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Abstract

Van der Waals (vdW) interactions arise from correlated electronic fluctuations in matter and

are therefore present in all materials. Our understanding of these relatively weak yet ubiquitous

quantum mechanical interactions has improved significantly during the last decade. This under-

standing has been largely driven by the development of efficient methods that now enable the

modeling of vdW interactions in many realistic materials of interest for fundamental scientific

questions and technological applications. In this work, we briefly review the physics behind the

currently available vdW methods, highlighting their applications to a wide variety of materials,

ranging from molecular assemblies to solids with and without defects, nanostructures of varying

size and dimensionality, as well as interfaces between inorganic and organic materials. The origin of

collective vdW interactions in materials is discussed using the concept of topological dipole waves.

We focus on the important observation that the full many-body treatment of vdW interactions

becomes crucial in the investigation and characterization of materials with increasing complexity,

especially when studying their response properties, including vibrational, mechanical, and optical

phenomena. Despite significant recent advances, many challenges still remain in the development

of accurate and efficient methods for treating vdW interactions that will be broadly applicable to

the modeling of functional materials at all relevant length and time scales.
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I. INTRODUCTION

Functional materials are becoming increasingly smaller in size and more heterogeneous in

composition. These two aspects of novel nano-materials lead to the emergence of non-trivial

quantum mechanical effects that depend on size and topology, and which may ultimately de-

termine the properties of a material of interest. One important consequence of this evolution

beyond traditional materials, whose functionality was largely regulated by bulk observables,

is that non-covalent interactions will play an increasingly more crucial role in determining the

structure, stability, and ensuing function of homogeneous and heterogeneous nanostructured

materials.

In particular, van der Waals (vdW) interactions, which arise from correlated fluctua-

tions of electrons in matter [1, 2] and can exhibit non-trivial scaling behavior with system

size [3–5], are often the dominant part of such non-covalent interactions. In general, vdW

interactions have already been recognized as playing an instrumental role in determining

the structure, stability, and functionality of biological materials, supramolecular and sensor

chemistry, pharmaceuticals, dye-sensitized solar cells, and many other systems. More re-

cently, the field of “van der Waals heterostructures” [6] has moved into the forefront, and

has already lead to fundamental advances in the study of low-dimensional materials and to

a number of novel technological applications.

In this context, the importance of understanding and accurately modeling vdW inter-

actions in realistic materials can hardly be overemphasized. However, our ability to model

these ubiquitous quantum mechanical effects has been severely impeded by the prohibitively

high computational cost of explicitly correlated quantum chemical methods and the lack of

efficient approximations to the many-electron correlation problem for large systems [7]. In

fact, most successful approximations employed for modeling vdW interactions in materials

rely on the rather crude lowest-order pairwise additive (or proximity force) approximation,

which is only exact in the weak polarization limit and at large interatomic distances. For

condensed-phase systems with a moderate to large polarizability density, such pairwise ap-

proximations can often lead to qualitatively incorrect predictions of structural, energetic,

and response properties [3–5, 8–11].

The purpose of this article is to provide a succint review of some of the recent progress

made in the development of accurate and efficient methods for the treatment of vdW in-

2



teractions in realistic materials. As such, the concise nature of this work simply does not

allow for a comprehensive review of all of the available methods for describing vdW interac-

tions, hence we refer the reader to Refs. [12–16] and references therein for such a purpose.

Rather, the focus herein will be on showcasing the role of vdW interactions in determining

the properties of homogeneous and heterogeneous materials of interest in different subfields

of materials science. As the materials universe is vast, we will concentrate on molecular

clusters and solids, hard solids with and without defects, nanostructures of varying size and

dimensionality, and finally interfaces between inorganic and organic materials. Throughout

this article, we will not only demonstrate the significance of vdW interactions in each of

these classes of materials, but we will also highlight some of the novel insights that can

be gained by utilizing an accurate and fundamental treatment of vdW interactions that is

based on quantum mechanics.

II. EXACT AND APPROXIMATE TREATMENTS OF VDW INTERACTIONS

The exact energy obtained via the solution of the many-electron Schrödinger equation

for a realistic system would seamlessly include the vdW contribution to the energy as well.

However, explicitly solving the Schrödinger equation for more than a few electrons is still a

prohibitive, if not impossible, task to date, even when certain approximations are employed.

