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Abstract

We study gossip algorithms for the rumor spreading problem which asks one node to
deliver a rumor to all nodes in an unknown network. We present the first protocol for any
expander graph G with n nodes such that, the protocol informs every node in O(log n)

rounds with high probability, and uses Õ(log n) random bits in total. The runtime of our

protocol is tight, and the randomness requirement of Õ(log n) random bits almost matches
the lower bound of Ω(log n) random bits for dense graphs. We further show that, for many
graph families, polylogarithmic number of random bits in total suffice to spread the rumor
in O(poly logn) rounds. These results together give us an almost complete understanding
of the randomness requirement of this fundamental gossip process.

Our analysis relies on unexpectedly tight connections among gossip processes, Markov
chains, and branching programs. First, we establish a connection between rumor spreading
processes and Markov chains, which is used to approximate the rumor spreading time by the
mixing time of Markov chains. Second, we show a reduction from rumor spreading processes
to branching programs, and this reduction provides a general framework to derandomize
gossip processes. In addition to designing rumor spreading protocols, these novel techniques
may have applications in studying parallel and multiple random walks, and randomness
complexity of distributed algorithms.
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1 Introduction

Gossip algorithms is one of the most important communication primitives in large networks, and
has been studied under different names such as rumor spreading, information dissemination, or
broadcasting. Efficient gossip algorithms for information spreading have wide applications in
failure detection [38], resource discovery [30], replicated database systems [11, 18], and modeling
the spread of computer viruses [3]. Besides computer science, the dynamics of such processes
in social networks also constitutes a research topic in economics and sociology.

The simplest and widely studied form of gossip algorithms is the so-called push model of
rumor spreading. Initially, a message, called a rumor, is placed on an arbitrary node of an
unknown network with n nodes. In subsequent synchronous rounds, every node that knows the
rumor picks a neighbor uniformly at random and sends the rumor to the chosen neighbor. This
process continues until every node gets the rumor. It was shown that this simple protocol is
very efficient on several network topologies [16–18, 23]. In particular, its runtime, the number
of rounds required until every node gets the rumor with high probability, is logarithmic in the
number of nodes in the graph. Graphs satisfying this property range from complete graphs,
hypercubes, Erdős-Rényi random graphs, and “quasi-regular” expanders (i.e., expander graphs
for which the ratio between the maximum and minimum degree is constant). In addition to
its efficiency, the protocol is local (i.e., no knowledge of global graph structure is needed),
simple, and can tolerate link failures. More recently, several variations of information spreading
protocols have been proposed to allow information to spread efficiently on networks with weak
expansion properties [6], arbitrary networks [7], and dynamic networks [15].

Most of these algorithms are inherently randomized in both their design and analysis in
that they crucially rely on choosing neighbors independently and uniformly at random in each
round, i.e., we assume that every node of the graph has access to a random source of unbiased
and independent coins. However, it is not known how to physically realize this abstraction
in the real world and, from a theoretical point of view, it is not clear if this randomization
is essential for efficiently disseminating the rumor. Hence the randomness requirement, the
number of random bits used in total in order to spread the rumor efficiently, becomes a key
measurement to evaluate rumor spreading protocols. One of the most studied questions concerns
the randomness requirement: how many random bits are sufficient to efficiently spread a rumor
to all nodes in a graph? While for any graph with n nodes, the above-mentioned fully-random
push protocol requires O(T · n log n) random bits for spreading a rumor within T rounds, it is
not difficult to show that for any graph G of n nodes, there is a protocol which uses 3 log n
random bits in total, and whose runtime is as fast as the standard fully-random protocol (cf.
Corollary B.2). However, the explicit construction of such protocols is more complicated, and a
long line of research has been devoted to finding randomness-efficient protocols, see [13, 24, 25]
for instance.

1.1 Our Results

In this paper we establish a novel reduction from the problem of designing rumor spreading
protocols of low randomness complexity to the problem of constructing pseudo-random gener-
ators (PRGs) for branching programs. To the best of our knowledge, this reduction gives the
first application of the model of branching programs in the area of distributed computing and
also provides a powerful tool for designing gossip algorithms.

At a high level, the connection between gossip processes and branching programs is natural
because (1) random walks over branching programs resemble the rumor spreading process where
nodes send messages to random neighbors, and (2) in a rumor spreading protocol, each node
has access to only its own list of neighbors, and is oblivious to the structure of the network.
This is an analogue of oblivious derandomization achieved by PRGs. However, rumor spreading
appears much more complicated than small-space computation due to the following facts: (1) In
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the rumor spreading process, rumors are “duplicated” every round, although every “existing”
rumor viewed individually performs a random walk. Hence, instead of considering every single
random walk performed by any fixed rumor, we need to study the dynamics of the whole rumor
spreading process. (2) The state of the process at some time essentially depends on the past
behavior of all nodes and is by no means computable in small space. Indeed, even knowing if
a single node u gets the rumor at some round requires knowing the set of its neighbors having
the rumor in the previous rounds, and may require deg(u) = Θ(n) bits for dense graphs. For
these reasons, this connection to small-space computation is delicate and not obvious.

Surprisingly, we show that such a reduction from designing rumor spreading protocols to
constructing PRGs for branching programs exists. Hence the question of designing randomness-
efficient rumor spreading protocols is now exposed to the numerous techniques used in PRG

constructions for small-space computation. In particular, PRGs with optimal parameters yield
protocols whose randomness complexity matches the lower bound or the best known upper
bound of existential results from the probabilistic method (cf. Theorem 2.7). Our result is as
follows:

Theorem 1.1 (Main Result). Let G be a graph with n nodes, spectral gap α ∈ (0, 1) and
irregularity β , ∆/δ. Then there is an explicit protocol using O((log(1/α) + log β) · log n) +
Õ(log n) random bits such that with high probability all nodes get the rumor in T = O(C log n)
rounds, where C = (1/α) · β2 max{1, 1/(α ·∆0.499)}.

Theorem 1.1 implies that, for any expander graph G with n nodes, α = Θ(1) and irregularity
β = O(1), the protocol finishes in O(log n) rounds and uses Õ(log n) random bits in total. Note
that any protocol needs at least Ω(log n) rounds to spread the rumor to all nodes, hence our
runtime for expander graphs is tight. For the randomness complexity, our result improves the
previous best bound of O(log2 n) random bits [25]. Since for any expander graph with minimum
degree δ = nΘ(1), any protocol that finishes in O(log n) rounds with high probability needs at
least Ω(log n) random bits (cf. Theorem C.2), our bound is almost tight.

We further study the so-called averaging process, which is a generalization of rumor spreading
process and can be considered as the random matching model of load balancing with a certain
initial load vector (cf. [21, 36]). We show that this general averaging process can be modeled
by branching programs as well, which leads to an explicit averaging protocol. This approach
implies the following result (Theorem 1.2) for the rumor spreading problem, and has independent
interest in studying other distributed algorithms, e.g. quasi-random load balancing [22]. Due
to page limitation, we defer the formal discussion about the averaging process to Section E.

Theorem 1.2. Let G be a graph, List(u) be the adjacency list of node u, and N(u) be the set
of neighbors of u. We assume that each node u knows the ID of its neighbors v ∈ N(u), and its
index in List(v) for any neighbor v ∈ N(u).1 Then there is an explicit rumor spreading protocol
using O((log(1/α) + log β + log log n) · log n) random bits, such that with high probability all
nodes get the rumor in T = O((1/α) · β2 log n) rounds.

Our third result is for general graph with conductance φ. In contrast to Theorem 1.1 and
Theorem 1.2 that are based on branching programs, this result relies on the observation that
the rumor spreading process enjoys nice locality when the maximum degree is small.

Theorem 1.3. Let G be a graph with n nodes, conductance φ and irregularity β. Then there
is an explicit protocol using O

(
(1/φ) · β · log n · (log log n + log∆)

)
random bits in total, such

that with high probability all nodes get the rumor in O((1/φ) · β · log n) rounds.
1We remark that similar assumptions are also made in other references, e.g. [29], and one can deterministically

use O(∆) preprocessing time to guarantee this assumption.
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The runtime in Theorem 1.3 matches the upper bound known in the truly random protocol,
and is tight, in the sense that there are graphs with diameter Ω((1/φ) log n) [8]. For the random-
ness requirement, our result improves the previous best one in [25], which needs O((1/φ) log2 n)
random bits in total and only holds for graphs with β = O(1).

Our protocol takes advantage of the locality by using a “two-level hashing” construction:
We use a family of objects called unbalanced expanders to hash the node IDs into a smaller
space, and then apply the classical pairwise independent generators. This construction yields
much smaller seed length than using pairwise independent generators alone. The protocol has
the advantage of being very simple. Furthermore, a variant of this protocol using PRGs for
combinatorial rectangles achieves the best possible runtime for strong expanders:

Theorem 1.4. Let G be a graph such that ∆/δ = 1 + o(1) and α = 1 − o(1). Then there is a
protocol using O(log n · (log log n+ log∆)) random bits in total, such that with high probability
all nodes get the rumor in log n+ lnn+ o(log n) rounds.

The runtime in Theorem 1.4 matches the precise runtime for the truly random protocol [16–
18], and is known to be tight [17]. Moreover, our protocol uses O(log n · (log log n + log∆))
random bits in total, in contrast to Ω(log3 n) random bits used for all previous protocols,
e.g. [19, 25]. These four results (Theorem 1.1–Theorem 1.4), together with the existential
proof (Corollary B.2) and the lower bound analysis (Theorem C.2), give us an almost complete
understanding of the randomness complexity of this fundamental gossip problem.

Remark 1.5. One common feature of our protocols is that all randomness is picked by the
initial node having the rumor, and the whole rumor spreading process becomes deterministic once
the random seed is picked. We remark that, through our protocol, the whole rumor spreading
dynamics is encoded in this short random seed, and any node can recover the rumor spreading
process once it receives the random seed. This feature may have applications in studying algebraic
gossip algorithms, and other settings.

1.2 Techniques

To derive the results above, we develop several new techniques for studying gossip processes.
We highlight some of them in this subsection.

Approximation via Random Walks. The usual analyses for fast rumor spreading proceed
by showing some measure (e.g. the volume of the set of informed/uninformed nodes) increases
or decreases over time. Our approach is fundamentally different from previous work. Roughly
speaking, we approximate the rumor spreading process by a collection of random walks and then
use the rapid mixing of the random walks to prove the property of fast rumor spreading. It
turns out that the pieces of local information provided by these random walks give a surprisingly
good control of the global behavior of rumor spreading, despite that the walks are complicated
and highly correlated.

Formally, we approximate the rumor spreading process by various random walks, distin-
guished by whether the walks are lazy or non-lazy in each round. Each walk is associated with
a positive number called its weight. A node u is informed if the total weights of random walks
reaching u is positive. By the Cauchy-Schwarz inequality, we lower bound the probability of this
event in terms of the expectation of the total weights reaching u as well as its second moment.

Analysis of Markov Chains. With the weights chosen intelligently, the expectation and the
second moment of total weights reaching a node are computed by certain Markov chains. The
expected total weights are computed by the chain M representing a lazy random walk in the
graph. It follows from the rapid mixing of M that it can be well estimated using the stationary
distribution of M. The case for the second moments is more complicated as they correspond
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to a non-reversible chain M′. A key result we manage to show is that M′ and M ⊗ M have
very close stationary distributions and comparable mixing time. We remark that this result is
interesting on its own since M′ is a very natural Markov chain, closely related to the Doeblin
coupling [32].

Simulating Pull by Push. While a randomness-efficient protocols using a global seed can
be easily implemented in the push model, the “dual” protocol in the pull model is not physically
realizable, as it is impossible for a node to perform random pulls before getting the seed. Using
the technique called simulating pull by push, we are able to employ the analysis for the pull model
while actually using the push model. This is crucial in our analysis, since when most nodes
already have the rumor, the random walks defined via push operations become too congested
and correlated, whereas the “reversed” random walks using pull operations work well.

1.3 Related Work

There is a large amount of literature devoted to various aspects of rumor spreading. The
majority of research studies the rumor spreading time in terms of the graph properties, e.g.
conductance [8, 23], mixing time [4], diameter [18] and degree [18]. For instance, the first
explicit connection between randomized rumor spreading and graph expansion was established
by Mosk-Aoyama and Shah [34], who proved that on any regular graph with conductance
φ, the protocol finishes in O((1/φ) · log n) rounds. More recent work includes the study of
rumor spreading in social networks [14, 20] and dynamic graphs [10, 15], and algebraic gossip
algorithms [28].

The study of determining and reducing the amount of randomness required for rumor spread-
ing has been studied extensively in the past years. Doerr et al. [12] proposed a quasi-random
version of the rumor spreading push protocol. In contrast to O(n log2 n) random bits that used
in the standard push model, the quasi-random rumor spreading model uses Θ(n log n) random
bits, and has been shown to be efficient on several graph topologies [13, 19]. Further progress
along this line include [24, 25]. Besides this, researchers also studied the question of designing
randomness-efficient or deterministic protocols for similar problems. For instance, Haeupler [29]
presented one deterministic gossip algorithm for the k-local broadcast and the global broadcast
problem. However, the algorithms in [29] require that all nodes in the graph have unique iden-
tifiers (UID), and every node knows its own and the neighbors’ UIDs. Hence the techniques
developed there cannot be applied to our setting.

In addition to rumor spreading, the technique of pseudorandomness was also studied in other
settings of online algorithms, e.g., in the context of Local Computation Algorithms (LCA) [1],
and complexity analysis of information spreading in dynamic networks [15].

1.4 Notations

Let G = (V,E) be a connected, undirected, and simple graph with n nodes. For any node u, the
degree of u is represented by deg(u). Let ∆, δ and d be the maximum, minimum and average
degree of G, respectively, and call β , ∆/δ the irregularity of G. We use AG to express the
adjacency matrix of G, andNG , D−1/2AGD

−1/2, whereD is the n×n diagonal matrix defined
by Duu = deg(u) for u ∈ V [G]. Define the n real eigenvalues of NG by 1 = λ1 > · · · > λn > −1,
and let λmax , max{λ2, |λi|}. The spectral gap α is defined by α , 1−λ2, whereas the absolute
spectral gap is defined as 1−λmax. For simplicity, we also use α to express the spectral expansion
of a reversible Markov chain if the chain is clear from the context.

By log x we denote the binary logarithm of x. For any integer m, define [m] , {0, . . . ,m−1}.
With high probability stands for with probability 1− n−Θ(1).
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2 Gossip vs. Markov Chains

Let G = (V,E) be an undirected and simple graph with V [G] = [n]. We consider only T ′-round
protocols for G, in which nodes send rumors only for the first T ′ rounds, and assume that
T ′ = O(nc) for a constant c > 0. Through this section, we assume that each node has a unique
identifier (ID), and each node initially solely knows its own ID, which is from 0 to nc for a
constant c. Let s be the initial node having the rumor. For simplicity, we assume the adjacency
list of each node u has length ∆, and the last ∆ − deg(u) neighbors are u itself, i.e. we add
∆−deg(u) self-loops for ever node u. However, we use deg(u) and N(u) to represent the degree
and the set of neighbors of u respectively in the underlying simple graph.

2.1 Preliminaries

Given d ∈ N and a finite set S =
∏

i∈[d] Si, define CRS ,
{∏

i∈[d]Ai : Ai ⊆ Si

}
. The members

of CRS are called combinatorial rectangles in S and d is their dimension. For ε > 0, d ∈ N,
and a finite set S =

∏
i∈[d] Si, we call G : {0, 1}ℓ → S an ε-PRG for CRS with seed length ℓ if∣∣∣Prx∈{0,1}ℓ [G(x) ∈ A ]− |A|/|S|

∣∣∣ 6 ε for any A ∈ CRS .

The second family of PRGs that we will use is PRGs for Branching Programs2. Let B be
a branching program of length L, width W and degree D. For x = (x1, . . . , xL) ∈ [D]L and a
node (s, 0) on the first layer, define B(s, x) ∈ [W ] such that the random walk that starts from
(s, 0) and takes the edge with label xi at the ith step for 1 6 i 6 L finally arrives at (B(s, x), L).
We call a function G : {0, 1}ℓ → [D]L an ε-PRG for (L,W,D)-branching programs if for any
(L,W,D)-branching program, and any node (s, 0) on the first layer, it holds that

∑

u∈[W ]

∣∣∣Prx∈{0,1}ℓ [B(s,G(x)) = u ]−Prx∈[D]L [B(s, x) = u ]
∣∣∣ 6 ε.

2.2 Analysis of the Prototype Protocol

In this subsection we relate rumor spreading processes to Markov chains, and show how the
mixing time of certain Markov chains relates to the rumor spreading time. We first analyze the
following prototype of rumor spreading protocols, which includes the standard push protocol as
a special case.

Protocol 1 (Prototype of Rumor Spreading Protocols). Let D be a distribution over the set of
functions f : [T ] × V [G] → [∆]. Sample f according to D. In the ith round, an informed node
u sends the message to its f(i, u)th neighbor in its adjacency list.

We are primarily interested in analyzing Protocol 1 when D = U is the uniform distribution,
i.e. f(i, u) are chosen from [∆] independently and uniformly at random for all i and u.

