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Abstract. Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and
transport. This paper highlights a few of these challenging physics in global, flux driven simulations using
experimental inputs from Tore Supra shot T'S45511. The electrostatic gyrokinetic code GYSELA is used
for these simulations. The 3D structure of avalanches indicate that these structures propagate radially
at localised toroidal angles and then expand along the field line at sound speed to form the filaments.
Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds
that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is
much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to
be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode
seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers.
However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar
phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between
the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature
fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature
fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear
layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on
the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both
avalanche events if of the order of 0.5p..co where p. = po/a, a being the tokamak minor radius and po being
the characteristic Larmor radius, po = co/f2. co is the reference ion thermal velocity and 2o = ¢; Bo/m;
the reference ion Larmor frequency for the characteristic amplitude of the magnetic field By, ¢; and m;
being respectively the ion charge and mass. The electric drift velocity is also found to exhibit a poloidal
pattern, with maximum amplitude of the fluctuations either in the top or in the bottom regions of the
machine depending on the sign of the zonal flow shear. This effect is found to be correlated to the stopping
capability of the corrugation structures. The neoclassical properties stemming from the trapped particle
drifts lead to large distortion of the distribution function. As expected, these prevail at the outer part of
the simulation region despite the large collisionality. The distribution function fluctuations appear to be
aligned along the v = constant lines at constant poloidal angle. A specific symmetry is observed regarding
the interplay of turbulence with the trapped-passing region.

PACS. 05.10.Gg Stochastic analysis methods — 05.65.+b Self-organized systems — 52.65.Tt Gyrofluid
and gyrokinetic simulations — 52.25.Fi Transport properties — 52.25.Xz Magnetized plasmas — 52.25.Gj
Fluctuation and chaos phenomena — 52.30.-q Plasma dynamics and flow — 52.35.Ra Plasma turbulence

1 Introduction

Magnetic fusion devices aim at confining high tempera-
ture plasmas,thermal energy in the range of 10keV, and
at relatively low density, in the range of 1020 m=3 [1].
These plasmas exhibit a low collisionality so that the cor-
rect representation of plasma as a continuous medium is
the one particle distribution function. The evolution of the

latter is then governed by the Vlasov equation. It is found
that the limitation in plasma confinement by the large
magnetic field is due to turbulence which is observed to
be characterised by scales of the order of the ion Larmor
radius and frequencies significantly lower than the Larmor
gyration frequency [2].
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In such a framework, one readily finds that the asymp-
totic limits of quasineutrality and independence of the dis-
tribution function on the Larmor gyration angle of the
particle motion. The former condition, via the equality of
the ion and electron density, yields a Poisson like equation
determining the electric potential in the case of electro-
static turbulence. The latter condition allows one to per-
form gyro-averages, averages on the Larmor gyration mo-
tion, leading to the gyrokinetic framework in 5-D [3], since
the gyration angle is not relevant, hence 3-D for the phys-
ical space, 1-D for the velocity parallel to the magnetic
field and 1-D for the magnetic moment p, the invariant
conjugate to the gyro-angle [3]. Consistently, the Vlasov
equation is then modified and the gyrokinetic equation
is considered where the transverse motion is governed by
drift velocities [3].

We consider here ion heat transport governed by the
so-called Ton Temperature Gradient (ITG) turbulence with
adiabatic electrons and in the electrostatic limit. The non-
linear gyrokinetic evolution equation is solved with the
GYSELA code [4] with no scale separation, hence for the
full distribution function and the geometry of a full or a
large fraction of the toroidal annulus (in contrast to flux
tube geometries). A symmetry condition on the distribu-
tion function, hence with zero heat flux, is used at the in-
ner boundary. The outer boundary condition is a thermal
bath with a Maxwellian distribution at given temperature.
Towards the inner boundary a heat source is implemented.
A constant heat flux is thus imposed to the system [5]. In
statistical steady state the mean heat outflux at the outer
boundary balances the heat source. With these conditions,
the plasma temperature profile evolves freely. Conversely,
the adiabatic electron response enforces a constant den-
sity gradient [2].

A remarkable feature of these flux-driven simulation
is the self-organisation of the turbulence that couples all
available scales from the size of the device, typically the
minor radius of the torus a, to the size of the turbulent
cells, of the order of the ion Larmor radius p;. An out-
standing issue is that of turbulence self regulation with
on the one hand long range radial transport[6-9] and on
the other hand zonal flows [10]. These combine in a self-
consistent way to determine the level of turbulent trans-
port. Ion energy confinement, as addressed in this paper,
is then characterised by the mean ion temperature gradi-
ent that can be achieved for a given mean heat flux.

The large scale transport events exhibit several fea-
tures of avalanches as addressed in Self-Organised Critical-
ity [11]. They have been reported in fluid turbulence mod-
elling [6, 8, 12] as well as gyrokinetics modelling [5, 13—
16]. The amount of data generated by the flux driven,
"full-torus”, 5-D gyrokinetic codes is so large that only
a fraction is actually stored. A more complex analysis of
the data, combining various subsets of data, in then re-
quired to address the transport properties at microscopic
and mesoscopic scales. This is the case when addressing
the local features of avalanche transport. Flux surface av-

erages have enabled one to identify these large transport
events on the basis of their localisation in radius and time.
The issue of their localisation on a flux surface, hence
poloidally and toroidally is important to resolve the con-
junction of ballooned transport and micro-turbulence fil-
aments. Conversely, transport barriers are understood as
long lived structures, homogeneous on a magnetic surface
and in some cases evolving on macro time scales radially.
Their actual properties at micro and meso scales remains
to be determined. The present analysis of self-generated
micro-barriers is a first step in that direction.

In this paper we address therefore key aspects of the ki-
netic turbulence self-organisation. In Section 2 we present
the equations implemented in the code GYSELA. The
simulation conditions are based on the Tore Supra shot
TS45511 presented in Section 3. The dynamics of the
poloidal modes of the electric potential, computed at given
toroidal position, are presented in Section 4. They indicate
that the large mode numbers are convected by the flow of
the m = 0 mode akin to the zonal flow. We then analyse
the avalanche transport. A first point is the localisation
on the magnetic surfaces, Section 5. In Section 6, we in-
vestigate the interplay between avalanche transport and
micro-barriers, also named corrugations [16]. Finally we
analyse the impact of small electrostatic fluctuations and
the dynamics governed by trapped particle drifts on the
distribution function, Section 7, Discussion and Conclu-
sion, Section 8, close the paper.

2 Gyrokinetic equations in the GYSELA code

A large class of micro instabilities in fusion devices can
be described in the gyrokinetic formalism, hence assum-
ing that the characteristic frequencies are much smaller
than the ion Larmor frequency. The gyro-angle can then
be averaged out and its associated action, the magnetic
moment p is a constant of motion. In this framework, and
in the electrostatic limit, the evolution of the distribution
function of the guiding centres takes the following form:

&:F—&-l 9 (jd(;(F)ZC—FS—FD

. 1

where X is the 4D phase space position of the guiding
centre X = (:c,v”), @ being the position in space and vj
the velocity parallel to the magnetic field B. The guiding
centre trajectory dX /dt is defined as:

dz? :

C‘; = (0yb* + Vs + Vo) - Va! (2a)
dv pVB+q¢ Vel | J VB
E:*T'b Vs 5 (2D)

the projections of the drift velocities being:
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J
(mivt +1B) b. (VB x Var)
7B J

J i
VEXB.VJ: —
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In these expressions the potential U is the gyro-averaged
electrostatic potential, ¢’ = JoU, where the operator .Jy
is the gyro-angle averaging operator. As a consequence
the potential ¢” is 4D field depending on space as ¢ and
also on the magnetic moment p. Finally, one defines the

Jacobian J = B* - b = B} where b= B/B and:

B =Bb' =B (b+ mivy_J ) (4)
¢ B?/po

In this equation J is the plasma current. The term de-
pending on J, yields in most cases a small correction.
All equations and quantities can readily be normalised.
The characteristic space scale is chosen to be the refer-
ence Larmor radius py = ¢/, 29 being the reference
ion cyclotron frequency with characteristic magnitude of
the magnetic field By, 29 = ¢;Bo/m;, ¢; and m; being re-
spectively the ion charge and mass. The time scale is cho-
sen to be a/cy = 1/(p«$20), where a is the plasma minor
radius and co = y/Tp/m;. Tp is the reference ion temper-
ature. The parameter p,is defined as the ratio p. = po/a.