Therefore, first principles modeling of realistic materials often starts with coarse-grained

mean-field models, such as the Hartree-Fock approximation (HFA), or the alternative suite

of density-functional approximations (DFAs), which focus on the three-dimensional electron

charge density, n(r) in lieu of the more complicated many-body wavefunction. Unfortunately,

these commonly utilized approximations are unable to describe the long-range electronic

correlation energy and therefore fail to treat vdW interactions.

However, an exact expression for the electron correlation energy, Ec, can be constructed

by invoking the adiabatic connection fluctuation-dissipation theorem (ACFDT) [17, 18]

Ec = − ~
2π

∫ ∞
0

dω

∫ 1

0

dλTr[(χλ(r, r
′, iω)− χ0(r, r

′, iω))v(r, r′)]. (1)

In this expression, χ0(r, r
′, iω) is the bare, or non-interacting, response function (r and r′

refer to spatial electronic coordinates and ω is the frequency of the electric field), χλ(r, r
′, iω)

is the interacting response function at Coulomb coupling strength λ, v(r, r′) = |r − r′|−1
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is the Coulomb potential, and Tr denotes the spatial trace operator (or six-dimensional

integration) over the variables r and r′. The essential physical idea behind the ACFDT

expression in Eq. 1 is an interpolation between a reference non-interacting mean-field system

with λ = 0 and the fully interacting many-body system with λ = 1 [17, 18].

The ACFDT approach offers a tractable expression for Ec (including the contributions

arising from vdW interactions) provided that a set of single-particle orbitals computed with

DFAs (or even the HFA) can be used to construct χ0(r, r
′, iω) in Eq. 1. In this regard,

the construction of χ0(r, r
′, iω) still remains a formidable computational task for systems

with thousands of electrons. Furthermore, approximations are still necessary to determine

χλ(r, r
′, iω) for 0 < λ ≤ 1 in Eq. 1. During the last decade, the so-called random-phase

approximation (RPA), which provides a simple recipe for computing χλ(r, r
′, iω) has been

successfully implemented in many molecular and solid-state electronic structure codes [19–

22]. Very encouraging results in terms of accuracy have been reported for a multitude

of simple materials when χ0(r, r
′, iω) is constructed within the RPA using DFA-based or-

bitals [19–22]. As such, the computational exploration of current RPA methods as well as

the theoretical development of improved RPA methods constitute a prominent research area

in the electronic structure of realistic materials. Despite this fact, ACFDT-RPA calculations

that utilize all of the electronic degrees of freedom are still rather computationally expensive

and are currently restricted to static energy evaluations on materials with approximately

one hundred atoms per unit cell. This computational bottleneck of ACFDT-RPA is likely

to persist for some time and therefore the development of more efficient approximations for

computing Ec in Eq. 1 is necessary.

The power and significance of the ACFDT approach is that essentially all existing meth-

ods for modeling vdW interactions can be derived from approximations to Eq. 1. For ex-

ample, the widely employed pairwise approximation is obtained by truncating the ACFDT

expression to second order in the perturbative expansion of the Coulomb interaction. The

simple addition of interatomic vdW potentials that is used to compute the vdW energy in

classical force fields and DFA calculations can be recovered from Eq. 1 by further approx-

imating the response function as a sum of independent dipole oscillators located at every

nucleus in a given material [23]. The vdW-DF approach originated by Langreth, Lundqvist,

and collaborators [24–26] that has become widely used to correct semi-local DFAs can also be

derived from Eq. 1 by making a local approximation to the response function in terms of the
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electron density and then employing second-order perturbation theory. However, the main

shortcoming of all these rather efficient approximations is that they are unable to capture the

non-trivial many-body effects contained in the interacting response function χλ(r, r
′, iω) as

well as the infinite-order nature of the ACFDT expression in Eq. 1. The inclusion of many-

body effects requires going beyond the commonly employed second-order approximation and

this can be accomplished by introducing a model system of atomic response functions, which

is the topic of the next section.

