
ar
X

iv
:1

30
4.

74
56

v1
 [

cs
.D

S]
 2

8
A

pr
 2

01
3

Counting Hypergraphs in Data Streams

He Sun

Max Planck Institute for Informatics

Saarbrücken, Germany

hsun@mpi-inf.mpg.de

Abstract

We present the first streaming algorithm for counting an arbitrary hypergraph H of con-
stant size in a massive hypergraph G. Our algorithm can handle both edge-insertions and
edge-deletions, and is applicable for the distributed setting. Moreover, our approach provides
the first family of graph polynomials for the hypergraph counting problem. Because of the
close relationship between hypergraphs and set systems, our approach may have applications in
studying similar problems.

1 Introduction

The problem of counting subgraphs is one of the fundamental questions in algorithm design, and has
various applications in analyzing the clustering and transitivity coefficients of networks, uncovering
structural information of graphs that model biological systems, and designing graph databases.
While the exact counting of subgraphs of constant size is polynomial-time solvable, traditional
algorithms need to store the whole graph and compute the solution in an off-line fashion, which is
not practical even for graphs of medium size. A modern way to deal with this problem is to design
algorithms in the streaming setting, where the edges of the underlying graph come sequentially
in an arbitrary order, and algorithms with sub-linear space are required to approximately count
the number of occurrences of certain subgraphs. Since the first streaming algorithm by Bar-Yossef
et al. [3], this problem has received much attention in recent years [2–4, 6, 7, 11, 12, 14].

We address the subgraph counting problem for hypergraphs. Formally, we are given a sequence
of sets s1, s2, . . . in a data stream. These sets, each of which consisting of vertices of the underlying
hypergraph G, arrive sequentially and represent edges of a hypergraph G = (V,E). Moreover,
every coming edge ei is equipped with a sign (“+” or “−”), indicating that edge ei is inserted to
or deleted from the hypergraph G. That is, we study the so-called turnstile model [15] where the
underlying graph may change over time. For any hypergraph H of constant size, algorithms with
sub-linear space are required to approximate the number of occurrences of H in G.

Motivation. Hypergraphs are basic models to characterize precise relations among items of data
sets. For the study of databases, people started to use hypergraphs to model database schemes
since 1980s [5, 8], and this line of research led to several well-known data storage mechanisms
like HyperGraphDB [1]. Besides database theory, a number of studies have shown that simple
graphs1, representing pairwise relationships, are usually not sufficient to encode all information
when studying social, protein, or biological networks, and suggested to use hypergraphs to model
the real relations among the items. For illustrating this point of view, let us look at the coauthor

1For ease of our discussion simple graphs refer to graphs where every edge consists of two vertices.

1

http://arxiv.org/abs/1304.7456v1

network for example. In a coauthor network, authors are represented as vertices of a graph, and
an edge between two authors exists iff these two persons are co-authors. This natural model misses
the information on whether a set of three (or more) authors have been co-authored of the same
article. Such information loss is undesirable for many applications, e.g., for detecting communities
or clusters like all authors that worked in the same research area. Similar problems occur in
studying biological, social, and other networks when hypergraphs are required in order to express
the complete relation among entities [13, 16].

Our Results & Techniques. We initiate the study of counting subgraphs in the streaming
setting, and present the first algorithm for this problem. Although the subgraph counting problem
is much more difficult for the case of hypergraphs and streaming algorithms were unknown even for
the edge-insertion case prior to our work, our algorithm runs in the general turnstile model, and
is applicable in the distributed setting. Formally, for any fixed subgraph H of constant size, our
algorithm (1 ± ε)-approximates the number of occurrences of H in G. That is, for any constant
ε ∈ (0, 1), the output of our algorithm satisfies Z ∈ [(1− ε) ·#H, (1 + ε) ·#H] with probability at
least 2/3. The main result of our paper is as follows:

Theorem 1 (Main Result). Let G be a hypergraph of n vertices and m edges, and H a hypergraph
of k edges and minimum degree at least 2. Then there is an algorithm to (1 ± ε)-approximate the

number of occurrences of H in G that uses O
(

1
ε2
· mk

(#H)2
· log n

)

bits of space. The update time per

coming edge is O
(

1
ε2
· mk

(#H)2

)

. Our algorithm works in the turnstile model.

To compare our algorithm with näıve methods, note that a näıve approach for counting #H
needs to either sample independently k vertices (if possible) or k edges from the stream. Since the
probability of k vertices (or k edges) forming H is #H/nk (or #H/mk), this approach needs space

Ω
(
nk logn
#H

)

and Ω
(
mk logn

#H

)

, respectively. Thus our algorithm has significant improvement over

the näıve approach. On the other hand, we note that for any graph G of m edges, and hypergraph
H of k edges, the number of H in G can be as big as Ω(mk/2). Hence for dense graphs with

#H = ω
(

m
k−1
2

)

, our algorithm achieves a (1 + ε)-approximation in sublinear space.

