ε}.

We refer to ε as the sampling radius. The set P is µ0ε-separated if d(p, q) ≥ µ0ε for all p, q ∈ P,
and P is a (µ0, ε)-net (for D) if it is µ0ε-separated, and ε-dense (for D).

The Delaunay stability results require an upper bound on the circumradii of the Delaunay
balls. The Delaunay complex of P restricted to D is the subcomplex consisting of simplices that
have a Delaunay ball centred in D. We denote the Delaunay complex of P restricted to Dε(P )
by Del|(P), and observe that the Delaunay balls for simplices in Del|(P) have radii smaller than
ε, and in particular, R(σ) < ε if σ ∈ Del|(P).

The goal is to produce a perturbed point set P′ such that the Delaunay m-simplices of
Del|(P

′) are δ-protected . A ρ-perturbation of a (µ0, ε)-net P ⊂ Rm is a bijective application
ζ : P→ P′ ⊂ Rm such that d(ζ(p), p) ≤ ρ for all p ∈ P. Unless otherwise specified, a perturbation
will always refer to a ρ-perturbation, with ρ = ρ0ε for some

ρ0 ≤
µ0

4
. (1)

We also refer to P′ itself as a perturbation of P. We generally use p′ to denote the point ζ(p) ∈ P′,
and similarly, for any point q′ ∈ P′ we understand q to be its preimage in P.

The “perturbations” constrained by Equation (1) are not particularly “small”, and in par-
ticular, we do not expect a close relationship between Del(P) and Del(P′). However, we do have
the useful observation [BDG13b, Lemma 2.2] that P′ is a (µ′0, ε

′)-net:

Lemma 2.1 If P ⊂ Rm is a (µ0, ε)-net, and P′ is a perturbation of P, then P′ is a (µ′0, ε
′)-net,

where

• ε′ = (1 + ρ0)ε ≤ 5
4ε, and

Inria



manifold Delaunay triangulation 7

• µ′0 = µ0−2ρ0
1+ρ0

≥ 2
5µ0.

The construction of the algorithm is based on the concept of forbidden configurations, which
are specific simplices that indicate the presence Delaunay m-simplices that are not sufficiently
thick, or not δ-protected. Forbidden configurations possess the α0-hoop property . A simplex
has the α0-hoop property if every vertex lies close to the circumsphere of the opposing facet.
Specifically, for α0 > 0, a simplex τ has the α0-hoop property if, for every p ∈ τ ,

d(p, S(τp)) ≤ α0R(τp) <∞.

We will first sketch the argument that shows that Delaunay m-simplices that are not δ-
protected indicate the presence of forbidden configurations. Then we will describe how the hoop
property is exploited in the perturbation algorithm.

A forbidden configuration is a specific kind of poorly shaped simplex that has the property
that all its altitudes are small. A simplex that has an upper bound on its thickness will also have
an altitude that is subjected to an upper bound, but in order to obtain a useful upper bound
on all of the altitudes, we need a more refined measure of simplex quality. Given a positive
parameter Γ0 ≤ 1, we say that σ is Γ0-good if for all σj ≤ σ, we have Υ(σj) ≥ Γj0, where Γj0
is the jth power of Γ0. A simplex that is Γ0-good is necessarily Γm0 -thick, but the converse is
not generally true. A Γ0-flake is a simplex that is not Γ0-good, but whose facets all are. The
altitudes of a flake are subjected to an upper bound proportional to Γ0.

If a simplex is not Γ0-good, then it necessarily contains a face that is a flake. This follows
easily from the observation that Υ(σ) = 1 if σ is a 1-simplex. If σm ∈ Del(P) is not δ-protected,
then there is a q ∈ P \ σm that is within a distance δ of the circumsphere of σm. Since q ∗ σm is
(m + 1)-dimensional, it is degenerate, and therefore has a face τ that is a Γ0-flake. Such a τ is
a forbidden configuration.

The bound on the altitudes, together with the stability property of circumscribing balls of
thick simplices, allows us to demonstrate that forbidden configurations have the hoop property.
In addition to the two parameters that describe a (µ0, ε)-net, forbidden configurations depend
on the flake parameter Γ0, as well as the parameter δ0, which governs the protection via the
requirement δ = δ0µ0ε. We do not need to explicitly define forbidden configurations here.
Instead, we make reference to the following summary [BDG13b, Theorem 3.10] of properties of
forbidden configurations in P′:

Lemma 2.2 (Properties of forbidden configurations) Suppose that P ⊂ Rm is a (µ0, ε)-
net and that P′ is a perturbation of P. If

δ0 ≤ Γm+1
0 and Γ0 ≤

2µ2
0

75
, (2)

then every forbidden configuration τ ⊂ P′ satisfies all of the following properties:

P1 Simplex τ has the α0-hoop property, with α0 = 213Γ0

µ3
0

.

P2 For all p ∈ τ , R(τp) < 2ε.

P3 ∆(τ) < 5
2 (1 + 1

2δ0µ0)ε.

P4 Every facet of τ is Γ0-good.

The algorithm focuses on Property P1 of forbidden configurations. A critical aspect of this
property is its symmetric nature; if we can ensure that τ has one vertex that is not too close to
its opposite facet, then τ cannot be a forbidden configuration.

RR n° 8389



8 Boissonnat, Dyer, & Ghosh

Using Property P3, we can find, for each p ∈ P, a complex Sp consisting all simplices σ ∈ P
such that after perturbations p ∗ σ could be a forbidden configuration.

The algorithm proceeds by perturbing each point p ∈ P in turn, such that each point is only
visited once. The perturbation p 7→ p′ is found by randomly trying perturbations p 7→ x until it
is found that x is a good perturbation. A good perturbation is one in which d(x, S(σ)) > 2α0ε for
all σ ∈ Sp(P′), where Sp(P′) is the complex in the current perturbed point set whose simplices
correspond to those in Sp.

A volumetric argument based on the finite number of simplices in Sp, the small size of α0,
and the volume of the ball B(p, ρ0ε) of possible perturbations of p, reveals a high probability
that p 7→ x will be a good perturbation, and thus ensures that the algorithm will terminate.

Upon termination there will be no forbidden configurations in P′, because every perturbation
p 7→ p′ ensures that there are no forbidden configurations incident to p′ in the current point set,
and no new forbidden configurations are introduced.

3 Overview of the extended algorithm

The extension of the perturbation algorithm to the curved setting is accomplished by performing
the perturbations, and the analysis, in local Euclidean coordinate patches.

We assume we have a finite set of points P in a compact manifold M. It is convenient to
employ an index set N of unique (integer) labels for P, thus we employ a bijection ι : N → P ⊂
M. We assume that P is sufficiently dense that we may define an atlas {(Wi, ϕi)}i∈N for M
such that the coordinate charts ϕi : Wi → Ui ⊂ Rm have low metric distortion, as defined in
Section 3.2. We refer to Ui as a coordinate patch.

We work exclusively in the Euclidean coordinate patches Ui, exploiting the transition func-
tions ϕji = ϕj ◦ϕ−1

i to translate between them. We define Pi = ϕi(Wi∩P), but given these sets,
the algorithm itself makes no explicit reference to either P or the coordinate charts ϕi, except
to keep track of the labels of the points. We employ the discrete map φi = ϕi ◦ ι to index the
elements of the set Pi.

The idea is to perturb pi = φi(i) ∈ Ui in such a way, pi 7→ p′i, that not only are there
no forbidden configurations incident to p′i in P′i = φi(Wi ∩ P′), but there are no forbidden
configurations incident to ϕji(p

′
i) ∈ P′j ⊂ Uj either, where j is the index of any sample point

near pi.
Before detailing the requirements of the input data in Section 3.2, we briefly discuss the

implicit and explicit properties of the underlying manifoldM in Section 3.1. The analysis of the
algorithm is summarised in Section 3.3, and the quality of the output complex is discussed in
Section 4.

