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Abstract

In this article we introduce numerical schemes for the Vlasov-
Maxwell equations relying on different kind of grid based Vlasov solvers,
as opposite to PIC schemes, that enforce an discrete continuity equa-
tion. The idea underlying this schemes relies on a time splitting
scheme between configuration space and velocity space for the Vlasov
equation and on the computation of the discrete current in a form
that is compatible with the discrete Maxwell solver.

1 Introduction

We consider the motion of particles in their self-consistent electromagnetic
field, which can be described by the Vlasov-Maxwell equations. In this work,
we restrict ourselves to the two-dimensional non relativistic model, which
involves four phase space dimensions, namely x, y, vx, vy, but the ideas devel-
oped here can be extended in a straightforward manner to the 3D relativistic
model. In our case the unknown quantities are the particle distribution func-
tion f(t,x,v), the electric field E(t,x) = (Ex, Ey, 0) and the magnetic field
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B(t,x) = (0, 0, Bz), where we denote by x = (x, y) and v = (vx, vy). Then
the Vlasov equation reads

∂f

∂t
+ v · ∇xf + (E(t, x) + v ×B(t, x)) · ∇vf = 0, (1)

where ∇x denotes the gradient in configuration space and ∇v denotes the
gradient in velocity space. The initial condition f(0,x,v) = f0(x,v) is given.
The self-consistent electromagnetic field (E(t,x),B(t,x)) is computed thanks
to Maxwell’s equations

∂E

∂t
−∇×B = −J, (2)

∂B

∂t
+∇× E = 0, (3)

∇ · E = ρ, (4)

∇ ·B = 0. (5)

The source of Maxwell’s equations, namely the charge density ρ and cur-
rent density J = (Jx, Jy) are computed from the particle distribution f and
the uniform neutralizing Maxwellian background particles defined by their
density nb(x) =

∫
f0(x,v) dv thanks to

ρ(t,x) =

∫
R2

(f(t,x,v) dv − nb(x)), J(t,x) =

∫
R2

f(t,x,v)v dv. (6)

Note that integrating the Vlasov equation (1) with respect to the velocity
variable v yields

∂ρ

∂t
+∇ · J = 0, (7)

which is called the continuity equation and expresses the local conservation
of charge. In the continuous setting, provided this continuity equation is
satisfied and Gauss’ law (4) is satisfied at time t = 0, if the electric and
magnetic fields are computed using only Ampère’s law (2) and Faraday’s
law (3), Gauss’ law is satisfied for all time. In general, numerical Vlasov-
Maxwell solvers being PIC, Eulerian or semi-Lagrangian do not verify this
and a correction scheme is generally used to enforce Gauss’ law at each time
step or from time to time.

The aim of this paper is to propose a general procedure, valid for Vlasov
solvers on a cartesian grid based on a splitting method between configura-
tion and velocity space, that enables to establish a discrete continuity equa-
tion verified by the discrete charge and current densities computed from the

2



Vlasov solver compatible with the Maxwell solver, so that only Ampère’s and
Faraday’s law will need to be advanced by our Maxwell solver, Gauss’ law
being a consequence of those.

The outline of the paper is as follows. First we will derive the discrete
continuity equations associated to the Yee Maxwell solver and to a spectral
solver, then we will introduced an algorithm for computing the discrete charge
and current densities compatible with these discrete continuity equations for
a conservative semi-Lagrangian algorithm and a spectral algorithm. Finally,
after presenting the coupling algorithm, we will validate our method on some
relevant test cases.

2 Discrete continuity equations

A discrete continuity equation is necessarily linked to the Maxwell solver, as
the discrete curl and divergence operators need to be compatible. To this aim
a first requirement of the Maxwell solver, is that the discrete divergence of
the discrete curl vanishes. In this case a discrete continuity equation specific
for each solver can be derived such that if this discrete continuity equation
is satisfied and the Gauss law is satisfied at time step tn = n∆t it will also
be satisfied at time step tn+1.

The formulation of the discrete continuity equation for the Yee scheme,
as well as for Finite Volume schemes for the Maxwell system on unstructured
grids with the leap-frog and other time stepping schemes have already been
obtained by Bouchut [2].

We shall recall here the discrete continuity equation for the classical Yee
solver and also introduce it for a spectral solver associated to a leap-frog
method in time.