Approximation via Random Walks. To analyze the runtime of Protocol 1, we compare
the process of rumor spreading with a random walk on a branching program. For random walks,
a walk always stays at a single node throughout the process, although this node keeps changing.
On the other hand, in the process of rumor spreading, each informed node u randomly sends
the rumor to one of its neighbors v in each round, and then u, v are both informed subsequently.
So we may think of rumor spreading as many random walks in parallel: When node u sends
the rumor to v, one random walk moves from u to v whereas another one stays at u. In order
to characterize this behavior, we introduce the notion of forward and reversed random walks.
For any round i ∈ [T ] and node u ∈ V [G], denote by f̃(i, u) the f(i, u)th neighbor of u in its
adjacency list.

2See Definition D.7 for the formal definition of branching programs.
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Definition 2.1 (Forward random walks). Consider a random rumor spreading process in T
rounds on a graph G using Protocol 1 determined by f ∼ D = U . A forward random walk
of length k ∈ [T ] with pattern S = (s0, . . . , sk−1) ∈ Ck , {lazy,non-lazy}k is a sequence of
k + 1 nodes (p0, . . . , pk) of G, such that for all i ∈ [k]: (i) if si = lazy, then pi+1 = pi; (ii) if
si = non-lazy, then pi+1 = f̃(i, pi).

We also define reversed random walks, tailored to the idea of simulating pull using push.
Roughly speaking, a reversed random walk takes a step from node v to u if u is the unique node
pushing to v. For technical reasons, we introduce auxiliary random variables ri,u uniformly dis-
tributed over [0, 1] for each i ∈ [T ] and u ∈ V [G] to equalize the probabilities of successful steps
of reversed random walks made from different nodes. These random variables only appear in
the analysis, not in the protocol constructions. Then the reversed random walks are determined
by the randomness f ∼ D together with ri,u, whereas the forward walks are solely determined
by f . See Definition D.10 for the formal definition of reversed random walks.

For k ∈ [T/4], u, v ∈ V [G] and S ∈ Ck = {lazy,non-lazy}k, let XS
u,v (resp. Y S

u,v) be the
indicator random variable of the event that the unique forward (resp. reversed) walk with
pattern S and initial node u is at node v in the kth round. For γ ∈ (0, 1), let Dγ,k be the
distribution over Ck where entries are independently chosen to be lazy with probability 1− γ.

We fix an arbitrary node w ∈ V [G], and study the probability that node w is informed in T
rounds. Clearly, if there exist a forward random walk p from s to some node u and a reversed
random walk p′ from w to u, then the rumor is sent from s to u following p and then from u to
w following the reversal of p′. Also note that the two walks exist if and only if XS

s,uY
S′

w,u > 0 for
some S, S′ and u. Therefore it holds for any k ∈ [T/4] that

Pr [w receives the message in T rounds ] > Pr




∑

S,S′∈Ck,u∈V [G]

XS
s,uY

S′

w,u > 0


 , (2.1)

where the probability is taken over the randomness f ∼ D and ri,u.
We want to reduce the global event

∑
S,S′∈Ck,u∈V [G]X

S
s,uY

S′

w,u > 0 to local events XS
s,u and

Y S′

w,u. By using Cauchy-Schwarz inequality, and linearity of expectation, we show that (2.1) is
lower bounded by

∑
u,v∈V [G]Er,S

[
XS

s,u

]
Er,S

[
XS

s,v

]
Er,S

[
Y S
w,u

]
Er,S

[
Y S
w,v

]
∑

u,v∈V [G]Er,S,S′

[
XS

s,uX
S′

s,v

]
Er,S,S′

[
Y S
w,uY

S′

w,v

] . (2.2)

Hence the runtime of Protocol 1 can be derived by analyzing multiple random walks individually
or pairwisely. See Lemma D.11 for detailed analysis.

Analysis using Markov Chains. We study the expectations in (2.2) in terms of finite-
state Markov chains. For simplicity, we represent these Markov chains by stochastic matrices.
Recall that a stochastic matrix M′′ ∈ R

n×n ⊗ R
n×n is a coupling of M,M′ ∈ R

n×n if (i)∑
x∈[n]M

′′
(u,w)(v,x) = Mu,v for any u,w, v ∈ [n], and (ii)

∑
v∈[n]M

′′
(u,w)(v,x) = M′

w,x for any

u,w, x ∈ [n].
We define the “bi-lazy” analogue of lazy Markov chains with respect to a coupling where

the two chains choose to be lazy or non-lazy independently.

Definition 2.2. For γ ∈ [0, 1], let Lγ(M) , (1− γ)I + γM be the lazy Markov chain.

Definition 2.3 (Lazy coupling). Let M′′ be a coupling of M,M′ ∈ R
n×n. For γ, γ′ ∈ [0, 1],

define Lγ,γ′(M′′) , (1− γ)(1− γ′)(I⊗ I)+ (1− γ)γ′(I⊗M′)+ γ(1− γ′)(M⊗ I)+ γγ′M′′. That
is, Lγ,γ′(M′′) is a coupling of Lγ(M) and Lγ′(M′).
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Definition 2.4 (Doeblin coupling [32]). Let M ∈ R
n×n be a stochastic matrix. The Doeblin

coupling Q(M) of two copies of M is defined as

Q(M)(u,w)(v,x) ,





(M⊗M)(u,w)(v,x) u 6= w,

Muv u = w, v = x,

0 u = w, v 6= x.

Using the above definitions, we are able to characterize the expectations in (2.2) in terms of

Markov chains. For instance, the first and the second moments Er,S

[
XS

u,v

]
andEr,S,S′

[
XS

u,vX
S′

w,x

]

about forward random walks are characterized by the chains Lγ

(
MReg(G)

)
and Lγ,γ◦Q

(
MReg(G)

)

respectively, and similar results hold for reversed walks. Hence we reduce the problem of lower
bounding (2.1) to the study of these Markov chains.

Notice that matrixQ(M) agrees withM⊗M except on the rows indexed by (u, u), u ∈ V [G].
This is a manifestation of the fact that the “non-lazy” steps from the same node made by two
different forward/reversed random walks are not independent, i.e., every informed node can
only send the rumor to one neighbor in each round. Despite this complication, we show that
Q(M) is actually quite close to M⊗M:

Lemma 2.5. Suppose M ∈ R
n×n is a doubly-stochastic matrix with spectral gap α > 0, and

suppose Muv 6 η for any distinct u, v ∈ V [G]. Then for any distribution u over V [G] × V [G],
k ∈ N, and 0 6 γ 6 min

{
1/3, αη−1/2/9

}
, we have

∥∥∥u (Lγ,γ ◦ Q(M))k − π ⊗ π

∥∥∥
2
6 (1− γα/2)k + 2

√
2γα−1n−3/2,

where π denotes the uniform distribution over V [G].

One corollary of Lemma 2.5 states that the stationary distribution of the Markov chain
Lγ,γ ◦ Q(M) is very close to π ◦ π, and its mixing rate is comparable to that of M ⊗ M (see
Corollary D.15). Using the rapid mixing of Lγ

(
MReg(G)

)
and Lγ,γ ◦ Q(M) (and similar chains

for reversed random walks), we obtain an upper bound of the runtime of Protocol 1, which
holds for general graphs with spectral gap α and irregularity β. Our result in this subsection is
summarized as follows:

Theorem 2.6. Suppose G has spectral gap α and irregularity β. Using Protocol 1 with distri-
bution D = U , with high probability all nodes get the rumor in T = O(C log n) rounds, where
C = (1/α) · β2 max{1, 1/(α ·∆0.499)}.

We remark that our analysis above provides a fundamentally new approach to analyze the
rumor spreading time of general graphs and, as shown in Theorem 2.6, the result is tight for
certain graph families, e.g. T = O(log n) for any expander graph with n nodes and β = O(1).

2.3 A Randomness-Efficient Protocol

The discussion above relates rumor spreading processes to multiple random walks. The transi-
tions of these random walks from a fixed node only depend on local information and are charac-
terized by combinatorial rectangles. Moreover the memoryless feature of random walks/Markov
chains allow us to compute them in log-space, or branching programs with polynomial width.
Using PRGs for combinatorial rectangles and those for branching programs, we obtain a dis-
tribution that is samplable with a short seed and has almost the same performance as the
distribution D = U in Protocol 1. This gives Protocol 2 that corresponds to Theorem 1.1.

Protocol 2. Pick the following objects:

• an explicit ε-PRG G = (G0, . . . ,Gn−1) : {0, 1}ℓ → [m]n for CR[m]n with seed length ℓ, and
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• an explicit ε′-PRG G′ = (G′
0, . . . ,G′

T/2−1) : {0, 1}ℓ
′ →

(
{0, 1}ℓ

)T/2
for (T/2, n2, 2ℓ)-branching

programs with seed length ℓ′

where ε−1, ε′−1,m = nΘ(1) are sufficiently large.
The initial node having the rumor independently chooses random strings x, y ∈ {0, 1}ℓ′ .

These random strings are appended with the rumor and sent to other nodes.

• In the ith round for 0 6 i < T/2, an informed node u sends the rumor to the neighbor
with index Gu(G′

i(x)) mod ∆ in its adjacency list.

• In the ith round for T/2 6 i < T , let j = ⌊T−i−1
2 ⌋. For u ∈ V [G], let (r0, r1) =

Gu(G′
j(y)) mod ∆2 ∈ [∆]2. Then u sends the rumor to the r0th neighbor if i = T − 1− 2j,

and to the r1th neighbor if i = T − 2− 2j.

Setting C = (1/α) · β2 max{1, α−1/∆0.499}, Protocol 2 uses 2ℓ′ random bits, and with high
probability informs all nodes in T = O(C log n) rounds. As a consequence, we obtain the
following reduction:

Theorem 2.7. Given an explicit ε-PRG for CR[m]n with seed length ℓ and an explicit ε′-PRG for

(T/2, n2, 2ℓ)-branching programs with seed length ℓ′, where ε−1, ε′−1,m = nΘ(1) are sufficiently
large, there exists an explicit protocol using 2ℓ′ random bits such that, with high probability
all nodes get the rumor in T = O(C log n) rounds. In particular, given an explicit ε-PRG for
(L,W,D)-branching programs with seed length O(log n) where L = max{T/2, n}, W = n2, and
D, ε−1 = nΘ(1) sufficiently large, there exists an explicit protocol using O(log n) random bits,
and with high probability informs all nodes in T = O(C log n) rounds.3

Combining the reduction above with known explicit constructions of PRGs (Theorem D.5,
Theorem D.8), we obtain Theorem 1.1.

Remark 2.8. We remark here that, by allowing every node to have O(∆) preprocessing time
before the protocol starts, the rumor spreading time can be improved to T = O((1/α) · β2 log n),
which corresponds to Theorem 1.2. See Section E for formal discussions.

3 Two-Level Hashing Protocols

In this section we present two protocols. Our protocols are based on pairwise independent
generators and unbalanced expanders with near-optimal expansion. Here different rounds use
different random bits. In contrast to O(n log n) random bits per round used in the truly random
protocol, we show that O(log log n+ log∆) random bits per round suffice to spread the rumor
efficiently on general graphs G. In contrast to protocols in Section 2, the protocols in this section
do not need to assume that nodes have initial IDs, and we can combine the protocols with an ID
distribution mechanism so that every node gets a unique ID once it gets the rumor. Formally,
in round 0 there is one arbitrary node having the rumor, and the ID of this node is set to be
0. We assume that node 0 knows the maximum degree ∆, and an upper bound n′ , nc (c > 1)
of the number of nodes n. Moveover, node 0 chooses a binary string, called seed, uniformly at
random, and the seed is appended to the rumor. In subsequent rounds, whenever one node with
ID u sends the rumor to one of its neighbors in round t, it also sends a unique string consisting
of the ID u, parameters n′,∆, and current round number t. A node is uninformed as long as it
has not received a rumor. Once a node receives the first rumor from an informed node with ID
u in round t, it becomes informed and gets a unique ID defined by gt(u) , 2t−1+u. If one node
becomes informed from multiple informed nodes, then this node chooses an arbitrary node with

3This follows from the simple observation that combinatorial rectangles in [m]n can be computed by (n, 2, m)-
branching programs.
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ID u that informs it and uses gt(u) as its ID. It was shown in [25] that, through this protocol
above, all informed nodes have different IDs, and all the IDs are in [2T ] if the protocol finishes
in T rounds.

3.1 Protocol For Graphs with Certain Conductance

Our first protocol in this section corresponds to Theorem 1.3, and holds for graphs with con-
ductance φ. Formally, for a graph G of n nodes, the conductance φ(G) of G is defined by

φ(G) , min
S⊆V,0<|S|<n

e(S, V \ S)
min{vol(S), vol(V \ S)} ,

where vol(S) ,
∑

u∈S deg(u) is the volume of S, and e(S, T ) , |{{u, v} : u ∈ S and v ∈ T}| is
the number of edges between S and T . The formal description of our protocol is as follows:

Protocol 3 (Protocol for Graphs with Certain Conductance). Let ε = ∆−Θ(1) be sufficiently
small and m = 2⌈log(4/ε)⌉. Pick the following objects:

• An explicit (K, (1 − ε2/4)D)-expander Γ : [nc] × [D] → ⊔
i∈[D][Mi], where K = 2, D =

((log n)/ε)O(1) and M0 = · · · = MD−1 = M 6 D.

• An explicit pairwise independent generator G = (G1, . . . ,GM ) : {0, 1}ℓ → [m]M , where
ℓ = O(logm+ logM) = O(log log n+ log∆).

These two objects G and Γ can be uniquely constructed from nc and ∆Θ(1), and hence are known
to every informed node.

The initial node having the rumor chooses a random string (s1, . . . , sT ) where every si is of
the form (xi, yi) ∈ [D] × {0, 1}ℓ. This random string is appended with the rumor and sent to
other nodes. Once one node gets the rumor, it gets the ID u. In the ith round, node u computes
r = Γ(u, xi) that is in [Mu], the uth copy of [M ]. Node u computes y , Gr(yi) mod ∆, and
chooses the neighbor with index y in its adjacency list to send the rumor if y 6 deg(u).

Protocol 3 presents a nice “two-level hashing” framework: The first level is based on a
pairwise independent generator G. While the PRG-based protocol in [25] needs to generate
O(n) blocks and different nodes need to use different blocks, our protocol only needs M =
(∆ log n)O(1) blocks and hence O(log log n + log∆) random bits suffice for this purpose. The
second level uses unbalanced expanders to map the node with ID u ∈ [nc] to r ∈

[
∆O(1)

]
by

using O(log log n+ log∆) random bits. After these, node u uses the value of the rth block of G
to choose the neighbors. It is easy to see that every informed node u only needs O(poly log n)
arithmetic operations per round in order to determine its neighbor.

. . . (∆ log n)O(1) blocks

PRG G

O(log logn+ log∆) random bits

Γ

O(log logn+ log∆)

random bits

node ID

u ∈ [nc]

index r
rth block

Figure 1: Illustration of the protocol for general graphs. Every node u uses an unbalanced expander Γ to generate an
index r, and uses the rth block of PRG G to choose a neighbor to send the rumor.
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Proposition 3.1. Assume that Protocol 3 finishes in T rounds. Then it uses O(T · (log log n+
log∆)) random bits in total.

Remark 3.2. Using the explicit constructions of unbalanced expanders in [27] and pairwise
independent generators in [5], our protocol is very simple and can be described as follows: Assign
each node with ID u ∈ [nc] with a distinct polynomial pu of degree at most ⌈c logq n⌉ over a finite

field Fq of size q = (∆ log n)Θ(1). The protocol then uses the random string (s1, . . . , sT ) where
every si is of the form (xi, ai, bi) ∈ F

3
q. Then node u computes z = ai · pu(xi) + bi (over Fq) in

the ith round, and chooses the neighbor with index (z mod deg(u)) in its adjacency list to send
the rumor.

3.2 Protocol For Strong Expander Graphs

In this subsection we present one protocol for strong expander graphs, and prove Theorem 1.4.
Let G = {G}i be a family of graphs. We call G a family of strong expander graphs if every

Gi in G has spectra gap α = 1− o(1), and irregularity β = 1+ o(1). This graph family includes
several interesting graphs, e.g. Ramanujan graphs, complete graphs, random graphs G(n, p)
with p = ω(log n/n), and random d-regular graph where d is any increasing function of n. The
formal description of our protocol is as follows:

Protocol 4 (Protocol for Strong Expander Graphs). Let ε = ∆−Θ(1) be sufficiently small,
ε′ = 2−

√
log logn, and m = Θ((log n)/ε) a power of 2. Pick the following objects:

• An explicit (6K, (1 − ε2/4)D)-expander Γ : [nc] × [D] → ⊔
i∈[D][Mi], where K = ∆,

D = ((log n)/ε)O(1) and M0 = · · · = MD−1 = M 6 max{D,∆O(1)}.
• An explicit function G = (G1, . . . ,GM ) : {0, 1}ℓ → [m]M that is both a pairwise independent
generator and an ε′-PRG for CR[m]M , where ℓ = O(logm + logM) + Õ(log(1/ε′)) =
O(log log n+ log∆).

These two objects G and Γ can be uniquely constructed from nc and ∆Θ(1), and hence are known
to every informed node.