3.1 Manifolds represented by transition functions

The essential input data for the algorithm are the transition functions, and the sample points
in the coordinate patches; we do not explicitly use the coordinate charts or the metric on the
manifold. However, given that the transition functions can be defined by an atlas on a manifold,
this manifold is essentially unique.

If M̃ has an atlas {(W̃i, ϕ̃i)}i∈N such that ϕ̃i(W̃i) = Ui and ϕji = ϕ̃j ◦ ϕ̃−1
i for all i, j ∈ N ,

then M̃ andM are homeomorphic. Indeed, we define the map f :M→ M̃ by f(x) = ϕ̃−1
i ◦ϕi(x)

if x ∈Wi. The map is well defined, because ϕj = ϕji ◦ ϕi on Wi ∩Wj , and ϕ̃−1
j = ϕ̃−1

i ◦ ϕ
−1
ji on

Uji = ϕj(Wi ∩Wj). It can be verified directly from the definition that f is a homeomorphism,
since it is bijective and locally a homeomorphism.

Inria



manifold Delaunay triangulation 9

Although the algorithm does not make explicit reference to a metric on the manifold M,
the metric distortion bounds required on the transition functions imply a metric constraint.
Implicitly we are using a metric on the manifold for which the coordinate charts have low metric
distortion. If a metric on the manifold is not explicitly given then, at least in the case where the
transition functions are smooth, we can be sure that such a metric exists: Given the coordinate
charts an appropriate Riemmanian metric on the manifold can be obtained from the coordinate
patches by the standard construction employing a partition of unity subordinate to the atlas
(e.g., [Boo86, Thm. V.4.5]).

Thus, although the manifold may be presented abstractly in terms of coordinate patches and
transition functions between them, this information essentially characterises the manifold. The
algorithm we present is not a reconstruction algorithm, it is an algorithm to triangulate a known
manifold.

3.2 The setting and input data

We take as input a finite index set N = {1, . . . , n}, which we might think of as an abstract set of
points (without geometry), together with the geometric data we will now introduce. The details
of the arguments that lead to our choices in the size of the domains are given in Section A.3.

Local charts. For each i ∈ N we have a neighbourhood set Ni ⊂ N , a sampling radius εi > 0,
and an injective application

φi : Ni → Ui ⊂ Rm,

such that Pi = φi(Ni) is an εi-dense sample set for B(pi, 8εi) ⊂ Ui, where we adopt the notation
pj = φi(j) for any j ∈ Ni. We call the standard metric on Ui ⊂ Rm the local Euclidean metric
for i, and we will denote it by di to distinguish between the different local Euclidean metrics.
Similarly, Bi(c, r) denotes a ball with respect to the metric di.

Transition functions. For each pj ∈ Bi(pi, 6εi) ⊂ Ui we require a neighbourhood Uij ⊂ Ui
such that

Bi(pi, 6εi) ∩Bi(pj , 9εi) ⊂ Uij

and

Uij ∩ φi(Ni) = φi(Ni ∩Nj).

The set Uij is the domain of the transition function ϕji, which is a homeomorphism

ϕji : Uij → Uji ⊂ Uj ,

such that ϕji = ϕ−1
ij and

ϕji ◦ φi = φj on Ni ∩Nj .

These transition functions are required to have low metric distortion:

|di(x, y)− dj(ϕji(x), ϕji(y))| ≤ ξ0di(x, y) for all x, y ∈ Uij , (3)

where ξ0 > 0 is a small positive parameter that quantifies the metric distortion. We say that ϕji
is a ξ0-distortion map.

In order to ease the notational burden, φi(j) ∈ Uik, and φk(j) ∈ Uki, are denoted by the
same symbol, pj . Ambiguities are avoided by distinguishing between the Euclidean metrics di
and dk. Although di is the canonical metric on Uik, we may consider the pullback of dk from the

RR n° 8389



10 Boissonnat, Dyer, & Ghosh

homeomorphic domain Uki. Thus for x, y ∈ Uik the expression dk(x, y) is understood to mean
dk(ϕki(x), ϕki(y)), but we also occasionally employ the latter, redundant, notation.

Using symmetry, we observe that Equation (3) implies that

|di(x, y)− dj(x, y)| ≤ ξ0 min{di(x, y), dj(x, y)}.

Our analysis will require that ξ0 be very small. For standard coordinate charts, ξ0 can be shown
to be O(ε), where ε is a sampling radius on the manifold. For example, this is the case when
considering a smooth submanifold of RN , and using the orthogonal projection onto the tangent
space as a coordinate chart [BDG13a, Lemma 3.7]. Thus ξ0 may be made as small as desired by
increasing the sampling density.

Adaptive sampling We will further require a constraint on the difference between neighbour-
ing sampling radii:

|εi − εj | ≤ ε0 min{εi, εj},

whenever di(pi, pj) ≤ 6εi. This allows us to work with a constant sampling radius in each
coordinate frame, while accommodating a globally adaptive sampling radius.

For example, suppose ε : M → R is a positive, ν-Lipschitz function, with respect to the
metric dM on the manifold. Then ε may be used as an adaptive sampling radius on M, i.e.,
P ⊂ M is ε-dense if dM(x,P) < ε(x) for all x ∈ M. A popular example of such a function is
ε(x) = νf(x), where f is the (1-Lipschitz) local feature size [AB99].

Using the ν-Lipschitz continuity of ε, we can define, for any pi ∈M, a constant εi, such that
P is εi dense in some neighbourhood of pi. In fact, given c > 0, with c < ν−1, we find that P is
εi dense within the ball BM(pi, cεi), where

εi =
ε(pi)

1− cν
.

For any pj ∈ BM(pi, εi), we obtain |εi − εj | ≤ ε0εi, where

ε0 =
cν

1− cν
, (4)

and if ν ≤ 1
2c , then ε0 ≤ 1.

Similarly, if P is µ̂0ε-sparse, then it will be µ0εi-sparse on BM(pi, cεi), provided µ0 ≤ (1 −
2cν)µ̂0. The constant µ̂0 itself may be constrained to satisfy µ̂0 ≤ (1 + ν)−1 ≤ 1

2 .
In our framework here, the local constant sampling radii are applied to the local Euclidean

metric, rather than the metric on the manifold, but the same idea applies. Although Equation (4)
indicates that ε0 is expected to become small as the sampling radius decreases, our analysis does
not demand this. As explained in Section 3.3, we only require that ε0 be mildly bounded.

3.3 Outline of the analysis

We have defined the point sets Pi = φi(Ni) in the local frame for pi. We will let P′i denote the
corresponding perturbed point set at any stage in the algorithm: P′i changes during the course
of the algorithm, and we do not rename it according to the iteration as was done in the original
description of the algorithm for flat manifolds [BDG13b]. The perturbation of a point pi 7→ p′i
is performed in the coordinate patch Ui, and then all the coordinate charts must be updated
so that if i ∈ Nj , then φ′j(i) = ϕji(p

′
i). However, we will refer to the point as p′i regardless of

which coordinate frame we are considering. The discrete maps φ′i will change as the algorithm
progresses, but φi will always refer to the initial map.

Inria



manifold Delaunay triangulation 11

In order to exploit Lemma 2.1, we need to constrain the perturbation so that Equation (1)
effectively applies in all local Euclidean metrics. If pi 7→ ζ(pi) such that di(ζ(pi), pi) ≤ ρ = ρ0εi,
then dj(ζ(pi), pi) ≤ (1 + ξ0)ρ ≤ (1 + ξ0)(1 + ε0)ρ0εj , and we effectively have

ρ̃0 = (1 + ξ0)(1 + ε0)ρ0.