2.1 For the Yee Maxwell solver

Let us first consider the classical Yee solver on a staggered mesh. Figure 1
displays the positons of the different components of the fields on a staggered
cartesian grid in the Yee scheme.
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Figure 1: Positions of the different components of the fields in the Yee scheme.

The Yee scheme reads

En+1
xi+1/2,j

− En
xi+1/2,j

∆t
= c2

Bn
zi+1/2,j+1/2

−Bn
zi+1/2,j−1/2

∆y
− 1

ε0
Jn+1/2
xi+1/2,j

, (8)

En+1
yi,j+1/2

− En
yi,j+1/2

∆t
= −c2

Bn
zi+1/2,j+1/2

−Bn
zi−1/2,j+1/2

∆x
− 1

ε0
Jn+1/2
yi,j+1/2

, (9)

Bn+1
zi+1/2,j+1/2

−Bn
zi+1/2,j+1/2

∆t
=
En

xi+1/2,j+1
− En

xi+1/2,j

∆y
−
En

yi+1,j+1/2
− En

yi,j+1/2

∆x
.

(10)

The associated discrete Gauss’ law at time tn will then read

En
xi+1/2,j

− En
xi−1/2,j

∆x
+
En

yi,j+1/2
− En

yi,j−1/2

∆y
=

1

ε0
ρni,j. (11)

Now, taking the discrete divergence of Ampere’s law (8)-(9) yields

1

∆t

(
En+1

xi+1/2,j
− En+1

xi−1/2,j

∆x
+
En+1

yi,j+1/2
− En+1

yi,j−1/2

∆y
−
En

xi+1/2,j
− En

xi−1/2,j

∆x

−
En

yi,j+1/2
− En

yi,j−1/2

∆y

)
= − 1

ε0

(
Jn
xi+1/2,j

− Jn
xi−1/2,j

∆x
+
J
n+1/2
yi,j+1/2 − J

n+1/2
yi,j−1/2

∆y

)
.

(12)
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Let us now introduce, at time step tn the following discrete continuity

ρn+1
i,j − ρni,j

∆t
+
Jn
xi+1/2,j

− Jn+1/2
xi−1/2,j

∆x
+
Jn
yi,j+1/2

− Jn+1/2
yi,j−1/2

∆y
= 0. (13)

If this is satisfied, it follows from (12) that

1

∆t

(
En+1

xi+1/2,j
− En+1

xi−1/2,j

∆x
+
En+1

yi,j+1/2
− En+1

yi,j−1/2

∆y
−
En

xi+1/2,j
− En

xi−1/2,j

∆x

−
En

yi,j+1/2
− En

yi,j−1/2

∆y

)
=

1

ε0

(
ρn+1
i,j − ρni,j

∆t

)
.

So, if the discrete Gauss law (11) is satisfied at time tn, it follows that

En+1
xi+1/2,j

− En+1
xi−1/2,j

∆x
+
En+1

yi,j+1/2
− En+1

yi,j−1/2

∆y
=

1

ε0
ρn+1
i,j ,

which is the discrete Gauss law at time tn+1.

2.2 For a spectral Maxwell solver

We consider periodic boundary conditions in x and y so that discrete Fourier
transform is adapted to the spatial discretization of the Vlasov and the
Maxwell’s equations. We denote by En

x,kx,ky
the spatial discrete Fourier trans-

form of Ex(tn) (similar notations are used for Ey, Bz, ρ, Jx and Jy), with
tn = n∆t, n ∈ N,∆t > 0. Then the Fourier transform in (x, y) of the Fara-
day and Ampère’s equations together with a leap-frog scheme in time lead
to the following Maxwell solver:

En+1
x,kx,ky

− En
x,kx,ky

∆t
= ikyB

n
z,kx,ky − J

n+1/2
x,kx,ky

, (14)

En+1
y,kx,ky

− En
y,kx,ky

∆t
= −ikxBn

z,kx,ky − J
n+1/2
y,kx,ky

, (15)

B
n+1/2
z,kx,ky

−Bn−1/2
z,kx,ky

∆t
= ikyE

n
x,kx,ky − ikxE

n
y,kx,ky . (16)

The discrete spectral Gauss’ law at time tn writes

ikxE
n
x,kx,ky + ikyE

n
y,kx,ky = ρnkx,ky . (17)
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Taking the discrete Ampère law in the spectral case, amounts to summing
(14) multiplied by ikx and (15) multiplied by iky. This leads to

1

∆t
(ikxE

n+1
x,kx,ky

+ikyE
n+1
y,,kx,ky

−ikxEn
x,kx,ky−ikyE

n
y,kx,ky) = −(ikxJ

n
x,kx,ky+ikyJ

n
y,kx,ky).