III. ATOMIC RESPONSE FUNCTIONS AND DIPOLE WAVES

The construction of the bare response function, χ0(r, r
′, iω) in Eq. 1, from single-particle

orbitals is one of the major computational bottlenecks when calculating the electronic corre-

lation energy via the ACFDT expression. Here, we stress that χ0(r, r
′, iω) contains informa-

tion about the response of a given molecular system at all interelectronic distances, including

short |r − r′| separations. However, state-of-the-art DFA methods can often quite success-

fully treat such short-range electron correlation effects by employing semi-local functionals

of the electron density; therefore, the main issue is to construct reliable approximations

for the long-range vdW correlations in the context of density functional theory. When de-

scribing such long-range, or non-local, electron correlation, the full electronic information

contained in χ0(r, r
′, iω) is often unnecessary. This is especially the case when one is treat-

ing non-metallic materials (and even materials with weakly metallic states), as it is possible

to describe the bare response of these systems by a set of localized atomic response func-

tions (ARFs). In this regard, ARFs can be constructed to accurately capture the electronic

response beyond a certain cutoff distance, i.e., for |r− r′| > Rc.

The ARF concept has been employed for several decades now in efficient methods for de-

termining molecular polarizabilities and computing the optical spectra of materials. ARFs

have also been used to compute vdW interactions in model systems starting nearly 50 years

ago [27–31]. However, only recently has the concept of ARFs been extended to enable calcu-

lations of the non-local vdW correlation energy in a wide variety of realistic materials [15],

by employing spatially-extended ARFs that increase the applicability of the ARF model to

include close contact (i.e., for distances as short as the chemical bond) [32, 33].

The ARF model system can also be utilized to gain insight into the emergence of collective

5



many-body phenomena that comprise vdW interactions. To illustrate this point, let us start

with a material that is built up of a single element (i.e., carbon nanostructures). Each atom

p in this material will be represented by a single dipole oscillator with a frequency-dependent

polarizability (FDP) given by

αp(iω) =
α0ω

2
0

ω2
0 + ω2

, (2)

where α0 is the static polarizability and ω0 is an effective excitation (or resonant) frequency.

Then the bare response (or bare ARF) for this atom can be written by condensing the

response of the valence electrons into a single atom-centered dipole oscillator at position Rp

via

χ0,p(r, r
′, iω) = −αp(iω)∇rδ

3(r−Rp)⊗∇r′δ
3(r′ −Rp). (3)

The bare response function for a collection of atoms follows as simply the direct sum over

the individual ARFs, χ0(r, r
′, iω) = χ0,p(r, r

′, iω)⊕ χ0,q(r, r
′, iω)⊕ · · · .

Collective many-body vdW effects arise because of dynamical correlations between elec-

trons (or ARFs) due to the underlying Coulomb interaction, the effects of which are con-

tained in the interacting response function χλ(r, r
′, iω). For a system of ARFs in the dipole

approximation, these interactions renormalize the values of the bare polarizabilities α0 and

frequencies ω0 of the isolated ARFs. By allowing a systems of N ARFs to interact, one

obtains a set of 3N eigenvectors (dipole waves), expanded in the basis of ARF coordinates.

Each dipole wave i arises from a characteristic collective fluctuation of these coupled ARFs

and is associated with a renormalized frequency, ω1,i, and static polarizability, α1,i. Because

of charge conservation, the oscillator strength of every dipole wave, α1,iω
2
1,i, must be equal to

α0ω
2
0. Let us assume that the frequency of one of the collective eigenmodes, ω1,i, is equal to

ω0/2. Then, charge conservation implies that α1,i = 4α0. It is well-known that the strength

of the vdW interaction depends on the magnitude of the vdW coefficients, for example the

leading-order vdW C6 coefficient scales as α2
1,iω1,i [34]. Substituting α1,i and ω1,i in this

expression demonstrates that the vdW coefficient of the i-th dipole wave is increased by

a factor of 8 compared to the bare atoms. This leads to a large modification of the vdW

energy due to the frequency renormalization induced by dynamic electron correlations (see

Figure 1 and discussion in the next section). In fact, the vdW interaction between dipole

waves i and j does not necessarily scale as as sum over interatomic C6/R
6 terms, and at any

finite separation, this could potentially even lead to a modification of the interaction power
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laws, rendering the simple pairwise picture obsolete.

The degree of renormalization of ω1,i depends sensitively on the topology and dimen-

sionality of the material of interest. Stronger renormalization effects are typically found

in low-dimensional systems with high bare polarizability densities. Our understanding of

collective effects in vdW interactions is still incomplete and it is clear that more interesting

observations are yet to be made. The idea of renormalization discussed above applies to ma-

terials of any size and dimensionality, but the most interesting vdW effects are expected in

heterogeneous nanostructured materials. We illustrate this with an investigation of carbon

nanostructures in the following section.