The initial node having the rumor chooses a random string (s1, . . . , sT ) where every si is
of the form (xi, yi) ∈ [D] × {0, 1}ℓ. This random string is appended with the rumor and sent
to other nodes. Once one node gets the rumor, it gets the ID u. In the ith round, node u
computes r = Γ(u, xi) that is in [Mu], the uth copy of [M ]. It then chooses the neighbor with
index Gr(yi) mod deg(u) in its adjacency list to send the rumor.

Proposition 3.3. Assume that Protocol 4 finishes in T rounds. Then it uses O(T · (log log n+
log∆)) random bits in total.
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A Notations & Useful Lemmas

In this section we list all notations used in the paper. Let G = (V,E) be a connected, undirected,
and simple graph with n nodes. For any node u, deg(u) stands for the degree of u. The
maximum, minimum, and average degree of G are represented by ∆, δ, and d. Let β , ∆/δ
be the irregularity of graph G. The set of neighbors of an node u is represented by N(u).
Moreover, for any set S ⊆ V , let N(S) ,

⋃
u∈S N(u), and vol(S) ,

∑
u∈S deg(u). For any set

S, T ⊆ V , we define E(S, T ) , {{u, v} : u ∈ S and v ∈ T} and e(S, T ) , |E(S, T )|.
We use AG to express the adjacency matrix of G. Let D the n× n diagonal matrix defined

by Duu = deg(u) for u ∈ V [G]. Let MG = D−1AG be the transition matrix for the random
walk over G, and NG , D−1/2AGD

−1/2. Define the n real eigenvalues of NG by 1 = λ1 > · · · >
λn > −1, and let λmax , max{λ2, |λi|}. The spectral gap α is defined by α , 1 − λ2, whereas
the absolute spectral gap is defined as 1 − λmax. For simplicity, we also use α to express the
spectral expansion of a reversible Markov chain if the chain is clear from the context.

Form ∈ N, vector u ∈ R
m and real number p > 1, define the ℓp-norm ‖u‖p = (

∑m
i=1 |ui|p)1/p.

In addition, we define ‖u‖∞ = max16i6m |ui|. The inner product of two vectors u,v ∈ R
m is

〈u,v〉 = ∑m
i=1 uivi. We write 1m for the vector in R

m having ones in all entries, or simply 1

if the dimension is clear from the context. Similarly write 0m or 0 for the zero vector. Let ei
be the vector that has an one in the ith entry and zero elsewhere. Write Im or I for the m×m
identity matrix. For a matrix M ∈ R

m×m′
, we use Mij to denote the entry on M’s ith row and

jth column. For p ∈ [1,∞) ∪ {∞}, define

‖M‖p = sup
u∈Rm\{0}

‖uM‖p
‖u‖p

.

It is easy to show that ‖M‖1 equals the maximum of the ℓ1-norms of the rows of M. And
‖M‖∞ equals the maximum of the ℓ1-norms of the columns of M, or equivalently ‖M⊺‖1. We
say a square matrix M is stochastic if all of its entries are non-negative and all of its rows have
ℓ1-norm 1. Clearly if M is stochastic, then ‖M‖1 = 1. We say M is doubly-stochastic if both
M and M⊺ are stochastic.

By log x we denote the binary logarithm of x. For any integer m, define [m] , {0, . . . ,m−1}.
The disjoint union of a family of sets {Ai : i ∈ I} indexed by I is denoted by

⊔
i∈I Ai ,⋃

i∈I{(x, i) : x ∈ Ai}. With high probability stands for with probability 1− n−Θ(1).

Lemma A.1. Fix any 0 < p < 1 and let X1, . . . ,Xn be independent geometric random variables
on N with Pr [Xi = k ] = (1 − p)k−1p for every k ∈ N. Let X =

∑n
i=1 Xi, and µ = E [X ].

Then it holds for all β > 0 that

Pr [X > (1 + β)µ ] 6 e−nβ2/(2(1+β)).

Fact A.2 ([35]). The spectral gap of a graph G satisfies

α = inf
u6‖1

Eπ,G(u,u)

Varπ(u)

where π is the stationary distribution of MG, and the quantities

Varπ(u) =
1

2

∑

u,v∈V [G]

πuπv(uu − uv)
2, Eπ,G(u,u) =

1

2

∑

u,v∈V [G]

πu(MG)uv(uu − uv)
2

are known as the global variance and the local variance (or Dirichlet form) of u respectively.

We also need an operation on graphs, called regularization. Formally speaking, for an
undirected graph G with maximal degree ∆, let Reg(G) be the regular graph obtained from G
by adding ∆− deg(u) self-loops to each node u ∈ V [G].
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Lemma A.3. Suppose graph G has spectral gap α and irregularity β. Then Reg(G) has spectral
gap at least β−2α.

Proof. Let π and π
′ be the stationary distributions of MG and MReg(G) respectively, i.e. πu =

deg(u)/(n · d) and π
′
u = 1/n for any node u ∈ V . Then for any u 6‖ 1, we have

E
π

′,Reg(G)(u,u)

Eπ,G(u,u)
> min

u 6=v

π
′
u(MReg(G))uv

πu(MG)uv
= min

u∈V [G]

d ·∆−1

deg(u) · (deg(u))−1
= d/∆

and

Var
π

′(u)

Varπ(u)
6 min

u 6=v

π
′
uπ

′
v

πuπv
6 min

u 6=v

(1/n) · (1/n)
(deg(u)/nd) · (deg(v)/nd) = min

u 6=v

d2

deg(u)deg(v)
6 d2/δ2.

So
E
π

′,Reg(G)(u,u)

Varπ′(u)

/Eπ,G(u,u)

Varπ(u)
> (d/∆) · (δ2/d2) > β−2

and the claim follows from Fact A.2. �

B Existential Proof

In this section we show that O(log n) random bits are sufficient in rumor spreading for many
classes of graphs (e.g. complete graphs, strong expanders, graphs with good conductance, etc.)
if we do not care about the computational complexity. We will prove the following general
statement:

Lemma B.1. Let C be a class of graphs on n nodes with no multi-edges. Let T ′ = nO(1) be an
upper bound of spreading time. Suppose the spreading time for any graph in C is at most T with
probability p for fully-random push protocol. Then there exists a (non-explicit) function

f : {0, 1}ℓ × [n]× [T ′]× [∆] → [∆]

such that

1. f(x, u, t, d) ∈ [d] for all (x, u, t, d) ∈ {0, 1}ℓ × [n]× [T ′]× [∆].

2. ℓ = max{log log |C|, log n+ log∆ + log log∆}+ 2 log(1/ε) +O(1).

3. for x uniformly chosen from {0, 1}ℓ, the spreading time for any graph G ∈ C is at most T
with probability p− ε if node u uses f(x, u, t,deg(u)) ∈ [deg(u)] as the index of its receiver
in its adjacency list in round t.

In particular, ℓ is bounded by 2 log n+log log n+2 log(1/ε)+O(1) since |C| 6 2n
2
and ∆ 6 n.

Proof. Choose f(x, u, t, d) ∈ [d] independently and uniformly at random for each (x, u, t, d) ∈
{0, 1}ℓ × [n] × [T ′] × [∆]. Fix a graph G ∈ C and an initial node in [n]. For each node u in
the graph of degree deg(u), there are deg(u)! possible orders of neighbors of u in its adjacency
list. We also fix the order for each node u. Observe that for any fixed x, the random variables
f(x, u, t,deg(u)) for all pairs (u, t) are independent and uniformly distributed. Let I(x) be the
indicator random variable that equals 1 if the spreading time of G is at most T when node u
uses f(x, u, t,deg(u)) to decide its receiver in round t. Then Prf [ I(x) = 1 ] > p for any x and
hence Ef [ I(x) ] > p. Also note that I(x)’s are independent. By the Chernoff bound it holds
that

Prf

[ ∣∣∣∣∣2
−ℓ
∑

x

I(x)− 2−ℓ
∑

x

Ef [ I(x) ]

∣∣∣∣∣ > ε

]
6 2 exp(−2ℓε2/4).
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So with probability at least 1−2 exp(−2ℓε2/4), we have Ex [ I(x) ] > Ex [Ef [ I(x) ] ]−ε > p−ε.
By the union bound, the probability that Ex [ I(x) ] > p− ε holds for all graphs in C, arbitrary
neighboring list of nodes, and all start nodes is at least

1− n|C| · (∆!)n · 2 exp(−2ℓε2/4),

which is greater than zero for sufficiently large ℓ = max{log log |C|, log n+ log∆+ log log∆}+
2 log(1/ε)+O(1). So there exists one function f such that Ex [ I(x) ] > p−ε holds for all graphs
in C, i.e. the spreading time for any graph G ∈ C is at most T with probability p − ε over the
choices of x, if node u uses f(x, u, t,deg(u)) ∈ [deg(u)] to choose its receiver in round t. �

The same result also holds for pull protocols and push-pull protocols, and can be shown
using similar arguments.

The following result follows from Lemma B.1 directly.

Corollary B.2 (Existential Result). Let G = {Gn}n>1 be a family of graphs such that for
any Gn ∈ G with n nodes the truly random protocol finishes in T = nO(1) rounds with high
probability. Then there is a protocol which finishes in T rounds with high probability and uses
3 log n random bits in total.

C Lower Bounds on Randomness Complexity

We address the randomness requirement of rumor spreading protocols. We first introduce the
pull model, which is a symmetric version of the push model, and the formal description is as
follows: In round t > 0, every node u that does not yet have the rumor selects a neighbor v
uniformly at random and asks for the rumor, and gets the rumor if v received the rumor before.
In the push-pull model, in every round t, every node u chooses a random neighbor to perform
push if node u has the rumor, or perform pull if u has not received the rumor.

We prove the following lower bound on the number of random bits needed for any protocol
in the push-pull model:

Theorem C.1. Let G be any graph with n nodes and sufficiently large minimum degree δ =
Ω(log n). Then any protocol in the push-pull model that is oblivious of the order of adjacency
lists of G and informs at least half of the nodes of G in T rounds with nonzero probability has to
use more than log δ − log T − 2 random bits. In particular, Θ(log n) random bits are necessary
when δ = Θ(n) and T = O(n1−ε) for some constant ε > 0.

Here we even allow the protocol access to the ID of the initial node and the structure of G,
i.e., the sets of neighbors of nodes as unordered sets. In addition, we allow each node access to
the randomness even before it obtains the rumor. All we assume is that the protocol is oblivious
of the order of the adjacency lists.

Proof. Suppose V [G] = [n]. Let ∆ be the maximum degree of G and s be the initial node. We
first claim that there exists a subset of nodes S of size n/2 (for simplicity assume n is even)
such that deg(u)/4 6 |S ∩ N(u)| 6 3deg(u)/4 for all u ∈ [n]: If we pick a random subset S
of size n/2, then for any fixed u the condition deg(u)/4 6 |S ∩ N(u)| 6 3deg(u)/4 holds, by
the Chernoff bound, with probability at least 1− e−Θ(δ) > 1− 1/n for δ = Ω(log n) sufficiently
large. The claim then follows by taking the union bound. Pick such a subset S with the claimed
property. Note that [n]\S has the same property. We may therefore assume s ∈ S by swapping
S and [n] \ S if necessary.

A protocol for G using ℓ random bits in T rounds is uniquely characterized by a pair of
functions

f1, f2 : {0, 1}ℓ × [n]× [T ]× [∆] → [∆]
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satisfying f1(x, u, t, d), f2(x, u, t, d) ∈ [d] for all (x, u, t, d) ∈ {0, 1}ℓ × [n] × [T ] × [∆], in the
sense that given the random string x, node u chooses a neighbor with index f1(x, u, t,deg(u))
(resp. f2(x, u, t,deg(u))) in its adjacency list to push (resp. pull) the message in round t if it is
informed (resp. uninformed). For each u ∈ [n], define Iu ⊆ [n] as

Iu =

{
{f1(x, u, t,deg(u)) : x ∈ {0, 1}ℓ, t ∈ [T ]} u ∈ S

{f2(x, u, t,deg(u)) : x ∈ {0, 1}ℓ, t ∈ [T ]} u 6∈ S.

Assume to the contrary that ℓ 6 log δ− log T − 2. Then the size of Iu is at most 2ℓ · T 6 δ/4 6
min{|S ∩N(u)|, |([n] \ S)∩N(u)|} for each u ∈ [n]. So it is possible to order the adjacency list
of each u ∈ [n] such that the neighbors picked by u using index set Iu are all in S ∩ N(u) if
u ∈ S, or in ([n] \ S) ∩ N(u) if u ∈ [n] \ S. Then in the rumor spreading process, nodes in S
push messages only to those also in S, and nodes in [n] \ S pull messages only from those also
in [n] \ S. As s ∈ S, the nodes in [n] \ S never get informed. �

For the push model and the pull model we may drop the assumption that δ = Ω(log n) is
sufficiently large, and also simplify the proof.

Theorem C.2. Let G be any graph with n nodes. Then any protocol in the push model that is
oblivious of the order of adjacency lists of G and informs all the nodes of G in T rounds with
nonzero probability has to use more than log(δ − 1)− log T random bits.

Proof. The protocol is now characterized by a single function f1 describing how rumors are
pushed. Define Iu = {f1(x, u, t,deg(u)) : x ∈ {0, 1}ℓ, t ∈ [T ]} for each u ∈ [n]. Pick v ∈ [n]\{s}.
Assume to the contrary that ℓ 6 log(δ − 1) − log T . Then the size of Iu is at most 2ℓ · T 6
δ− 1 6 |N(u) \ {v}| for each u ∈ [n]. So it is possible to order the adjacency list of each u ∈ [n]
such that the neighbors picked by u using index set Iu are all in N(u) \ {v}. Then the node v
never gets informed. �

Theorem C.3. Let G be any graph with n nodes. Then any protocol in the pull model that is
oblivious of the order of adjacency lists of G and informs more than one node of G in T rounds
with nonzero probability has to use more than log(δ − 1)− log T random bits.

Proof. The protocol is now characterized by a single function f2 describing how rumors are
pulled. Define Iu = {f2(x, u, t,deg(u)) : x ∈ {0, 1}ℓ, t ∈ [T ]} for each u ∈ [n]. Assume to the
contrary that ℓ 6 log(δ− 1)− log T . Then the size of Iu is at most 2ℓ · T 6 δ− 1 6 |N(u) \ {s}|
for each u ∈ [n]. So it is possible to order the adjacency list of each u ∈ [n] such that the
neighbors picked by u using index set Iu are all in N(u) \{s}. Then the nodes in [n] \{s} never
get informed. �

D Omitted Details in Section 2

D.1 Preliminaries

We first list definitions and results about pseudorandom generators.

Pairwise Independent Generators.

Definition D.1 (Pairwise Independent Generator). We say X0, . . . ,Xd−1 with Xi distributed
over [mi] are ε-pairwise independent if

•
∣∣∣Pr [Xi = x ]− 1

mi

∣∣∣ 6 ε for all i ∈ [d] and x ∈ [mi], and

•
∣∣∣Pr [Xi = x ∧Xj = x′ ]− 1

mi·mj

∣∣∣ 6 ε for all distinct i, j ∈ [d] and all x ∈ [mi], x
′ ∈ [mj ].
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We say they are pairwise independent if ε = 0. We say G : {0, 1}ℓ → [m0]× · · · × [md−1] is an
(ε-)pairwise independent generator if its outputs are (ε-)pairwise independent given a uniformly
distributed seed.

Theorem D.2 ([5]). There exists an explicit pairwise independent generator G : {0, 1}ℓ → [m]d

with seed length ℓ = O(logm+ log d).

Lemma D.3. Suppose G = (G0, . . . ,Gd−1) is a pairwise independent generator where Gi :
{0, 1}ℓ → [m]. Define G′ = (G′

0, . . . ,G′
d−1) where G′

i(x) = Gi(x) mod mi for i ∈ [d]. Then

G′ : {0, 1}ℓ → [m0]× · · · × [md−1] is an ε-pairwise independent generator where ε = 2/m.

Proof. For distinct i, j ∈ [d] and x ∈ [mi], x
′ ∈ [mj ], let B (resp. B′) be the preimages of

x (resp. x′) under the map s 7→ s mod mi (resp. s 7→ s mod mj). Then ||B| − m/mi| 6 1
and ||B′| −m/mj | 6 1. So Prs[G′

i(s) = x] = |B|/m which differs from 1/mi by at most 1/m.
Similarly Prs[G′

i(s) = x ∧ G′
j(s) = x′] = |B||B′|/m2 which differs from 1/(mimj) by at most

2/m. �

Lemma D.4. Suppose G = (G0, . . . ,Gd−1) is an ε-PRG for CRS where S = [m]d. Define
G′ = (G′

0, . . . ,G′
d′−1) where G′

j(x) = Gij (x) mod mj for j ∈ [d′] and i0, . . . , id′−1 ∈ [d]. Then G′

is an (ε+
∑

i∈[d′]mi/m)-PRG for CRS′ where S′ =
∏

i∈[d′][mi].

Proof. By definition, G′ = π ◦ G with π : (x0, . . . , xd−1) 7→ (xi0 mod m0, . . . , xid′−1
mod md′−1).