In equation (1), C, § and D are respectively the col-
lision operator [17, 18], the source term[19, 20] and the
diffusion term introduced in the buffer regions at the in-
ner and outer minor radius that define the radial extent
of the simulation domain.

Given the scales of interest, the system is closed with
the quasineutrality condition. When considering adiabatic
electrons, the latter can take the form:

1 7 n s
—VL-<mn2OVLU> _ sy (52)
no 4B fs o
1 m;no e n
- o)+ 2o=2 5b
ng Vi (%:B2 Vi ) * T ng (5b)

where U = (U), + U and n = (n) + 71, the averaged
labelled fs is a flux surface average that stems from the
electron adiabatic response which is restricted to a field
line. The density n is defined in terms of the distribution
function F and the gyro-angle averaging operator Jy:

n = 27T/du/dv|\._7JoF (6)

The GYSELA equations must be completed with the
magnetic equilibrium. We consider an axisymmetric equi-
librium with concentric and circular magnetic surfaces,
that are close enough to the actual magnetic equilibrium
of the chosen Tore Supra reference shot, hence:

B 2
B =B, (RO OV@+TV9) (7)

BO qR
The parameter ¢(r) is the safety factor that depends on
the plasma current profile in the Tokamak and is related
to the field line pitch, namely the variation of the angle ¢
with respect to 6 along the field lines:
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Fig. 1. Profiles used in the simulation, left hand side density
n and initial temperature T;, right hand side safety factor q
and collisionality v..

Since the chosen angles are not magnetic coordinates, one
obtains the local field line pitch depending on both r and
6 since R = Ry + rcos(6).

3 Parameters and main features of the
simulations

In this Section we analyse the simulation input for a plasma
comparable to Tore Supra shot T'S45511, but for devices
larger p., namely p, = 1/150 and p, = 1/300 while the
Tore Supra shot is characterised by p. & 1/450. Profiles
close to experimental ones from Tore Supra have been
used, in particular v, that weighs the normalised collision
term Fig. 1, the safety factor ¢, the density profile, which
is constant in time (given the assumption of adiabatic elec-
trons), and the initial ion temperature profile. The safety
factor, close to one towards the core increases monotoni-
cally to r/a = 1 where it reaches a relatively large value,
Ga = 4. The ion-ion collision frequency v;; is determined
by:

AT [ ¢ 2 N Vhy
= VTG Log(a 9
s = 57 () o)™ )

where ¢ is the free space permittivity, Log(A) ~ 17 is
the Coulomb logarithm and v3,; = T;/m; is the ion ther-
mal velocity. The dimensionless control parameter for the

collisionality is defined as v, = q Rov; i/ (vthis?’/ 2):

2 qRon
0
) Log(A) T2 TTQ

Uy

2
_ 4V ( 4 (10)
3 471'6()

In this expression ¢ is the inverse aspect ratio: € = r/Ry.
The collisionality profile can then be determined, Fig. 1.
The collisionaliy is rather large with values from 0.2 to
0.4 in the inner simulation region and a decade increase
towards the outer boundary. In the following, we mainly
analyse the dynamics of the plasma considering the nor-
malised electric potential ¢, ¢ = eU/T.

To complete the simulation characteristics the ion heat-
ing source profile and the radial diffusion profiles in the
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~

o [T

2 0.4 0.6 0.8 1.0

Fig. 2. Profiles used in the simulation, left hand side heating
source S and radial diffusion coefficient in the buffer regions
D,.

Table 1. Main parameters of the p. = 1/300 simulation, pro-
files from Tore Supra shot TS45511, GYSELA SVN version
606. Torus indicates the fraction of the torus actually simu-
lated.

Qotstep  $20tdgiag Ny Ne N, Torus
20 240 512 512 128 1/4
1/ps Ro/a Tint/0  Tewt/a TifTe

300 3.3 0.15 1.0 1

buffer regions is shown on Fig. 2. The buffer regions are
localised at the inner and the outer radial boundaries.
The source term is broad, typically from r/a = 0.15 to
r/a =~ 0.4.

Two simulations are used is this paper with different p,
values, 1/p, = 150 and 1/p, = 300 . In both simulations,
the same set of experimental data is used. Only the major
radius Ry and the minor radius a are changed at fixed
aspect ration A = Rp/a. As a consequence, the growth
rate of the ITG mode of the order of 1/7 = ¢o/(qRy) =
co/(aqA) is also changed with 7300/7150 = 2. However,
7| co/a = gA is unchanged. For the mid-radius safety fac-
tor ¢ ~ 1.6 one obtains 7| = 5.3 (a/co)

4 Interplay between large and small scales of
the electric potential

4.1 Large scale flow pattern

In this Section we use data from a p, = 1/300 case. Sim-
ulation parameters are summarised in table 1, profiles are
presented in Section 3.

We concentrate here on data from a poloidal plane,
(r,0) plane, at ¢ = 0. We can then have information on
poloidal modes and their radial structure. Note that these
correspond to modes in terms of the geometrical angle
and not of a magnetic angle. Moreover, this data does
not allow one to discriminate between the toroidal mode
numbers. Despite these drawbacks, the complex pattern in
time and radius of the E x B flow allows one investigating
the intricate self-organised interplay between modes at dif-
ferent scales. Regarding the specific m = 0 mode, we have

[9m-olt, )]

—e—r= 94.4p,
—o—r=244.1p,

tcy/a
6000

[9meoft, 1)1
1.4

1.2
5000
1.0 1.0
4000
0.8
3000 06

0.5

2000 0.4

1000 0.2

kel
m"’”"ww;" *“!
o N

L 1 1
0 2000 4000 6000
/ Po te/a

0.0 0.0

50 100

150 200 250 300r

Fig. 3. Contour of the m = 0 mode of the electrostatic poten-
tial ¢, left hand side: evolution of the radial profile, right hand
side: time trace at two given radial locations.

checked when the data is available that (E, (0, ¢ = 0)), av-
eraged over 6 hence the m = 0 mode of the radial electric
field is nearly identical to (E.(6,)) ., namely the flux
surface averaged radial electric field. On the basis of this
result we shall consider in the following that the m = 0
mode at given ¢ can be regarded as a convenient proxy
for the actual zonal flow.

Let us first consider the small mode numbers, in par-
ticular m = 0 that yields < ¢ >g, Fig. 3. One finds that
this mode is global hence with large scale variation both
in time and radially, Fig. 3 left hand side. The radial vari-
ation determines the E x B flow in the poloidal direction.
The time-trace at two radial locations, Fig. 3 right hand
side, indicates that the simulation has not reached steady
state conditions since the amplitude of the mode is in-
creasing linearly.

One also notices relaxation events, either a burst with
a rapid increase of the m = 0 mode amplitude followed by
a slower decay or the inverse pattern with a sharp drop
of the amplitude and a slower recovery. The amplitude of
these bursts appears to increase over most of the profile
from the outer towards the inner radius. In order to inves-
tigate the radial structure of this burst we determine the
local minima and maxima of the time traces at each radial
position, which allows one to determine the rise time of the
burst. For the large event in the vicinity of time 4000 a/cq
one finds that the rise time from the local minimum of the
time trace to the local maximum is typically of 9.6 a/cy
with a small radial variation. This value is comparable to
the magnitude of the characteristic ITG growth time, 7,
see Section 3.

For the chosen burst, one finds that the local mini-
mum of the mode amplitude prior to the burst occurs at
the same time at all radial positions within the uncer-
tainty of the resolution time of the diagnostic, < 7gi09 =
240 pra/co = 0.8 a/co. The local maximum of the time
trace is then first reached for the time trace at r = 224 pq.
Towards the inner and outer radius compared to r =
224 pg, one observes a delay to reach the maximum. At
r =124 pg this time delay is 1.2 a/cq. For r < 124 pg the
burst structure is difficult to identify. Towards the outer
radius, the maximum is reached with a delay of 2.8 a/cg
at r = 294 pg. The maximum of the pulse thus appears
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Fig. 4. Contour of the m = 1 mode of the electrostatic poten-
tial ¢, left hand side: evolution of the radial profile, right hand
side: time trace at two given radial locations.

to originate from r = 224 py and to propagate inward at
velocity 53 p.co and outward at velocity 20 p.co. These
velocities appear to be rather high compared to the drift
velocity magnitude (p.co) and thus appear to reflect some
global response of the mode structure. This behaviour is
reminiscent of the ”gong-mode” [21, 22], an MHD event
occurring in conjunction to sawteeth, although character-
istics of the modes seem to be altogether different.