We note in passing that in the preceding discussion we employed the dipole approxima-

tion for the ARFs. This is not a mandatory approximation and one can utilize the full

response function, with the ARFs mutually coupled by the Coulomb potential [35]. This

approach would also capture higher-order multipole effects and non-linear polarization, and

the importance of these effects for long-range vdW interactions in materials still remains to

be thoroughly assessed.

IV. DIPOLE WAVES IN CARBON NANOSTRUCTURES

Perhaps the best example of the emergence of delocalized dipole waves is exhibited by

carbon nanomaterials. One can systematically vary the dimensionality, topology, and size of

carbon nanostructures, ranging from fullerenes, one-dimensional nanotubes, two-dimensional

graphene, to three-dimensional graphite and diamond. It is often assumed that one can

model vdW interactions in carbon nanomaterials by associating a C6 coefficient to every

carbon atom that depends exclusively on the hybridization state of that atom. Differ-

ent hybridization states (i.e., sp, sp2, sp3) have C6 coefficients that vary on the order of

10-20% [34, 36]. However, this simple definition misses the important many-body effects

beyond trivial hybridization or coordination. To correctly account for these effects, we must

calculate the interacting response function χλ(r, r
′, iω) with λ = 1. The interacting C6 co-

efficients obtained from χ1 for a system of ARFs modeling realistic carbon nanostructures

are shown in Figure 1. For a detailed discussion of the response and vdW interactions in

carbon nanostructures we refer the reader to Ref. [5]. Here it is sufficient to point out that

the carbon–carbon C6 coefficients can vary by up to an order of magnitude depending on
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the dimensionality and topology, ranging from roughly 18 hartree·bohr6 in small fullerenes

to 150 hartree·bohr6 in graphene. The large increase of the C6 coefficient in graphene stems

from an effective coupling in 2D between the initially localized ARFs. This leads to marked

anisotropy in the dielectric response of graphene, yielding dipole waves that are strongly

delocalized in the plane of the graphene sheet and characterized by a large polarizability.

The same reasoning explains the variations observed in the C6 coefficients in carbon nan-

otubes and graphene nanoribbons as a function of their chirality or size. The rich dielectric

properties of nanomaterials as manifested by different C6 coefficients could lead to novel

self-assembly behavior as predicted in Ref. [5].

V. THE MBD METHOD FOR VDW INTERACTIONS

The fact that the electronic response of realistic systems can be fairly delocalized strongly

supports the need to develop explicit many-body methods for vdW interactions with the aim

to achieve a reliable description of functional materials. To move beyond the traditionally

employed second-order pairwise additive approximations, our group has recently developed

the so-called MBD (many-body dispersion) method [15, 32, 33]. The essential idea of the

MBD method is to map the response of a given nucleoelectronic system into an auxiliary

system of coupled ARFs, by using the Tkatchenko-Scheffler (TS) prescription to determine

the parameters of the ARFs from the electron density [34]. In the TS method, the vdW

parameters are functionals of the electron density n(r), hence they respond to changes in

the electron density induced by hybridization, static charge transfer, and other electron

redistribution processes.

For ARFs coupled by a dipole potential, the ACFDT expression in Eq. 1 can be computed

in a numerically exact way with a computational cost scaling as N3, by diagonalizing the

interaction Hamiltonian for a system of N ARFs. The algorithm utilized for MBD calcula-

tions is shown in a very condensed form in Figure 2. So far, MBD calculations have been

applied to systems with up to tens of thousands of atoms per unit cell, but larger calculations

are certainly possible with efficient implementations. The correlation energy computed with

the MBD method is only a small, albeit fundamental, part of the total electronic energy.