Thus we demand that
ρ̃0 ≤

µ0

4
.

We will assume that

ε0 ≤
1− ξ0
1 + ξ0

,

and observe that this implies that

(1 + ε0)(1 + ξ0) ≤ 2. (5)

We will keep the definition of forbidden configuration as in the flat case. In other words a
forbidden configuration is that which satisfies the four properties described in Lemma 2.2, where
ε refers to the local sampling radius εi.

We do not attempt to remove the forbidden configurations from all of P′i. Rather, we define
Q′i = P′i ∩ Bi(pi, 6εi) as our region of interest. The reasoning behind this choice appears in
Section A.3, where we also show (Lemma A.12) that [BDG13b, Lemma 3.5] implies:

Lemma 3.1 (Protected stars) If there are no forbidden configurations in Q′i, then all the
m-simplices in star(p′i; Del(Q′i)) are Γ0-good and δ-protected, with δ = δ0µ

′
0ε
′
i.

This allows us to exploit the Delaunay metric stability result [BDG13c, Theorem 4.17], which
we show (Lemma A.13) may be stated in our current context as:

Lemma 3.2 (Stable stars) If

ξ0 ≤
Γ2m+1

0 µ2
0

212
,

and there are no forbidden configurations in Q′i, then for all p′j ∈ star(p′i; Del(P′i)), we have

star(p′i; Del(P′i))
∼= star(p′i; Del(P′j)).

The main technical result we develop in the current analysis is the bound on the distortion
of the hoop property (Lemma A.15) due to the transition functions:

Lemma 3.3 If

ξ0 ≤
(

Γ2m+1
0

4

)2

,

then for any forbidden configuration τ = p′j ∗ σ ⊂ Q′i, there is a simplex σ̃ = ϕji(σ) ⊂ P′j such

that dj(p
′
j , S

m−1(σ̃)) ≤ 2α̃0εj , where

α̃0 =
216m

3
2 Γ0

µ3
0

.

The proof of Lemma 3.3 relies heavily on the thickness bound (Property P4) for the facets of a
forbidden configuration. In Section A.1 we show bounds on the changes of the intrinsic proper-
ties, such as thickness and circumradius, of a Euclidean simplex subjected to the influence of a
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12 Boissonnat, Dyer, & Ghosh

transition function. This leads, as shown in Section A.2, to bounds on circumcentre displacement
under small changes of a Euclidean metric. These bounds could not be recovered directly from
earlier work [BDG13c], because they involve simplices that are not full dimensional. With these
results in place, the proof of Lemma 3.3 is assembled in Section A.4.

By considering the diameter of a forbidden configuration subjected to metric distortion, we
can determine the size of the neighbourhood of pi that must be considered when checking whether
a perturbation pi 7→ p′i creates conflicts.

Suppose τ ⊂ Q′j ⊂ Uj is a forbidden configuration with p′i ∈ τ . By Lemma 2.2, Property P3,

we have ∆(τ) < 5
2 (1 + 1

2δ0µ0)εj . It follows then that if τ̃ = ϕij(τ) ⊂ P′i, then

∆(τ̃) < (1 + ξ0)(1 + ε0)
5

2

(
1 +

1

2
δ0µ0

)
εi

≤ 5

(
1 +

1

2
δ0µ0

)
εi,

and we find, as in [BDG13b, Lemma 4.4], that if δ0 ≤ 2
5 , then

(φ′j)
−1(τ) ⊂ φ−1

i (Bi(pi, r) ∩ Pi), where r =

(
5 +

3µ0

2

)
εi.

Indeed, this is ensured by the fact that Pi is a (µ0, εi)-net for Bi(pi, 8εi), and 8εi − r > εi.
Let Si denote all the m-simplices in Ni whose vertices are contained in

φ−1
i (Bi(pi, r) ∩ Pi) \ {i} where r =

(
5 +

3µ0

2

)
εi.

Then the simple packing argument demonstrated in [BDG13b, Lemma 4.4] yields

#Si <
(

14

µ0

)m2+m

. (6)

We strengthen the definition of a good perturbation:

Definition 3.4 For the extended algorithm, we say that pi 7→ x is a good perturbation of pi ∈ Ui
if there are no m-simplices σ ∈ φ′i(Si) such that di(x, S

m−1(σ)) ≤ 2α̃0εi, where α̃0 is defined in
Lemma 3.3.

It is sufficient to only consider the m-simplices, because if σ is a non-degenerate j-simplex, with
j < m, then it is the face of some non-degenerate m-simplex τ , and S(σ) ⊂ Sm−1(τ). With
this definition of a good perturbation, the extended algorithm yields the analogue of [BDG13b,
Lemma 4.3]:

Lemma 3.5 After the extended algorithm terminates, for every i ∈ N there will be no forbidden
configurations in Q′i.

Proof We argue by induction that after the ith iteration, for any j ≤ i, and any k ∈ N , there
are no forbidden configurations in Q′k that have p′j as a vertex. For i = 1, the assertion follows
directly from Definition 3.4, and Lemma 3.3. Assume the assertion is true for i− 1. Suppose τ
is a forbidden configuration in Q′k, after the ith iteration. Then since p′i is a good perturbation,
according to Definition 3.4, τ cannot contain p′i. Also, τ cannot contain any p′j with j < i, for
that would contradict the induction hypothesis. Thus the hypothesis holds for all i ≥ 1. �

Inria



manifold Delaunay triangulation 13

We need to quantify the conditions under which the algorithm is guaranteed to terminate.
We use the same volumetric analysis that is demonstrated in the proof of [BDG13b, Lemma 5.4],
with the only modifications being a change in two of the constants involved in the calculation.
In particular, the number of simplices involved is now given by Equation (6), and we use the

bound on α̃0 given by Lemma 3.3, which is 23m
3
2 times the bound on α0 used in the original

calculation. Thus, using Lemma 3.1, the main result [BDG13b, Theorem 4.1] of the original
perturbation algorithm can be adapted to the context of the extended algorithm as:

Lemma 3.6 (Algorithm guarantee) Let

ρ̃0 = (1 + ε0)(1 + ξ0)ρ0.

If

ε0 ≤
1− ξ0
1 + ξ0

, and ρ̃0 ≤
µ0

4
, and ξ0 ≤

1

24

(ρ0

C

)4m+2

,

where C = m
3
2

(
2
µ0

)4m2+5m+21

, then the extended algorithm terminates, and for every i ∈ N ,

the set Q′i is a (µ′0, ε
′
i)-net such that there are no forbidden configurations with

Γ0 =
ρ0

C
, and δ = Γm+1

0 µ′0ε
′
i,

where µ′0 = µ0−2ρ̃0
1+ρ̃0

, and ε′i = (1 + ρ̃0)εi.

This allows us to apply Lemma 3.2, and we can define the abstract complex Del(P′) by the
criterion that φ′i(star(i; Del(P′))) = star(p′i; Del(P′i)) for all i ∈ N . This is a manifold piecewise
linear simplicial complex. The bound on ξ0 imposed by Lemma 3.2 is met by the one imposed
by Lemma 3.6, and we arrive at our main result:

Theorem 3.7 (Manifold mesh) Let

ρ̃0 = (1 + ε0)(1 + ξ0)ρ0.

If

ε0 ≤
1− ξ0
1 + ξ0

, and ρ̃0 ≤
µ0

4
, and ξ0 ≤

1

24

(ρ0

C

)4m+2

,

where C = m
3
2

(
2
µ0

)4m2+5m+21

, then the extended algorithm produces a manifold abstract

simplicial complex Del(P′) defined by

star(i; Del(P′)) ∼= star(p′i; Del(P′i)).