Our algorithm uses the composition of complex-valued random variables. Besides presenting
the first hypergraph counting algorithm in the streaming setting, our approach yields a family of
graph polynomials {pH} to count the number of hypergraph H in hypergraph G. That is, for any
hypergraph H the polynomial pH takes hypergraph G as an argument, and the value of pH(G)
is the number of isomorphic copies of H in G. This is the first family of graph polynomials for
the hypergraph counting problem, and the techniques developed here may have applications in
studying graph theory or related topics.

Theorem 2. For any hypergraph H, there is a graph polynomial pH(·) such that for any hypergraph
G, pH(G) ∈ N ∪ {0} is the number of isomorphic copies of H in G.

Our algorithm follows the framework by Kane et al. [12]. For any hypergraph H of k edges, we
maintain k variables Ze⋆1

, . . . , Ze⋆
k
, and each variable Ze⋆i

corresponds to one edge in H. For every
coming edge e in graph G, we choose one or more Ze⋆i

to update according to the value of hash
functions. We will prove that the returned value of

∏

16i6k Ze⋆i
is unbiased. However, in contrast

to the simple graph case, the algorithm for hypergraphs and the analysis is much more complicated
due to the following reasons:

1. In contrast to simple graphs, subgraph isomorphoism between hypergraphs is more difficult
to handle, and hence the update procedure for every coming edge is more involved. To

2

overcome this, for every coming edge e of hypergraph G that consists of ℓ edges, we look at ℓ!
permutations of {1, . . . , ℓ}, and every such permutation gives e an “orientation”. Moreover,
instead of updating every Ze⋆i

simultaneously for the simple graph case, we choose one or more
Ze⋆i

to update. Through this, we prove that the returned value of our estimator is unbiased
for the number of occurrences of H in G.

2. The second difficulty for dealing with hypergraphs comes from analyzing the concentration of
the estimator. All previous works on the subgraph counting problem, e.g. [11, 12, 14], indicate
that the space requirement of the algorithm depends on the number of other subgraphs in
the underlying graph. For instance, the space complexity of the algorithms by [11, 12, 14] is
essentially determined by the number of closed walks of certain length in graph G. However,
the notion of closed walks in (non-uniform) hypergraphs is not well-defined, and hence we
need to use alternative methods to analyze the concentration of the estimator, as well as the
space requirement.

Because of these differences, our generalization is non-trivial and elegant. Our result (Theorem 1)
shows that the regularity of hyperedges in G and H does not influence the actual space complexity
of the algorithm, and the time and space complexity of our algorithm is the same as the simple
graph case.

Notation. Let G = (V,E) be a hypergraph graph. The set of vertices and edges are represented
by V [G] and E[G]. We assume that graph G has n vertices, and n is known in advance. Graph G
is called a hypergraph if every edge e ∈ E[G] is a non-empty subset of V [G], i.e. E[G] is a subset
of the power set of V [G]. For any hypergraph G and vertex u ∈ V [G], the degree of u, expressed
by deg(u), is the number of edges that include u. Moreover, the size of edge e ∈ E[G], denoted by
size(e), is the number of vertices contained in e.

Given two hypergraphs H1 and H2, we say that H1 is homomorphic to H2 if there is a mapping
ϕ : V [H1] 7→ V [H2] such that for any set D ⊆ V [H1], D ∈ E[H1] implies {ϕ(u) : u ∈ D} is in E[H2].
We say that H1 is isomorphic to H2 if the above function ϕ is a bijection. For any hypergraph H,
the automorphism of H is an isomorphism from V [H] into V [H]. Let auto(H) be the number of
automorphisms of H. For any hypergraph H, we call a subgraph H1 of G that is not necessarily
induced an occurrence of H, if H1 is isomorphic to H. Let #(H,G) be the number of occurrences
of H in G.

Let Sℓ be a permutation group of ℓ elements. A kth root of unity is any number of the form
e2πi·j/k, where 0 6 j < k.