For A =
∏

i∈[d′]Ai ∈ CRS′ , let B = π−1(A) =
∏

i∈[d]Bi ∈ CRS . Then Prs [G′(s) ∈ A] =
Prs [Gi(s) ∈ B] which differs from |B|/|S| by at most ε since G is an ε-PRG for CRS . Note
that |Bij |/m differs from |Aj |/mj by at most mj/m for j ∈ [d′], and Bi = [m] for i ∈ [d] \
{i0, . . . , id′−1}. A simple induction shows that |B|/|S| differs from |A|/|S′| by at most

∑

j∈[d′]
||Bij |/m− |Aj |/mj | 6

∑

i∈[d′]
mi/m. �

Theorem D.5 ([26]). Let S = [m]d. There exists an explicit ε-PRG for CRS with seed length
O(logm+ log d) + Õ(log(1/ε)). 4

Lemma D.6. There exists an explicit function G : {0, 1}ℓ → [m]d that is both a pairwise
independent generator and an ε-PRG for CR[m]d with seed length O(logm+log d)+ Õ(log(1/ε)).

Proof. Pick an explicit pairwise independent generator G♭ : {0, 1}ℓ1 → [m]d with see length
ℓ1 = O(logm + log d) and an explicit ε-PRG G♯ : {0, 1}ℓ2 → [m]d for CR[m]d with seed length

ℓ2 = O(logm + log d) + Õ(log(1/ε)). Identify [m]d with Z
d
m and define G : {0, 1}ℓ1+ℓ2 → [m]d

using addition in Z
d
m: G(x, y) = G♭(x)+G♯(y). The definition of pairwise independent generators

implies that the function x 7→ G♭(x) + z is a pairwise independent generator for any fixed
z ∈ [m]d, i.e., the property is preserved under addition of any fixed element in Z

d
m. Then

the same is true for random z = G♯(y). So G is a pairwise independent generator. A similar
argument shows that it is also an ε-PRG for CR[m]d . �

Definition D.7 (Branching Programs). A branching program of length L, width W and degree
D, or an (L,W,D)-branching program, is a directed (multi)-graph with node set [W ]×{0, . . . , L}.
We say the nodes in [W ]×{i} are on the ith layer for 0 6 i 6 L. Each node (u, i) except those on
the last layer has D outgoing edges to nodes on the next layer, and these D edges are associated
with D distinct labels from [D].

Theorem D.8 ([31]). There exists an explicit ε-PRG for (L,W,D)-branching programs with
seed length O(logL(logW + logL+ log(1/ε)) + logD).

4In [26] the seed length is presented as O((log logm)(logm+ log d + log(1/ε))) + Õ(log(1/ε)). But there are
techniques of reducing m and d to m′ = (1/ε)O(1), d′ = (1/ε)O(1) using O(logm+ log d) randomness, cf. [2, 33].
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The following lemma about Markov chains will be used in the analysis. For an ergodic
Markov chain represented by the stochastic matrix M and ε > 0, define its ℓ2-mixing time as

τM(ε) = max
u

min{k : ‖uMk − π‖2 6 ε},

where π is the stationary distribution of M and u ranges over all distributions over the state
set of the chain.

Lemma D.9 ([35]). Suppose M ∈ R
V [G]×V [G] represents a reversible Markov chain with absolute

spectral gap α > 0. Then τM(ε) < log1−α ε+ 1.

D.2 Analysis of the Prototype Protocol

In this subsection we give the detailed analysis of Protocol 1. We start with the formal defi-
nition of reversed random walks. The basic idea is to view a push operation (or one step of a
forward walk) as a pull operation (or one step of a reversed walk). However, there are several
complications: (1) we let v “pull the from u” only when u is the unique node pushing to v,
since v is not allowed to pull from multiple nodes at the same time; (2) we need to use auxiliary
randomness ri,u to equalize the probabilities of successful pulls made by different nodes;5 (3) we
want the pull operations to be pairwise independent. In particular two nodes u and v pull from
their common neighbor w at the same time with probability 1/∆2. To realize this, we combine
two rounds into one so that w can send two messages, say to a and b at the same time. Also,
note that there are two cases when w pushes to both u and v, or equivalently u and v both pull
from w: (a, b) = (u, v) or (a, b) = (v, u). We admit only one of them, so that the event occurs
with probability 1/∆2 rather than 2/∆2.

As before, for f ∼ D, we denote by f̃(i, u) the f(i, u)th neighbor of u in its adjacency list.

Definition D.10 (Reversed random walks). Consider a random rumor spreading process in T
rounds on a graph G using Protocol 1 determined by its own randomness f ∼ D = U . Pick real
numbers ri,u independently and uniformly from [0, 1] for all i ∈ [T/2] and u ∈ V [G].

Fix an arbitrary total order � on V [G]. For i ∈ [T/2] and u ∈ V [G], define

Ni,u =

{{
f̃(T − 1− 2i, u), f̃ (T − 2− 2i, u)

}
f̃(T − 1− 2i, u) � f̃(T − 2− 2i, u)

∅ otherwise

and define N∨
i,u = {v ∈ V [G] : v 6= u and u ∈ Ni,v}.

A reversed random walk of length k ∈ [T/2] with pattern S = (s0, . . . , sk−1) ∈ Ck is a sequence
of k + 1 nodes (p0, . . . , pk) of G, such that for all i ∈ [k]: (i) if si = lazy, then pi+1 = pi; (ii)
if si = non-lazy, then pi+1 = u if N∨

i,pi
= {u} is a singleton and ri,pi 6 (1− 1/∆)∆−deg(u), and

otherwise pi+1 = pi.

D.2.1 Approximation via Random Walks

We elaborate the idea of bounding runtime of Protocol 1 with respect to multiple random walks.
We will use three distributions in the following analysis:

• Dγ,k is the distribution over Ck where entries are independently chosen to be lazy with
probability 1− γ.

• Let r = (f, {ri,u}) be the whole randomness used in Definition 2.1 and Definition D.10

which determines the random walks. Let D̃ be the distribution of r, which is the product
of D with copies of uniform distributions over [0, 1].

5The auxiliary randomness only appears in the analysis.
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The following lemma give a lower bound of the probability that a node w gets informed in
T rounds with respect to multiple random walks.

Lemma D.11. For Protocol 1 with D = U and initial node s, any 0 6 k 6 T/4, and γ ∈ (0, 1),
a node w is informed in T rounds with probability at least

∑
u,v∈V [G]Er,S

[
XS

s,u

]
Er,S

[
XS

s,v

]
Er,S

[
Y S
w,u

]
Er,S

[
Y S
w,v

]
∑

u,v∈V [G]Er,S,S′

[
XS

s,uX
S′

s,v

]
Er,S,S′

[
Y S
w,uY

S′

w,v

] (D.1)

where r, S and S′ are independent with distributions D̃, Dγ,k and Dγ,k respectively.

Proof. Define the weight of forward or reversed random walks with pattern S = (s0, . . . , sk) as
wt(S) := (1−γ)n1γn2 > 0 where n1 and n2 are the number of lazy and non-lazy si respectively.
Let X̃S

u,v = XS
u,v · wt(S) and Ỹ S

u,v = Y S
u,v · wt(S).

Suppose s ∈ V [G] is the initial node and also fix w ∈ V [G]. If there exist a forward walk p
from s to some node u and a reversed walk p′ from w to u, then the rumor is sent from s to
u following p and then from u to w following the reversal of p′. Also note that the two walks
exist if and only if X̃S

s,uỸ
S′

w,u > 0 for some S, S′ and u. Therefore,

Prf∼D [ t receives the message ] > Pr
r∼D̃




∑

S,S′∈Ck ,u∈V [G]

X̃S
s,uỸ

S′

w,u > 0


 . (D.2)

Furthermore,

Prr∼D̃




∑

S,S′∈Ck ,u∈V [G]

X̃S
s,uỸ

S′

w,u > 0




= Er∼D̃

[
1∑

S,S′∈Ck,u∈V [G] X̃
S
s,uỸ

S′
w,u>0

]

>

(
E

r∼D̃

[∑
S,S′∈Ck ,u∈V [G] X̃

S
s,uỸ

S′

w,u

])2

Er∼D̃

[(∑
S,S′∈Ck ,u∈V [G] X̃

S
s,uỸ

S′

w,u

)2 ]

=

∑
u,v∈V [G]Er,S

[
XS

s,u

]
Er,S

[
XS

s,v

]
Er,S

[
Y S
w,u

]
Er,S

[
Y S
w,v

]
∑

u,v∈V [G]Er,S,S′

[
XS

s,uX
S′

s,v

]
Er,S,S′

[
Y S
w,uY

S′

w,v

]

(D.3)

where the subscripts r, S and S′ are independent with distributions D̃, Dγ,k and Dγ,k respec-
tively. The first inequality is an instance of the Cauchy-Schwarz inequality. The last equality
uses the independence of XS

s,uX
S′

s,v and Y S
w,u′Y S′

w,v′ for any u, v, u′, v′ ∈ V [G] as well as the fact
that the weight wt(S) is just the probability of S in Dγ,k. �

The following lemma characterizes the expectations in (D.1) in terms of Markov chains.

Lemma D.12. Let r, S and S′ be independent with distributions D̃ (induced by D = U),
Dγ,k and Dγ,k respectively. Then for stochastic matrices M1 = Lγ

(
MReg(G)

)
, M2 = Lγ,γ ◦

Q
(
MReg(G)

)
, M3 = Lγ ◦ Lγ′

(
MReg(G)

)
, M4 = Lγ,γ ◦ Q ◦ Lγ′

(
MReg(G)

)
, γ′ , (1 − 1/∆)∆−1,

and any u, v, w, x ∈ V [G], the following statements hold:

1. Er,S

[
XS

u,v

]
=
〈
euM

k
1 , ev

〉
,

2. Er,S,S′

[
XS

u,vX
S′

w,x

]
=
〈
e(u,w)M

k
2 , e(v,x)

〉
,

3. Er,S

[
Y S
u,v

]
=
〈
euM

k
3 , ev

〉
, and
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4. Er,S,S′

[
Y S
u,vY

S′

w,x

]
=
〈
e(u,w)M

k
4 , e(v,x)

〉
.

Proof. We add ∆−deg(u) self-loops to each node u and hence a non-lazy step of a forward walk
is the same as a step of the random walk over Reg(G). Since S has distribution Dγ,k where
each step is chosen to be lazy with probability 1− γ, the forward walk with random pattern S
starting from u is just a lazy random walk from u with transition matrix Lγ

(
MReg(G)

)
. This

proves the first claim.
For the second claim, note that two forward walks are independent in some round i if at

least one is lazy, since a lazy step is deterministic. The corresponding transition matrix is I⊗ I,
I⊗MReg(G) or MReg(G)⊗I, depending on which walk is lazy. When both walks are non-lazy and
are at distinct nodes u and w respectively, they are still independent and behave according to
MReg(G)⊗MReg(G) by the independence of f(i, u) and f(i, w). If u = w, then the two walks move
the same node according to MReg(G). So the case for two lazy steps is exactly characterized
by the Doeblin coupling Q

(
MReg(G)

)
. And when the two walks have independent random

patterns S, S′ ∼ Dγ,k, the corresponding transition matrix is Lγ,γ ◦ Q
(
MReg(G)

)
by definition.

The second claim follows.
For the third claim, we consider the probability that a node u 6= v is included in Ni,v. We

divide it into two cases: the case that Ni,v = {u} (i.e. f̃(T − 1− 2i, v) = f̃(T − 2− 2i, v) = u)
and the case that Ni,v = {u, u′} where u 6= u′. The first case occurs with probability 1/∆2.

For the second one, we have
(
f̃(T − 1− 2i, v), f̃ (T − 2− 2i, v)

)
= (u, u′) or (u′, u) for some

u′ 6= u. And exactly one of them is counted by the condition f̃(T − 1− 2i, v) � f̃(T − 2− 2i, v).
As they occur with the same probability we may assume it is the first one that is counted.
Summing over u′ 6= u, we conclude that this case occurs with probability 1/∆ · (1− 1/∆). So u
is included in Ni,v with probability 1/∆ for any u 6= v. And N∨

i,u = {v} occurs when u ∈ Ni,v

and u 6∈ Ni,v′ for all v
′ ∈ N(u) \ {v}, whose probability is 1/∆ · (1 − 1/∆)deg(u)−1. Taking the

condition ri,u 6 (1 − 1/∆)∆−deg(u) into account, we see that the reversed walk extends from
u to each neighbor v ∈ N(u) with probability 1/∆ · (1 − 1/∆)∆−1 =

(
Lγ′

(
MReg(G)

))
uv
. So a

non-lazy step of a reversed walk is the same as a step of the random walk over Lγ′

(
MReg(G)

)
.

And the reversed walk with a random pattern chosen from Dγ,k corresponds to the transition
matrix Lγ ◦ Lγ′

(
MReg(G)

)
, similarly to the first claim.

The proof to the last claim is similar to the second one. The only non-trivial part is to
show that when two walks are both non-lazy and are at distinct nodes u and w respectively,
they behave independently according to Lγ′

(
MReg(G)

)
⊗ Lγ′

(
MReg(G)

)
. Note that ri,u and

ri,w are independent. So it suffices to show the probability that N∨
i,u = {v} and N∨

i,w = {x}
both occur equals the product of their individual probabilities for all v ∈ N(u) and x ∈ N(w).
For a ∈ V [G] and b ∈ N(a), let Ia,b be the event that a ∈ Ni,b. The claim follows if the
events Ia,b are independent for all a ∈ {u,w} and neighbor b ∈ N(a). Note that Ia,b depends

solely on f̃(T − 1 − 2i, b) and f̃(T − 2 − 2i, b). And those for different b are independent. So
we reduce to proving Iu,b and Iw,b are independent for fixed b ∈ N(u) ∩ N(w). Each occurs
with probability 1/∆, as shown in the proof to the third claim. Both occurs exactly when(
f̃(T − 1− 2i, b), f̃ (T − 2− 2i, b)

)
equals (u,w) if u � w, or (w, u) if w � u. So the probability

that both events occur equals 1/∆2, as desired. �

D.2.2 Proof of Lemma 2.5

Lemma 2.5 (from page 7). Suppose M ∈ R
n×n is a doubly-stochastic matrix with spectral gap

α > 0, and suppose Muv 6 η for any distinct u, v ∈ V [G]. Then for any distribution u over
V [G]× V [G], k ∈ N, and 0 6 γ 6 min

{
1/3, αη−1/2/9

}
, we have

∥∥∥u (Lγ,γ ◦ Q(M))k − π ⊗ π

∥∥∥
2
6 (1− γα/2)k + 2

√
2γα−1n−3/2,
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where π denotes the uniform distribution over V [G].
To prove Lemma 2.5, we show that Lγ,γ ◦ Q(M) behaves similarly as Lγ(M) ⊗ Lγ(M), in

the sense that it almost preserves the vector π ⊗ π and shrinks vectors orthogonal to π ⊗ π.
For a distribution u over V [G] × V [G], we have the decomposition u = π ⊗ π + u⊥ where
u⊥ , u− π ⊗ π is orthogonal to π ⊗ π.

Lemma D.13. Let M, π and γ be as in Lemma 2.5. Then
∥∥((π ⊗ π)Lγ,γ ◦ Q(M))⊥

∥∥
2
6√

2γ2n−3/2.

Proof. Let E = Lγ,γ◦Q(M)−Lγ(M)⊗Lγ(M). Note that ((π⊗π)Lγ,γ◦Q(M))⊥ = ((π⊗π)E)⊥,
since Lγ(M)⊗Lγ(M) fixes π⊗π. Also note that ‖((π⊗π)E)⊥‖2 6 ‖(π⊗π)E‖2. So it suffices
to prove ‖(π ⊗ π)E‖2 6

√
2γ2n−3/2. By definition, we have

E(u,w)(v,x) =





0 u 6= w,

γ2
(
Muv − (M⊗M)(u,w)(v,x)

)
u = w, v = x,

−γ2(M⊗M)(u,w)(v,x) u = w, v 6= x.

So E(u,w)(v,x) = 0 for u 6= w, and
∣∣E(u,w)(v,x)

∣∣ 6 γ2Muv for u = w. Then for any v, x ∈ V [G],
we have ∣∣((π ⊗ π)E)(v,x)

∣∣ 6
∑

u∈V [G]

(1/n2) · γ2Muv = γ2/n2.

So ‖(π ⊗ π)E‖∞ 6 γ2/n2. We also have

‖(π ⊗ π)E‖1 =
∑

v,x∈V [G]

∣∣∣∣∣∣

∑

u∈V [G]

(1/n2)E(u,u)(v,x)

∣∣∣∣∣∣

6
∑

u,v∈V [G]

(1/n2)γ2Muv +
∑

u,v,x∈V [G]

(1/n2)γ2(M⊗M)(u,u)(v,x)

= 2γ2/n.

By Hölder’s inequality, we have

‖(π ⊗ π)E‖2 6
√

‖(π ⊗ π)E‖1‖(π ⊗ π)E‖∞ 6
√
2γ2n−3/2.

�

Lemma D.14. Let M, π and γ be as in Lemma 2.5. For any vector u ∈ R
n ⊗ R

n orthogonal
to π ⊗ π, we have uLγ,γ ◦ Q(M) ⊥ π ⊗ π and

‖uLγ,γ ◦ Q(M)‖2 6
(
1− (1− γ)γα+ γ2

√
2η
)
‖u‖2.

Proof. Since Lγ,γ ◦ Q(M) is stochastic, we have

〈uLγ,γ ◦ Q(M),π ⊗ π〉 = 〈u, (π ⊗ π)(Lγ,γ ◦ Q(M))⊺〉 = 〈u,π ⊗ π〉 = 0.