4 Output quality guarantees

Given appropriate constraints on the input, Theorem 3.7 guarantees that the output mesh,
Del(P′), will be a manifold simplicial complex. In this section, we justify the name Del(P′) and
examine the fitness of Del(P′) as a representative of the input manifold M.
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14 Boissonnat, Dyer, & Ghosh

4.1 The output complex is a Delaunay complex

Given P ⊂M, we define the set P′ ⊂M to be the perturbed point set produced by the algorithm,
i.e., P → P′ is given by p 7→ p′ = ϕ−1

i (p′i), where i ∈ N is the label associated with p ∈ P. If
the metric on M is such that the coordinate maps ϕi themselves have low metric distortion,
then the constructed complex Del(P′) is in fact the Delaunay complex of P′ ⊂ M. This follows
from the fact that in the local Euclidean coordinate frames we have ensured that the points have
stable Delaunay triangulations. Thus, using Γ0 = ρ0

C given by Lemma 3.6, the stability result
Lemma A.10 leads, by the same reasoning that yields Lemma 3.2, to the following:

Theorem 4.1 (Delaunay complex) Suppose that {(Wi, ϕi)}i∈N is an atlas for the compact
m-manifoldM, and the finite set P ⊂M is such that the conditions of Section 3.2 are satisfied.
Suppose also that M is equipped with a metric dM, such that

|di(ϕi(x), ϕi(y))− dM(x, y)| ≤ ηdi(ϕi(x), ϕi(y)),

whenever x and y belong to ϕ−1
i (B(pi, 6εi)). If

η ≤ µ2
0

212

(ρ0

C

)2m+1

,

and the conditions of Theorem 3.7 are met, then Del(P′) is the Delaunay complex of P′ ⊂ M
with respect to dM.

Thus we construct a Delaunay complex for a metric that is locally well approximated by the
local Euclidean metrics. This is the standard scenario: the manifold is sampled densely enough
that natural local coordinate charts have very low distortion and thus yield transition functions
which satisfy the requirements of Theorem 3.7.

4.2 A metric on the output complex

The output mesh Del(P′) is an abstract simplicial complex, but it admits a natural piecewise
flat metric. This means that each simplex in Del(P′) is identified with a geometric Euclidean
simplex. This is achieved by assigning lengths to the edges in Del(P′). If {i, j} is an edge in
Del(P′), then we give it the length `ij , where `ij = 1

2 (di(p
′
i, p
′
j) + dj(p

′
i, p
′
j)).

We observe that with this assignment of edge lengths every simplex in Del(P′) can be isomet-
rically identified with the vertices of a geometric Euclidean simplex. This is a consequence of our
observations in Section A.1. Specifically, suppose σ = {p0, . . . , pk} is a simplex of points in Rm
and let {`ij}0≤i 6=j≤k be a set of positive numbers such that `ij = `ji and |`ij−‖pi−pj‖| ≤ ξ0∆(σ).
Consider the k × k symmetric matrix G defined by [G]ij = 1

2 (`20i + `20j − `2ij). Then using

the same notation and arguments as in Lemma A.2, we have that G = PTP + E, and that
s1(E) ≤ 4kξ0∆(σ)2 if ξ0 ≤ 2

3 . It follows then, using Lemma A.1, that G is positive definite if

ξ0 <
(

Υ(σ)
2

)2

, just as was argued in Lemma A.3. This means that we may write G = P̃TP̃ , where

P̃ defines a non-degenerate Euclidean simplex whose edge lengths are given by the numbers `ij .

The choice of P̃ is not important: by considering the singular value decompositions it is evident
that if QTQ = P̃TP̃ , then there is an orthogonal matrix O such that Q = OP̃ .

For any σ̃ ∈ Del(P′) we may compare its edge lengths to those of the corresponding simplex
σ ∈ star(p′i; Del(P′i)), where i is the label of one of the vertices of σ̃. Under the assumptions of

Lemma 3.6, the condition ξ0 <
(

Υ(σ)
2

)2

is satisfied, and the above argument shows that σ̃ may

be identified with a Euclidean simplex.

Inria



manifold Delaunay triangulation 15

4.3 Homeomorphism guarantee in the smooth case

If the coordinate charts have small metric distortion, then the sampling radii in the coordinate
patches imply that P′ satisfies some constant sampling radius, ε, with respect to the metric on
the compact manifold. For a Riemannian manifold, a natural choice for a coordinate chart is
the inverse of the exponential map, e.g., ϕi = exp−1

pi |Wi . Then the metric distortion of the
coordinate chart ϕi decreases as the diameter of the domain Wi decreases; this is a consequence
of a theorem due to Rauch [Cha06, Thm IX.2.3, p. 390]. This means that for ε sufficiently small,
Del(P′) will be homeomorphic to M. This can be argued by appealing to the homeomorphism
demonstration detailed by Boissonnat and Ghosh [BG11], for example.

We employ the Nash embedding theorem, which ensures thatM may be isometrically embed-
ded in some ambient Euclidean space RN . When the neighbourhoods Wi are small, the restricted
ambient metric dRN |M is a close approximation to the intrinsic metric dM on the manifold. (See
[BDG13a, Lemma 3.7], for example.) In other words the identity map (Wi, dRN |M)→ (Wi, dM)
is an η-distortion map, where the magnitude of η decreases with the diameter of Wi.

This means that when ε is small enough, the stability theorem [BDG13c, Theorem 4.17]
ensures that not only is Del(P′) the Delaunay complex of P′ ⊂ M with respect to the intrinsic
metric dM, but also with respect to the restricted ambient metric dRN |M . We are also assured,

by Lemma A.3, that the simplices of Del(P′) satisfy some lower bound Υ̃0 on their thickness
when they are realised as Euclidean simplices in the ambient space, i.e., when the edge lengths
between vertices are given by the Euclidean distance in RN . These observations place Del(P′)
in the setting considered by Boissonnat and Ghosh [BG11] in the context of the tangential
Delaunay complex, and the same argument demonstrates that Del(P′) is homeomorphic to M.
The homeomorphism construction of Boissonnat and Ghosh requires the submanifold M to be
smooth.

4.4 Discussion

We are able to quantify the conditions under which Del(P′) will be a manifold Delaunay complex.
These are already stringent conditions on the metric, although smoothness is not required. How-
ever, we make no claim that Del(P′) is homeomorphic toM, except for certain smooth transition
functions, and for “sufficiently dense” sampling. The specification of concrete sampling criteria
that are sufficient to guarantee a homeomorphic complex is still an open problem. A careful
construction of a homeomorphism will also enable us to quantify its metric distortion, i.e., to
quantify a bound on the Gromov-Hausdorff distance betweenM and Del(P′), when the latter is
equipped with the metric described in Section 4.2, for example.

When the differences in the metrics are sufficiently small, the Delaunay stability results imply
that not only is Del(P′) a Delaunay complex for P′ ⊂ M, but it is also the Delaunay complex
of its vertices associated with its own intrinsic metric. Such meshes are of interest in discrete
differential geometry [Gli05, Dye10, HKV12].
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16 Boissonnat, Dyer, & Ghosh

A Details of the analysis

In this section we provide details to support the argument made in Section 3.3.

A.1 Simplex distortion

Our transition functions introduce a metric distortion when we move from one coordinate chart
to another. The geometric properties of a simplex will be slightly different if we consider it with
respect to the Euclidean metric di than they would be if we are using a different Euclidean metric
dj . We wish to bound the magnitude of the change of such properties as the thickness and the
circumradius of a simplex that is subjected to such a distortion. This is an exercise in linear
algebra.