2 An Unbiased Estimator for Counting Hypergraphs

Throughout the rest of the paper we assume that hypergraph G has n vertices and m edges, and
hypergraph H has t vertices and k edges. For the notation, we denote vertices of G by u, v and w,
and vertices of H are denoted by a, b and c. For every edge e⋆ of H, we give the vertices in e⋆ an

arbitrary ordering and call this oriented edge
−→
e⋆ . For simplicity and with slight abuse of notation

we will use H to express such an oriented hypergraph.
At a high level, our estimator maintains k complex variables Z−→

e⋆
, e⋆ ∈ E[H]. These complex

variables correspond to k edges of hypergraph H, and are set to zero initially. For every arriving
edge e ∈ E[G] with size(e) = ℓ, we update every Z−→

e⋆
with size(e⋆) = size(e) according to

Z−→
e⋆
(G)← Z−→

e⋆
(G) +

∑

(σ(1),...,σ(ℓ))∈Sℓ

M−→
e⋆
(uσ(1), . . . , uσ(ℓ)),

3

where the summation is over all possible permutations of (1, . . . , ℓ), and M−→
e⋆

: (V [G])ℓ 7→ C can be
computed in constant time. Hence we can rewrite Z−→

e⋆
as

Z−→
e⋆
(G) =

∑

e∈E[G]
size(e)=size(e⋆)

∑

(σ(1),...,σ(ℓ))∈Sℓ

M−→
e⋆
(uσ(1), . . . , uσ(ℓ)).

Intuitively M−→
e⋆
(uσ(1), . . . , uσ(ℓ)) expresses the event to give edge e = {u1, . . . , uℓ} in G an orientation

according to a permutation (σ(1), . . . , σ(ℓ)), and map this oriented edge −→e to
−→
e⋆ . When the number

of subgraph H is asked, the algorithm outputs the real part of α ·
∏

−→
e⋆
Z−→
e⋆
, where α ∈ R+ is a

scaling factor and will be determined later.
More formally, each M−→

e⋆
(u1, . . . , uℓ) is defined according to the degree of vertices in graphH and

determined by three types of random variables Q,Xc(w) and Y (w), where c ∈ V [H] and w ∈ V [G]:
(1) Variable Q is a random τth root of unity, where τ := 2t−1. (2) For vertex c ∈ V [H], w ∈ V [G],
Xc(w) is random degH(c)th root of unity, and for each vertex c ∈ V [H], Xc : V [G] → C is chosen
independently and uniformly at random from a family of (2t · k)-wise independent hash functions,
where 2t · k = O(1). Variables Q and Xc (c ∈ V [H]) are chosen independently. (3) For every
w ∈ V [G], Y (w) is a random element chosen from S :=

{
1, 2, 4, 8, . . . , 2t−1

}
as part of a 4k-wise

independent hash function. Variables Y (w) (w ∈ V [G]) and Q are chosen independently.

Given these, for every edge
−→
e⋆ = (c1, . . . , cℓ) we define the function M−→

e⋆
as

M−→
e⋆
(u1, . . . , uℓ) :=

∏

16i6ℓ

(

Xci(ui) ·Q
Y (ui)

degH (ci)

)

.

See Estimator 1 for the formal description of the update and query procedures.

Estimator 1 Counting #(H,G)

Update Procedure: When an edge e = {u1, . . . , uℓ} ∈ E[G] arrives, update each Z−→
e⋆j

with size(e⋆j) = ℓ

w.r.t.

Z−→
e⋆j
(G)←Z−→

e⋆j
(G) +

∑

(σ(1),...,σ(ℓ))∈Sℓ

M−→
e⋆j

(
uσ(1), . . . , uσ(ℓ)

)
. (1)

Query Procedure: When #(H,G) is required, output the real part of

tt

t! · auto(H)
· ZH(G) , (2)

where ZH(G) is defined by

ZH(G) :=
∏

−→
e⋆∈E[H]

Z−→
e⋆
(G) . (3)

Before analyzing the algorithm, let us briefly discuss some properties of our algorithm. First,
the estimator runs in the turnstile model. For simplicity we only write the update procedure for
the edge insertion case. For every coming item that represents an edge-deletion, we replace “+”
by “−” in (1). Second, our estimator works in the distributed setting, where there are several
distributed sites, and each site receives a stream Si of hyperedges. For such settings every local site

4

does the same for coming edges in the local stream Si . When the number of subgraphs is asked,
these sites cooperate to give an approximation of #(H,G) for the underlying graph G formed by
⋃

i Si. Third, we can generalize Estimator 1 to the labelled graph case. Namely, there are labels
for every vertex (and/or edge) in G and H, and the algorithm can count the number of isomorphic
copies of H in G whose labels are the same as H’s.

3 Analysis of the Estimator

In this section, we first prove that ZH(G) defined by (3) is an unbiased estimator for #(H,G).
Then, we analyze the variance of the estimator and the space requirement of our algorithm in order
to achieve a (1± ε)-approximation.