To calculate the total energy, the MBD energy must be coupled with DFA calculations that

include short-range electron correlation as well as other relevant components of the total
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FIG. 1. Van der Waals C6 coefficients per carbon atom (the C6 of the full system divided by

N2
C , where NC is the number of carbon atoms) for nanostructures of different dimensionality, as

calculated for a system of interacting ARFs [15, 32]. The size ranges for the different systems

are: (1) The radius of fullerenes is varied from 2 to 12 Å; (2) The radius of single-wall carbon

nanotubes, (SWCNT)-Armchair(n,n) and SWCNT-Zigzag(n,0), vary between 2 and 60 Å; (3) The

graphene nanoribbons (GNRs) vary in radius from 5 to 50 Å; (4) The number of layers in multi-

layer graphene (MLG) varies from 2 to 30, where each point on the plot corresponds to an increase

of 2 layers. Figure adapted from Ref. [5].

energy [37]. When modeling materials, one needs to choose non-empirical DFAs that can

be universally applied to both molecules and solids. The widely used PBE functional [38]

and hybrid functionals built upon the PBE prescription (PBE0 [39, 40] and HSE [41]) are

among the best choices in this regard.

It is important to note that the MBD method relies on several crucial approximations,

which must be kept in mind when assessing the reliability of MBD calculations for realistic

materials. First, the mapping of electronic orbitals to ARFs is not unique, however our

comprehesive investigations for more than 7000 molecules and 50 solids show that the MBD
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FIG. 2. Schematic diagram illustrating the computation of the long-range vdW correlation energy

via the MBD method. The first step is to map the response of realistic material to a system

of ARFs by using its electron density. The second step is to account for short-range many-body

screening effects that are crucial in condensed materials by solving the Dyson-like response equation.

The final step is to couple the ARFs by a long-range dipole potential and solve the interacting

Schrödinger equation exactly, which is equivalent to solving Eq. 1. See Ref. [33] for further details.

mapping can successfully reproduce the response properties of systems with finite electronic

gaps, including, for example, many organic molecules and even narrow-gap semiconductors

such as Ge. However, metallic systems with delocalized single-particle excitations represent

a challenge for the current implementation of MBD. Extended molecules with extensively

delocalized orbitals or complex resonance structures might also pose a problem for the map-

ping of the problem to ARFs. Currently, we are assessing an extension of the MBD method

for systems containing delocalized single-particle excitations [42]. The second approxima-

tion that makes the MBD method particularly efficient is the bilinear dipole potential that

is used for coupling the ARFs, instead of the full non-linear Coulomb potential. Since the

MBD method is used to compute the non-local long-range correlation energy, the dipole

approximation should be reliable. However, in systems with strong polarization one might

expect non-linear polarization effects beyond the dipole approximation to become relevant.
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Finally, the coupling between a given DFA and MBD requires the usage of a semi-empirical

long-range potential, which has known limiting behavior, but a non-unique functional form.

To scrutinize the effects of all these approximations, we have applied the MBD method in

conjuction with several DFAs to a wide variety of systems. Several representative applica-

tions are briefly summarized in the next section of this manuscript.

VI. APPLICATIONS

In this section, we highlight some applications of the DFA+MBD method (or approxi-

mations thereof) to a wide variety of materials, ranging from molecular assemblies to solids

with and without defects, and interfaces between inorganic and organic materials. An im-

portant observation to note here is that the full many-body treatment of vdW interactions

becomes critical in the investigation of materials of increasing complexity, especially when

studying their response properties, including vibrational, mechanical, and optical phenom-

ena. In particular, we will not only demonstrate the significance of vdW interactions in each

of these classes of materials, but we will also highlight some of the novel insights that can

be gained by utilizing an accurate and fundamental treatment of vdW interactions that is

based on quantum mechanics.

A. Soft organic materials

The structure and binding in organic materials is often driven by vdW interactions, in

combination with other contributions such as repulsion, electrostatics, and induction. There-

fore, accurate modeling of vdW interactions is critical for understanding the properties of

organic materials. In recent years, substantial progress has been achieved in the theoretical

prediction of structures and stabilities of molecular crystals by using vdW-inclusive DFA

approaches [43, 44]. Today, the structures of (simple) organic molecular crystals can be pre-

dicted with an accuracy of 2–3% [45–47] and cohesive energies to 1–2 kcal/mol [43–45, 48].

However, even for soft organic materials, many-body correlation effects can become signif-

icant, and their inclusion can lead to novel qualitative behavior. In Figure 3 we show the

performance of DFA+MBD calculations compared to DFA+TS results, which is a pairwise

vdW-inclusive method. The inclusion of many-body correlation effects in vdW interac-
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tions clearly leads to a significant increase in accuracy compared to a pairwise method.