It is to be noted that such an analysis applied to the
local minimum would yield a propagation velocity of the
order of ¢y, namely the propagation over the whole minor
radius over a time comparable to the diagnostic time scale,
~ a/co. However, the minimum is very soft and therefore
difficult to relate to the burst occurrence. A trigger re-
mains to be determined for such bursts. As noticeable on
the time traces, Fig. 3 right hand side, these do not ap-
pear to govern a strong change in the overall evolution of
the mode.

The m = 1 mode will likely exhibit toroidal variation
that cannot be addressed here. However, except for the
n = 0 toroidal mode none of these modes will have spe-
cific radial localisation due to resonances. In that respect
it is similar to the m = 0 mode. However, its analysis
yields rather different results. First the mode amplitude
is two orders of magnitude smaller. Second, see Fig. 4 left
hand side, one finds a zero line of the amplitude that splits
the profile of the mode in two regions. This indicates that
the radial mode structure is dipolar unlike the m = 0
mode. As for m = 0, the mode structure is global. The
time traces, Fig. 4 right hand side, appear to be closer to
steady state and do not exhibit large bursts. Finally, one
can notice structures that are localised in the radial direc-
tion with meso-scale duration.

The analysis of the two global modes m = 0 and m =1
allows one to determine the large scale flows. Given the
amplitude of the two modes ¢,,—g and ¢,,—1 and their
similar radial scales, one finds that the main large scale
poloidal velocity component is (vgg) = poOrm=o, Where
the average is a poloidal average. As explained above, we
will consider this velocity as a proxy for the zonal flow
vz. The latter is found to exhibit a rather complex ampli-
tude and sign reversal pattern [23], see Fig. 5. The change

<Veg> = PoOfm=o

tey/a

tc,/a Veo> = PoOPmeo

160 180 200 220

300
r/Po /P

Po to/a Fig. 5. Zonal flow contour of < vge > |: left hand side, and

zoom of < vgy >: right hand side.
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. 0.015
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0.005
0.000
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-0.3 0.015

250
r/py

Fig. 6. Contour of the pulsation 2,,(¢,r) of the m = 32 mode
of the electrostatic potential ¢: left hand side, profile of the
zonal flow vz =< vgg >, plain black line, and mode velocity of
several modes vy, (¢,7) = 2 (t,7)/km: right hand side, m = 16
black dashed lines and circles, m = 24 dark blue dashed lines
and circles, m = 32 magenta dashed lines and circles, m = 36
blue dashed lines and circles, m = 64 red dashed lines and
circles, m = 128 black dashed lines and diamonds.

in amplitude, with local minima and maxima will govern
shearing effects, see Section 6, while the change in sign will
lead to changes of the sign of the slope of apparent dis-
persion relations, a feature that is outstanding from that
perspective, see Section 4.2.

For this simulation, one finds zonal flow reversal at sev-
eral radial locations. However, on the overall, the radial
profile evolves slowly and the flow pattern is characterised
by a negative flow at the inner boundary, followed by a
rather sharp transition to a positive flow. Around mid-
radius a more complex pattern is observed, Fig. 5 right
hand side, mainly with negative flow. Finally towards the
outer radius there is a large region with positive flow.

4.2 Apparent dispersion relation

One can also observe the modulation of the mode ampli-
tude in time that is readily associated with oscillations
of the phase of the mode. Reconstructing the latter and
analysing its dependence on time, one can determine the
pulsation of each mode, (2,,(¢,7). As an example a con-
tour plot of f253(¢,r) is shown on Fig. 6: left hand side.

Given the pulsation of the various modes, one can read-
ily determine the phase velocity of the modes defined by
Um(t, 1) = 20 (t,7)/km where the wave vector is defined
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as k,, = m/a. One finds that these phase velocities have
the same order of magnitude and exhibit the same large
scale features regarding their radial profiles, see Fig. 6:
right hand side. It si important to stress that the phase
velocity is thus quite comparable for mode numbers rang-
ing from 16 to 128. Furthermore, the radial profile of the
zonal flow velocity vz is found to compare reasonably well
with the phase velocity of the modes, Fig. 6: right hand
side. The correlation between the zonal flow and the phase
velocity v, (t,r), as exemplified on Fig. 6: right hand side,
is not a one to one relation. Indeed, only the major trend
is recovered and at smaller scales, significant departure
between the phase velocities of the various modes and the
zonal flow is observed.

In particular, one readily notices that the profile as well
as the trace of v, (t,r) exhibit strong peaks. These appear
to be actually governed by sudden acceleration and decel-
eration of the phase of the modes, an effect that is under
investigation. The difference between the phase velocity
and the zonal flow changes sign along the radial profile,
Fig. 6: right hand side, and is not therefore governed by
as a simple shift due to a constant velocity difference.

A robust feature in the analysis appears to be the lin-
ear dependence of the mode pulsation §2,,(¢,r) on the
mode number m, Fig. 7. This leads to a presentation of
the data in the form of a pseudo-dispersion relation as
has been reported in KSTAR experiments [24]. For the
sake of comparison we introduce the apparent pulsation
Rgm = kyn < vgg > due to the Doppler shift governed
by the zonal flow. One finds that in both cases shown on
Fig. 7, the pulsation associated to the Doppler shift tends
to overestimate the actual mode pulsation. However, this
situation is not generic and at other times and radial posi-
tions one can obtain an underestimate Fig. 6: right hand
side. Consequently, it is difficult to relate the difference
between these pulsations, namely the intrinsic mode pul-
sation, to the density diamagnetic frequency [5] as found
in the linear analysis [5].

An important output of the analysis in terms of a dis-
persion relation, as done in Fig. 7, is to provide in fact
an estimate of the zonal flow, resolved in time and radial
position. The striking aspect reported in the experimental
investigation, namely the reversal of the slope of the ap-
parent dispersion relation, would then indicate a reversal
of the zonal flow.

5 Structure of the electric potential along the
field line

In this Section we analyse the p, = 1/150 case. The sim-
ulation parameters are summarised in table 2.

The time trace of the maximum and minimum fluctu-
ations of the electrostatic potential d¢ at a given radius
are shown on Fig. 8. These exhibit first a sharp rise cor-
responding to the linear growth stage of the ITG instabil-
ity, from tcp/a = 60 up to tcp/a ~ 80. Following the first
burst of turbulent activity, the system undergoes a cyclic

Q.alc r=133p,;t=2148a/c, Qna/c r=133p,;t=3200a/c,
06— 0.6
0.4 0.4
02 02!
0.0 0.0¢% i
0.2 0.2 I
H I
' b
0a oal —a, T
[ &k |
40 80 120
m

Fig. 7. Dispersion-like relationship between the mode pulsa-
tion $2,,(¢,r) and the mode number m at a given radial loca-
tion r = 135p0, and time, ¢ = 2148a/co; left hand side, and
t = 3200a/co.

Table 2. Main parameters of the p, = 1/150 simulation, pro-
files from Tore Supra shot TS45511, GYSELA SVN version
606

otstep  20tdiag Nu Ny N, Torus
20 180 256 256 128 1/2
1//)* RO/a rint/a react/a 71z/,Te

150 3.3 0.15 1.0 1

30(t, r=86po) rms o(t, r = 86 p,)

—o—maximum

0.01

—s— minimum .
| | | L | | |

0 500 1000 1500 2000 0 500 1000 1500 2000
tg/a te,/a

-0.06 —

Fig. 8. Left hand side trace: maximum and minimum of the
electrostatic potential ¢, right hand side trace: r.m.s. of the
fluctuations of the electrostatic potential.

behaviour with alternate periods of strong and weak tur-
bulence activity.

These features are readily recovered when analysing
the time trace of the root mean square (r.m.s) of the
electrostatic potential fluctuations Fig. 8. After a tran-
sient time during which the initial perturbation reorgan-
ises according to its projection on the stable and unsta-
ble modes, the instability is found to grow exponentially
with a characteristic time scale of 3.2 a/cs. The latter
can be compared to the typical parallel transit time, 7] =
(qRo/a) a/cs that governs the reversal of the curvature
drift, and therefore the charge separation generating the
electrostatic potential of ITG modes. For ¢ ~ 1.6 and the
given value of Ry/a, table 2, one obtains 7 ~ 5.3 a/c,.
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Fig. 9. Magnitude of the electrostatic potential in the plane
of a magnetic surface (6, ¢). The potential is normalised by its
root mean square (rms). The computed data on a half torus
is duplicated 3 = 2¢q times in the toroidal direction, hence tak-
ing account of the actual magnetic geometry, to give a clearer
picture of the parallel structure of the filaments.