We first explain the intuition behind our estimator. By (1) and (3) we have

ZH(G) =
∏

−→
e⋆∈E[H]











∑

e∈E[G]

size(e)=size(
−→
e⋆)

e={u1,...,uℓ}

∑

(σ(1),...,σ(ℓ))∈Sℓ

M−→
e⋆

(
uσ(1), . . . , uσ(ℓ)

)











. (4)

Since H has k edges, ZH(G) is a product of k terms, and each term Z−→
e⋆
(G) is a sum over all

possible edges e of G with size(e) = size(e⋆) together with all possible orientations of e. Hence,
in the expansion of ZH(G), any k-tuple (e1, . . . , ek) ∈ Ek(G) with size(ei) = size(e⋆i) contributes
∏

16i6k (size(ei)!) terms to ZH(G), and each term corresponds to a certain orientation of edges
e1, . . . , ek.

Let
−→
T = (−→e1 , . . . ,

−→ek) be an arbitrary orientation of (e1, . . . , ek), and let G−→
T

be the graph

induced by
−→
T . Our algorithm relies on three types of variables to test if G−→

T
is isomorphic to

H. These variables play different roles, as described below. (i) For c ∈ V [H] and w ∈ V [G],
we have E

[
Xi

c(w)
]
6= 0 (1 6 i 6 degH(c)) if and only if i = degH(c). Random variables Xc(w)

guarantee that G−→
T

contributes to E[ZH(G)] only if H is surjectively homomorphic to G−→
T
, i.e., H

is homomorphic to G−→
T

and |V−→
T
| 6 |V [H]|. (ii) Through function Y : V [G] → S, every vertex

u ∈ V−→
T

maps to a random element Y (u) in S. If |V−→
T
| = |S| = t, then with constant probability,

vertices in V−→
T

map to different t numbers in S. Otherwise, |V−→
T
| < t and vertices in V−→

T
cannot

map to different t elements. Since Q is a random τth root of unity, E
[
Qi
]
6= 0 (1 6 i 6 τ) if and

only if i = τ , where τ =
∑

ℓ∈S ℓ. The combination of Q and Y guarantees that G−→
T

contributes to
E[ZH(G)] only if graph H and G−→

T
have the same number of vertices. Combining (i) and (ii), only

subgraphs isomorphic to H contribute to E[ZH(G)].

3.1 Analysis of the First Moment

Now we show that ZH(G) defined by (3) is an unbiased estimator. We first list some lemmas that
we use in proving the main theorem.

Lemma 3 ([10]). Let Xc be a randomly chosen degH(c)th root of unity, where c ∈ V [H]. Then,
for any 1 < i 6 degH(c), it holds that E

[
Xi

c

]
= 1 if i = degH(c), and E

[
Xi

c

]
= 0 otherwise.

Lemma 4 ([12]). Let R be a primitive τ th root of unity and k ∈ N. If τ | k, then
∑τ−1

ℓ=0 (R
k)ℓ = τ ,

otherwise
∑τ−1

ℓ=0 (R
k)ℓ = 0.

5

Lemma 5 ([12]). Let xi ∈ Z>0 and
∑t−1

i=0 xi 6 t. Then 2t − 1 |
∑t−1

i=0 2
i · xi if and only if

x0 = · · · = xt−1 = 1.

Theorem 6. Let H be a hypergraph with t vertices and k edges e⋆1, . . . , e
⋆
k. Assume that variables

Xc(w), Y (w) (c ∈ V [H], w ∈ V [G]) and Q are defined as above. Then,

E[ZH(G)] =
t! · auto(H)

tt
·#(H,G).

Proof. Let qi be the size of edge e⋆i in H. Consider the expansion of ZH(G):

ZH(G) =
∏

−→
e⋆i ∈E[H]










∑

e∈E[G]
size(e)=size(e⋆)
e={u1,...,uℓ}

∑

(σ(1),...,σ(ℓ))∈Sℓ

M−→
e⋆i

(
uσ(1), . . . , uσ(ℓ)

)










=
∑

e1,...ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

∏

16i6k

M−→
e⋆i

(
ui,σi(1), . . . , ui,σi(qi)

)
.

Hence the term corresponding to edges e1, . . . , ek with size(ei) = size(e⋆i) and an arbitrary orienta-
tion σ1, . . . , σk of edges e1, . . . , ek is

∏

16i6k

M−→
e⋆i

(

ui,σi(1), . . . , ui,σi(size(e⋆i))

)

=
∏

16i6k

∏

16j6size(e⋆i)

Xcij

(
wi
j

)
Q

Y (wi
j)

degH(cij) , (5)

where cij is the jth vertex of edge
−→
e⋆i , and wi

j is the jth vertex of edge −→ei .