Notice that here also, like in the Yee scheme the discrete curl of Bz vanishes
in the last equation, which is a necessary property for our Maxwell solvers if
we want a discrete continuity equation. Since the Gauss law (17) is satisfied
at time tn, we then have

ikxE
n+1
x,kx,ky

+ ikyE
n+1
y,kx,ky

= ρnkx,ky −∆t(ikxJ
n
x,kx,ky + ikyJ

n
y,kx,ky). (18)

The discrete version of the continuity equation (7) reads here

ρn+1
kx,ky

= ρnkx,ky −∆t(ikxJ
n+1/2
x,kx,ky

+ ikyJ
n+1/2
y,kx,ky

). (19)

If this is ensured, if follows from (18) that

ikxE
n+1
x,kx,ky

+ ikyE
n+1
y,kx,ky

= ρn+1
kx,ky

,

which is the Gauss law is satisfied at time tn+1.

3 Computation of the discrete charge and cur-

rent density from the Vlasov solver com-

patible with the discrete continuity equa-

tion

Having identified the discrete continuity equation for the Maxwell solver
that we want to use, the next task is to find a way to compute the discrete
charge and current densities from the Vlasov equation so that they satisfy
this discrete continuity equation.

For Particle In Cell (PIC) Vlasov solvers associated to the Yee Maxwell
solver there is a well-known procedure for doing that introduced by Villasenor
and Buneman [9] generalised to higher order deposition schemes in [1]. Other
options are also possible, like those introduced by Esirkepov [5] or Umeda
[8].
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In the case of grid based Vlasov solvers, Sircombe and Arber [7] showed
that this could be enforced for a split-eulerian Vlasov solver using the PPM
method of Colella and Woodward [3] by computing J from the fluxes needed
by the algorithm in the configuration space advections. Let us now show
that this idea can be applied for general Finite Volume schemes, including
as we will see conservative semi-Lagrangian schemes.

A splitting of the Vlasov equation between configuration space and ve-
locity space advection will lead us to solve alternatively

∂f

∂t
+ v · ∇xf = 0, (20)

and
∂f

∂t
+

q

m
(E(t, x) + v ×B(t, x)) · ∇vf = 0, (21)

The second equation does not modify ρ as can be seen integrating with
respect to momentum. Hence it should not provide any direct contribution
to J either for the discrete continuity equation to be satisfied. We shall only
require that the discrete solver exactly conserves ρ at all grid points, which is
the case for all conservative solvers. So assuming a conservative solver is used
for the velocity space advection, our problem is now to design a configuration
space advection compatible with the discrete continuity equation given by the
Maxwell solver.

We first notice that the advection in configuration space (30) is for each
given v ia constant coefficient advection. Note that this would be true also
in the relativistic case for each given p.

We shall further split the configuration space advection for fixed v into
two 1D advections, which is simpler and less costly. Note that this does
not introduce an additional splitting error as constant coefficient advections
commute.

Finally, we only need to consider constant coefficient 1D advections of
the form

∂f

∂t
+ a

∂f

∂x
= 0, (22)

with a being vx or vy at a given velocity grid point.
We shall provide compatible schemes in the case of the Finite Volumes

and spectral methods we consider.
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3.1 Finite volume schemes

Let us define uniformly spaced control cells [xi−1/2, xi+1/2] with xi+1/2 −
xi−1/2 = ∆x. The unknown in a Finite Volume scheme will be the aver-
age value on a control cell that we shall denote by

fi =
1

∆x

∫ xi+1/2

xi−1/2

f(x) dx.

Integrating (22) on a control cell and between time tn and tn+1 yields

fn+1
i = fn

i −
a

∆x

∫ tn+1

tn
(f(t, xi+1/2)− f(t, xi−1/2)) dt.

Let us denote by f
n+1/2
i+1/2 a numerical approximation of 1

∆t

∫ tn+1

tn
f(t, xi+1/2) dt.

Then our Finite Volume scheme becomes

fn+1
i = fn

i −
a∆t

∆x
(f

n+1/2
i+1/2 − f

n+1/2
i−1/2 ). (23)

Note that the actual computation of f
n+1/2
i+1/2 makes up the specific Finite

Volume scheme, this could be done with an upwind scheme or the PPM
scheme or others. For our purposes, it will be sufficient to consider this
generic form of the Finite Volume scheme.