The order of magnitude of the observed rise time of the
electrostatic fluctuations corresponds therefore to that of
the transit time 7. Conversely, the subsequent modula-
tions are much slower, 645 a/c; for the decay of the first
turbulence burst, 760 a/cs for the rise an decay time of
the first modulation. An intermediate time scale is thus
found to govern the behaviour of the turbulence when the
system is weakly driven out of equilibrium.

5.1 Electric potential structure on a magnetic surface

The runs of full-f and global gyrokinetic codes generate
too much data to store all the outputs. In practice, only a
small fraction of the information is available for analysis.
The flux surface average of the heat flux exhibits an in-
termittent like behaviour with ballistic transport events.
These events have the same signature as that observed
in fluid codes that we refer to as avalanches. In a loose
way, these are reminiscent of SOC avalanches [11, 15]. By
considering the (0, ) plane at mid radius, r = 86 pg, we
investigate how localised can these avalanches be in the
toroidal direction. Indeed, the latter have been identified
in fluid simulations, but assuming a flute mode symmetry
[8, 25], as well as in gyrokinetic simulations [5, 15, 26],
but generally considering flux surface averaged quantities.
A critical issue in this process is to identify within the
evolving structure of the electric potential, events that
are effectively correlated to avalanches. To that end, we
assume that the largest deviation of the electric potential
in terms of rms are associated to large avalanches that
puncture the given magnetic surface. A threshold at twice
the rms value is used here to detect the avalanche dynam-
ics in the electric potential on a given magnetic surface.

The 2D plot of the normalised electrostatic potential,
Fig. 9, allows one to analyse its structure. First one finds
that it tends to a dipolar structure with filaments alter-
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Fig. 10. Successive snapshots of the electric potential drawn
along the line parallel to the maxima of the bursts, left hand
side decay of a burst, right hand side growth of another burst.

nating signs. These filaments are in first approximation
aligned on the field lines with parallel extent typically of
order 1/p, compared to the transverse scales in agree-
ment with the drift-scaling. They are found to exhibit
a finite parallel extent, hence with clear departure from
flute structures characterised by kj = 0. Note that at
r =86 pp, ¢ = 1.6 so that 1.5 turns toroidally are neces-
sary for one turn in 6, as readily observed on Fig. 9. While
the magnetic equilibrium and the drive of ITG turbulence
is up-down symmetric, one finds that at the time of the
snapshot there is loss of up-down symmetry. Indeed, the
dipolar structure with minima and maxima departing by
typically 1 rms are localised above # = 0, hence the low
field midplane. Below the low field mid plane the struc-
tures have smaller negative amplitude and near zero posi-
tive amplitude, see Fig. 10 left hand side. This symmetry
loss appears to be related to zonal flows. This point will be
addressed in Section 6. Comparing the low field 8 = 0 and
the high field midplane 6 = m, Fig. 10 right hand side, the
dipolar structures are smoothed out leading to a structure
with longer toroidal wave length.

5.2 Expansion and retraction of the electric potential
burst

With a threshold method we then identify the events such
that ¢/rms(¢) > 2. We present here the evolution, time
step after time step, of the profile of ¢ interpolated along
the line of maximum amplitude of the structure. The lack
of resolution in the #-direction introduces some short scale
sawtoothing that is irrelevant (the localisation of the max-
imum amplitude is not interpolated). Furthermore,this poor
resolution does not allow one to easily determine a depar-
ture between the field line direction and the line of max-
imum amplitude of the electric potential. However, this
method allows one to follow the growth and decay of a
large structure (strong deviation in terms of rms) and in
particular analyse its expansion in the parallel direction
Fig. 11. For the sake of simplicity in this representation,
the toroidal angle ¢ is used as curvilinear abscissa along
the field line.



8 Philippe Ghendrih et al.: Phase space structures in gyrokinetic simulations of fusion plasma turbulence

0(t, 6, ¢, r =86 py) / rms(9) 9(t, 6, 9, r =86 py) / rms(¢)

ty o/ a=1909

—e—+4 5t
——43 8t
—4+2 5t
—7—+2 8t
—o—+0 8t

=--2rms
tyco/a=1916
—e—+3 5t
——+2 8t
——+18t
——+0 3t

==-+2rms

4 T, . , .
05 06 07 08 09 10 0.0 0.4 0.8 1.2
@/2n

¢/2n

Fig. 11. Variation of ¢/rms(¢) along a filament (the curvilin-
ear abscissa is labelled by ¢), left hand side during the decay
phase of a burst, right hand side during the expansion of an-
other burst.

On the left hand side of Fig. 11 are plotted successive
parallel profiles of the electric potential during the decay
of such a burst. One finds that the characteristic time scale
of these bust events is of the order of 5.4 a/cy, hence com-
parable to 7). The structure is observed to retract mainly
from the right hand side ¢/(27) ~ 0.955 at 6t = 0 towards
the left hand side (decreasing values of ¢), ¢/(27) = 0.775
at ot = 3 a/co the point at ¢ = 7, ¢/rms(¢p) ~ 1.5 being
approximately a fixed point. Neglecting the poloidal com-
ponent of the velocity with respect to the toroidal compo-
nent (error of the order of 0.5 (¢ * Ro/a)?), one thus finds
that the front retraction velocity is ~ 1.04 .

Performing a similar analysis for the growth of an-
other burst, Fig. 11 right hand side, one finds that it lasts
~ 4.2 a/cy, the expansion being near symmetric towards
the positive and negative values of ¢ and starting from
~ 0.8 (2 m) where the electric potential increases above
the threshold value. One finds that the maximum expan-
sion of the burst along ¢ reaches 0.86 (2 ), hence yield-
ing a front velocity of =~ 1.06 ¢¢. Note that one can also
observe a fixed point during this growth at ¢ ~ 7 and
o/rms(¢) ~ 1.7.

For the two structures, one finds that the maximum
extent along ¢ is 0 ~ 0.8 m which corresponds to 60 =
0p/q = 0.5 7 hence + 45° with respect to the midplane.
This is in relatively close agreement with the analysis of
the ballooned structure of the ion heat flux analysed in
GYSELA [26]. Interestingly this value also matches exper-
imental results for the SOL transport in L-mode [27-29)].

Although it appears reasonable to consider that such
bursts result from an avalanche breaking through a mag-
netic surface at a localised toroidal position and then ex-
panding along the field line to create a filamentary struc-
ture, one must still assess the correlation of such bursts of
the electric potential structure with that of the heat flux.
A 3D analysis is also necessary to discriminate between
such a mechanism and radial motions of filaments with
constant extent and bulging across the magnetic surface.

6 Interplay between zonal flow shear layers
and avalanche heat transport

In this Section we use data from the p, = 1/300 case.
Simulation parameters are summarised in table 1, profiles

are presented in Section 3.

The target of this section is to identify avalanches
[6, 8, 13, 25] and investigate their interplay with the cor-
rugation structures [14, 16, 30]. As already underlined,
the output from the large gyrokinetic simulation is not
complete. Our present analysis is mainly restricted to the
dynamics in the poloidal plane at ¢ = 0.

In the study of the self organised transport, they are
several aspects to take in account,(i) the identification of
structures or patterns, and consequently a first analysis
of the underlying process that governs the self organisa-
tion of the system, (ii) the evolution and propagation in
space of the structures, (iii) the mechanisms driving re-
laxation events and (iv) the interplay between the various
structures.

We focus our attention on the latter aspect. In fact,
since the corrugations (also called staircases) are defined
as micro-barriers combining organised shear layers and a
local increase of the temperature gradient [16], a straight-
forward issue is then to analyse the response of avalanches,
namely the most efficient radial transport mechanism, to
the micro-barrier. An interesting issue is to understand
why some avalanches are able to destroy the micro-barrier
while others are just dumped away? And consequently,
is there evidence of a threshold effect that governs the
disruption of micro-barriers and therefore level off their
favourable impact on confinement?