To prove the second claim, we write Lγ,γ ◦ Q(M) = R1 +R2 where

R1 = (1− γ)2(I ⊗ I) + (1− γ)γ(I⊗M) + γ(1− γ)(M⊗ I)

and R2 = γ2Q(M). Then we bound ‖uR1‖2 and ‖uR2‖2 individually.
Observe that R1 = (1− γ2)Lγ0(R0) where R0 is the stochastic matrix (I ⊗M+M⊗ I)/2

and γ0 = 2γ/(1+ γ). Recall that M has n normalized orthogonal eigenvectors v1, . . . ,vn in R
n

associated with n real eigenvalues 1 = λ1 > 1 − α > λ2 > . . . > λn > −1 respectively, and v1

21



is parallel to π. Then R0 has n2 normalized orthogonal eigenvectors vi ⊗ vj associated with
eigenvalues (λj + λi)/2, i, j = 1, . . . , n. And Lγ0(R0) has the same set of eigenvectors, with the
(i, j)th eigenvalue replaced by (1− γ0) + γ0(λj + λi)/2. These eigenvalues are all non-negative,
since (λj+λi)/2 > −1 and γ0 = 2γ/(1+γ) 6 1/2 (from the condition γ 6 1/3). So the absolute
spectral gap of Lγ0(R0) is

1− max
(i,j)6=(1,1)

((1− γ0) + γ0(λj + λi)/2)

= 1− max
(i,j)6=(1,1)

(
1 +

(
λi + λj

2
− 1

)
γ0

)

= min
(i,j)6=(1,1)

(
1− λi + 1− λj

2

)
γ0 > γ0α/2.

As u is parallel to π ⊗ π, or equivalently v1 ⊗ v1, we have

‖uR1‖2 = (1− γ2) ‖uLγ0(R0)‖2 6 (1− γ2)(1− γ0α/2)‖u‖2 = (1− γ2)(1− γα/(1 + γ))‖u‖2.

Then we bound ‖uR2‖2 = γ2‖uQ(M)‖2. By permutating the rows (resp. columns) of
Q(M), we assume its first n rows (resp. n columns) are indexed by the diagonal elements
{(u, u) : u ∈ V [G]}. By definition, we have

Q(M) =

(
M 0

A B

)

where
(
A B

)
are the last n2−n rows of M⊗M (we permutate the rows and columns of M⊗M

in the same way as we did for Q(M). Write u =
(
u1 u2

)
where u1 ∈ R

n and u2 ∈ R
n2−n,

consisting of entries indexed by (u,w), u = w and u 6= w respectively. Then

‖uQ(M)‖22 =
∥∥(u1M+ u2A u2B

)∥∥2
2

= ‖u1M‖22 + ‖u2A‖22 + ‖u2B‖22 + 2〈u1M,u2A〉
= ‖u1M‖22 + ‖

(
0 u2

)
(M⊗M)‖22 + 2〈u1M,u2A〉

6 ‖u1‖22 + ‖u2‖22 + 2〈u1M,u2A〉
= ‖u‖22 + 2〈u1M,u2A〉
6 ‖u‖22 + 2‖u1M‖2‖u2A‖2
6 ‖u‖22 + 2‖u‖22‖A‖2
6 ‖u‖22

(
1 + 2

√
‖A‖1‖A‖∞

)

(D.4)

The third equality uses the fact that
(
0 u2

)
(M⊗M) =

(
u2A u2B

)
. The first inequality uses

the fact that ‖M‖2, ‖M⊗M‖2 6 1. The second inequality is an instance of the Cauchy-Schwarz
inequality. The third one uses the facts that ‖M‖2 6 1 and ‖u1‖2, ‖u2‖2 6 ‖u‖2. And the last
one uses the inequality ‖A‖2 6

√
‖A‖1‖A‖∞.

We have ‖A‖∞ 6 ‖M⊗M‖∞ = 1. To bound ‖A‖1, observe that ‖A‖1 is by definition the
maximum of the ℓ1-norm of rows of A. Then

‖A‖1 = max
u,w∈V [G]

u 6=w

∑

v∈V [G]

MuvMwv

6 max
u,w∈V [G]

u 6=w


ηMww + η

∑

v∈V [G]\{w}
Muv


 6 2η.
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Combining it with (D.4), we obtain

‖uR2‖22 = γ4‖uQ(M)‖22 6 γ4
(
1 + 2

√
2η
)
‖u‖22 6 γ4

(
1 +

√
2η
)2

‖u‖22.

Therefore

‖uLγ,γ ◦ Q(M)‖2 6 ‖uR1‖2 + ‖uR2‖2
6 (1− γ2)(1 − γα/(1 + γ))‖u‖2 + γ2

(
1 +

√
2η
)
‖u‖2

=
(
1− (1− γ)γα+ γ2

√
2η
)
‖u‖2.

�

Proof of Lemma 2.5. Note that we are bounding the ℓ2-norm of u (Lγ,γ ◦ Q(M))k − π ⊗ π =(
u (Lγ,γ ◦ Q(M))k

)⊥
. The proof is based on the induction on k. When k = 0, we have

∥∥∥∥
(
u (Lγ,γ ◦ Q(M))k

)⊥∥∥∥∥
2

6
∥∥∥u (Lγ,γ ◦ Q(M))k

∥∥∥
2
6 1,

and hence the claim holds. For k > 0, assume the claim holds for k′ < k. Let v =
u (Lγ,γ ◦ Q(M))k−1. We have

(
u (Lγ,γ ◦ Q(M))k

)⊥
= (vLγ,γ ◦ Q(M))⊥

= ((π ⊗ π)Lγ,γ ◦ Q(M))⊥ +
(
v⊥Lγ,γ ◦ Q(M)

)⊥
.

By Lemma D.13, we have

‖ ((π ⊗ π)Lγ,γ ◦ Q(M))⊥ ‖2 6
√
2γ2n−3/2.

And by Lemma D.14, we have
(
v⊥Lγ,γ ◦ Q(M)

)⊥
= v⊥Lγ,γ ◦ Q(M) whose ℓ2-norm is at most

(
1− (1− γ)γα + γ2

√
2η
)
‖v‖2 6 (1− γα/2)‖v‖2

where we use the condition γ 6
{
1/3, αη−1/2/9

}
. This is bounded by

(1− γα/2)
(
(1− γα/2)k−1 + 2

√
2γα−1n−3/2

)
= (1− γα/2)k + 2

√
2γα−1n−3/2(1 − γα/2)

by the induction hypothesis. Then

∥∥∥∥
(
u (Lγ,γ ◦ Q(M))k

)⊥∥∥∥∥
2

6
∥∥∥((π ⊗ π)Lγ,γ ◦ Q(M))⊥

∥∥∥
2
+

∥∥∥∥
(
v⊥Lγ,γ ◦ Q(M)

)⊥∥∥∥∥
2

6
√
2γ2n−3/2 + (1− γα/2)k + 2

√
2γα−1n−3/2(1− γα/2)

= (1− γα/2)k + 2
√
2γα−1n−3/2

as desired. �

As a side product, we show that the chain Lγ,γ ◦Q(M) behaves similarly as Lγ(M)⊗Lγ(M)
in terms of the stationary distribution and the mixing time.
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Corollary D.15. Let M, γ and α be as in Lemma 2.5. Let π′ be the stationary distribution6

of Lγ,γ ◦ Q(M). Then
∥∥
π
′ − π ⊗ π

∥∥
2
6 (1− γα/2)k + 2

√
2γα−1n−3/2.

Define the ℓ1-mixing time τ̄(ε) := maxumin{k : ‖u (Lγ,γ ◦ Q(M))k − π ⊗ π‖1 6 ε} where u

ranges over all distributions over V [G]× V [G]. Assuming γα−1 = O(n1/2−c) for some constant
c > 0, we have τ̄(ε) = O(γ−1α−1(log n+ log ε−1)).

Proof. The first claim follows directly from Lemma 2.5. We also have
∥∥∥u (Lγ,γ ◦ Q(M))k − π ⊗ π

∥∥∥
1
6 n

∥∥∥u (Lγ,γ ◦ Q(M))k − π ⊗ π

∥∥∥
2
6 n−c

for sufficiently large k = O(γ−1α−1 log n), again by Lemma 2.5. So τ̄(n−c) = O(γ−1α−1 log n).
The second claim then follows from the well-known fact that τ̄(ε) 6 τ̄(δ)⌈logδ ε⌉ for ε, δ > 0. �

We know that the stationary distribution of Q(M) is the uniform distribution over the set
of diagonal entries {(u, u) : u ∈ V [G]}. So is the stationary distribution of the lazy chain
Lγ ◦ Q(M) for any γ ∈ (0, 1]. Interestingly, Corollary D.15 tells us that the “bi-lazy” chain
Lγ,γ ◦ Q(M) behaves very differently, as its stationary distribution is close to π ⊗ π instead.

D.2.3 Proof of Theorem 2.6

We are now ready to derive a bound on the runtime of Protocol 1.

Lemma D.16. Suppose G has spectral gap α and irregularity β. Using Protocol 1 with dis-
tribution D = U , any node gets the rumor in T = O(C log n) rounds with probability at least
1−O(n−2c) where C = (1/α)·β2 max{1, 1/(α·∆0.5−c)} and c > 0 is an arbitrary small constant.

Proof. Let s ∈ V [G] be the initial node and fix a target node w ∈ V [G]. Let c > 0 be any
constant. Choose γ = min

{
1/3,∆0.5−cα/9

}
6 n0.5−cα/9. Choose k = (γγ′α)−1β2 log n+1 and

let T = 4k. So T = O(C log n). Define the distributions u = esM
k
1 , v = e(s,s)M

k
2 , u

′ = ewM
k
3,

and v′ = e(w,w)M
k
4 , whereM1, . . . ,M4 are as in Lemma D.12. Let π be the uniform distribution

over V [G]. As before, let u⊥ = u − π and v⊥ = v − π ⊗ π, and similarly for u′ and v′. By
Lemma D.11 and Lemma D.12, the probability that w gets the rumor in k rounds is lower
bounded by ∑

u,v∈V [G]〈u, eu〉〈u, ev〉〈u′, eu〉〈u′, ev〉∑
u,v∈V [G]

〈
v, e(u,v)

〉 〈
v′, e(u,v)

〉 =
〈u,u′〉2
〈v,v′〉

=

(
〈π,π〉+ 〈u⊥,π〉+ 〈π,u′⊥〉+ 〈u⊥,u′⊥〉

)2

〈π ⊗ π,π ⊗ π〉+ 〈v⊥,π ⊗ π〉+ 〈π ⊗ π,v′⊥〉+ 〈v⊥,v′⊥〉

=

(
1/n + 〈u⊥,u′⊥〉

)2

1/n2 + 〈v⊥,v′⊥〉 .

(D.5)

Note that M1 = Lγ

(
MReg(G)

)
and M3 =

(
Lγ ◦ Lγ′

(
MReg(G)

))
have absolute spectral gaps

γαβ−2 and γγ′αβ−2 respectively. This follows from Lemma A.3 and the definition of lazy
Markov chains (Also, the lazyness guarantees that the eigenvalues are all non-negative, and
hence the bounds are about absolute spectral gaps, not just spectral gaps). By Lemma D.9
and the fact that k > (γγ′α)−1β2 log n + 1 > log1−γγ′αβ−2(1/n) + 1, we have |〈u⊥,u′⊥〉| 6∥∥u⊥∥∥

2

∥∥u′⊥∥∥
2
6 1/n2. By Lemma 2.5 (with η = 1/∆), we have

|〈v⊥,v′⊥〉| 6
∥∥∥v⊥

∥∥∥
2

∥∥∥v′⊥
∥∥∥
2
6
(
(1− γα/2)k + 2

√
2γα−1n−3/2

)2
6 1/n2+2c.

So (D.5) is lower bounded by (1/n−1/n2)2

1/n2−1/n2+2c = 1−O(n−2c). �

6The lazyness and α > 0 guarantees that Lγ,γ ◦ Q(M) is ergodic and has a unique stationary distribution.
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Theorem 2.6 is obtained by repeating the protocol O(1) times and apply the union bound.

D.3 Analysis of Protocol 2

Let P be the distribution over the set of functions f : [T ] × V [G] → [∆] associated with
Protocol 2. The values f(i, u) in the ith round are generated using the PRG G, and the seeds
of G in different rounds are generated by the PRG G′. In this section we show that Protocol
1 with distribution D = P has almost the same performance as the one with D = U . As an
intermediate step, we consider the distribution P ′ defined as follows: the values of f in each
round are determined by the PRG G in the same way as for P but the seeds of G in different
rounds are now independent and random, instead of being generated by G′. With D = P ′,
Definition 2.1 are still valid, and Lemma D.11 still holds by exactly the same proof. Moreover,
Lemma D.12 “almost holds” in the following sense.

Lemma D.17. Let r, S and S′ be independent with distributions D̃ (induced by D = P ′),
Dγ,k and Dγ,k respectively. Then there exist stochastic matrices M′

1,M
′
3 ∈ R

n×n, M′
2,M

′
4 ∈

R
n×n ⊗ R

n×n such that ‖M′
i −Mi‖1 6 12γ∆2(ε + 2∆3/m) for 1 6 i 6 4, where Mi are as in

Lemma D.12 and ε,m are as in Protocol 2. Moreover, for any u, v, w, x ∈ V [G], the following
statements hold:

1. Er,S

[
XS

u,v

]
=
〈
euM

′k
1 , ev

〉
,

2. Er,S,S′

[
XS

u,vX
S′

w,x

]
=
〈
e(u,w)M

′k
2 , e(v,x)

〉
,

3. Er,S

[
Y S
u,v

]
=
〈
euM

′k
3 , ev

〉
,

4. Er,S,S′

[
Y S
u,vY

S′

w,x

]
=
〈
e(u,w)M

′k
4 , e(v,x)

〉
.

Proof. Let M′
1 (resp. M′

3) be the transition matrix of a forward (reversed) random walk with
random pattern S ∼ Dγ,k. Let M′

2 (resp. M′
4) be the joint transition matrix of two forward

(reversed) random walks with random patterns S, S′ ∼ Dγ,k. This is exactly the same setting
as in Lemma D.12, except that now D = P ′. Since the randomness f(i, u) and ri,u in different
rounds are independent, Items 1 – 4 clearly hold. It remains to show that ‖M′

i − Mi‖1 6
12γ∆2(ε+ 2∆3/m) for 1 6 i 6 4.

Recall that the ℓ1-norm of a matrix equals the maximal sum of absolute values of entries in
a row. So we may fix the row index u (or (u, v)) maximizing the sum. Also fix the auxiliary
randomness {ri,u} and since if we have a bound for all fixed {ri,u}, the same bound applies
when they are random.

Consider the ith step of a forward walk with random pattern S ∼ Dγ,k from node u. The
walk stays at u if that step is lazy for D = P ′ and also for D = U . So we may assume the step
is non-lazy which occurs with probability γ. The event that the walk moves to v is determined
solely by f(i, u) and hence characterized by a combinatorial rectangle of dimension one. By
Lemma D.4, we have |(M′

1 −M1)uv| 6 γ(ε + ∆/m) (note that the difference is counted only
when the step is non-lazy). Note that the walk always moves to a node in N(u) ∪ {u}. Taking
the sum of differences, we have ‖M′

1 −M1‖1 6 γ(∆ + 1)(ε +∆/m).
Now consider the ith step of two forward walks from u and w respectively. We may assume

at least one of them has a non-lazy step which occurs with probability 2(1−γ)γ+γ2 6 2γ. The
event that the first walk moves to some node v is determined by f(i, u) whereas the event that the
second walk moves to some x is determined by f(i, w). Each is characterized by a combinatorial
rectangle in

∏
a∈{u,w}[∆] of dimension one (if u = w) or two (if u 6= w). The conjunction of these

two events is characterized by the intersection of the two combinatorial rectangles, which is again

a combinatorial rectangle in
∏

a∈{u,w}[∆]. By Lemma D.4, we have
∣∣∣(M′

2 −M2)(u,w)(v,x)

∣∣∣ 6
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2γ(ε + 2∆/m). Also the only possible (v, x) are in (N(u) ∪ {u}) × (N(w) ∪ {w}). Taking the
sum of differences, we have ‖M′

2 −M2‖1 6 2γ(∆ + 1)2(ε+ 2∆/m).
Now consider the ith step of a reversed walk with random pattern S ∼ Dγ,k from a node u.

Again assume the step is non-lazy which occurs with probability γ. Let i0 = T −2i−1 and i1 =
T−2i−2. The event u ∈ Ni,v for v ∈ N(u) is determined by whether (f(i0, v), f(i1, v)) ∈ Sv,u for
some Sv,u ⊆ [∆2]. Then the event whether N∨

i,u = {v} for v ∈ N(u) is characterized by the com-

binatorial rectangle
∏

w∈N(u) Sw ⊆∏w∈N(u)[∆
2] of dimension deg(u) 6 ∆ where Sw equals Sw,u

if w = v, and equals [∆2]\Sw,u if w 6= v. By Lemma D.4, we have |(M′
3 −M3)uv| 6 γ(ε+∆3/m)

for v ∈ N(u). When v = u, we have |(M′
3 −M3)uv| 6

∑
w∈N(u) |(M′

3 −M3)uw| 6 γ∆(ε +

∆3/m) since
∑

w∈N(u)∪{u} (M
′
3 −M3)uw =

∑
w∈N(u)∪{u}(M

′
3)uw −∑w∈N(u)∪{u}(M3)uw = 1−

1 = 0. Taking the sum of differences, we have ‖M′
3 −M3‖1 6 2γ∆(ε+∆3/m).