Let us now come back to our split Vlasov solver, for which a Finite Volume
scheme of the form (23) will be used in the x and y advection steps and any
conservative scheme in the v advection step. We discretize the distribution
function on a 4D grid with uniform steps in each direction, denoting by i the
x index, j the y index, k the vx index and l the vy index. Starting from fn

i,j,k,l

at time step tn, the algorithm reads,

fn,1
i,j,k,l = fn

i,j,k,l −
vx,k,l∆t

2∆x
(f

n,1/2
i+1/2,j,k,l − f

n,1/2
i−1/2,j,k,l),

fn,2
i,j,k,l = fn,1

i,j,k,l −
vy,k,l∆t

2∆y
(f

n,3/2
i,j+1/2,k,l − f

n,3/2
i,j−1/2,k,l),

fn,3
i,j,k,l ← fn,2

i,j,k,l using a conservative advection in v space,

fn,4
i,j,k,l = fn,3

i,j,k,l −
vy,k,l∆t

2∆y
(f

n,7/2
i,j+1/2,k,l − f

n,7/2
i,j−1/2,k,l),

fn+1
i,j,k,l = fn,4

i,j,k,l −
vx,k,l∆t

2∆x
(f

n,9/2
i+1/2,j,k,l − f

n,9/2
i−1/2,j,k,l).
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Now, the discrete charge density is linked to the discrete distribution function
by

ρni,j = q∆vx∆vy
∑
k

∑
l

fn
i,j,k,l.

So, using the previous algorithm we can relate ρn+1
i,j to ρni,j by summing the

different lines with respect to k, l. Then, we get

1

q∆vx∆vy
ρn+1
i,j =

∑
k,l

fn+1
i,j,k,l

=
∑
k,l

fn,4
i,j,k,l −

∆t

2∆x

∑
k,l

vx,k,l(f
n,9/2
i+1/2,j,k,l − f

n,9/2
i−1/2,j,k,l)

=
∑
k,l

fn,3
i,j,k,l −

∆t

2∆y

∑
k,l

vy,k,l(f
n,7/2
i,j+1/2,k,l − f

n,7/2
i,j−1/2,k,l)

− ∆t

2∆x

∑
k,l

vx,k,l(f
n,9/2
i+1/2,j,k,l − f

n,9/2
i−1/2,j,k,l)

Then the conservativity of the advection in v space yields
∑

k,l f
n,3
i,j,k,l =∑

k,l f
n,2
i,j,k,l. Thus, proceeding in the same manner with the first two steps of

the algorithm we finally get

1

q∆vx∆vy
ρn+1
i,j =

∑
k,l

fn
i,j,k,l −

∆t

2∆y

∑
k,l

(
vy,k,l(f

n,7/2
i,j+1/2,k,l + f

n,3/2
i,j+1/2,k,l

−fn,7/2
i,j−1/2,k,l − f

n,3/2
i,j−1/2,k,l)− vx,k,l(f

n,9/2
i+1/2,j,k,l + f

n,1/2
i+1/2,j,k,l

−fn,9/2
i−1/2,j,k,l − f

n,1/2
i−1/2,j,k,l)

)
. (24)

Let us know denote by

Jn+1/2
xi+1/2,j

= q∆vx∆vy
∑
k,l

vx,k,l ·
1

2
(f

n,9/2
i+1/2,j,k,l + f

n,1/2
i+1/2,j,k,l), (25)

Jn+1/2
yi,j+1/2

= q∆vx∆vy
∑
k,l

vy,k,l ·
1

2
(f

n,7/2
i,j+1/2,k,l + f

n,3/2
i,j+1/2,k,l). (26)

Then (24) becomes

ρn+1
i,j − ρni,j

∆t
+
J
n+1/2
xi+1/2,j − J

n+1/2
xi−1/2,j

∆x
+
J
n+1/2
yi,j+1/2 − J

n+1/2
yi,j−1/2

∆y
= 0,
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which is exactly the discrete continuity equation (13) needed by the Yee
scheme. Hence expressions (25)-(26) provide an expression of the discrete
current density J consistent with a Finite Volume Vlasov solver and that
satisfies a discrete continuity equation.