6.1 Zonal flow shear layers

In Section 4, the zonal flow pattern of the simulation
1/p. = 300 is investigated in detail. The radial profile
of the zonal flows is characterised by a series of minima
and maxima and includes flow reversal [9]. This flow pat-
tern determines the regions where the shear |pg0,v.| is
strong and can modify the radial transport properties [10].
On Fig. 12 left hand side, one can observe shear regions
where the zonal flow reverses. One can also see that the
large shear values are not restricted to these specific loca-
tions, Fig. 12 left hand side (note that only the shear val-
ues larger than 0.25 are plotted). In the mid-radius region,
one can notice that the shear maxima generate patterns ,
as mentioned in [9, 25, 31]. In particular, one can notice
pairs of high zonal flow shear regions, localised radially
and evolving on meso-scale times Fig. 12 right hand side.

These form a structure of small barriers that have been
shown to govern a local increase of the radial tempera-
ture gradient, so called corrugations, and leading to a stair
case like temperature profile [17]. For the sake of conve-
nience, we shall refer to such a pattern as a corrugation.
A close-up view of such a structure is plotted on Fig. 13,
left hand side. One can readily notice that the corruga-
tion pattern shifts radially (while the safety factor profile
is fixed) and exhibits modulations at high frequency and
even disruptions, namely transient loss of the pattern be-
fore it re-appears in a neighbouring radial location Fig. 13,
left hand side.
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Fig. 13. Contour of zonal flow shear |po0r < vgg >| zoomed
in a region with shear layers: left hand side and evolution of
the zonal flow shear; dashed blue line maximum for 197.2 <
r/p < 200.7, black line, open symbols value for r/p = 197.7,
red line open symbols for r/p = 200.2 : right hand side.

Evidence of this behaviour is found on Fig. 13, right
hand side, where the maximum of the zonal flow shear in a
radial window closely matches the maximum of the zonal
flow shear from two different radial coordinates. This is
consistent with a movement of the pattern between these
two neighbouring radial locations during the chosen time
window. One can also clearly notice on these time traces
that the corrugation exhibits several time scales in its evo-
lution pattern, the radial displacement corresponding to
both rapid steps on short time scales and gradual shift on
the long time scales. Scale separation that would allow one
to proceed to time averages can then only be achieved on
the basis of an efficient pattern recognition process (which
is beyond the scope of this analysis).

When increasing the poloidal mode number from m =
0, which yields a poloidal flow comparable to the zonal
flow, to m = 2 and higher mode numbers, one can observe
two features. For m = 1 and m = 2 the mode structure
exhibits a correlation with the large shear regions of the
zonal flows, Fig. 14: left hand side. This pattern is also
characterised by a slow evolution in contrast to the higher
mode numbers. Beyond m = 2, the mode amplitude pat-
tern is characterised by higher frequency events and rather
homogeneous radial profiles, see Fig. 14: right hand side.

On the latter figure, the black dots correspond to lo-
cal maxima of the zonal flow shear. One can observe that
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Fig. 14. Contour of the amplitude of the m = 2 mode of the
electrostatic potential ¢: left hand side, and trace of the profile
of amplitude of the m = 63 mode: right hand side. The points
with high zonal flow shear are marked by a black dot. This
provides a means to localise the corrugations.

they are two regimes that exhibit a strong correlation be-
tween these dots and the large amplitude of the m = 63
mode. When the dots exhibit the long lived corrugation
structure, they appear to bound regions with rather ho-
mogeneous amplitude of the m = 63 mode. Conversely,
when the dots are more oriented along outward ballistic
trajectories, they can be localised at the same location
as the maxima of the m = 63 mode amplitude. It seems
therefore that the shearing effect tend to confine the fluc-
tuations in the case of the corrugation pattern, and, when
such a pattern does not exist, can be transported with a
ballistic motion comparable to that of an avalanche.

6.2 Definition of micro-barriers

Determining the effect of the transport barrier on the tem-
perature field T; is not straightforward since the latter is
evolving throughout the simulation. This is readily ob-
served on Fig. 15 left hand side. In the radial interval of
interest one finds that the temperature increases by 50%.
Although the variation during the time window used in
the following, typically from tco/a = 3600 to tcy/a = 4100
appears to be small, Fig. 15 left hand side, it is still large
compared to the fluctuation level. It is easier to consider
the heat flux @ [15, 20, 26|, Fig. 15 right hand side. Both
the temperature field and the heat flux that are consid-
ered in this Section are averaged on a magnetic surface.
Localised effects on a surface are then levelled off.

Let us compare the total heat flux through a magnetic
surface rQo; to its neoclassical contribution rQ,e, and
the turbulent one Q5. In the radial window of interest,
one finds that the total heat flux is approximately constant
while both the neoclassical and turbulent heat flux exhibit
oscillations that compensate each other when computing
the total flux. One thus finds that when the turbulent
flux is depressed, the neoclassical flux increases. When
analysing such a behaviour in the framework of diffusive
transport, one finds:

< Qtot > =-n (aXturb + (1 — a)xneo) 8T <T > (11)
where « is the fraction of the heat flux due to turbulent
transport. In such an expression, ones assumes Y,» and
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Xneo invariant and given such that xiurs > Xneo- In quasi
steady state conditions with fixed density, < Qior > /n
is constant and (axturs + (1 — @)Xneo) Or < T > is also
constant. Let us define the temperature gradients V,. T4
and V,T,., required respectively for « = 1 and o = 0 for
this given total flux, one then obtains:

< Qrot >

4 (12)

= Xturblvr/rturb‘ = Xnea|vrTneo|
One then has |V, Ty < |ViTheo| and more generally
IV Tiurs| < |0-T| < |ViTheo|- A large temperature gradi-
ent is thus associated to a weak turbulence limit (« & 0)
and conversely a weak temperature gradient is associated
to large turbulent transport (a &~ 1). Given < Quurp >

/N = —aXtursOrT one also finds:
< Qturp > _ QX turb
< Qtot > QX turb + (1 - a)Xneo
a|vrTneo‘

alvrTneo| + (1 - a)|vthurb| (13)
Large turbulent transport, a &~ 1 then leads to a small
temperature gradient and < Quurp >/< Qtot > ~ 1 while
weak turbulent transport, a ~ 0, the case of improved
confinement governed by a transport barrier, leads to a
large temperature gradient and < Qyurp >/< Qtor > =~ 0

We thus define a transport barrier to be the region, lo-
calised radially but extending over the whole flux surface,
characterised by a strong drop of the radial turbulent flux
[31], namely when:

_ Qturb
Qtot

The figure of merit for the barrier Rp is more general
than the introduction based on diffusive transport and can
readily be generalised to a turbulent flux Q.. governed
by thermal convection due to the E x B drift velocity,
Eq.( 3a). Then Qo is the total radial heat flux (also av-
eraged on a magnetic surface), hence the sum of turbulent
and neoclassical heat flux, namely the flux governed by the
curvature drift Eq.( 3b).

In Fig. 16 we can see that the width of the transport
barrier is fluctuating in time. Two large turbulent bursts
are observed to break through the barrier, the first be-
tween time tcg/a 3500 and 3700 and the second between
4000 and 4200. Two radial intervals, one upstream from
the barrier, Ar,, the other downstream Arg are used to
compare the radial and poloidal components of the F x B
velocity in order to understand how the avalanches are
impacted by the barrier and vice-versa [31].

Rp

<03 (14)

When comparing the location of the regions where
Rp < 0.3, defined as the corrugation structures, and the
location of the maxima of the zonal flow shear, Fig. 16,
one finds that there is a common trend but not a perfect
match. It seems that the corrugation structure includes
two shear layers that are located on the side of the regions
where R < 0.3 (dark regions on Fig. 16). The corruga-
tion thus seems to be more redily associated to a maxi-
mum or a minimum of the zonal flow velocity, the latter
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Fig. 15. lon temperature profiles at different times during the
simulation, left hand side and heat flux through a magnetic sur-
face, proportional to rQ for the total (tot), neoclassical (neo)
and turbulent (turb) contributions, right hand side.
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Fig. 16. Correspondence between the barrier criterion Rp and
the location of the points with maximum zonal flow shear. Left
hand side Rp is given in scales of grey at 0.3 & 0.1, 0.3 being
the critical value, see Eq. 14, the points with maximum shear
are located by the red dots.
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Fig. 17. Left hand side, profiles of Rp and |pod,v.| at t =
3600 a/co. Right hand side, profile of §T; profiles of 073, left
hand side compared to the zonal flow shear
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Fig. 18. Variation of §7; and superimposed the regions with
maximum shear. 07; is the difference between the ion temper-
ature and a fit of the variation of the temperature determined
as a linear function of the initial profile.

being associated to two regions with zonal flow shear on
either side of the zonal flow extremum. However, one can
notice the correlation between the corrugation disruption
determined by the opening of the regions with maximum
zonal flow shear and those where values of Rg > 0.3 ex-
hibit radial ballistic propagation. The profiles at a given
time of Rp and |pgd,yv,|, Fig. 17 left hand side, under-
line both the convergence of these indicators in the micro-
barrier regions as well as differences in their behaviour.