Finally consider the ith step of two reversed walks from u and w respectively. We may assume
at least one of them has a non-lazy step which occurs with probability 2(1−γ)γ+γ2 6 2γ. Sim-
ilar to the case of two forward walks, using the fact that the family of combinatorial rectangles
is closed under intersection, we know the event that the two walks move to some nodes v ∈ N(u)
and x ∈ N(u) respectively is characterized by a combinatorial rectangle in

∏
a∈N(u)∪N(w)[∆

2]

of dimension at most 2∆. By Lemma D.4, we have
∣∣∣(M′

4 −M4)(u,w)(v,x)

∣∣∣ 6 2γ(ε+ 2∆3/m) for

v ∈ N(u) and x ∈ N(w). When u 6= v and w = x, using the fact that M4 (resp. M′
4) is a cou-

pling of two copies of M3 (resp. M′
3), we have

∑
x′∈N(w) (M

′
4 −M4)(u,w)(v,x′) = (M′

3 −M3)uv
and hence∣∣∣

(
M′

4 −M4

)
(u,w)(v,x)

∣∣∣ 6
∣∣(M′

3 −M3

)
uv

∣∣+
∑

x′∈N(w)\{w}

∣∣∣
(
M′

4 −M4

)
(u,w)(v,x′)

∣∣∣

6 γ(ε+∆3/m) + 2γ∆(ε+ 2∆3/m).

(D.6)

The case that u = v and w 6= x is symmetric. When u = v and w = x, the first inequality of
(D.6) still holds, yet the RHS of the second one becomes γ∆(ε + ∆3/m) + ∆(γ(ε + ∆3/m) +
2γ∆(ε+2∆3/m)). Taking the sum of differences, we have ‖M′

4 −M4‖1 6 12γ∆2(ε+2∆3/m).
�

Next we consider the case D = P. Again Definition 2.1 is still valid and Lemma D.11 still
holds by the same proof. Furthermore we show that the expectations are almost the same as
in D = P ′ since they can be computed by small-width branching programs:

Lemma D.18. For any u,w ∈ V [G], the quantities
∑

v∈V [G]

∣∣∣Er∼P̃ ′,S

[
XS

u,v

]
−Er∼P̃,S

[
XS

u,v

]∣∣∣ (D.7)

and ∑

v,x∈V [G]

∣∣∣Er∼P̃ ′,S,S′

[
XS

u,vX
S′

w,x

]
−Er∼P̃,S,S′

[
XS

u,vX
S′

w,x

]∣∣∣ (D.8)

are bounded by ε′, where P̃ (resp. P̃ ′) is the distribution of r induced by P (resp. P ′), S, S′ in
the subscripts are independent and have distribution Dγ,k, and ε′ is as in Protocol 2. The same
statement holds with XS

u,v and XS
w,x replaced by Y S

u,v and Y S
w,x respectively.

Proof. It suffices to bound the quantities with S, S′ and the auxiliary randomness {ri,u} fixed.
Then (D.7) becomes

∑
v∈V [G]

∣∣Ef∼P ′

[
XS

u,v

]
−Ef∼P

[
XS

u,v

]∣∣. Note that for both cases f ∼ P
and f ∼ P ′ we can view f as a random variable determined by a sequence of seeds y =

(y0, . . . , yk−1) ∈
(
{0, 1}ℓ

)k
. In the former case y is truly random whereas in the latter case it is

generated by the PRG G′. So we may rewrite (D.7) as

∑

v∈V [G]

∣∣∣∣Ey∈{0,1}ℓ′
[
XS

u,v(G′(y))
]
−E

y∈({0,1}ℓ)k
[
XS

u,v(y)
]∣∣∣∣ ,
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where XS
u,v(y) denotes the value of XS

u,v determined by the sequence of seeds y. We claim

that XS
u,v(y) is computed by a (k, n, 2ℓ)-branching program B. More specifically, it holds that

XS
u,v(y) = 1 iff B(u, y) = v. The branching program B is easy to construct: we use the set

of nodes [n] = V [G] in the ith level to keep track of the where the random walk is at the ith
step. This location together with the seed yi (which is used as the label of the outgoing edge
in B) uniquely determines the next node. Then the fact that y is generated by an ε′-PRG for
(T/2, n2, 2ℓ)-branching program B easily implies the bound. The bound for (D.8) is derived in
the same way, except that we use a (k, n2, 2ℓ)-branching program to keep track of two random
walks simultaneously. The cases for Y S

u,v and Y S
u,vY

S
w,x are the same, except that the time is

reversed. �

Now we are ready to prove a derandomized version of Lemma D.16.

Theorem D.19. Suppose G has spectral gap α and irregularity β. Using Protocol 1 with
distribution D = P, any node gets the rumor in T = O(C log n) rounds with probability at least
1− n−2c, where C = (1/α) · β2 max{1, 1/(α ·∆0.5−c)} and c > 0 is an arbitrary small constant.

Proof. Let s ∈ V [G] be the initial node and fix a target nodew ∈ V [G]. Let c, γ, k, T,π,u,u′,v,v′

be as in the proof of Lemma D.16 and T = O(C log n). Define ū = esM
′k
1 , v̄ = e(s,s)M

′k
2 ,

ū′ = ewM
′k
3 , and v̄′ = e(w,w)M

′k
4 , where M′

1, . . . ,M
′
4 are as in Lemma D.17. Then

‖ū− u‖1 =
∥∥∥es

(
M′k

1 −Mk
1

)∥∥∥
1
6
∥∥∥M′k

1 −Mk
1

∥∥∥
1
6 k

∥∥M′
1 −M1

∥∥
1
6 kε0

where ε0 = 12γ∆2(ε + 2∆3/m) (c.f. Lemma D.17). Here the second inequality holds by a
simple induction on k. Similarly ‖ū′ − u′‖1, ‖v̄ − v‖1, ‖v̄′ − v′‖1 6 kε0. Define ũ, ũ′ ∈ R

n

and ṽ, ṽ′ ∈ R
n ⊗ R

n such that ũu = Er,S

[
XS

s,u

]
, ũ′

u = Er,S

[
Y S
w,u

]
, ṽu,v = Er,S,S′

[
XS

s,uX
S
s,v

]

and ṽ′
u,v = Er,S,S′

[
Y S
w,uY

S
w,v

]
where r, S and S′ are independent with distributions P̃ (induced

by P), Dγ,k and Dγ,k respectively. Then Lemma D.17 and Lemma D.18 altogether imply that
‖ũ− ū‖1 6 ε′ and hence ‖ũ− u‖1 6 kε0 + ε′. Obviously we have ‖ũ− u‖∞ 6 1. Therefore by
Hölder’s inequality, we have ‖ũ− u‖2 6

√
kε0 + ε′. Similarly,

‖ũ′ − u′‖2 6
√

kε0 + ε′, ‖ṽ − v‖2 6
√

kε0 + ε′, ‖ṽ′ − v′‖2 6
√

kε0 + ε′.

As shown in the proof of Lemma D.16, we have
∥∥u⊥∥∥

2
,
∥∥u′⊥∥∥

2
6 n−1, and

∥∥v⊥∥∥
2
,
∥∥v′⊥∥∥

2
6

n−(1+c). Note that

ũ
⊥ = ũ− π = (ũ− u) + (u− π) = (ũ− u) + u⊥.

So we have
∥∥∥ũ⊥

∥∥∥
2
6

√
kε0 + ε′+n−1 and similarly

∥∥∥ũ′⊥
∥∥∥
2
6

√
kε0 + ε′+n−1, and

∥∥∥ṽ⊥
∥∥∥
2
,
∥∥∥ṽ′⊥

∥∥∥
2
6

√
kε0 + ε′ + n−(1+c).
By Lemma D.11, the probability that t gets the rumor in k rounds is lower bounded by

∑
u,v∈V [G]〈ũ, eu〉〈ũ, ev〉〈ũ′, eu〉〈ũ′, ev〉∑

u,v∈V [G]

〈
ṽ, e(u,v)

〉 〈
ṽ
′, e(u,v)

〉 =

〈
ũ, ũ′〉2
〈
ṽ, ṽ′〉

=

(
〈π,π〉+

〈
ũ⊥,π

〉
+
〈
π, ũ′⊥

〉
+
〈
ũ⊥, ũ′⊥

〉)2

〈π ⊗ π,π ⊗ π〉+
〈
ṽ⊥,π ⊗ π

〉
+
〈
π ⊗ π, ṽ′⊥

〉
+
〈
ṽ⊥, ṽ′⊥

〉

=

(
〈π,π〉+

〈
ũ
⊥, ũ′⊥

〉)2

〈π ⊗ π,π ⊗ π〉+
〈
ṽ
⊥, ṽ′⊥

〉

=

(
1/n +

〈
ũ⊥, ũ′⊥

〉)2

1/n2 +
〈
ṽ⊥, ṽ′⊥

〉
.

(D.9)
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We have
∣∣∣
〈
ũ
⊥, ũ′⊥

〉∣∣∣ 6
∥∥∥ũ⊥

∥∥∥
2

∥∥∥ũ′⊥
∥∥∥
2
= O

(
kε0 + ε′ + n−2

)
,

∣∣∣
〈
ṽ
⊥, ṽ′⊥

〉∣∣∣ 6
∥∥∥ṽ⊥

∥∥∥
2

∥∥∥ṽ′⊥
∥∥∥
2
= O

(
kε0 + ε′ + n−(2+2c)

)
.

So (D.9) is lower bounded by 1− O(n2(kε0 + ε′) + n−2c) where ε0 = 12γ∆2(ε+ 2∆3/m). The
claim follows since we pick ε−1, ε′−1,m = nΘ(1) sufficiently large in Protocol 2. �

By repeating the protocol O(1) times and apply the union bound, we obtain Theorem 2.7.

E Simplified Protocol with O(∆) Preprocessing Time

E.1 Description of the Protocol

Protocol 5. Let m be a prime power. Pick the following objects:

• an explicit pairwise independent generator G = (G0, . . . ,Gn−1) : {0, 1}ℓ → [m]n with seed
length ℓ, and

• an explicit ε-PRG G′ = (G′
0, . . . ,G′

T−1) : {0, 1}ℓ′ →
(
{0, 1}ℓ

)T
for (T, n2, 2ℓ)-branching

programs with seed length ℓ′

where ε−1,m = nΘ(1) are sufficiently large.
The initial node having the rumor independently chooses a random string x ∈ {0, 1}ℓ′ which

is appended with the rumor and sent to other nodes. Once one node gets the rumor, it gets the
ID u. Let y = (y0, . . . , yT−1) be the sequence of seeds generated by G′, i.e., yi = G′

i(x). For
i ∈ [T ] and u ∈ V [G], define (wu,i, zu,i) = Gu(yi) mod 4∆ ∈ [2∆] × {active, inactive}. We say
u is active in the ith round if zu,i is active, and otherwise inactive. We say u selects v if v is
the wu,ith neighbor of u. In the ith round, an informed node u sends the rumor to the unique
neighbor v (if exist) if {u, v} is a good pair, where we call {u, v} is a good pair if (i) u is active,
v is inactive, and u is the unique node selecting v, or (ii) the same holds with u and v swapped.

Checking the conditions requires u and v knowing its index in the lists of its neighbors
as well as the IDs of its neighbors. One can deterministically use O(∆) preprocessing time to
guarantee this assumption. Then Condition (ii) can be checked directly by u. For Condition (i),
note that an active node u can send the rumor and the seed to its unique inactive neighbor
v specified by wi,u and then v can check if the condition is met, i.e., if u is the unique node
selecting v. 7

Theorem E.1. Let G be any graph with spectral gap α and irregularity β. Then Protocol 5
uses 2ℓ random bits, and with high probability informs all nodes of G in T = O(β2α−1 log n)
rounds.

As a consequence, we obtain the following reduction:

Corollary E.2. Assume each node knows its index in the lists of its neighbors as well as the
IDs of its neighbors. Then the following statements hold:

1. Given an explicit ε-PRG for (T/2, n2, 2ℓ)-branching programs with seed length ℓ′, where
ε−1 = nΘ(1) and ℓ = O(log n) are sufficiently large, there exists an explicit protocol using
2ℓ′ random bits, and with high probability informs all nodes in T = O((1/α) · β2 log n)
rounds.

7The uniqueness requirement in Condition (i) is necessary only for analyzing the associated averaging algo-
rithm. For the sake of rumor spreading, dropping the requirement only make the rumor spread faster.
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2. In particular, given an explicit ε-PRG for (T/2, n2, ε)-branching programs with seed length
O(log n) where ε−1 = nΘ(1) is sufficiently large, there exists an explicit protocol using
O(log n) random bits, and with high probability informs all nodes in T = O((1/α)·β2 log n)
rounds.

Combining the reduction above with known explicit constructions of PRGs (Theorem D.8),
we obtain Theorem 1.2.

We study Protocol 5 by analyzing the following associated averaging protocol, which is
closely related to other gossip processes, e.g. random-matching model of load balancing pro-
cesses. In the following, let v(k) ∈ R

V [G] denote the values of nodes after k rounds.

Protocol 6 (Averaging Protocol). Each node u has a value v(0)u specified by the distribution
v(0) = es where s is the initial node. Proceed as in Protocol 5. When node u sends the rumor
to node v, set the both values of u and v as the average of their original values.

We define the averaging time τavg(δ) of the protocol as the smallest k ∈ N such that
Pr
[
‖v(k)⊥‖2 < δ

]
> 1− δ for any distribution v, or ∞ if there is no such k.

Theorem E.3. For δ > 0, assume 2ε < δ2 where ε is as in Protocol 5. Then Protocol 6 uses
2ℓ′ random bits with τavg(δ) = O((1/α) · β2 log(1/δ)).

Theorem E.1 is simple corollary of Theorem E.3 with δ = 1/n, since when ‖v(k)⊥‖2 < 1/n
then all v(k)u must be nonzero, and v(k)u 6= 0 implies that u is informed in k rounds.

In Theorem E.3 we only consider initial values specified by v(0) = es. Assuming ε/δ2 =
n−Θ(1) is sufficiently small, it is easy to establish a upper bound O(1/α · β2(log n + log(1/δ)))
on the averaging time regarding a general distribution v(0): first use T = O(1/α · β2 log(1/δ))
rounds to inform all the nodes with high probability. Then set the new initial values v′(0) =
v(T ), and run the averaging protocol for another O(1/α · β2(log n + log(1/δ))) rounds. The
process with initial value distribution v′(0) can be viewed as a convex combination of those
with initial value distribution eu, u ∈ V [G] (note that each node u is already informed). With
high probability, for all initial value distributions eu, the values converge to the average up to
ℓ2-distance δ. So the same is true for v′(0).

E.2 Analysis of the Protocol

For x ∈ {0, 1}ℓ, define the following matrix

M(x)uv =





1/2 u 6= v and {u, v} is a good pair,

1/2 u = v and {u, v′} is a good pair for some v′ ∈ V [G],

1 u = v and {u, v′} is not a good pair for any v′ ∈ V [G],

0 u 6= v and {u, v} is not a good pair

where the set of good pairs are determined by the seed yi = x (see Protocol 5, where the
definition of good pairs are the same for all round number i). It is easy to check that M(x) is
doubly stochastic, symmetric and M(x)2 = M(x) for all x ∈ {0, 1}ℓ. Moreover it characterizes
the averaging operations using the seed yi = x.

Lemma E.4. It holds that v(i+ 1) = v(i)M(yi) for any i ∈ [T ].

Proof. By definition, M(yi) acts on R
V [G] by averaging the values of u and v for each good

pair {u, v}. Protocol 6 guarantees that averaging operations are performed for each good pair
{u, v}, where u or v are already informed. If neither u nor v is informed, their values are both
zero (by induction with the base case v(0) = es) and hence the averaging operation between
them can be safely ignored. �
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Let M = Ex∈{0,1}ℓ [M(x) ]. Then M is doubly-stochastic. We have the following lemma:

Lemma E.5. Muv > c · L1/2

(
MReg(G)

)
uv

for some constant c ∈ (0, 1).

Proof. Each edge {u, v} with u 6= v is a good pair if either of the two mutually exclusive
conditions (c.f. Protocol 5) is met. The first one holds with probability at least

Prx∈{0,1}ℓ [ u is active and selects v ]−
∑

u′∈N(v)\{u}
Prx∈{0,1}ℓ

[
u is active and both u, u′ select v

]

taken over the seed yi = x. As G is a pairwise independent generator, by Lemma D.3, this
probability is lower bounded by

(
1
4∆ − 2

m

)
− ∆ ·

(
1
4∆ · 1

2∆ + 2
m

)
> c

2∆ for some c > 0 and
m = Ω(∆2). The case for the second condition is the same. So {u, v} is a good pair with
probability at least c

∆ . Note that M(x)uv = 1/2 whenever {u, v} is a good pair. Therefore

Muv = Ex∈{0,1}ℓ [M(x)uv ] >
c

2∆
= cL1/2

(
MReg(G)

)
uv

.