Consider
−→
T = (−→e1 , . . . ,

−→ek) with size(ei) = size(e⋆i), where
−→ei is determined by ei and an arbitrary

orientation. We show that the expectation of (5) is non-zero if and only if the graph induced by
−→
T is an occurrence of H in G. Moreover, if the expectation of (5) is non-zero, then its value is a
constant.

For a vertex c of H and a vertex w of G, let

γ−→
T
(c, w) :=

∣
∣
{
(i, j) : cij = c and wi

j = w
}∣
∣

be the number of pairs (i, j) where the jth vertex of
−→
e⋆i in H is c, and the jth vertex of −→ei in

−→
T is w. Since every vertex c of H is incident to degH(c) edges, for any c ∈ V [H], it holds that
∑

w∈V−→
T
γ−→
T
(c, w) = degH(c). By the definition of γ−→

T
, we rewrite (5) as




∏

c∈V [H]

∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)



 ·




∏

c∈V [H]

∏

w∈V−→
T

Q
γ−→
T

(c,w)Y (w)

degH (c)



 .

Therefore we can rewrite ZH(G) as

∑

e1,...ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

−→
T =(−→e1,...,

−→ek)




∏

c∈V [H]

∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)



 ·




∏

c∈V [H]

∏

w∈V−→
T

Q
γ−→
T

(c,w)Y (w)

degH (c)



 ,

6

where the first summation is over all k-tuples of edges in E[G] with size(ei) = size(e⋆i), and the
second summation is over all possible permutations of vertices of edges e1, . . . , ek. By linear-
ity of expectations of these random variables and the assumption that Xc(w) (c ∈ V [H], w ∈
V [G]), Y (w) (w ∈ V [G]) and Q have sufficient independence, we have

E[ZH(G)]

=
∑

e1,...ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

−→
T =(−→e1,...,

−→ek)




∏

c∈V [H]

E




∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)







 · E








∏

c∈V [H]
w∈V−→

T

Q
γ−→
T

(c,w)Y (w)

degH (c)







.

For any
−→
T , let

α−→
T
:=




∏

c∈V [H]

E




∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)









︸ ︷︷ ︸

A

·E




∏

c∈V [H]

∏

w∈V−→
T

Q
γ−→
T

(c,w)Y (w)

degH (c)





︸ ︷︷ ︸

B

. (6)

We will next show that α−→
T

is either zero or a nonzero constant independent of
−→
T . The latter is the

case only if GT , the undirected hypergraph induced from edge set
−→
T , is isomorphic to hypergraph

H.
First, we consider the product A. Assume A 6= 0. Using the same technique as [12, 14],

we construct a homomorphism from H to G−→
T

under the condition A 6= 0. Remember that: (i)
for any c ∈ V [H] and w ∈ V−→

T
, γ−→

T
(c, w) 6 degH(c), and (ii) for any c ∈ V [H], w ∈ V−→

T
and

0 6 i 6 degH(c), E
[
Xi

c(w)
]
6= 0 if and only if i = degH(c) or i = 0. Therefore, for any fixed

−→
T

and c ∈ V [H], E
[
∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)
]

6= 0 if and only if γ−→
T
(c, w) ∈ {0,degH(c)} for all w. Now,

assume that E
[
∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)
]

6= 0 for every c ∈ V [H]. Then, γ−→
T
(c, w) ∈ {0,degH(c)} for

all c ∈ V [H], and w ∈ V [G]. Since
∑

w γ−→
T
(c, w) = degH(c) for any c ∈ V [H], there exists for

each c ∈ V [H] a unique vertex w ∈ V−→
T

such that γ−→
T
(c, w) = degH(c). Define ϕ−→

T
: V [H] → V−→

T
as ϕ−→

T
(c) = w for the vertex w satisfying γ−→

T
(c, w) = degH(c). Then, ϕ−→

T
is a homomorphism,

i.e., a set {u1, . . . , uℓ} ∈ E[H] implies {ϕ(u1), . . . , ϕ(uℓ)} ∈ E[G−→
T
]. Hence, A 6= 0 implies H is

homomorphic to G−→
T
, and by Lemma 3 we have

∏

c∈V [H]

E




∏

w∈V−→
T

X
γ−→
T
(c,w)

c (w)



 =
∏

c∈V [H]

E
[

X
degH (c)
c (ϕ−→

T
(c))

]

= 1 . (7)

Second, we consider the product B. We will show that, under the condition A 6= 0, GT is an
occurrence of H if and only if B 6= 0. Observe that

E




∏

c∈V [H]

∏

w∈V−→
T

Q
γ−→
T

(c,w)Y (w)

degH (c)



 = E

[

Q

∑
c∈V [H]

∑
w∈V−→

T

γ−→
T

(c,w)Y (w)

degH (c)

]

.