We wish to compare two Euclidean simplices with corresponding vertices, but whose corre-
sponding edge lengths differ by a relatively small amount. The embedding of the simplex in
Euclidean space (i.e., the coordinates of the vertices) is not relevant to us. Previous results often
only consider the case where the vertices of a given simplex are perturbed a small amount to
obtain a new simplex. Lemma A.5 demonstrates the existence of an isometry that allows us to
also consider the general situation in terms of vertex displacements.

We will exploit observations on the linear algebra of simplices developed in previous work
[BDG13c]. A k-simplex σ = {p0, . . . , pk} in Rm can be represented by an m×k matrix P , whose
ith column is pi− p0. We let si(A) denote the ith singular value of a matrix A, and observe that
‖P‖ = s1(P ) ≤

√
k∆(σ).

We are particularly interested in bounds on the smallest singular value of P , which is the
inverse of the largest singular value of the pseudo-invese P † = (PTP )−1PT. If the columns of
P are viewed as a basis for aff(σ), then the rows of P † may be viewed as the dual basis. The
magnitude of a dual vector is equal to the inverse of the corresponding altitudes in σ, and this
leads directly to the desired bound on the smallest singular value of P , which is expressed in the
following Lemma [BDG13c, Lemma 2.4]:

Lemma A.1 (Thickness and singular value) Let σ = [p0, . . . , pk] be a non-degenerate k-
simplex in Rm, with k > 0, and let P be the m × k matrix whose ith column is pi − p0. Then
the ith row of P † is given by wT

i , where wi is orthogonal to aff(σpi), and

‖wi‖ = D(pi, σ)−1.

We have the following bound on the smallest singular value of P :

sk(P ) ≥
√
kΥ(σ)∆(σ).

We will also have use for a lower bound on the thickness of σ, given the smallest singular value
for the representative matrix P . We observe that P was constructed by arbitrarily choosing one
vertex, p0, to serve as the origin. If there is a vertex pi, different from p0, such that D(pi, σ) is
minimal amongst all the altitudes of σ, then according to Lemma A.1, ‖wi‖ = (kΥ(σ)∆(σ))−1,
and it follows then that s1(P †) ≥ (kΥ(σ)∆(σ))−1, and therefore

sk(P ) ≤ kΥ(σ)∆(σ), (7)

in this case.
We are going to be interested here in purely intrinsic properties of simplices in Rm; properties

that are not dependent on the choice of embedding in Rm. In this context it is convenient to make
use of the Gram matrix PTP , because if QTQ = PTP , then there is an orthogonal transformation

Inria



manifold Delaunay triangulation 17

O such that P = OQ. This assertion becomes evident when considering the singular value
decompositions of P and Q. Indeed, the entries of the Gram matrix can be expressed in terms
of squared edge lengths, as observed in the proof of the following:

Lemma A.2 Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k} are two k-simplices in Rm
such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ),

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is pi − p0, and define P̃ similarly.
Consider the Gram matrices, and let E be the matrix that records their difference:

P̃TP̃ = PTP + E.

If ξ0 ≤ 2
3 , then the entries of E are bounded by |Eij | ≤ 4ξ0∆(σ)2, and in particular

‖E‖ ≤ 4kξ0∆(σ)2. (8)

Proof Let vi = pi−p0, and ṽi = p̃i− p̃0. Expanding scalar products of the form (vj − vi)T(vj−
vi), we obtain a bound on the magnitude of the coefficients of E:

|ṽTi ṽj − vTi vj | ≤
1

2

(
|‖ṽi‖2 − ‖vi‖2|+ |‖ṽj‖2 − ‖vj‖2|+ |‖ṽj − ṽi‖2 − ‖vj − vi‖2|

)
≤ 3

2
(2 + ξ0)ξ0∆(σ)2

≤ 4ξ0∆(σ)2.

This leads us to a bound on s1(E) = ‖E‖. Indeed, the magnitude of the column vectors of
E is bounded by

√
k times a bound on the magnitude of their coefficients, and the magnitude

of s1(E) is bounded by
√
k times a bound on the magnitude of the column vectors. We obtain

Equation (8). �

Lemma A.2 enables us to bound the thickness of a distorted simplex:

Lemma A.3 (Thickness under distortion) Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k}
are two k-simplices in Rm such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ)

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is pi − p0, and define P̃ similarly.
If

ξ0 ≤
(
ηΥ(σ)

2

)2

with η2 ≤ 1,

then
sk(P̃ ) ≥ (1− η2)sk(P ),

and

Υ(σ̃)∆(σ̃) ≥ 1√
k

(1− η2)Υ(σ)∆(σ),

and

Υ(σ̃) ≥ 4

5
√
k

(1− η2)Υ(σ).
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18 Boissonnat, Dyer, & Ghosh

Proof The equation P̃TP̃ = PTP + E implies that

|sk(P̃ )2 − sk(P )2| ≤ s1(E),

and so

|sk(P̃ )− sk(P )| ≤ s1(E)

sk(P̃ ) + sk(P )
≤ s1(E)

sk(P )
.

Thus

sk(P̃ ) ≥ sk(P )− s1(E)

sk(P )
= sk(P )

(
1− s1(E)

sk(P )2

)
.

From Lemma A.2 and the bound on ξ0 we have

s1(E) ≤ η2kΥ(σ)2∆(σ)2,

and so s1(E)
sk(P )2 ≤ η

2 by Lemma A.1, and we obtain sk(P̃ ) ≥ (1− η2)sk(P ).

For the thickness bound we assume, without loss of generality, that there is some vertex
different from p̃0 that realises the minimal altitude in σ̃ (our choice of ordering of the vertices is
unimportant, other than to establish the correspondence between σ and σ̃). Thus Equation (7)
and Lemma A.1, give the inequalities

kΥ(σ̃)∆(σ̃) ≥ sk(P̃ ), and sk(P ) ≥
√
kΥ(σ)∆(σ),

and we obtain
kΥ(σ̃)∆(σ̃) ≥ (1− η2)

√
kΥ(σ)∆(σ).

The final result follows since ∆(σ)
∆(σ̃) ≥

1
1+ξ0

≥ 4
5 . �

In order to obtain a bound on the circumradius of σ̃ with respect to that of σ, it is convenient
to find an isometry that maps the vertices of σ close to the vertices of σ̃. Choosing p̃0 and
p0 to coincide at the origin, the displacement error for the remaining vertices is minimised by
taking the orthogonal polar factor of the linear transformation A = P̃P−1 that maps σ to σ̃.
In other words, if the singular value decomposition of A is A = UAΣAV

T
A , then A = ΦS, where

S = VAΣAV
T
A , and Φ = UAV

T
A is the desired linear isometry. We have the following result, which

is a special case of a theorem demonstrated by Jiménez and Petrova [JP13]:

Lemma A.4 (Close alignment of bases) Suppose that P and P̃ are non-degenerate k × k
matrices such that

P̃TP̃ = PTP + E. (9)

Then there exists a linear isometry Φ : Rk → Rk such that

‖P̃ − ΦP‖ ≤ s1(P )s1(E)

sk(P )2
.

Proof Multiplying by P−T := (PT)
−1

on the left, and by P−1 on the right, we rewrite
Equation (9) as

ATA = I + F, (10)

where A = P̃P−1, and F = P−TEP−1. Using the singular value decomposition A = UAΣAV
T
A ,

we let Φ = UAV
T
A , and we find

P̃ − ΦP = (A− Φ)P = UA(ΣA − I)V T
AP. (11)

Inria



manifold Delaunay triangulation 19

From Equation (10) we deduce that s1(A)2 ≤ 1 + s1(F ), and also that sk(A)2 ≥ 1 − s1(F ). It
follows that

max
i
|si(A)− 1| ≤ s1(F )

1 + si(A)
≤ s1(F ),

and thus

‖ΣA − I‖ ≤ s1(F ) ≤ s1(P−1)2s1(E) = sk(P )−2s1(E).