For u = v, note that Muv > 1/2 by definition and L1/2

(
MReg(G)

)
uv

6 1. �

Again let π ∈ R
V [G] denote the uniform distribution over V [G].

Lemma E.6. For any v ∈ R
V [G] orthogonal to π, it holds that 0 6 Ex∈{0,1}ℓ [ ‖vM(x)‖2 ] 6

(1− cβ−2α)‖v‖2 for some constant c ∈ (0, 1).

Proof. The non-negativity is obvious. For the upper bound, we have

Ex∈{0,1}ℓ [ ‖vM(x)‖2 ] = Ex∈{0,1}ℓ [vM(x)M(x)⊺v⊺ ]

= vEx∈{0,1}ℓ [M(x)M(x)⊺ ]v⊺

= vEx∈{0,1}ℓ [M(x) ]v⊺

= vMv⊺.

Let M′ = M− c ·L1/2(MReg(G)) where c is as in Lemma E.5. Then M′ is a non-negative matrix
by Lemma E.5. As both M and L1/2

(
MReg(G)

)
are doubly-stochastic, so is M′/(1 − c). Then

λmax(M
′) 6 ‖M′‖2 6 1− c. Note that λmax

(
L1/2

(
MReg(G)

))
6 1− β−2α/2. Therefore

λmax(M) 6 λmax(M
′) + c · λmax

(
L1/2

(
MReg(G)

))
6 1− (c/2)β−2α

and the claim follows. �

Lemma E.7. For any v ∈ R
n orthogonal to π and k ∈ [T ], it holds that

Ey0,...,yk−1∈{0,1}ℓ

[∥∥∥∥∥v
k−1∏

i=0

M(yi)

∥∥∥∥∥
2

]
6 (1− cβ−2α)k‖v‖2

for some constant c ∈ (0, 1).

Proof. Induct on k. The claim is trivial for k = 0. For k > 0, assume the claim holds for
k′ < k. Let v ∈ R

n be a vector orthogonal to π, and define v′ = v
∏k−2

i=0 M(yi). Then v′ is also
orthogonal to π. So

Ey0,...,yk−1∈{0,1}ℓ

[∥∥∥∥∥v
k−1∏

i=0

M(yi)

∥∥∥∥∥
2

]
= Ey0,...,yk−2∈{0,1}ℓ

[
Eyk−1∈{0,1}ℓ

[ ∥∥v′M(yk−1)
∥∥
2

] ]

6 Ey0,...,yk−2∈{0,1}ℓ
[
(1− cβ−2α)

∥∥v′∥∥
2

]

6 (1− cβ−2α)k‖v‖2.

The first inequality uses Lemma E.6 and the second one uses the induction hypothesis. �
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Let P be the distribution of y = (y0, . . . , yT−1) in Protocol 5. Then we have

Lemma E.8. For any u ∈ V [G],

∣∣∣∣∣Ey∼P

[ ∥∥∥∥∥eu
T−1∏

i=0

M(yi)

∥∥∥∥∥
2

]
−E

y∈({0,1}ℓ)T

[∥∥∥∥∥eu
T−1∏

i=0

M(yi)

∥∥∥∥∥
2

]∣∣∣∣∣ 6 ε

where ε is as in Protocol 5.

Proof. For x ∈ {0, 1}ℓ, write M(x) = 1
2Mlazy(x) +

1
2Mnon-lazy(x) where Mlazy(x) is simply the

identity matrix I, and Mnon-lazy(x) is the following permutation matrix:

(Mnon-lazy(x))uv =





1 u 6= v and {u, v} is a good pair

0 u = v and {u, v′} is a good pair for some v′ ∈ V [G],

1 u = v and {u, v′} is not a good pair for any v′ ∈ V [G],

0 u 6= v and {u, v} is not a good pair.

As before, let CT = {lazy,non-lazy}T . Note that for any y = (y0, . . . , yT−1) ∈
(
{0, 1}ℓ

)T
, we

have
∥∥∥∥∥eu

T−1∏

i=0

M(yi)

∥∥∥∥∥
2

= eu

(
T−1∏

i=0

M(yi)

)(
T−1∏

i=0

M(yi)

)⊺

e⊺u

= 2−2T
∑

c,c′∈CT
eu

(
T−1∏

i=0

Mci(yi)

)(
T−1∏

i=0

Mc′i
(yi)

)⊺

e⊺u

= 2−2T
∑

c,c′∈CT ,v∈V [G]

(eu ⊗ eu)

T−1∏

i=0

(
Mci(yi)⊗Mc′i

(yi)
)
(ev ⊗ ev)

⊺.

For any c, c′ ∈ CT , it is easy to construct a (T, n2, 2ℓ)-branching program Bc,c′ that has state
set V [G] × V [G], such that for any node v ∈ V [G] and input y = (y0, . . . , yT−1), it holds that
Bc,c′((u, u), y) = (v, v) (resp. Bc,c′((u, u), y) 6= (v, v)) iff

(eu ⊗ eu)

T−1∏

i=0

(
Mci(yi)⊗Mc′i

(yi)
)
(ev ⊗ ev)

⊺.

equals 1 (resp. 0). More specifically, The transition matrix between the ith and the (i + 1)st
layer of Bc,c′ with edge label yi is just Mci(yi)⊗Mc′i

(yi). Then the absolute difference between

Ey∼P
[ ∥∥∥v

∏
i∈[k]M(yi)

∥∥∥
2

]
and E

y∈({0,1}ℓ)T
[ ∥∥∥v

∏
i∈[k]M(yi)

∥∥∥
2

]
is bounded by

2−2T
∑

c,c′∈CT ,v∈V [G]

∣∣∣∣Pry∼P
[
Bc,c′((u, u), y) = (v, v)

]
−Pr

y∈({0,1}ℓ)T
[
Bc,c′((u, u), y) = (v, v)

]∣∣∣∣

which is bounded by ε since G is an ε-PRG for (T, n2, 2ℓ)-branching programs. �

Proof of Theorem E.3. By Lemma E.7, we have

E
y∈({0,1}ℓ)T

[∥∥∥∥∥e
⊥
s

T−1∏

i=0

M(yi)

∥∥∥∥∥
2

]
6 (1− cβ−2α)T .
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Combining this with Lemma E.8 and using the fact that ‖v‖2 = ‖v⊥‖2 + ‖π‖2 for any distri-
bution v, we obtain

Ey∼P




∥∥∥∥∥∥

(
es

T−1∏

i=0

M(yi)

)⊥∥∥∥∥∥∥
2


 = Ey∼P

[∥∥∥∥∥e
⊥
s

T−1∏

i=0

M(yi)

∥∥∥∥∥
2

]
6 (1− cβ−2α)T + ε < δ2

for sufficiently large T = O(β2α−1 log δ−1). The claim then follows from Lemma E.4 and the
Markov’s inequality. �

F Omitted Details in Section 3

F.1 Preliminaries

In this subsection we list all necessary definitions and results that are used to construct the
protocols in Section 3.

Unbalanced Expanders with Near-Optimal Expansion We consider the following kind
of left-regular bipartite graphs.

Definition F.1. Let Γ : [N ] × [D] → ⊔
i∈[D][Mi] be a function where Γ(x, y) ∈ [My] for any

x ∈ [N ], y ∈ [D]. Function Γ specifies a left-degree D bipartite graph with left vertex set [N ]
and right vertex set

⊔
i∈[D][Mi] in the following way: for x ∈ [N ] and y ∈ [D], the yth neighbor

of x is given by Γ(x, y).

We are interested in graphs Γ exhibiting excellent expansion properties. This leads to the
notion of unbalanced expanders [27, 37].

Definition F.2 (Unbalanced expanders [27, 37]). Let Γ : [N ] × [D] → ⊔
i∈[D][Mi] be as in

Definition F.1. We call Γ a (K,A)-expander if for any set S ⊆ [N ] of size K, it holds that
|N(S)| > AK. We call Γ a (6K,A)-expander if it is a (K ′, A)-expander for all K ′ 6 K. 8

In particular we are interested in (K,A)-expanders, where the parameter A = (1 − ε)D
for small ε, i.e. for any subset S of size K from the left set [N ], there is almost no collision
among the neighbors of nodes in S. Explicit constructions of such unbalanced expanders with
near-optimal expansion are known.

Theorem F.3 ([27]). For any N ∈ N, K 6 N , and ε > 0, there is an explicit (K, (1 −
ε)D)-expander Γ : [N ] × [D] → ⊔

i∈[D][Mi] with D =
(
logN
ε

)O(1)
and M0 = · · · = MD−1 6

max
{
D,KO(1)

}
.

Assume that Γ : [N ] × [D] → ⊔
i∈[D][Mi] is a (K, (1 − ε)D)-expander. We consider the

map Γ(·, U) applied on any K elements of [N ] where U is uniformly distributed over [D]. The
following lemma states that with high probability these K elements are mapped into

⊔
i∈[D][Mi]

with almost no collision.

Lemma F.4. Let Γ : [N ]× [D] → ⊔
i∈[D][Mi] be a (K, (1− ε)D)-expander. Let S be a subset of

[N ] of size K. Then for at least (1−√
ε)-fraction of y ∈ [D], it holds that |{Γ(x, y) : x ∈ S}| >

(1−√
ε)K.

Proof. The size of N(S) =
⊔

y∈[D]{Γ(x, y) : x ∈ S} is at least (1−ε)DK as Γ is a (K, (1−ε)D)-
expander. So Ey [|{Γ(x, y) : x ∈ S}|] > (1 − ε)K with y uniformly distributed over [D]. Also
note that |{Γ(x, y) : x ∈ S}| 6 |S| = K for any y ∈ [D]. Applying Markov’s inequality on
K − |{Γ(x, y) : x ∈ S}|, we have Pry[|{Γ(x, y) : x ∈ S}| < (1−√

ε)K] 6
√
ε. �

8The definition here is slightly different from [27, 37] as we require Γ(x, y) ∈ [My ]. This is analogous to the
difference between standard and strong condensers.
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F.2 Analysis of Protocol 3

We start by analyzing a single round t and see the properties of our protocol. Let It be the set
of informed nodes after round t, and Ut the set of uninformed nodes after round t. Remember
that all the random choices in round t are determined by (xt, yt).

We need the following lemma:

Lemma F.5. Fix any round 0 6 t < T . For any u ∈ Ut, v ∈ It, let Xv→u be the boolean
random variable whose value is 1 iff v informs u in round t+ 1. Then it holds that

1. |E [Xv→u ]− 1/∆| 6 ε for any u ∈ Ut, v ∈ It;

2. Cov [Xv→u,Xv′→u′ ] 6 ε for any u, u′ ∈ Ut, v, v
′ ∈ It satisfying (u, v) 6= (u′, v′).

Proof. For any u ∈ Ut and v ∈ It, suppose the index of u in the adjacency list of v is z. By
construction, Xv→u equals 1 iff GΓ(v,xt)(yt) mod ∆ = z. Fix xt. The fact that G is a pairwise
independent generator together with Lemma D.3 shows that |E [Xv→u ]− 1/∆| 6 2/m 6 ε.

For any u, u′ ∈ Ut and v, v′ ∈ It, first assume v 6= v′. Suppose the index of u (resp.
u′) in the adjacency list of v (resp. v′) is z (resp z′). By construction, Xv→u equals 1 iff
GΓ(v,xt)(yt) mod ∆ = z, and similarly for Xv′→u′ . By Lemma F.4 and the fact that Γ is a
(K, (1 − ε2/4)D)-expander, the event |{Γ(v, xt),Γ(v′, xt)}| > (1 − ε/2) · 2 > 1 occurs with
probability at least 1 − ε/2 over the choices of xt. Condition on any xt such that this event
occurs. We have Γ(v, xt) 6= Γ(v′, xt). Using the fact that G is pairwise independent together
with Lemma D.3, we have Cov [Xv→u,Xv′→u′ ] 6 2/m. For the other choices of xt, we have
Cov [Xv→u,Xv′→u′ ] 6 1 since Xv→u,Xv′→u′ are boolean. Therefore Cov [Xv→u,Xv′→u′ ] 6
(1− ε/2)(2/m) + (ε/2) 6 ε for random xt.

Now assume v = v′ and hence u 6= u′. We have

Cov [Xv→u,Xv→u′ ] = E [Xv→u ·Xv→u′ ]−E [Xv→u ] · E [Xv→u′ ]

= 0−E [Xv→u ] ·E [Xv→u′ ] 6 0. �

Next we prove the following lemma:

Lemma F.6. Fix a round 0 6 t < T and the set It of informed nodes before round t+ 1. Fix
also an arbitrary set of edges F ⊆ E(It, Ut). Let J be the set of nodes that become informed in
round t+ 1 if we consider only transmissions of the rumor along the edges in F .

1. Pr [J 6= ∅ ] > c1 min{|F |/∆, 1} for some constant c1 > 0.

2. If |F | = Ω(∆) then Pr [ |J | > c2|F |/∆ ] > c3 for some constant c2, c3 > 0.

Proof. Let Xv→u be the boolean random variable whose value is 1 iff v informs u in round t+1.
We first prove (1). Let k = |F | and suppose F = {(v0, u0), . . . , (vk−1, uk−1)}. Let X =∑

i∈[k]Xvi→ui
. Then by Cauchy-Schwarz inequality, E [1X>0 ] > (E [X ])2/E

[
X2
]
. By Lemma F.5,

it holds that
E [X ] =

∑

i∈[k]
E [Xvi→ui

] > k(1/∆ − ε) = Ω(|F |/∆)

and

E
[
X2
]
=
∑

i,j∈[k]
E
[
Xvi→ui

Xvj→uj

]

=
∑

i∈[k]
E [Xvi→ui

] +
∑

i,j∈[k]
i 6=j

(E [Xvi→ui
]E
[
Xvj→uj

]
+Cov

[
Xvi→ui

,Xvj→uj

]
)

6 k(1/∆+ ε) + (k2 − k)((1/∆ + ε)2 + ε) = O(|F |/∆+ |F |2/∆2)
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where we use the condition that ε = ∆−Θ(1) is sufficiently small. So

Pr [ J 6= ∅ ] = E [1X>0 ] > (E [X ])2/E
[
X2
]
= Ω(min{|F |/∆, 1}),

and the first statement follows.
Next we prove the second statement. For u ∈ Ut, let Fu be the set of edges in F incident

to u, Zu be the boolean random variable whose value is 1 iff u is informed in round t + 1 via
edges in Fu, and Xu =

∑
(v,u)∈Fu

Xv→u. So Zu = 1Xu>0 and |J | = ∑
u∈Ut

Zu. For u ∈ Ut,

E [Zu ] = E [1Xu>0 ] > (E [Xu ])
2/E

[
X2

u

]
= Ω(|Fu|/∆) by a similar argument as above. So

E [ |J | ] = Ω(
∑

u∈Ut
|Fu|/∆) = Ω(|F |/∆). Suppose E [ |J | ] > c|F |/∆ for constant c > 0.

On the other hand, for any c2 > 0, we have

E [ |J | ] = E
[
1|J |>c2|F |/∆ · |J |

]
+E

[
1|J |<c2|F |/∆ · |J |

]

6 E
[
1|J |>c2|F |/∆ · |J |

]
+E

[
1|J |<c2|F |/∆

]
· c2|F |/∆

and hence E
[
1|J |>c2|F |/∆ · |J |

]
> E [ |J | ] − E

[
1|J |<c2|F |/∆

]
· c2|F |/∆ > (c − c2)|F |/∆. Pick

c2 = c/2. By Cauchy-Schwarz inequalty, we have

Pr [ |J | > c2|F |/∆ ] = E
[
1|J |>c2|F |/∆

]
>

(
E
[
1|J |>c2|F |/∆ · |J |

])2

E [ |J |2 ] >
((c− c2)|F |/∆)2

E [ |J |2 ] . (F.1)

Note that

E
[
|J |2

]
=
∑

u∈Ut

E [Zu ] +
∑

u,u′∈Ut

u 6=u′

E [ZuZu′ ]

6 E [ |J | ] +
∑

u,u′∈Ut

u 6=u′

E [XuXu′ ]

= E [ |J | ] +
∑

u,u′∈Ut

u 6=u′

∑

(v,u)∈Fu

(v′,u′)∈Fu′

(E [Xv→u ]E [Xv′→u′ ] +Cov [Xv→u,Xv′→u′ ])

6 E [ |J | ] +
∑

u,u′∈Ut

u 6=u′






∑

(v,u)∈Fu

E [Xv→u ]






∑

(v′,u′)∈Fu′

E [Xv′→u′ ]


+ |Fu||Fu′ |ε




= E [ |J | ] +O



∑

u,u′∈Ut

u 6=u′

|Fu||Fu′ |/∆2




= E [ |J | ] +O



(
∑

u∈Ut

|Fu|
)2

/∆2




= E [ |J | ] +O
(
|F |2/∆2

)
.

Here E [ |J | ] = ∑
u∈Ut

E [Zu ] 6
∑

u∈Ut
E [Xu ] =

∑
u∈Ut

O(|Fu|/∆) = O(|F |/∆). Using the
condition |F | = Ω(∆), we have E

[
|J |2

]
= O

(
|F |2/∆2

)
. Substitute it in (F.1), and then the

second statement follows. �

Now we prove Theorem 1.3. We first define a matrix M ∈ R
n×n that is associated with

graph G. For any u, v ∈ V [G], let Mu,v = 1/∆ if {u, v} ∈ E[G], Mu,v = 1− deg(u)/∆ if u = v,
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and Mu,v = 0 otherwise. Notice that matrix M is doubly stochastic. We further define the
conductance of matrix M by

Φ(M) , min
A⊂V

|A|6n/2

e(A,A)

∆ · |A| .