Case 1: Assume that GT is an occurrence of H in G. Then, |V−→
T
| = |V [H]|, and the homomor-

phism ϕ−→
T

constructed above is a bijection and an isomorphism. This implies that

∑

c∈V [H]

∑

w∈V−→
T

γ−→
T
(c, w) · Y (w)

degH(c)
=

∑

c∈V [H]

Y (ϕ−→
T
(c)) =

∑

w∈V−→
T

Y (w).

7

Without loss of generality, let V−→
T
= {w1, . . . , wt}. By considering all possible choices of Y (w1), . . . , Y (wt),

denoted by y(w1), . . . , y(wt) ∈ S, and independence between Q and Y (w) (w ∈ V [G]), we have

B =
τ−1∑

j=0

∑

y(w1),...,y(wt)∈S

1

τ

(
t∏

i=1

Pr [Y (wi) = y(wi)]

)

· exp

(

2πij

τ

t∑

ℓ=1

y(wℓ)

)

=

τ−1∑

j=0

∑

y(w1),...,y(wt)∈S
ϑ:=y(w1)+···+y(wt),τ |ϑ

1

τ

(
1

t

)t

exp

(
2πi

τ
· ϑ · j

)

+

τ−1∑

j=0

∑

y(w1),...,y(wt)∈S
ϑ:=y(w1)+···+y(wt),τ ∤ϑ

1

τ

(
1

t

)t

exp

(
2πi

τ
· ϑ · j

)

.

Applying Lemma 4 with R = exp
(
2πi
τ

)
, the second summation is zero. Hence, by Lemma 5, we

have

B =
∑

y(w1),...,y(wt)∈S
τ |y(w1)+···+y(wt)

(
1

t

)t

=
∑

y(w1),...,y(wt)∈S
y(w1)+···+y(wt)=τ

(
1

t

)t

=

(
1

t

)t

· t! =
t!

tt
. (8)

Case 2: Assume that GT is not an occurrence of H in G. Then, ϕ−→
T

is not a bijection, and
trivially is not an isomorphism. Let V−→

T
= {w1, . . . , wt′}, where t′ < t. Then, there is a vertex

w ∈ V−→
T

and different b, c ∈ V [H], such that ϕ−→
T
(b) = ϕ−→

T
(c) = w. As before, we have

∑

c∈V [H]

∑

w∈V−→
T

γ−→
T
(c, w) · Y (w)

degH(c)
=

∑

c∈V [H]

Y (ϕ−→
T
(c)) .

By Lemma 5, τ ∤
∑

c∈V [H] Y (ϕ(c)) regardless of the choices of Y (w1), . . . , Y (wt′). Hence,

B =

τ−1∑

j=0

∑

y(w1),...,y(wt′)∈S
ϑ:=

∑
c∈V [H] y(ϕ−→

T
(c)),τ ∤ϑ

1

τ

(
1

t

)t′

exp

(
2πi

τ
· ϑ · j

)

= 0 ,

where the last equality follows from Lemma 4 with R = exp
(
2πi
τ

)
.

By (7) and (8), we have α−→
T
= t!

/
tt if ϕ−→

T
is an isomorphism, and α−→

T
= 0 otherwise. Note that

for every occurrence of H in G, denoted by H ′, there are auto(H) isomorphic mappings between H ′

and H, and each such mapping ϕ−→
T

corresponds to one T together with an appropriate orientation
of every edge. Hence, every H ′ is counted auto(H) times and

E[ZH(G)] =
∑

e1,...ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

−→
T =(−→e1,...,

−→ek)

α−→
T

=
t! · auto(H)

tt
·#(H,G) .

Proof of Theorem 2. By Theorem 6, we have

#(H,G) =
tt

t! · auto(H)
· E[ZH(G)]. (9)

Expanding the right-hand side of (9) by the definition of the expectation, the theorem holds.

8

3.2 Analysis of the Second Moment

Now we analyze the variance of ZH(G) and use Chebyshev’s inequality to upper bound the space
requirement of our algorithm in order to get a (1 ± ε)-approximation of #(H,G). Our analysis
relies on the following lemma about the number of subgraphs in a hypergraph.

Lemma 7. Let G be a hypergraph with m edges, and H be a hypergraph with k edges and minimum
degree 2. Then #(H,G) = O(mk/2).

Proof. We define the fractional cover ϕ : E[H] 7→ [0, 1] as ϕ(e) = 1/2 for every e ∈ E[H]. Since
the minimum degree of graph H is 2, we have

∑

e∋v ϕ(e) > 1 for every v ∈ V [H]. Therefore the

fractional cover number minϕ

{
∑

e∈E[H] ϕ(e)
}

6 k/2. By Theorem 1.1 of [9], the lemma holds.