3.2 Finite Volume form of a semi-Lagrangian scheme

We have obtained in the previous section an explicit expression for the dis-
crete current which satisfies a discrete continuity equation for any split Vlasov
solver for which the x and y advection parts can be cast in the generic
Finite Volume framework (23). We are now going to cast a conservative
semi-Lagragian scheme [4] for constant coefficient advection into this Finite
Volume formalism. This will then enable us to construct charge conserving
algorithms for a large class of split Semi-Lagrangian schemes.

In both Finite Volume and conservative semi-Lagrangian schemes, the
first step is to reconstruct a piecewise polynomial function on each cell. We
shall call fR this reconstructed piecewise polynomial function. The recon-
struction scheme does not matter for our purpose, it could be PPM, splines
or something else, with limiters or not. The only property we shall need is
that it is linked to the computed cell averages fj = 1

∆x

∫ xj+1/2

xj−1/2
f(x) dx, by

fj =
1

∆x

∫ xj+1/2

xj−1/2

fR(x) dx.

We shall also assume that the CFL condition a∆t
∆x
≤ 1 is verified.

In a Finite Volume scheme for the 1D advection equation (22), we then
compute

f
n+1/2
i+1/2 =

1

∆t

∫ tn+1

tn
f(t, xi+1/2) dt =

1

∆t

∫ tn+1

tn
fR(xi+1/2 − a(t− tn)) dt

and by the change of variables x = xi+1/2 − a(t− tn)

f
n+1/2
i+1/2 =

1

a∆t

∫ xi+1/2

xi+1/2−a∆t

fR(x) dx.

Then using the formulation (23), we get the Finite Volume scheme

fn+1
i = fn

i −
1

∆x
(

∫ xi+1/2

xi+1/2−a∆t

fR(x) dx−
∫ xi−1/2

xi−1/2−a∆t

fR(x) dx). (27)
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On the other hand, for a conservative semi-Lagrangian scheme, the dis-
tribution function is updated using the relation

fn+1
i =

1

∆x

∫ X(xj−1/2)

X(xj−1/2)

fR(x) dx,

where X(xj+1/2) is the origin of the characteristic ending at xj+1/2, that is
in our case of constant advection at velocity a, X(xj+1/2) = xj+1/2 − a∆t.
Hence

fn+1
i =

1

∆x

∫ xj+1/2−a∆t

xj−1/2−a∆t

fR(x) dx

=
1

∆x

(∫ xj−1/2

xj−1/2−a∆t

fR(x) dx+

∫ xj+1/2

xj−1/2

fR(x) dx−
∫ xj+1/2

xj+1/2−a∆t

fR(x) dx

)

= fn
i +

1

∆x

(∫ xj−1/2

xj−1/2−a∆t

fR(x) dx−
∫ xj+1/2

xj+1/2−a∆t

fR(x) dx

)

which is the same expression as (27), so that both formalisms yield the same

numerical scheme. Moreover, the finite volume flux f
n+1/2
i+1/2 can be expressed

for a semi-Lagrangian scheme with respect to the reconstructed function fR

by

f
n+1/2
i+1/2 =

∫ xj+1/2

xj+1/2−a∆t

fR(x) dx.

In particular, if the reconstruction is performed using a primitive FR of fR,
we have

f
n+1/2
i+1/2 = FR(xj+1/2)− FR(xj+1/2 − a∆t).

It now remains to provide the fluxes for both half advections in x and
y. For the half-advections in x, we have on the one hand, integrating on
[tn, tn+1]× [xi−1/2, xi+1/2]

fn,1
i = fn

i −
vx∆t

2∆x

∫ tn+1

tn

[
f(t, xi+1/2)− f(t, xi+1/2)

]
dt

= fn
i −

vx∆t

2∆x

[
f
n,1/2
i+1/2 − f

n,1/2
i−1/2

]
, (28)
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with f
n,1/2
i+1/2 =

∫ tn+1

tn
f(t, xi+1/2)dt. On the other hand

fn,1
i :=

1

∆x

∫ xi+1/2

xi−1/2

fn,1(x)dx =
1

∆x

∫ xi+1/2−vx∆t/2

xi−1/2−vx∆t/2

fn(x)dx

= fn
i −

1

∆x

[
φ
n,1/2
i+1/2 − φ

n,1/2
i−1/2

]
(29)

with φn,1
i+1/2 =

∫ xi+1/2

xi+1/2−vx∆t/2
fn(x)dx. Hence, identifying the fluxes in (28) and

(29), we have

f
n,1/2
i+1/2 =

{
φ
n,1/2
i+1/2/(vx∆t/2) if vx 6= 0,

0 if vx = 0.