In order to investigate the temperature fluctuations,
we have to define a reference temperature without us-
ing a mean value since the temperature profile is evolving
steadily, and since the fluctuations we want to analyse are
small. We fit the profile at time tco/a = 1600 as a linear
function of the smooth temperature profile used as initial
condition. We then use the fact that the temperature pro-
file evolves linearly with time (in a first approximation) to
define a reference temperature T, (¢, r). The temperature
variation is then defined as 0T;(t,7) = T;(t,7) — Tref (L, 7).
It includes both the fluctuations and a systematic devia-
tion due to the approximate fit of T;..¢ (¢, ). The evolution
of the profile of 6T; prior and just after time tcg/a = 4100,
Fig. 18, is found to exhibit dynamics at small scale, typi-
cally the radial distance between two corrugations of the
order of 20 py and lasting some 40a/c0, and larger scales
and magnitude such as that governing the disruption of
the corrugation structure at tco/a ~ 4100, that lasts about
100 a/c0 and extends over 40py. These events appear to
be essentially ballistic with a similar velocity ranging from
0.4 p.co to 0.5 p.cy. One can also observe that the small
events are constrained by the corrugation structures and
appear to bounce back and forth between the shear lay-
ers. Regarding the temperature variation 67}, one can also
observe that it tends to peak just prior or at the inner
most shear layer of a zonal flow extremum and to be de-
pleted in the vicinity of its outer shear layer, Fig. 18. When

analysing the profile of the temperature variation, Fig. 17
right hand side, and comparing it to the profile of the
zonal flow shear, including a threshold effect with a non
zero scale offset, one finds that the apparent correlation
observed on the contour plot is far more difficult to assess.

The various observations of the corrugation structure
allow one to draw some general features. First, one must
consider that the two shear layers in the vicinity of an
extremum of the zonal flow velocity are part of the same
structure. These two layers are found to isolate regions of
minimum turbulent heat flux and consequently of max-
imum neoclassical heat flux. The temperature variation
appears to reflect this property with peaking prior or at
the first shear layer and depletion close to the second shear
layer, hence indicating an enhanced gradient between the
two shear layers. The difficulty in drawing the correlation
between shear layers and transport underlines three as-
pects of this physics:

— the non linear aspect, the threshold procedure being
but one means to highlight it,

— the local features that govern the interaction are levelled-
off when considering flux surface averages of the heat
flux and temperature field,

— the shear layers that we analyse are not simple objects,
they exhibit strong fluctuations in time and space and
their continuity even at small time and space scales is
questionable,

— the issue of scale separation, which together with geo-
metrical features, is the backbone of separation of the
electrostatic potential into shear layers on the one hand
and avalanches on the other hand does not seem to
hold when addressing their interaction.

6.3 Trigger mechanism for micro-barrier reorganisation

Peaks of the temperature variation 67; yield a means to
investigate the dynamics of the corrugations, Fig. 18 and
Fig. 19. One finds that the peaks, such as that at r ~
145p¢ and time 4023a/cq, Fig. 19 left hand side, develop
while the points at both radial sides hardly vary. Con-
versely, the avalanche that coincides with the collapse of
the corrugation at time tcp/a = 4100 clearly exhibits a
radial shift of the peak, Fig. 19 right hand side. The anal-
ysis of the position of this peak allows one to capture the
inward displacement prior to a reflection and the large out-
ward ballistic motion. Following the position of the max-
imum in time then provides the velocity of this avalanche
which is found to agree with the value given previously
0.5 PxCo-

This two-fold description of the evolution of the tem-
perature variation could be related to two different heat
transport mechanisms. On the one hand, the avalanche as-
sociated to the disruption of the corrugation could exhibit
a flux surface symmetry comparable to that of the corru-
gation. The flux averaged transport event would then ap-
pear as being large. On the other hand, the local peaking
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gradient of the reference temperature at that time, right hand
side zoom of the profiles of 67; during the propagation of the
avalanche associated to the disruption of a corrugation struc-
ture.

could be related to the stopping capability of the corru-
gation of avalanches that are localised on the flux surface.
These would govern a gradual increase of d7T; via paral-
lel transport. When averaged on the flux surface these
avalanches would interfere to produce a weak background
heat flux. e The temperature variation also provides an
estimate of the fluctuation level, Fig. 19. One finds that
T; is of the order of 1.5 1072 Ty leading to T;/T; of the or-
der of 1 %. Since T} is rather homogeneous in the domain
of interest, one thus finds that T;/T; increases towards the
edge like 1/7;. This fluctuation level is estimated for the
flux surface averaged temperature, so that local events can
have much large magnitude.

When considering the existence of strong peaks of the
temperature variation 07;, there is a possibility of tem-
perature gradient inversion. On Fig. 19 left hand side the
linear temperature profile associated to the typical gradi-
ent is indicated. The latter is comparable to the largest
gradients developed in the peaks of §7;. One thus finds
that in the region where §7; is increasing, it can balance
the global temperature gradient and lead to a region with
a flat temperature profile. In the other region, where §7;
is decreasing, it can double the temperature gradient.

6.4 Poloidal distribution of the electric drift velocity
patterns

The available flux averaged quantities such as the ion heat
flux or the temperature field do not give precise informa-
tion on the location of the structures and consequently
on the mechanisms that drive the self organisation. Of
particular interest is the avalanche transport across the
micro-barriers and the occurrence of radially localised cor-
rugation disruptions that also govern the reorganisation
of the corrugation pattern. The most detailed informa-
tion we have is that of the electric potential. However,
the correlation between this field and actual avalanches is
not straightforward. Indeed, the electric field determines

the channel followed by the avalanches but only the cor-
relation between such channels and the temperature field
fluctuations determines the actual avalanche is terms of
ballistic heat flux transport events.

Given the electric potential field, they are two means
to investigate avalanche signatures, one is to track re-
gions with rapid evolution of the structure, as in Section
5, the other is to track patterns that are correlated to
avalanche transport such as large magnitude radial ExB
velocity, and in the case of avalanche shearing to large
magnitude poloidal ExB velocity as well as large Reynold
stress. In particular, one might expect that barrier dis-
ruptions depend on the amplitude of the radial velocity
of the avalanches. Indeed, the latter could be a criterion
determining the probability for an avalanche to cross the
micro-barrier, the larger the radial velocity, the less time
the avalanche experiences the shearing effect and the more
likely it will burn through the barrier. Furthermore one
can expect a decrease of the radial convection velocity
across the micro-barrier, avalanche slowing down effect.
However, this simple mechanism does not appear to match
the simulation evidence:

— the maximum radial velocity in the region prior to a
micro-barrier is not correlated to the disruptive fea-
tures of the micro-barrier,

— the radial velocity does not always decrease after a
transport barrier,

It thus appears that the magnitude of the radial velocity
is not the appropriate criteria to determine the avalanches
that will trigger a disruption of the corrugation structure.
Conversely, the Reynolds stress is found to be more sen-
sitive in identifying disruptive bursts. However, a correla-
tion appears to be rather complex and difficult to assess.

We investigate here the distribution of the radial and
poloidal velocity along 6 averaged on a radial interval Ar,,
upstream (towards the heat source) of the observed bar-
rier. From Fig. 20 we notice that the large values of the
poloidal velocity are not homogeneously distributed in the
f-plane. Depending on the time interval, the large magni-
tude velocity fluctuations are mostly localised either above
or below the low-field-side midplane, hence they do not ex-
hibit top-down symmetry. Regarding the radial velocity,
one finds that the distribution of the largest values is more
symmetric, hence with top-down symmetry, and thus cen-
tred towards 6 ~ 0.