The result now follows from Equation (11). �

Recalling that an upper bound on the norm of a matrix also serves as an upper bound on the
norm of its column vectors, we obtain the following immediate consequence of Lemma A.4, using
Lemma A.2 and Lemma A.1:

Lemma A.5 (Close alignment of simplices) Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k}
are two k-simplices in Rm such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ),

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is pi − p0, and define P̃ similarly.
If ξ0 ≤ 2

3 , then there exists an isometry Φ : Rm → Rm such that

‖P̃ − ΦP‖ ≤ 4
√
kξ0∆(σ)

Υ(σ)2
,

and if σ̂ = Φσ = {p̂0, . . . , p̂k}, then p̂0 = p̃0, and

‖p̂i − p̃i‖ ≤
4
√
kξ0∆(σ)

Υ(σ)2
for all 1 ≤ i ≤ k.

Using Lemma A.5 together with [BDG13c, Lemma 4.3] we obtain a bound on the difference in
the circumradii of two simplices whose edge lengths are almost the same:

Lemma A.6 (Circumradii under distortion) Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k}
are two k-simplices in Rm such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ),

for all 0 ≤ i < j ≤ k. If

ξ0 ≤
(

Υ(σ)

4

)2

,

then

|R(σ̃)−R(σ)| ≤ 16k
3
2R(σ)ξ0

Υ(σ)3
.

Proof We define σ̂ = Φσ, where Φ : σ → aff(σ̃) is the isometry described in Lemma A.5.
Since p̂0 = p̃0, and R(σ̂) = R(σ), we have |R(σ̃)−R(σ)| ≤ ‖C(σ̂)− C(σ̃)‖. By Lemma A.4, the
distances between C(σ) and the vertices of σ̃ are all bounded by

R(σ) +
4
√
kξ0∆(σ)

Υ(σ)2
≤ (1 +

√
k

2
)R(σ) ≤ 3

√
k

2
R(σ),

RR n° 8389



20 Boissonnat, Dyer, & Ghosh

and these distances differ by no more than

8
√
kξ0∆(σ)

Υ(σ)2
.

It follows then from [BDG13c, Lemma 4.3] that

‖C(σ̂)− C(σ̃)‖ ≤
3
√
k

2 R(σ)

Υ(σ̃)∆(σ̃)

(
8
√
kξ0∆(σ)

Υ(σ)2

)

≤ 12kR(σ)ξ0
3

4
√
k

Υ(σ)3
by Lemma A.3, with η =

1

2

≤ 16k
3
2R(σ)ξ0

Υ(σ)3
.

�

A.2 Circumcentres and distortion maps

It is convenient to introduce the affine space N(σ), which is the space of centres of circumscribing
balls for a simplex σ ∈ Rm. If σ is a non-degenerate k-simplex, then N(σ) is an affine space of
dimension m− k perpendicular to aff(σ) and containing C(σ).

The transition functions introduce a small metric distortion, which motivated our interest in
the properties of perturbed simplices. In order to extend the perturbation algorithm [BDG13b]
to the setting of curved manifolds, we are interested in quantifying how the test for the hoop
property behaves under a perturbation of the interpoint distances. Specifically, if a point p is at
a distance α0R from the diametric sphere of a simplex σ in one coordinate frame, what can we
say about the distance of p from Sm−1(σ) when measured by the metric of another coordinate
frame? To this end, we are interested in the behaviour of the circumcentre under the influence
of a mapping that is not distance preserving. As a first step in this direction, we observe another
consequence of [BDG13c, Lemma 4.3]:

Lemma A.7 (Circumscribing balls under distortion) Suppose φ : Rm ⊃ U → V ⊂ Rm is
a homeomorphism such that, for some positive ξ0,

|d(x, y)− d(φ(x), φ(y))| ≤ ξ0d(x, y) for all x, y ∈ U.

Suppose also that σ ⊂ U is a k-simplex, and that B(c, r) is a circumscribing ball for σ with
c ∈ U . Let σ̃ = φ(σ). If

ξ0 ≤
(

Υ(σ)

4

)2

,

then there is a circumscribing ball B(c̃, r̃) for σ̃ such that

d(φ(c), c̃) ≤ 3
√
kr2ξ0

Υ(σ)∆(σ)
,

and

|r̃ − r| ≤ 5
√
kr2ξ0

Υ(σ)∆(σ)
.
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Proof By the perturbation bounds on φ, the distances between φ(c) and the vertices of σ̃ differ
by no more than 2ξ0r, and these distances are all bounded by (1+ξ0)r. In this context [BDG13c,
Lemma 4.3] says that there exists a c̃ ∈ N(σ) such that

d(φ(c), c̃) ≤ (1 + ξ0)r2ξ0r

Υ(σ̃)∆(σ̃)
.

We apply Lemma A.3, using η = 1
2 , to obtain Υ(σ̃)∆(σ̃) ≥ 3

4
√
k

Υ(σ)∆(σ). We find

d(φ(c), c̃) ≤ 8
√
k(1 + ξ0)r2ξ0
3Υ(σ)∆(σ)

.

The announced bound on d(φ(c), c̃) is obtained by observing that ξ0 ≤ 1
16 .

Choosing a vertex p̃ = φ(p) ∈ σ̃, the bound on the difference in the radii follows:

r̃ = d(p̃, c̃) ≥ d(p̃, φ(c))− d(φ(c), c̃)

≥ r − ξ0r −
3
√
kr2ξ0

Υ(σ)∆(σ)

≥ r − 5
√
kr2ξ0

Υ(σ)∆(σ)
,

and similarly for the upper bound. �

We will find it convenient to have a bound on the circumradius of a simplex, relative to its
thickness and longest edge length:

Lemma A.8 If σ is a non-degenerate simplex in Rm, then

R(σ) ≤ ∆(σ)

2Υ(σ)
.

Proof Let σ = {p0, . . . , pk}, We work in Rk = aff(σ) ⊂ Rm, and let P be the k × k matrix
whose ith column is pi − p0. Then, by equating ‖C(σ)− p0‖2 with ‖C(σ)− pi‖2 and expanding,
we find a system of equations that may be written in matrix form as

PTC(σ) = b,

where the ith component of the vector b is 1
2 (‖pi‖2 − ‖p0‖2). Choosing p0 as the origin, we

have ‖C(σ)‖ = R(σ), and ‖b‖ ≤ 1
2

√
k∆(σ)2. Since s1(P−T ) = sk(P )−1, the result follows from

Lemma A.1, which says sk(P ) ≥
√
kΥ(σ)∆(σ). �

Using the bound on d(φ(C(σ)), N(σ̃)) given by Lemma A.7, together with the circumradius
bound of Lemma A.6, we obtain a bound on d(φ(C(σ)), C(σ̃)) by means of the Pythaogrean
theorem:

Lemma A.9 (Circumcentres under distortion) Suppose φ : Rm ⊃ U → V ⊂ Rm is a
homeomorphism such that

|d(x, y)− d(φ(x), φ(y))| ≤ ξ0d(x, y) for all x, y ∈ U.

Suppose also that σ ⊂ U is a k-simplex, and let σ̃ = φ(σ). If

ξ0 ≤
(

Υ(σ)

4

)2

,
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then

d(φ(C(σ)), C(σ̃)) ≤
[(

42k2

Υ(σ)3

)
ξ0

] 1
2

R(σ).

p̃C(σ̃)

c

ĉ

φ(C(σ))

N(σ̃)

w

z

σ̃

Figure 1: Diagram for the proof of Lemma A.9.