The effects of many-body interactions become more visible for larger and increasingly in-

homogeneous systems. In fact, the polarization of supramolecular complexes and molecular

crystals depends sensitively on the geometric structure and their effective dimensionality.

This leads to emergence of topological dipole waves as explained in previous sections. Such

effects are correctly captured by the MBD method, but are completely missing in simple

pairwise approaches to vdW interactions. It is worth mentioning that empirical parame-

terization of pairwise methods can be carried out to yield better performance than shown

for the DFA+TS method in Figure 3 [43, 44]. However, such parameterization may not

be tranferable to systems outside of the training set. Explicit many-body methods, such

as DFA+MBD, can capture subtle electronic correlation effects and, therefore, they are

substantially more transferable to heterogeneous molecular systems of interest to materials

scientists.

Many-body vdW correlations become even more relevant when one looks at the relative

energetics of molecular systems, which are essential to predict the polymorphic behavior

of molecular crystals. We have demonstrated that only upon including MBD effects one

is able to correctly reproduce the structures and relative stabilities of polymorphs of three

different molecules: glycine, oxalic acid and tetrolic acid [9]. In fact, DFA+MBD was able

to achieve an accuracy of 0.2 kcal/mol in the relative energetics of glycine polymorphs – an

accuracy not achieved so far by any other available method. Another interesting example of a

polymorphic system is the aspirin crystal, where there has been a long-standing controversy

about the relative stability of two different polymorphs, so-called form I and form II [49].

We have recently demonstrated that the stability of the most abudant form I of aspirin

crystal arises from an unexpected coupling between collective vibrational and electronic

degrees of freedom (dynamic plasmon–phonon coupling) [11]. In this case, many-body vdW

correlations renormalize phonon frequencies of the form I of aspirin, leading to low-frequency

phonon modes that increase the entropy of form I and ultimately determine the stability

of this ubiquitous form of aspirin in comparison to the metastable form II. Furthermore,

the bulk moduli and the shear moduli of both forms of aspirin are substantially modified

and become in better agreement with experimnents with DFA+MBD when compared to

DFA+TS calculations. The aspirin example illustrates how the inclusion of many-body

vdW effects may lead to novel qualitative predictions for the polymorphism and elastic
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FIG. 3. Mean absolute relative error (MARE, in %) for intermolecular binding energies in several

databases: S66 (molecular dimers), S12L (large supramolecular complexes) and X23 (molecular

crystals) computed with MBD and TS methods combined with both PBE and PBE0 non-empirical

DFAs. The reference binding energies were calculated using high-level correlated methods for

S66 and S12L databases, and extrapolated from experimental sublimation enthalpies for the X23

database. See Ref. [33] for more details.

response of molecular materials.

Another clear manifestation of many-body correlation effects is the sensitive dependence

of the optical spectra and dielectric properties of molecular systems on their shape and size

or upon formation of a molecular crystal. For example the visible color of oligoacene crystals

changes from transparent in naphthalene and anthracene, to bright orange in tetracene, and

deep blue in pentacene [50, 51]. The optical absorption spectrum is directly related to the

polarizability through the Kramers-Kronig transformation. Therefore, the observed changes

in the optical spectrum upon crystallization of polyacenes are accompanied by a change

in the molecular polarizability. These changes in polarization will also directly impact the

crystal lattice energy [52].
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B. Hard solids with and without defects

While the crucial role of vdW interactions in organic materials is well established, our

understanding of the relative importance of these ubiquitous interactions in semiconduc-

tors, ionic solids, and metals, is still in development. It has been demonstrated that the

contribution of the long-range vdW energy to the cohesive energy of elemental and binary

semiconductors and ionic solids amounts to 0.2–0.3 eV/atom [53], around 8% of the cohe-

sive energy. The contribution of vdW energy to the bulk modulus is even more pronounced,

reaching up to 22% for Ge and GaAs. Notably, the inclusion of vdW interactions in DFA

calculations allows to simultaneously improve the performance for lattice constants, cohe-

sive energies, and bulk moduli, when compared to experiment [53]. Similar conclusions have

been reached for a wide variety of hard solids when using the so-called opt-vdWDF function-

als [54]. Because vdW interactions typically have larger contributions to relative energetics

than absolute ones, one expects significant effects for phase transition pressures and phase

diagrams of most solids.