In the same way for f
n,9/2
i+1/2, we have

f
n,9/2
i+1/2 =

{
φ
n,9/2
i+1/2/(vx∆t/2) if vx 6= 0,

0 if vx = 0.

Then φ
n,1/2
i+1/2 = F (xi+1/2)− F (xi+1/2 − vx∆t/2) with F the primitive of fn,

φ
n,9/2
i+1/2 = F (xi+1/2)− F (xi+1/2 − vx∆t/2) with F the primitive of fn,4.

For the half-advections in y, we proceed in the same way integrating on
[tn, tn+1]× [yj−1/2, yj+1/2] in order to obtain the finite volume formulation (as
(28)) and identifying with the conservative semi-Lagrangian formulation (as
(29)), we have

f
n,3/2
j+1/2 =

{
φ
n,3/2
j+1/2/(vy∆t/2) if vy 6= 0,

0 if vy = 0.

and

f
n,7/2
j+1/2 =

{
φ
n,7/2
j+1/2/(vy∆t/2) if vy 6= 0,

0 if vy = 0.

Then φ
n,3/2
j+1/2 = F (yj+1/2)− F (yj+1/2 − vy∆t/2) with F the primitive of fn,1,

φ
n,7/2
j+1/2 = F (yj+1/2)− F (yj+1/2 − vy∆t/2) with F the primitive of fn,3.
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3.3 Spectral scheme

Denoting by fn(kx, ky, vx, vy) the Fourier transform in space of f(tn), the 1D
advections in configuration space become for the spectral scheme

∂f

∂t
+ ikxvxf = 0, (30)

for which the exact solution on a time step reads f(t+∆t) = f(t) exp(−ikxvx∆t),
and the same for the advection in y.

So, using a spectral scheme in space coupled with a Strang splitting, we
get the following algorithm

fn,1
kx,ky ,k,l

= fn
kx,ky ,k,l exp(−ikxvx∆t/2),

fn,2
kx,ky ,k,l

= fn,1
kx,ky ,k,l

exp(−ikyvy∆t/2),

fn,3
kx,ky ,k,l

← fn,2
kx,ky ,k,l

using a conservative advection in v space,

fn,4
kx,ky ,k,l

= fn,3
kx,ky ,k,l

exp(−ikyvy∆t/2),

fn+1
kx,ky ,k,l

= fn,4
kx,ky ,k,l

exp(−ikxvx∆t/2).

As we did for the Finite Volume schemes, we need to extract the current from
the space advections in a way that is compatible with the discrete continuity
equation (19) for the Maxwell solver we want to couple to. To this aim we

need to make a transport structure appear. Introducing f
n,1/2
kx,ky ,k,l

f
n,1/2
kx,ky ,k,l

=

{
fn
kx,ky ,k,l

[1− exp(−ikxvx∆t/2)] /(ikx∆t/2) if kx 6= 0,

0 if kx = 0,
(31)

the first advection in x writes

fn,1
kx,ky ,k,l

= fn
kx,ky ,k,l − ikx

∆t

2
f
n,1/2
kx,ky ,k,l

.

A current Jx can be now clearly identified

Jx,kx,ky =


∑
k,l

f
n,1/2
kx,ky ,k,l

∆vx∆vy if kx 6= 0,

0 if kx = 0.

13



Using the same notations, one has for the last x-advection (the indices
kx, ky, k, l are omitted)

fn+1 = fn,4 − ikx
∆t

2
fn,9/2,

where fn,9/2 is deduced from (31) by replacing fn by fn,4. Similarly, for the
y-advections, it comes

fn,2 = fn,1 − iky
∆t

2
fn,3/2,

and

fn,4 = fn,3 − iky
∆t

2
fn,7/2,

where fn,3/2 and fn,7/2 are given by (d = 0 or 2)

f
n,d+3/2
kx,ky ,k,l

=

{
f
n,(d+1)
kx,ky ,k,l

[1− exp(−ikyvy∆t/2)] /(iky∆t/2) if ky 6= 0,

0 if ky = 0.
(32)

Now, let us add up the different contributions to the current. First, the
discrete charge density is linked to the discrete distribution function by

ρnkx,ky = ∆vx∆vy
∑
k

∑
l

fn
kx,ky ,k,l.