Notice that Φ(M) 6 φ(G) 6 Φ(M) · β, where β , ∆/δ. Hence it suffices to work with Φ(M)
in the following.

Proof of Theorem 1.3. The proof is divided into four phases, depending on the number of in-
formed nodes |It| after round t.

Phase 1: 1 6 |It| 6 1/Φ. This phase is divided into several subphases. For every 1 6 i 6
log(1/φ), subphase i begins when the number of informed nodes is at least 2i−1 and ends when
this number is at least 2i. Assume that we are at the beginning of the ith subphase. Fix an
arbitrary round t of the ith subphase and the set of informed nodes It; thus, 2

i−1 6 |It| < 2i.
We consider the number of nodes that become informed in round t+1. Applying Lemma F.6(1)
with F = E(It, Ut) gives

Pr [ |It+1 \ It| > 1 ] > c1 min{e(It, Ut)/∆, 1} > c1 min{Φ · |It|/β, 1},

Let p , c1 min{Φ · |It|/β, 1}, and hence p = O(Φ · |It|) since |It| 6 1/Φ and β > 1. Therefore,
the expected time to increase |It| from 2i−1 to 2i is at most 2i−1/p = O(1/Φ). By Markov’s
inequality,

Pr
[
|It+τ | 6 2i | |It| > 2i−1

]
6 1/2

for some τ = O(Φ−1). Hence the time to complete Phase 1 can be upper bounded by
τ = O((1/Φ)) multiplied with the sum of log(1/Φ) = O(log n) independent geometric ran-
dom variables each with parameter 1/2. Applying a Chernoff bound for the sum of independent
geometric random variables yields that the number of rounds required for Phase 1 is at most
O((1/Φ) · log n) = O((1/φ) · β · log n) with high probability.

Phase 2: 1/Φ 6 |It| 6 n/2. Fix a round t and the set of informed nodes It. We apply
Lemma F.6(2), with F = E(It, Ut). Note that the precondition |F | = Ω(∆) is satisfied, as

|F | = e(It, Ut) > Φ ·∆ · |It| > Φ ·∆ · (1/Φ) = Ω(∆).

Hence we conclude from Lemma F.6(2) that

Pr [ |It+1 \ It| > c2 · φ · δ · |It|/∆ ] > c3,

for some constant c2, c3 > 0. When this event occurs, we have |It+1| > (1 + c2 · φ/β)|It|.
So, the number of rounds until we have |It| 6 n/2 can be upper bounded by the sum of
log1+c2·φ/β(n/2) = O((1/φ) ·β · log n) independent geometric random variables with parameters
c3. Using again the Chernoff bound we obtain that Phase 2 is completed within at most
O((1/φ) · β · log n) rounds with high probability.

Phase 3: n/2 6 |It| 6 n− 1/Φ. The analysis is the same as in Phase 2 with the roles of It
and Ut switched.

Phase 4: n− 1/Φ 6 |It| 6 n. Again, the analysis is the same as in Phase 1 with the roles
of It and Ut switched.

Since each of the four phases requires only O((1/φ) · β · log n) rounds with high probability,
the result follows by applying the union bound. �
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F.3 Analysis of Protocol 4

We first remark that the condition α = 1 − o(1) is equivalent to λ , λ2 = o(1), which will be
used in the following.

To relate the spectral expansion of G with the expansion property, we use the following
expander mixing lemma for general graphs.

Lemma F.7 (Expander Mixing Lemma for General Graphs [9]). Let G be a general graph.
Then for any subset X and Y it holds that

∣∣∣∣e(X,Y )− vol(X) · vol(Y )

vol(G)

∣∣∣∣ 6 λ ·

√
vol(X) · vol(Y ) · vol(X) · vol(Y )

vol(G)
.

In order to prove Theorem 1.4, it suffices to show the following lemma:

Lemma F.8. Let G be a graph that satisfies the preconditions of Theorem 1.4. Then with high
probability all the following statements hold:

• Phase I Suppose 1 6 |It| 6 n/ log n. Then there is τ = log n+ o(log n) such that |It+τ | >
n/ log n.

• Phase II Suppose n/ log n 6 |It| 6 n − n/ log n. Then there is τ = o(log n) such
that |It+τ | > n− n/ log n.

• Phase III Suppose |It| > n−n/ logn. Then there is τ = lnn+o(logn) such that |It+τ | =
n.

Proof. For any round t and u ∈ Ut, v ∈ It, let Xv→u be the boolean random variable whose
value is 1 iff v informs u in round t+1. Note that Γ is a (6K, (1− ε2/4)D)-expander and hence
a (2, (1− ε2/4)D)-expander. And G is a pairwise independent generator. Then we observe that
the statements in Lemma F.5 hold here as well by the same proof. Notice that it holds by
Lemma F.7 that

e(It, Ut) >
vol(It) · vol(Ut)

vol(G)
− λ · vol(It) · vol(Ut)

vol(G)

> (1− λ) · vol(It) · (vol(G) − vol(It))

vol(G)
(F.2)

Phase I. By (F.2) we have

e(It, Ut) > (1− λ) · δ · |It|
(
1− ∆ · |It|

nd

)
.

Since λ = o(1) and |It| 6 n/ log n, we have

e(It, Ut) > (1− o(1)) ·∆ · |It|
(

δ

∆
− δ

d · log n

)
>

(
1− 1

log n
− o(1)

)
·∆ · |It|. (F.3)

Hence

|N(It) \ It| >
e(It, Ut)

∆
>

(
1− 1

log n
− o(1)

)
· |It|.

Define γ , λ + 1
logn , and A , {u ∈ N(It) \ It : |N(u) ∩ It| > 2d

√
γ}. Then e(A, It) >

|A| · 2d · √γ. On the other hand by Lemma F.7 it holds that

e(A, It) 6
vol(A) · vol(It)

vol(G)
+ λ

√
vol(A) · vol(It)

6
∆2 · |A| · |It|

nd
+ γ∆ ·

√
|A| · |It|.
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By the definition of set A we have e(A, It) > 2d
√
γ · |A|, and hence

|A| · 2d · √γ 6
∆2 · |A| · |It|

nd
+ γ∆ ·

√
|A| · |It|

6 (1 + o(1)) · ∆ · |A|
log n

+ γ∆ ·
√

|A| · |It|,

which implies |A| 6 γ · |It|.
Now define B , N(It) \ It \ A. We have

e(B, It) = e(N(It), It)− e(A, It) >

(
1− 1

log n
− o(1)− γ

)
∆ · |It|.

With the above estimate at hand, we compute the expected value of |It ∩B|. Note that for any
u ∈ B, the chance that it gets informed in round t+ 1 is

pt+1(u) , Pr




∨

v∈N(u)∩It
(Xv→u = 1)


 ,

which is lower bounded by

∑

v∈N(u)∩It
Pr [Xv→u = 1 ]−

∑

v1,v2∈N(u)∩It
v1<v2

Pr



∧

i=1,2

(Xvi→u = 1)




by Bonferroni inequalities. Hence

pt+1(u) > |N(u) ∩ It|
(

1

∆
− ε

)
−
(|N(u) ∩ It|

2

)(
1

δ2
+ ε

)

> (1− o(1)) · |N(u) ∩ It|
∆

− (1 + o(1)) ·
(|N(u) ∩ It|

2

)
· 1

∆2

> (1− o(1)) · |N(u) ∩ It|
∆

(
1− (1 + o(1)) · |N(u) ∩ It|

2∆

)

> (1− o(1)) · |N(u) ∩ It|
∆

, (F.4)

where the first inequality follows from Lemma F.5 and the fact that ε = (1/∆)Θ(1) is sufficiently
small, and the last step uses the condition that |N(u) ∩ It| 6 2d

√
γ = o(∆). Hence we have

E [ |It+1 \ It| ] > E [ |It+1 ∩B| ] =
∑

u∈B
pt+1(u) >

∑

u∈B
(1− o(1)) · |N(u) ∩ It|

∆

= (1− o(1)) · e(B, It)

∆
> (1− o(1)) · |It|.

Since |It+1 \ It| 6 |It|, it follows by using Markov’s inequality (applied to |It| − |It+1 \ It|)
that Pr [ |It+1| > (2− f(n))|It| ] > 1− g(n), where f(n) and g(n) are both functions that tend
to zero. Hence the time to reach |It| > n/ log n can be upper bounded by the sum of log2−f(n) n
independent, identically distributed geometric random variables with expectation at most 1 −
o(1) each. Using the Chernoff bound from Lemma A.1 yields for τ , log2 n + o(log n) that
Pr [ |It+τ | > n/ log n ] = 1− o(1).

Phase II |It| ∈ [n/ log n, n−n/ log n]. We further divide this phase into the two cases |It| ∈
[n/ log n, n/2] and |It| ∈ [n/2, n − n/ log n]. We start with the first case |It| ∈ [n/ log n, n/2].
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For any u ∈ N(It)\ It, the probability pt+1(u) that u gets informed in round t+1 is lowered
bounded by

(1− o(1)) · |N(u) ∩ It|
∆

(
1− (1 + o(1)) · |N(u) ∩ It|

2∆

)

by the same argument as in (F.4). This is then lower bounded by

(1− o(1)) · |N(u) ∩ It|
2∆

,

since we have |N(u) ∩ It| 6 ∆.
By (F.2), we have

e(It, Ut) = (1− o(1)) · δ
2
|It|.

Similar to the analysis of Phase I, we can lower bound the expected number of nodes that
become informed in round t+ 1:

E [ |It+1 \ It| ] >
∑

u∈N(It)\It
pt+1(u) > (1− o(1))

∑

u∈N(It)\It

|N(u) ∩ It|
2∆

= (1− o(1))
e(It, Ut)

2∆
>

δ

8∆
|It|.

Since |It+1| 6 2|It|, we obtain that as long as |It| 6 n/2 there are constants α, β > 0 so
that Pr [ |It+1| > (1 + α)|It| ] > β. Hence the time to reach |It| > n/2 can be upper bounded by
the sum of log1+α(log n) independent, identically distributed geometric random variables with
expectation at most 1/β each. Using the Chernoff bound for the sum of geometric random
variables (see Lemma A.1) yields that with probability 1 − o(1), we reach |It| > n/2 within at
most o(log n) additional rounds.

Consider now the case |It| ∈ [n/2, n − n/ log n]. To analyze this case, we examine the
shrinking of Ut = V \ It. Note that for any u ∈ Ut, the probability pt+1(u) that u gets informed
in round t+ 1 is lowered bounded by

(1− o(1)) · |N(u) ∩ It|
∆

(
1− (1 + o(1)) · |N(u) ∩ It|

2∆

)

by the same argument as in (F.4). This is then lower bounded by

(1− o(1)) · |N(u) ∩ It|
2∆

since we have |N(u) ∩ It| 6 ∆.
Again, as |Ut| 6 n/2, by (F.2) we have

e(It, Ut) > (1− o(1)) · δ
2
|Ut|.

Let us now compute the expected number of uninformed nodes after one additional round:

E [ |Ut+1| ] =
∑

u∈Ut

(1− pt+1(u)) 6 |Ut| − (1− o(1))
∑

u∈Ut

( |N(u) ∩ It|
2∆

)

= |Ut| − (1− o(1))
e(It, Ut)

2∆
6

(
1− δ

8∆

)
|Ut|.

A simple inductive argument yields for any integer τ that,

E [ |Ut+τ | ] 6
(
1− δ

8∆

)τ

|Ut|,
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so for τ , log log n/ log(1/(1− δ
8∆)) + ω(1), where ω(1) is an arbitrarily slow growing function,

we have E [ |Ut+τ | ] = o(n/ log n). Hence by Markov’s inequality, Pr [ |Ut+τ | > n/ log n ] = o(1).
Phase III |It| ∈ [n − n/ log n, n]. Again, we analyze the shrinking of the set Ut. By

Lemma F.4, for at least (1−ε/2)-fraction of the choices of xt, it holds that the size of {Γ(v, xt) :
v ∈ N(u) ∩ It} is at least (1− ε/2)|N(u) ∩ It|. From now on fix xt such that this event occurs.

For any u ∈ Ut, we have

Pr [ u /∈ It+1 ] = Pr




∧

v∈N(u)∩It
(Xv→u = 0)


 .

Let F be a subset of N(u)∩ It of size (1− ε/2)|N(u)∩ It | such that the map Γ(·, xt) is injective
when restricted to F . By Lemma D.4, the function y 7→

(
GΓ(v,xt)(y) mod deg(v)

)
v∈F is an

(ε′ + |F |∆/m)-PRG for CRS where S =
∏

v∈F [deg(v)].
Then we have

Pr [u /∈ It+1 ] 6 Pr

[
∧

v∈F
(Xv→u = 0)

]
6
∏

v∈F
Pr [Xv→u = 0 ] + ε′ + |F |∆/m

6
∏

v∈F

(
1− 1

deg(v)
+ ε

)
+ ε′ +∆2/m

6

(
1− 1

∆
+ ε

)(1−ε/2)|N(u)∩It|
+ ε′ +∆2/m,

where the second inequality follows from the properties of PRGs for combinatorial rectangles,
and the third inequality follows from using pairwise independent generators. Since ε 6 1

∆ , a
simple induction shows that

(
1− 1

∆
+ ε

)k

6

(
1− 1

∆

)k

+ kε

for any k > 0. So we have

Pr [ u /∈ It+1 ] 6

(
1− 1

∆

)(1−ε/2)|N(u)∩It |
+ (1− ε/2) · |N(u) ∩ It| · ε+ ε′ +∆2/m

6

(
1− 1

∆

)(1−ε/2)|N(u)∩It |
+ (1− ε/2) ·∆ · ε+ ε′ +∆2/m.

The bound above applies for any choice of xt such that the size of {Γ(v, xt) : v ∈ N(u) ∩ It} is
at least (1− ε/2)|N(u) ∩ It|. And the probability of choosing such xt is at least 1− ε/2. So for
random xt, we have

Pr [u /∈ It+1 ] 6

(
1− 1

∆

)(1−ε/2)·|N(u)∩It|
+ (1− ε/2) ·∆ · ε+ ε′ +∆2/m+ ε/2

6

(
1− 1

∆

)(1−ε/2)·|N(u)∩It|
+ o(1),

where we use the fact that ε = (1/∆)Θ is sufficiently small, and m = Θ((log n)/ε).
By (F.3) it holds that e(It, Ut) > (1− 1

logn − o(1)) ·∆|Ut|. Let A ⊆ Ut be the set of nodes v

for which |N(v) ∩ It| 6 (1 −√
γ/2) ·∆, where γ , 1

logn + o(1). We assume for a contradiction
that |A| > 2

√
γ · |Ut|. Hence,

e(It, Ut) =
∑

v∈A
|N(v) ∩ It|+

∑

v∈Ut\A
|N(v) ∩ It| 6 |A| · (1−√

γ/2)∆ + |Ut \A|∆

= |Ut|∆− |A|√γ∆/2 <

(
1− 1

log n
− o(1)

)
·∆|Ut|,
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which yields the desired contradiction. Hence |A| 6 2
√
γ|Ut|. Now define B , Ut \A so that for

each u ∈ B, |N(v)∩ It| > (1−√
γ/2)∆ and |B| > (1−2

√
γ)|Ut|. Using linearity of expectation,

E [ |Ut+1| ] 6
∑

u∈B
Pr [u /∈ It+1 ] +

∑

u∈A
Pr [ u /∈ It+1 ]

6
∑

u∈B

((
1− 1

∆

)(1−ε/2)|N(u)∩It |
+ o(1)

)
+
∑

u∈A
1

6
∑

u∈B

(
1− 1

∆

)(1−ε/2)|N(u)∩It |
+ o(|Ut|) + |A|

=
∑

u∈B

(
1− 1

∆

)(1−ε/2)|N(u)∩It |
+ o(|Ut|).

Using the inequalities that (1−1/k) 6 e−1/k for k > 1, ex 6 1+2x for sufficiently small constant
x > 0, and the condition that |N(u) ∩ It| > (1 −√

γ/2) ·∆ for u ∈ B, we get

E [ |Ut+1| ] 6
∑

u∈B
e−(1−ε/2)|N(u)∩It |/∆ + o(|Ut|) 6

∑

u∈B
e−(1−√

γ/2−o(1)) + o(|Ut|)

=
∑

u∈B
e−1 · e

√
γ/2+o(1) + o(|Ut|) 6

∑

u∈B
e−1 · (1 +√

γ + o(1)) + o(|Ut|)

= (1 + o(1)) · e−1 · |Ut|.

By induction, it follows that for any step τ > 0, E [ |Ut+τ | ] 6 ((1 + o(1)) · e−1)τ · |Ut|. We
choose τ , − log(1+o(1))·e−1(n) = lnn + o(log n) and obtain that E [ |Ut+τ | ] 6 (1/ log n). So
Pr [ |Ut+τ | > 1 ] 6 E [ |Ut+τ | ] 6 1/ log n. �
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