Theorem 8. Let G be a hypergraph with m edges, and H be a hypergraph with k edges. Random
variables Xc(w), Y (w) (c ∈ V [H], w ∈ V [G]) and Q are defined as above. Then the following
statements hold: (1) E[ZH(G) · ZH(G)] = O(m2k); (2) If the minimum degree of H is at least 2,
then E[ZH(G) · ZH(G)] = O(mk).

Proof. By definition we write E[ZH(G) · ZH(G)] as

E
[

ZH(G) · ZH(G)
]

=E





















∑

e1,...,ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

−→
T1=(−→e1,...,

−→ek)








∏

c∈V [H]
w∈V−→

T1

X
γ−→
T1

(c,w)

c (w)







·








∏

c∈V [H]
w∈V−→

T1

Q

γ−→
T1

(c,w)Y (w)

degH (c)


















·












∑

e′1,...,e
′

k
∈E[G]

∀i:size(e′i)=size(e⋆i)
e′i=(vi,1,...,vi,qi)

∑

σ′

1,...,σ
′

k

∀i:σ′

i∈Sqi
−→
T2=(

−→
e′1,...,

−→
e′
k
)








∏

c∈V [H]
w∈V−→

T2

X
γ−→
T2

(c,w)

c (w)







·








∏

c∈V [H]
w∈V−→

T2

Q

γ−→
T2

(c,w)Y (w)

degH (c)






























= E












∑

e1,...,ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

−→
T1=(−→e1,...,

−→ek)

∑

e′1,...,e
′

k
∈E[G]

∀i:size(e′i)=size(e⋆i)
e′i=(vi,1,...,vi,qi)

∑

σ′

1,...,σ
′

k

∀i:σ′

i∈Sqi
−→
T2=(

−→
e′1,...,

−→
e′
k
)








∏

c∈V [H]
w∈V−→

T1∪
−→
T2

X
γ−→
T1

(c,w)−γ−→
T2

(c,w)

c (w)







·








∏

c∈V [H]
w∈V−→

T1∪
−→
T2

Q

(

γ−→
T1

(c,w)−γ−→
T2

(c,w)

)

·Y (w)

degH (c)















By linearity of expectations and the condition that random variables Xc(w)(c ∈ V [H], w ∈ V [G])
are (2t · k)-wise independent, and Xc(c ∈ V [H]), Q are chosen independently, we can rewrite

9

E[ZH · ZH] as
∑

e1,...,ek∈E[G]
∀i:size(ei)=size(e⋆i)
ei=(ui,1,...,ui,qi

)

∑

σ1,...,σk
∀i:σi∈Sqi

−→
T1=(−→e1,...,

−→ek)

∑

e′1,...,e
′

k
∈E[G]

∀i:size(e′i)=size(e⋆i)
e′i=(vi,1,...,vi,qi)

∑

σ′

1,...,σ
′

k

∀i:σ′

i∈Sqi
−→
T2=(

−→
e′1,...,

−→
e′
k
)

α−→
T1,

−→
T2

where the value of α−→
T1,

−→
T2

is

∏

c∈V [H]

E






∏

w∈V−→
T1∪

−→
T2

X
γ−→
T1

(c,w)−γ−→
T2

(c,w)

c (w)




 ·E








∏

c∈V [H]
w∈V−→

T1∪
−→
T2

Q

(

γ−→
T1

(c,w)−γ−→
T2

(c,w)

)

·Y (w)

degH (c)








= O(1).

Since E[ZH(G) · ZH(G)] has at most O(m2k) terms, the first statement holds.
Now for the second statement. Remember that (i) for any c ∈ V [H] and w ∈ V−→

T1∪
−→
T2
, E[Xi

c(w)] 6=

0 if and only if i is divisible by degH(c), and (ii) for any c ∈ V [H] and w ∈ V−→
T1∪

−→
T2
, it holds that

0 6 γ−→
T1
(c, w) 6 degH(c) and 0 6 γ−→

T2
(c, w) 6 degH(c). Hence α−→

T1,
−→
T2
6= 0 if for any c ∈ V [H] and

w ∈ V [G] it holds that (i) γ−→
T1
(c, w) = γ−→

T2
(c, w), or (ii) γ−→

T1
(c, w) = degH(c), γ−→

T2
(c, w) = 0, or (iii)

γ−→
T1
(c, w) = 0, γ−→

T2
(c, w) = degH(c). We partition V−→

T1∪
−→
T2

into three disjoint subsets A, B and C

defined by A := V−→
T1
\ V−→

T2
, B := V−→

T2
\ V−→

T1
, and C := V−→

T1
∩ V−→

T2
. Set A, B, and C are defined

according to the above conditions (i), (ii) and (iii). By the assumption that the minimum degree
of H is 2, the degree of every vertex in sets A,B and C is at least 2. Since there are O(1) different
such H ′ of constant size, and for each H ′ of them it holds that #(H,G) = O(mk/2), by Lemma 7
we have E[ZH(G) · ZH(G)] = O(mk).