So, using the previous algorithm we can relate ρn+1
kx,ky

to ρnkx,ky by summing
the different lines with respect to k, l. Then, we get

1

∆vx∆vy
ρn+1
kx,ky

=
∑
k,l

fn+1
kx,ky ,k,l

=
∑
k,l

[
fn,4
kx,ky ,k,l

− ikx
∆t

2
fn,9/2

]
=
∑
k,l

[
fn,3
kx,ky ,k,l

− iky
∆t

2
fn,7/2 − ikx

∆t

2
fn,9/2

]
.

Then the conservativity of the advection in v space yields
∑

k,l f
n,3
kx,ky ,k,l

=∑
k,l f

n,2
kx,ky ,k,l

. Thus, proceeding in the same manner with the first two steps
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of the algorithm we finally get

1

∆vx∆vy
ρn+1
kx,ky

=
∑
k,l

fn
kx,ky ,k,l − iky

∆t

2

∑
k,l

(f
n,7/2
kx,ky ,k,l

+ f
n,3/2
kx,ky ,k,l

)

− ikx
∆t

2

∑
k,l

(f
n,9/2
kx,ky ,k,l

+ f
n,1/2
kx,ky ,k,l

). (33)

Let us now denote by

J
n+1/2
x,kx,ky

= ∆vx∆vy
∑
k,l

1

2
(f

n,9/2
kx,ky ,k,l

+ f
n,1/2
kx,ky ,k,l

), (34)

J
n+1/2
y,kx,ky

= ∆vx∆vy
∑
k,l

1

2
(f

n,7/2
kx,ky ,k,l

+ f
n,3/2
kx,ky ,k,l

). (35)

Then (33) becomes

ρn+1
kx,ky
− ρnkx,ky
∆t

+ ikxJ
n+1/2
x,kx,ky

+ ikyJ
n+1/2
kx,ky

= 0,

which is exactly the discrete continuity equation (19) needed by the spectral
Maxwell scheme.

Hence expressions (34)-(35) provide an expression of the discrete current
density J consistent with a spectral Vlasov solver and that satisfies a discrete
continuity equation.

4 Coupling the Vlasov solver with the Maxwell

solver

The only point that is not straightforward in the coupling of our Vlasov
solvers with their corresponding Maxwell solvers, is how to get the electric
field En+1/2, needed for the velocity space advection before the full current
has been computed. We use here for both our methods the strategy suggested
in [7]. Ampère is advanced on ∆t/2 using the predict currents Jn computed
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using

Jn
x,i+1/2,j = ∆vx∆vy

∑
k,`

(vx)k
2

(fn
i,j,k,` + fn

i+1,j,k,`), (36)

Jn
y,i,j+1/2 = ∆vx∆vy

∑
k,`

(vy)k
2

(fn
i,j,k,` + fn

i,j+1,k,`). (37)

This predicted electric field is then only used for the velocity advection and
discarded. There electric field En+1 will later be recomputed directly from
En using the current Jn+1/2 verifying the discrete continuity equation.

We then get in both cases the following algorithm where the half advec-
tions in x and y need to use the adequate formula for each solver introduced
previously.

Algorithm Starting from En = (En
x , E

n
y ), B

n−1/2
z and fn, we compute

En+1, B
n+1/2
z and fn+1 as

1. Maxwell prediction → B
n+1/2
z and (E

n+1/2
x , E

n+1/2
y )

(a) advance Faraday (16) on ∆t with B
n−1/2
z and En → B

n−1/2
z

(b) compute Jn
x =

∑
k,l(vx)kf

n∆vx∆vy and Jn
y =

∑
k,l(vy)lf

n∆vx∆vy.

(c) advance Ampère (14)-(15) on ∆t/2 with En, B
n+1/2
z and (Jn

x , J
n
y )

→ En+1/2

2. half-advection in x → fn,1 and J
n,1/2
x

(a) compute fn,1/2 and J
n,1/2
x =

∑
k,`(vx)kf

n,1/2∆vx∆vy

(b) half-advection in x.

3. half-advection in y → fn,2 et J
n,3/2
y

16



(a) compute fn,3/2 and J
n,3/2
y =

∑
k,l(vy)lf

n,3/2∆vx∆vy

(b) half-advection in y.