Proof Let c be the closest point in N(σ̃) to φ(C(σ)), and let w be the distance from c to
φ(C(σ)). Setting z as the distance between c and C(σ̃), we have that d(φ(C(σ)), C(σ̃))2 = z2+w2;
see Figure 1. Let ĉ be the orthogonal projection of φ(C(σ)) into aff(σ̃). Then, letting R = R(σ),
and R̃ = R(σ̃), and choosing p̃ = φ(p) ∈ σ̃, we have

z2 = d(φ(C(σ)), p̃)2 − d(p̃, ĉ)2

≤ (1 + ξ0)2R2 − (R̃− w)2

= R2 − R̃2 + 2R̃w + 2R2ξ0 + ξ2
0R

2 − w2.

Using Lemma A.6, we write R̃ in terms of R, as |R− R̃| ≤ sR, where

s =
16k

3
2 ξ0

Υ(σ)3
.

Then using Lemma A.7 to bound w, and writing ∆, and Υ, instead of ∆(σ) and Υ(σ), we find

d(φ(C(σ)), C(σ̃))2 ≤ R2 − (1− s)2R2 + 2w(1 + s)R+ 2ξ0R
2 + ξ2

0R
2

≤ 2(sR+ w + ws)R+ (2 + ξ0)ξ0R
2

≤

[
2

(
16k

3
2

Υ3
+

3
√
kR

Υ∆
+

54k2Rξ0
Υ4∆

)
+ (2 + ξ0)

]
R2ξ0

≤

[
2

(
16k

3
2

Υ3
+

3
√
k

2Υ2
+

27k2

16Υ3

)
+ 3

]
R2ξ0 using Lemma A.8

≤
[

42k2

Υ3

]
R2ξ0.

�
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A.3 The size of the domains

The domains Uij on which the transition functions are defined need to be large enough to
accommodate two distinct requirements. First, the domain of the transition function ϕji must
contain a large enough neighbourhood of p′i that we can apply the metric stability result of
[BDG13c] to ensure that star(p′i; Del(P′i)) will be the same as star(p′i; Del(P′j)) whenever p′j ∈
star(p′i; Del(P′i)). The second requirement is that any potential forbidden configuration in the
region of interest must lie entirely within the domain of the transition function associated with
each of its vertices.

We recall the stability result [BDG13c, Theorem 4.17] that we will use:

Lemma A.10 (Delaunay stability under metric perturbation) Suppose Q′i is a (µ′0, ε
′
i)-

net and conv(Q′i) ⊆ U ⊂ Rm and dj : U × U → R is such that |di(x, y) − dj(x, y)| ≤ ξ for
all x, y ∈ U . Suppose also that S ⊆ Q′i is a set of interior points such that every m-simplex
σ ∈ star(S) is Γm0 -thick and δ-protected and satisfies di(p, ∂U) ≥ 2ε′i for every vertex p ∈ σ. If

ξ ≤ Γm0 µ
′
0

36
δ,

then
star(S; Deldj (Q′i)) = star(S; Deldi(Q

′
i)).

The notation Deldj (Q′i) in Lemma A.10 means that the metric dj is used to compute the Delaunay
complex of Q′i. For our purposes, dj is the pullback by ϕji of the Euclidean metric on Uj . Thus
we have the identification

star(S; Deldj (Q′i))
∼= star(ϕji(S); Del(ϕji(Q

′
i))).

We will use S = {p′i}. Some argument is required to ensure that Lemma A.10 provides a route
to the desired equivalence

star(p′i; Del(P′i))
∼= star(p′i; Del(P′j)), when p′j ∈ star(p′i; Del(P′i)). (12)

We first establish our “region of interest”. We demand, for all i ∈ N , that Pi be a (µ0, εi)-net
for Bi(pi, 8εi), and we define Q′i = P′i ∩Bi(pi, 6εi). Since P′i changes as the algorithm progresses,
points may come and go from Q′i, but we will ensure that when the algorithm terminates, Q′i
will contain no forbidden configurations.

Lemma A.11 For all i ∈ N we have

star(p′i; Del(Q′i)) = star(p′i; Del(P′i)).

and if p ∈ star(p′i; Del(P′i)), then di(p, ∂Bi(pi, 6εi)) > 2ε′i.
If Bi(pi, 6εi) ⊆ Uij whenever p′j ∈ star(p′i; Del(P′i)), then

star(p′i; Del(ϕji(Q
′
i))) = star(p′i; Del(P′j)).

Proof We have di(p
′
i, ∂Bi(pi, 6εi)) ≥ 24

5 ε
′
i − 1

4ε
′
i > 4ε′i. The density assumption guarantees

that if σm ∈ star(p′i; Del(Q′i)), then R(σm) < ε′i, and the observation that Bi(C(σm), R(σm)) ⊂
Bi(pi, 4εi), leads to the first equality, and the bound on the distance from p to ∂Bi(pi, 6εi).

The second equality follows from two observations. First we show that if σm ∈ star(p′i; Del(ϕji(Q
′
i))),

then R(σ) < ε′j . Since ϕji(Q
′
i) ⊂ P′j , and P′j is ε′j-dense for B = Bj(pj , 8εj), it is suf-

ficient to show that dj(p
′
i, ∂B) ≥ 2ε′j . Since p′j ∈ star(p′i; Del(P′i)), we have dj(p

′
i, p
′
j) ≤
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(1 + ξ0)di(p
′
i, p
′
j) ≤ (1 + ξ0)2ε′i ≤ 2(1 + ξ0)(1 + ε0) 5

4εj ≤ 5εj . Thus since dj(pj , p
′
j) ≤ 1

4εj ,

we have dj(p
′
j , ∂B) ≥ 8εj − 21

4 εj = 11
4 εj ≥

11
5 ε
′
j . This establishes that the Delaunay ball for σm

must remain empty when points outside of B are considered.

The second obervation required to establish the second equality is that if q ∈ P′j is such that
dj(p

′
i, q) < ε′j , then q ∈ ϕji(Bi(pi, 6εi)). Indeed, we have di(p

′
i, q) ≤ 2(1 + ξ0)ε′j ≤ 2(1 + ξ0)(1 +

ε0) 5
4εi ≤ 5εi. The result follows since di(pi, p

′
i) ≤ 1

4εi. �

If p′j star(p′i; Del(P′i)), then di(pi, pj) <
1
2εi + 2ε′i ≤ 3εi. Thus Lemma A.11 establishes the

first requirement on Uij , namely

Bi(pi, 6εi) ⊂ Uij if di(pi, pj) < 3εi. (13)

The second requirement arises from the fact that we wish to ensure that there are no forbidden
configurations in Q′i. This will be sufficient for us to apply Lemma A.10.

Lemma A.12 (Protected stars) If there are no forbidden configurations in Q′i, then all the
m-simplices in star(p′i; Del(Q′i)) are Γ0-good and δ-protected, with δ = δ0µ

′
0ε
′
i.

Proof Since P′i is a (µ′0, ε
′
i)-net for Bi(pi, 8εi), it follows that Q′i is a (µ′0, ε

′
i)-net. Thus if there

are no forbidden configurations in Q′i, then by [BDG13b, Lemma 3.5], all the m-simplices in
Del|(Q

′
i) will be Γ0-good and δ-protected, with δ = δ0µ

′
0ε
′
i.