The properties of many materials are substantially affected by the presence of simple

and complex defects. For example, the properties of semiconductors are largely determined

by neutral and charged interstitials and vacancies [55]. The formation of defects entails a

modification of polarization around defect sites and this can have a substantial effect on the

contribution of vdW energy to the stability and mobility of defects. We have demonstrated

that the inclusion of many-body vdW interactions in DFA improves the description of defect

formation energies, significantly changes the barrier geometries for defect diffusion, and

brings migration barrier heights into close agreement with experimental values [56]. In the

case of Si, the vdW energy substantially decreases the migration barriers of interstitials and

impurities by up to 0.4 eV, qualitatively changing the diffusion mechanism [56]. Recently, the

accuracy of our calculations has been confirmed by explicit ACFDT-RPA calculations [20].

Moving beyond point defects, it is to be expected that more complex neutral and charged

multi-atom defects and dislocations will lead to even stronger non-local polarization effects

and intricate dependence of vdW interactions on the nature of defects. This remains an

interesting avenue to explore in future work.
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C. Interfaces between inorganic and organic materials

Hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis,

light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photo-

voltaics. Obviously, the predictive modeling and understanding of the structure and stability

of such hybrid systems is an essential prerequisite for tuning their electronic properties and

functions. The bonding in HIOS is often determined by a delicate balance between covalent

bonds, hydrogen bonds, charge transfer, Pauli repulsion, and vdW interactions. [57] Indeed,

until recent developments for efficiently incorporating the long-range vdW energy within

state-of-the-art DFAs, it was not possible to study the structure and stability of realistic

HIOS.

The difficulty in applying DFA+MBD to HIOS is that the inorganic substrate is often

a metal or a doped semiconductor. For such systems, the projection to initially-localized

ARFs used in the MBD method might be too restrictive to correctly describe metallic

single-particle excitations. To address this issue, we have developed an approximation to

DFA+MBD, called DFA+vdWsurf [58]. This method fully includes the many-body screening

effects within the extended substrate, but treats the molecule–substrate interaction using

the pairwise approximation.

We have applied the DFA+vdWsurf method to a wide variety of molecules adsorbed on

metallic substrates [59]. In these applications, we were able to achieve quantitative accuracy

for aromatic hydrocarbons (benzene, naphthalene, anthracene, and diindenoperylene), C60,

and sulfur/oxygen-containing molecules (thiophene, NTCDA, and PTCDA) on close-packed

and stepped metal surfaces, leading to an overall accuracy of 0.1 Å in adsorption heights

and 0.1 eV in binding energies with respect to state-of-the-art experiments. An unexpected

finding is that vdW interactions contribute more to the binding of strongly bound molecules

on transition-metal surfaces than for molecules physisorbed on coinage metals [60]. The ac-

curate inclusion of vdW interactions also significantly improves tilting angles and adsorption

heights for all the studied molecules, and can qualitatively change the potential-energy sur-

face for adsorbed molecules with flexible functional groups. Activation barriers for molecular

switches and reaction precursors are modified as well [61].

Ongoing work concentrates on understanding the interplay between many-body effects

within the inorganic bulk material with collective effects within the adsorbed molecular lay-
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ers. Initial studies indicate that DFA+MBD can be successfully applied to treat adsorption

on semiconductors and transition metals, and that the adsorption energies and monolayer

formation energies obtained with DFA+MBD are in even better agreement with experiments

than when using the more approximate DFA+vdWsurf method.

Finally, we note that the MBD method can also be used to predict the structures and

dielectric properties of model dye-sensitized solar cells and other hybrid structures [62, 63];

the obtained information can be used for example to calculate the band gap renormalization

of condensed hybrid materials.

VII. PERSPECTIVES AND FUTURE CHALLENGES

The development of increasingly sophisticated methods for vdW interactions during the

last decade has allowed to achieve many novel insights into the structural, energetic, and

response properties of realistic materials. Yet, many significant challenges remain on the

path towards fully predictive modeling of these ubiquitous quantum-mechanical interactions

and fully understand their role in the properties of functional materials. Among the many

contemporary challenges, we would like to highlight the following:

1. Developing increasingly more accurate and broadly applicable methods for heteroge-

neous materials including those with highly delocalized electronic states. This requires

systematically investigating the reliability of the ARF approximation and possibly ex-

tending it for materials with small band gaps.