4. advection in v with En+1/2 and B
n+1/2
z → fn,3

5. half-advection in y → fn,4 and J
n,7/2
y

(a) compute fn,7/2 and J
n,7/2
y =

∑
k,l(vy)lf

n,7/2∆vx∆vy

(b) half-advection in y.

6. half-advection in x → fn+1 and J
n,9/2
x

(a) compute fn,9/2 and J
n,9/2
x =

∑
k,l(vx)kf

n,9/2∆vx∆vy

(b) half-advection in x.

7. Advance Maxwell → En+1
x et En+1

y

(a) compute J
n+1/2
x = (J

n,1/2
x + J

n,9/2
x )/2

(b) compute J
n+1/2
y = (J

n,3/2
y + J

n,7/2
y )/2

(c) advance Ampère (14)-(15) on ∆t with En, B
n+1/2
z and (J

n+1/2
x , J

n+1/2
y )

→ En+1

5 Numerical results

We focus on the simple linear Landau test case. This test is quite easy to
validate with Vlasov-Poisson equations but it is however known to be difficult
to validate with Vlasov-Maxwell equations. We consider the following initial
condition

f0(x,v) =
1

2π
e−|v|

2/2(1 + 0.05 cos(kxx)),
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with kx = 0.5 = 2π/Lx. The domain in space is (x, y) is [0, 4π]2 and v ∈
[−6, 6]2.

We compare this algorithm to a standard one (PC for Predictor-Corrector).
The only difference arises in step 7. of the previous algorithm: the current
is computed using the following average

Jn+1/2
x = (Jn

x + Jn+1
x )/2, Jn+1/2

y = (Jn
y + Jn+1

y )/2,

where Jn+1
x =

∑
k,l(vx)kf

n+1∆vx∆vy and Jn+1
y =

∑
k,l(vy)lf

n+1∆vx∆vy. The
reference solution will be given by a Vlasov-Poisson run where the Poisson
equation is solved just before the v advection.

In Figure 2 and 4, we plot the time history of the electric energy for the
reference method and the ”new” method, for different numerical parameters.
In Figure 3, the results obtained with PC algorithm are displayed. Note that
since the v advection is performed using a 2d interpolation, the mass is not
conserved exactly, which probably explains the small differences between VP
and VALIS.
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[1] Barthelmé, R., and Parzani, C. (2005). Numerical charge conservation
in particle-in-cell codes. Numerical methods for hyperbolic and kinetic
problems, IRMA Lect. Math. Theor. Phys. 7, 7–28.

[2] F. Bouchut. On the discrete conservation of the Gauss-Poisson equation
of plasma Physics. Commun. Numer. Meth. Engng.,14(1):23-34, 1998.

[3] P. Colella, P.R. Woodward, The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations, J. Comput. Phys. 54 (1984) 174–201.

[4] N. Crouseilles, M. Mehrenberger, E. Sonnendrücker, Conservative semi-
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Figure 1 – Time history of the electric energy (log-scale) : comparison of Vlasov-Poisson and VALIS
(Vlasov-Maxwell equations). 16 points per spatial direction and 32 points per velocity direction.
�t = 0.5.
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Figure 2 – Time history of the electric energy (log-scale) : Vlasov-Maxwell equations with PC
algorithm. 16 points per spatial direction and 32 points per velocity direction. �t = 0.5
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Figure 2: Time history of the electric energy (log-scale): comparison of
Vlasov-Poisson and VALIS (Vlasov-Maxwell equations). 16 points per spatial
direction and 32 points per velocity direction. ∆t = 0.5.
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Figure 1 – Time history of the electric energy (log-scale) : comparison of Vlasov-Poisson and VALIS
(Vlasov-Maxwell equations). 16 points per spatial direction and 32 points per velocity direction.
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Figure 2 – Time history of the electric energy (log-scale) : Vlasov-Maxwell equations with PC
algorithm. 16 points per spatial direction and 32 points per velocity direction. �t = 0.5

6

Figure 3: Time history of the electric energy (log-scale): Vlasov-Maxwell
equations with PC algorithm. 16 points per spatial direction and 32 points
per velocity direction. ∆t = 0.5
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Figure 3 – Time history of the electric energy (log-scale) : comparison of Vlasov-Poisson and
VALIS (Vlasov-Maxwell equations). 32 points per direction. �t = 0.1
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Figure 4: Time history of the electric energy (log-scale): comparison of
Vlasov-Poisson and VALIS (Vlasov-Maxwell equations). 32 points per di-
rection. ∆t = 0.1
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