The sampling criteria ensure that every point on ∂conv(Q′i) must be at a distance of less than

2ε′i from ∂Bi(pi, 6εi). Thus di(pi, ∂conv(Q′i)) > 6εi − 2ε′i ≥ 14
5 ε
′
i. Also, di(pi, p

′
i) ≤

ε′i
4 , and we

find that di(p
′
i, ∂conv(Q′i)) ≥ 51

20ε
′
i. Thus, since di(p

′
i, C(σ)) < ε′i if σ is in star(p′i; Del(Q′i)), we

have star(p′i; Del(Q′i)) ⊆ Del|(Q
′
i), and hence the result. �

According to Lemma 2.2 P3, if τ is a forbidden configuration in Q′i, then ∆(τ) < 15
4 εi,

and it follows that if p′j ∈ τ , then τ ⊂ Bi(pj , 4εi). We will require that each potential forbidden
configuration in Q′i lies within the domain of any transition function associated one of its vertices.
Thus we demand that

Bi(pj , 4εi) ∩Bi(pi, 6εi) ⊂ Uij if pj ∈ Bi(pi, 6εi). (14)

For simplicity we accommodate Equations (13) and (14) by demanding that

Bi(pj , 9εi) ∩Bi(pi, 6εi) ⊂ Uij if pj ∈ Bi(pi, 6εi). (15)

In summary, Lemmas A.10, A.11, and A.12 combine to yield the desired equivalence of
stars (12), under the assumption that Q′i has no forbidden configurations. We take U = Bi(pi, 6εi)
in Lemma A.10, and Equation (3) yields ξ ≤ ξ012εi. Using δ = Γm+1

0 µ′0ε
′
i ≥ 1

2Γm+1
0 µ0εi we have:

Lemma A.13 (Stable stars) If

ξ0 ≤
Γ2m+1

0 µ2
0

212
,

and there are no forbidden configurations in Q′i, then for all p′j ∈ star(p′i; Del(P′i)), we have

star(p′i; Del(P′i))
∼= star(p′i; Del(P′j)).
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We have established minimal requirements on the size of the domains Uij , but these require-
ments may implicitly demand more. Although ϕji : Uij → Uji is close to an isometry, εi may
be almost twice as large as εj . Thus the requirement on Uij may imply that Uji = ϕji(Uij) is
significantly larger than Equation (15) demands.

Clearly we must have ⋃
j∈Ni

Uij ⊂ Ui.

We have also explicitly demanded that Pi be a (µ0, εi)-net for Bi(pi, 8εi). We will assume that
Bi(pi, 8εi) ⊂ Ui.

A.4 Hoop distortion

We will rely primarily on Properties P1 and P4 of forbidden configurations ( Lemma 2.2), and
the stability of the circumcentres exhibited by Lemma A.9. We have the following observation
about the properties of forbidden configurations under the influence of the transition functions:

Lemma A.14 Assume ξ0 ≤
(

Γk
0

4

)2

. If τ = p′i ∗σ ⊂ Q′j ⊂ Uj is a forbidden configuration, where

σ is a k-simplex, then σ̃ = ϕij(σ) ⊂ P′i is Γ̃k0-thick, with

Γ̃k0 =
2

5
√
k

Γk0 ,

has a radius satisfying

R(σ̃) ≤ 2

(
1 +

16k
3
2 ξ0

Γ3k
0

)
(1 + ε0)εi,

and di(p
′
i, S

m−1(σ̃)) ≤ 2α̃0εi, where

α̃0 =

(
α0(1 + ξ0) +

(
12k

3
2

Γ2k
0

)
ξ

1
2
0

)
(1 + ε0).

Proof The bound for Γ̃k0 follows immediately from Lemma A.3, and the fact that σ is Γk0-
thick (Lemma 2.2 P4). Likewise, the radius bound is a direct consequence of Lemma A.6 and
Lemma 2.2 P2.

The bound on α̃0 is obtained from Property P1 with the aid of Lemmas A.6 and A.9. We
have di(p

′
i, S

m−1(σ̃)) = |di(p′i, C(σ̃)) − R(σ̃)|, and we are able to get a tighter upper bound on
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R(σ̃)− di(p′i, C(σ̃)), than we can for di(p
′
i, C(σ̃))−R(σ̃). Thus

di(p
′
i, S

m−1(σ̃)) = |di(p′i, C(σ̃))−R(σ̃)|
≤ (1 + ξ0)dj(p

′
i, C(σ)) + di(ϕij(C(σ)), C(σ̃))− (R(σ)− |R(σ̃)−R(σ)|)

≤ (1 + ξ0)(α0R(σ) +R(σ))−R(σ) + di(ϕij(C(σ)), C(σ̃)) + |R(σ̃)−R(σ)|

≤

(
α0(1 + ξ0) + ξ0 +

[(
42k2

Υ(σ)3

)
ξ0

] 1
2

+
16k

3
2 ξ0

Υ(σ)3

)
R(σ)

≤ 2

(
α0(1 + ξ0) + ξ0 +

[(
42k2

Γ3k
0

)
ξ0

] 1
2

+
16k

3
2 ξ0

Γ3k
0

)
εj

≤ 2

(
α0(1 + ξ0) +

(
ξ

1
2
0 +

7k

Γ
3k
2

0

+
16k

3
2 ξ

1
2
0

Γ3k
0

)
ξ

1
2
0

)
(1 + ε0)εi

≤ 2

(
α0(1 + ξ0) +

(
12k

3
2

Γ2k
0

)
ξ

1
2
0

)
(1 + ε0)εi.

�

We have abused the notation slightly because τ̃ = ϕij(τ) need not actually satisfy the α̃0-hoop
property definition di(p, S(τ̃p)) ≤ α̃0R(τ̃p), because R(τ̃) may be larger than 2εi. However we
are not concerned with the α̃0-property for τ̃ ; instead we desire a condition that will permit the
extended algorithm to emulate the original Euclidean perturbation algorithm [BDG13b], and
guarantee that forbidden configurations such as τ cannot exist in any of the sets Q′j .

The bounds in Lemma A.14 can be further simplified. We have announced them in this
intermediate state in order to elucidate the roles played by ξ0 and ε0. In particular, there is no
need to significantly constrain ε0. The original perturbation algorithm for points in Euclidean
space [BDG13b] extends to the case of a non-constant sampling radius simply by replacing α0

by α̃0 ≤ (1 + ε0)α0 ≤ 2α0, as can be seen by setting ξ0 = 0 in the expression for α̃0.

In the general case of interest here, we see from the espression for α̃0 presented in Lemma A.14,
that ξ0 must be considerably more constrained with respect to Γ0 if we are to obtain an expression
for α̃0 that goes to zero as Γ0 goes to zero. For the purposes of the algorithm, we do not require
the bounds on the radius or the thickness.

Lemma A.15 If

ξ0 ≤
(

Γ2m+1
0

4

)2

,

then for any forbidden configuration τ = p′j ∗ σ ⊂ Q′i, there is a simplex σ̃ = ϕji(σ) ⊂ P′j such

that dj(p
′
j , S

m−1(σ̃)) ≤ 2α̃0εj , where

α̃0 =
216m

3
2 Γ0

µ3
0

.

Proof By the properties of a forbidden configuration, σ is a k-simplex with k ≤ m. From
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Lemma A.14,

α̃0 =

(
α0(1 + ξ0) +

(
12k

3
2

Γ2k
0

)
ξ

1
2
0

)
(1 + ε0)

≤ 2

(
213Γ0

µ3
0

(1 + ξ0) +

(
12m

3
2

Γ2m
0

)
Γ2m+1

0

4

)

<
(

(1 + 2−4) +m
3
2

) 214Γ0

µ3
0

<
216m

3
2 Γ0

µ3
0

.

�
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