Tracking the location of the maximum values of the
poloidal velocity in the #-plane we obtain the pattern dis-
played on Fig. 21. One can identify on this plot struc-
tures that are localised radially and that last on meso-
time scales. These structures are reminiscent of those of
the zonal flow, Fig. 5. Comparing the profile of this struc-
ture with the zonal flow shear (averaged on a time win-
dow ranging from 3900 to 4000 a/cg), Fig. 22, one finds
that these two fields are modulated with opposite signs.
Furthermore, one finds that the poloidal location of the
maxima exhibit a rather square shaped modulation. This
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Fig. 20. Left hand side, root mean square of the poloidal
velocity at Ary, (2). Right hand side, root mean square of the
radial velocity at Ar,
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Fig. 21. Time trace of the profile of the localisation of the
maxima of the poloidal velocity. The colour scale represents
the position 6/7 of the maximum of the poloidal velocity at a
given time and radial position.

suggest a transition between two patterns with opposite
poloidal locations.

6.5 Up-down asymmetry of the stopping capability of
the micro-barriers

Given the up-down asymmetry of the poloidal electric drift
velocity of the fluctuations, we can reconsider the effect of
corrugations on avalanches when taking into account the
poloidal location. The disruption phenomena would then
not only be due to the velocity amplitude of avalanches
but would also depend on the localisation of the interac-
tion between the two structures in the poloidal plane.

In Ref.[31], the stopping capability of a barrier is as-
sumed to be governed by the slowing down of the radial
motion. When addressing this issue, we find that the be-

Fo4

2' —— ExBshear
' ——mmaxy, daos
04 05 06 07 03
pfa

Fig. 22. Profiles of the localisation of the maxima of the
poloidal velocity and of the zonal flow shear.

transport barrier

Fig. 23. Variation of the radial velocity along r with up-down
asymmetry. Plain line bottom region pi < 6 < 2 7, dashed line
upper region 0 < 6 < 7.

haviour of the radial drift velocity depends on the location
in the poloidal plane, fig.23. More precisely, we observe
that the radial velocity decreases at the barrier location
when the interaction in poloidally localised in the upper
region 0 < 6 < «. Conversely, there is no noticeable effect
when the interaction is localised in the lower region so that
m < 0 < 2 x. Furthermore, when plotting the amplitude of
the radial velocity fluctuations in a contour plot of radial
profiles versus time, Fig. 24, left hand side panel)), one
cannot identify a clear cut effect of the transport barrier
(at the dashed vertical lines) unlike the strong effect on
the turbulent heat flux Fig. 16 and Fig. 17. However, when
splitting the data into the upper and lower regions, we find
that the corrugation exhibits a moderate stopping capa-
bility whenever m < 6 < 2 7, hence in the lower region,
middle panel of Fig. 24, and a stronger one for 0 < 6 <,
in the upper region, right hand side panel of Fig. 24.

Provided one considers that the large magnitude of
the fluctuations of the radial and poloidal electric drift
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Fig. 24. Contour plot of the amplitude of the radial velocity
versus radius and time. Left hand side panel for all values of
theta, middle panel for the bottom region 7 < 6 < 2 7, and
for the top region 0 < 6 < 7 right panel.

velocities occur at the avalanche location, one can build
the following picture:

— the maximum poloidal velocity is localised in regions
with maximum zonal flow shear, which suggests a max-
imum stretching of the avalanche structure at the shear
layers, in agreement with the standard image of shear
layers.

the region with maximum stretching appears to flip
from up above the midplane on the low field side 8 /7 ~
1/4, to down, below the miplane on the low field side
0/m ~ —1/4. This suggests a dependence of the local-
isation with the sign of the zonal flow and a moderate
effect of the magnetic shear.

the times with efficient stretching correspond to times
with effective stopping capability of the micro-barriers
for avalanches interacting with the barrier at the poloidal
location of maximum avalanche stretching.

Depending on the sign of the zonal flow, the avalanches,
which are born on the low field side in the region [—7 /4, /4],
drift poloidally. The maximum stopping capability of the
micro-barriers occurs where the poloidal stretching is max-
imum and the outward radial velocity minimum. The clear
impact of this process on heat turbulent transport is in
agreement with the dominant role of avalanches in the
heat transport process. The latter is found to be regu-
lated by the self generated micro-barriers. It is also found
to be localised poloidally and toroidally.

7 Dynamics of marginally trapped & passing
particles and their impact on the distribution
function

The analysis of the GYSELA simulations presented in the
previous Sections only use the first moments of the distri-
bution, namely the density used to determine the electric
field Egs.(5a, 5b) and the temperature that also yields
the heat flux. We are interested here in completing the
description of this physics by considering specific signa-
tures of the kinetic framework. The particle trajectories
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Fig. 25. Distribution function (log scale) in the (6, v|) plane
for a large value of i and of the inverse aspect ratio. The dashed
line is the standard island separatrix. Dotted white contours
for trapped particles are also indicated.

(2a, 2b) that are explicitly used in the Vlasov equation
(1) can be associated to the Hamiltonian H.,:

1, ) mu_
H., = 5] +uB 5 p= 5B (15a)
B
p=bBo _pq_ Ricos(o)) (15b)
0

The variation of the amplitude of the magnetic field in the
phase space then governs the separation of particles be-
tween trapped and passing depending on the occurrence
of a sign reversal of v| along the particle trajectories: if
v # 0V 0 € [0,2n], along the trajectory, the particle is
"passing”, conversely for "trapped particles” v = 0 at
two points of the trajectory. With the approximation of
the magnitude of the magnetic field in Eq.(15b), the sys-
tem is equivalent to that of the pendulum. Provided the
tokamak axisymmetry is preserved, the toroidal angular
momentum is an invariant. Using this constraint one can
readily show that any change in v|| is associated to a ra-
dial displacement. For trapped particles, the reversal of v
then governs a radial excursion of the trajectory leading
to the idea of ”banana shape orbits”. The typical width
of these orbits is J, ~ piq/\/(e), where p; is the ion Lar-
mor radius related to p, g is the safety factor Eq.(7) and
€ = a/Ry the inverse aspect ratio. This feature underlines
the departure from the reference pendulum model since v
is not an invariant of the system when the perturbation
uB = 0.

In a first approximation, trapped particles thus exhibit
a parallel bounce motion between two turning points to-
gether with a §, variation of its radial position. To com-
plete this description, it can also be shown that trapped
particles exhibit a slow frequency drift of their toroidal
location [32]. Furthermore, close to the boundary between
trapped and passing, the trapped particles exhibit an in-
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Fig. 26. Cut of the distribution of guiding centers at r/a ~
0,85, 86 = ©/2, ¢ = 0. For high values of u one can observe
a significant departure from a Maxwellian distribution. The
transition from trapped to passing particles is reminiscent of
neoclassical effects.

version of this drift frequency [32]. Finally, trapped par-
ticles have a negligible contribution to the current as well
as to the plasma momentum due to the averaging out
by the bounce motion. Provided the collision mean free
path is large compared to the size of the trapped orbits,
the properties of the trapped particles remain unchanged
while the passing particle exhibit a poloidal rotation pro-
portional to the radial temperature gradient. A matching
layer then builds-up in the distribution function at the
trapped-passing boundary [17].

When the axisymmetry of the trajectories is broken
by turbulence, the topological separation between pass-
ing and trapped particles can be expected to be modified.
However the electrostatic energy to be added in the Hamil-
tonian Eq.(15a) is of order p,. The turbulence will there-
fore mostly modify the particle trajectories that remain in
phase with the perturbation. The stagnation point of the
trapped particle, § = w, v = 0, that corresponds to the
hyperbolic or X-point of the pendulum phase space, will
thus be most sensitive to low frequency perturbations. The
latter can then modify the distribution function in partic-
ular in the vicinity of the trapped-passing matching layer.