By applying Chebyshev’s inequality, we can get a (1±ε)-approximation by running our estimator
in parallel and returning the average of the output of these returned values, and this implies our
main theorem (Theorem 1).

Proof of Theorem 1. We run s parallel and independent copies of our estimator and take the average
value Z∗ = 1

s

∑s
i=1 Zi, where each Zi is the output of the ith instance of the estimator. Therefore,

E[Z∗] = E[ZH(G)], and a straightforward calculation shows that

E
[

Z∗Z
∗
]

− |E [Z∗]|2 =
1

s

(

E
[

ZH(G) · ZH(G)
]

− |E[ZH(G)]|2
)

.

By Chebyshev’s inequality for complex-valued random variables (see, e.g., [14, Lemma 3]), we have

Pr [|Z∗ −E[Z∗]| > ε · |E[Z∗]|] 6
E
[

ZH(G) · ZH(G)
]

−E[ZH(G)] · E[ZH(G)]

s · ε2 · |E[ZH(G)]|2
.

By the first statement of Theorem 8, we have

E
[

ZH(G) · ZH(G)
]

−E[ZH(G)] ·E[ZH(G)] 6 E
[

ZH(G) · ZH(G)
]

= O(mk) .

By choosing s = O
(

1
ε2
· mk

(#H)2

)

, we get

Pr [|Z∗ −E [Z∗]| > ε · |E[Z∗]|] 6 1/3 .

Hence, the overall space complexity is O
(

1
ε2 ·

mk

(#H)2 · log n
)

.

10

Acknowledgement. The author would like to thank Kurt Mehlhorn for helpful comments on
the presentation.

References

[1] http://www.hypergraphDB.org.

[2] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners, and sub-
graphs. In Proc. 31st Symp. Principles of Database Systems (PODS), pages 5–14, 2012.

[3] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an ap-
plication to counting triangles in graphs. In Proc. 13th Symp. on Discrete Algorithms (SODA),
pages 623–632, 2002.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local
triangle counting in massive graphs. In Proc. 14th Intl. Conf. Knowledge Discovery and Data
Mining (KDD), pages 16–24, 2008.

[5] C. Beeri, R. Fagin, D. Maier, A. O. Mendelzon, J. D. Ullman, and M. Yannakakis. Properties
of acyclic database schemes. In Proc. 13th Symp. on Theory of Computing (STOC), pages
355–362, 1981.

[6] I. Bordino, D. Donato, A. Gionis, and S. Leonardi. Mining large networks with subgraph
counting. In Proc. 8th Intl. Conf. on Data Mining (ICDM), pages 737–742, 2008.

[7] L. S. Buriol, G. Frahling, S. Leonardi, and C. Sohler. Estimating clustering indexes in data
streams. In Proc. 15th European Symp. on Algorithms (ESA), pages 618–632, 2007.

[8] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM, 30
(3):514–550, 1983.

[9] E. Friedgut and J. Kahn. On the number of copies of one hyper graph in another. Isreal
Journal of Mathematics, 105:251–256, 1998.

[10] S. Ganguly. Estimating frequency moments of data streams using random linear combinations.
In Proc. 8th Intl. Workshop on Randomization and Comput. (RANDOM), pages 369–380, 2004.

[11] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in graphs. In
Proc. 11th Intl. Conf. Computing and Combinatorics (COCOON), pages 710–716, 2005.

[12] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun. Counting arbitrary subgraphs in data
streams. In Proc. 39th Intl. Coll. Automata, Languages and Programming (ICALP), pages
598–609, 2012.

[13] S. Klamt, U. Haus, and F. Theis. Hypergraphs and cellular networks. PLoS Computational
Biology, 5(5):1–6, 2009.

[14] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H. Sun. Approximate counting of cycles in
streams. In Proc. 19th European Symp. on Algorithms (ESA), pages 677–688, 2011.

[15] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science, 1(2), 2005.

[16] D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification,
and embedding. In Proc. 20th Conf. on Neural Information (NIPS), pages 1601–1608, 2006.

11

http://www.hypergraphDB.org

	1 Introduction
	2 An Unbiased Estimator for Counting Hypergraphs
	3 Analysis of the Estimator
	3.1 Analysis of the First Moment
	3.2 Analysis of the Second Moment