Let us first consider the distribution function in 0, v
planes where at lowest order approximation one expects to
recover the pendulum phase portrait, the island pattern.
Since the width of trapped region scales like (1 Bo/Tp)"/?,
we first consider p = 6.5Ty/ By, a rather large value. Sim-
ilarly, one selects a radial position such that e ~ 0.246 is
also large (e < 0.30). As zero order, one recovers the ex-
pected island structure, Fig. 25. The changes with respect
to the latter seem to be localised at v < 0. In particular,
one readily observes a pattern with a dip in the vicinity of
the upper separatrix and an enhanced probability density

-1.0 -0.5 0.0 0. 1.0

5
0/n

Fig. 27. Toroidally averaged distribution function < f >,
(linear scale) in the (6,v) plane for value u ~ 2 and at mid-
radius of the simulation region. The dashed line is the standard
island separatrix. Dotted white contours for trapped particles
are also indicated.
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Fig. 28. Fluctuation of the distribution function f— < f >,
(linear scale) in the (6,v) plane for value i ~ 2 and at mid-
radius of the simulation region. The dashed line is the standard
island separatrix.

above the X-point. This pattern exhibits a weak depen-
dence on the toroidal angle ¢ and can be thus considered
as axisymmetric. This first order modification of the is-
land pattern appears to decrease with magnetic moment
1, Fig. 26. This distortion of the distribution function in
phase-space (v, ) is also quite clear when analysing the
distribution as a function of v for different values of p,
Fig. 26. Since the E x B drift velocity does not depend on
the particle energy while the vertical drift does Eq.(3b),
one can consider that this structure is governed by neo-
classical effects.
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As already stressed, this neoclassical effect is less strin-
gent at lower u and at reduced aspect ratio, hence smaller
radius, Fig. 27. This allows one to properly locate the sep-
aratrix between the passing and trapped particles, Fig. 27.
Using this data one can then consider the fluctuations of
the distribution function, Fig. 28. These are defined as
the difference between the toroidally averaged distribu-
tion function < f >, as plotted on Fig. 27 and the actual
distribution function at ¢ = 0. One can notice that the
fluctuations are localised in ¢ and elongated in v||. There
seems to be little difference between the trapped and pass-
ing particles, but for two regions where the fluctuations
appear to be damped, along the separatrix v >0, 6 <0
and v < 0, § > 0, Fig. 28. A closer look also indicates
that the fluctuations of the distribution function is these
regions are slightly distorted when compared to the two
other regions where the fluctuations are well aligned along
the v) = constant vertical lines.

8 Discussion and conclusion

The simulation effort to recover the flat top conditions
of Tore Supra shot TS45511 with the flux driven and
global code GYSELA has led us to investigate a parame-
ter space that appears to stand rather close to marginal-
ity, leading to a slow transient. The latter is characterised
by self organisation and in particular by micro-barriers
that tend to slow the evolution. The long simulations
times in this regime offer an opportunity to investigate
the self-organisation of structures from typically one Lar-
mor radius & pg to the full radius of the simulation region
~ 250 pg. With respect to time, the shortest time that
is available in the output data, the diagnostic time 444
appears to be too long to resolve some of the events, while
the longest time, that is required to reach the steady state
is not yet reached. This leads to a range of characteristic
times from < tg;44 ~ 0.8 a/co up to > 7200 a/cy. The cor-
responding amount of data in 5D cannot be stored and we
have been led to analyse these simulations using existing
diagnostics, the most detailed being the electric potential
in 2D + time at given toroidal position. We have also
considered flux-averaged fields such as the ion tempera-
ture of the heat flux. The full 5D distribution function
that we have analysed in Section 7 is only available at a
couple of given times (restart conditions). The conclusion
of our analysis have to be set in this perspective, which
combines very large data handling but incomplete descrip-
tion, as well as long simulation time but still insufficient
statistics. These are required to capture significantly the
events that prevail in the heavy tails that characterise tur-
bulence self-organisation [33].

With the experience of 2D, slab and fluid simulations
assuming invariance along the field line [8, 25] a fascinat-
ing issue is to determine the 3-D structure of the avalanches
that are reported in gyrokinetic simulations [5, 15, 26]. In
Section 5 we analyse the structure of the bursts of the
electrostatic potential. We concentrate on the bursts that
have a magnitude larger than 2 r.m.s.. We find evidence of

parallel expansion and retraction with parallel velocities
of the order of ¢g, the ion reference thermal velocity. The
maximum toroidal extent is found to be of the order of
0.8 7 and lasts typically 7 ~ 5 a/co. These bursts are lo-
calised towards the low field side midplane and exhibit an
up-down asymmetry that flips from up to down and vice
versa in time. The ballooned pattern of such a structure is
typically & 7 / 4 in the poloidal plane, in agreement with
available experimental observations [27-29].

Using the electrostatic potential in the ¢ = 0 poloidal
plane, one can investigate the properties of its poloidal
modes. The two first modes m = 0 and m = 1 exhibit a
global structure in the radial direction with respectively
zero and one sign change. The magnitude of the m = 0
mode is 100 times that of the m = 1 mode (1/p, = 300) so
that the poloidal shear layers are governed by the m =0
mode, hence the zonal flows. These are therefore poloidally
and toroidally symmetric. It is noticed, but not under-
stood, that the m = 0 exhibits spikes that are charac-
terised by fast radial propagation, of the order of the ion
thermal velocity ¢g. These look like the so-called ”gong”-
modes [21, 22| although completely different in nature. In
contrast to the m = 0 and m = 1 the higher mode num-
ber amplitudes have a complex pattern but exhibit little
sign of radial localisation. Shear layers, and the occurrence
of rational surfaces along the profile of the safety factor
do not seem to govern strong localisation of these modes.
However, one finds that the phase of these modes is corre-
lated to the local (in radius and time) zonal flow velocity.
More strikingly, one finds that the pulsation exhibits a lin-
ear dependence on the mode number. This dispersion-like
property can be attributed to a Doppler effect essentially
governed by the zonal flow. This provides an experimen-
tal means to measure the zonal flow velocities and their
possible reversal. The intrinsic mode pulsation, estimated
from the linear analysis and proportional to the density
diamagnetic frequency [5] could not be assessed.

The micro-barriers, also called corrugations or stair-
cases [16], have been investigated using the ratio of tur-
bulent over total heat flux [31]. One finds that the cor-
rugation structures are complex and can be considered
as a combination the two shear layers on either side of a
peak, positive or negative, of the zonal flow velocity. This
aspect is supported by the behaviour of the ion tempera-
ture fluctuations. One observes two scales for these fluctu-
ations. The small scale fluctuations appear to bounce be-
tween the shear layers but cannot penetrate into the cor-
rugations. The large fluctuations, correlated to the heat
flux avalanches can disrupt or displace the corrugation
and experience therefore longer ballistic transport events.
They are also associated to enhanced fluctuation levels
and larger heat fluxes. Both scales of fluctuations propa-
gate at the same velocities, of the order of 0.5 p.co. The
typical size of the corrugations, hence of the peak of the
zonal flow velocity, is found to be of the order of ~ 3py.
As a consequence, the characteristic transverse time to
cross a corrugation is 7, ~ 6 a / ¢s;. One finds there-
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fore that the expansion time in the parallel direction, 7,
which bounds the filament structure, is comparable to the
transverse time scale to cross a corrugation, 7| ~ 7. This
might be an important issue in understanding the complex
interplay between avalanches, filaments, corrugations and
ballooned transport.

The analysis of the stopping capability of the avalanches
by the corrugations has indicated an up-down asymmetry.
Depending on the sign of the shear of the zonal flow, the
maxima of the poloidal velocity is located either above or
below the midplane. The stopping capability of the corru-
gations is also found to exhibit such up-down asymmetry.
This evidence is presently investigated to clarify the stop-
ping capability of avalanches by the corrugations as well
as the corrugation disruptive features possibly induced by
the avalanches (in the spirit of [31]).

Kinetic features complete the analysis of the phase
space patterns. The largest impact of kinetics is found
to be the island structure that defines trapped and pass-
ing particles. The zero order of this structure is recov-
ered towards the core. Further to the edge, the interplay
with the drifts, and thus the neoclassical effects, govern
a distortion of the island and significant departure from
the Maxwellian distribution despite the large edge colli-
sionality [17]. This first order effect can be related to the
evaporation of the fastest trapped particles as well as a
transfer of momentum from the trapped to the passing
particles due to either turbulence or collisions. The third
order effect is that associated to turbulence. It plays a
role for the same class of particles as that contributing to
the neoclassical transport leading to interaction between
these two physics. The importance and magnitude of the
latter remains to be assessed.

The long simulation of the Tore Supra shot TS45511
in a regime close to marginality have disclosed complex
self-organisation with signatures of local events: avalanche
transport, corrugations, that we identify as a zonal flow
velocity peak together with the shear regions on either
side, as well as large scale organisation captured by Fourier
modes. The main mode is the zonal flow pattern deter-
mined by the 0-mode of the poloidal spectrum. Further
investigation with 3D and 5D data sets when available is
necessary and even longer simulation runs will be required
to complete both the analysis and the statistics.
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