2. Understanding the emergence of topological dipole waves in heterogeneous materials

and interfaces between materials with vastly different dielectric properties. Could we

engineer interaction power laws and control the self-assembly of interfacial structures

based on “unconventional” delocalized vdW correlations?

3. Scaling the applicability of methods to increasingly larger system sizes, eventually

bridging microscopic methods that correctly treat the non-locality of electronic re-

sponse with mesoscopic methods that treat vdW/Casimir physics and include effects

of finite speed of light (retardation) and finite temperature on vdW/Casimir interac-

tions.
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4. Traditionally, it is assumed that vdW interactions have a negligible direct contri-

bution in modifying the electronic and optical properties of materials. Our recent

self-consistent implementation of the DFA+TS method indicates that vdW interac-

tions can directly affect the electronic properties of surfaces and HIOS. For example,

workfunctions of coinage metal surfaces can be modified by as much as 0.3 eV, because

vdW interactions tend to increase surface dipole moments. However, our understand-

ing of this issue is still in its infancy. Much more work is required to assess the

relative importance of vdW interactions for static and dynamic electronic and optical

properties.
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[20] Kaltak, M.; Klimeš, J.; Kresse, G. Phys. Rev. B 2014, 90, 054115.

[21] Eshuis, H.; Furche, F. J. Phys. Chem. Lett. 2011, 2, 983.

[22] Ren, X.; Rinke, P.; Joas, C.; Scheffler, M. J Mater. Sci. 2012, 47, 7447.

18



[23] Tkatchenko, A.; Ambrosetti, A.; R. A. DiStasio, Jr., J. Chem. Phys. 2013, 138, 074106.

[24] Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D. C.; Lundqvist, B. I. Phys. Rev. Lett. 2004,

92, 246401.

[25] Lee, K.; Murray, E. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. B 2010, 92,

081101.

[26] Cooper, V. R.; Kong, L.; Langreth, D. C. Physics Procedia 2010, 3, 1417.

[27] Bade, W. L. J. Chem. Phys. 1957, 27, 1280.

[28] Donchev, A. G. J. Chem. Phys. 2006, 125, 074713.

[29] Cole, M. W.; Velegol, D.; Kim, H.-Y.; Lucas, A. A. Mol. Simul. 2009, 35, 849.

[30] Shtogun, Y. V.; Woods, L. M. J. Phys. Chem. Lett. 2010, 1, 1356.

[31] Liu, R.-F.; Angyan, J. G.; Dobson, J. F. J. Chem. Phys. 2011, 134, 114106.

[32] Tkatchenko, A.; R. A. DiStasio, Jr.,; Car, R.; Scheffler, M. Phys. Rev. Lett. 2012, 108, 236402.

[33] Ambrosetti, A.; Reilly, A. M.; DiStasio Jr., R. A.; Tkatchenko, A. J. Chem. Phys. 2014, 140,

18A508.

[34] Tkatchenko, A.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 073005.

[35] Jones, A. P.; Crain, J.; Sokhan, V. P.; Whitfield, T. W.; Martyna, G. J. Phys. Rev. B 2013,

87, 144103.

[36] Wu, Q.; Yang, W. J. Chem. Phys. 2002, 116, 515.

[37] Burke, K. J. Chem. Phys. 2012, 136, 150901.

[38] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

[39] Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105, 9982.

[40] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

[41] Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207.

[42] Hermann, J.; Scheffler, M.; Tkatchenko, A. in preparation.

[43] Otero-de-la-Roza, A.; Johnson, E. R. J. Chem. Phys. 2012, 137, 054103.

[44] Brandenburg, J. G.; Grimme, S. Top. Curr. Chem. 2014, 345, 1–23.

[45] Reilly, A. M.; Tkatchenko, A. J. Chem. Phys. 2013, 139, 024705.

[46] Schatschneider, B.; Monaco, S.; Tkatchenko, A.; ; Liang, J. J. Phys. Chem. A 2013, 117,

8323–8331.

[47] Schatschneider, B.; Monaco, S.; Liang, J.-J.; Tkatchenko, A. J. Phys. Chem. C 2014, 118,

19964.

19



[48] Reilly, A. M.; Tkatchenko, A. J. Phys. Chem. Lett. 2013, 4, 1028–1033.

[49] Ouvrard, C.; Price, S. L. Cryst. Growth Des. 2004, 4, 1119–1127.

[50] Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers; Oxford

University Press, New York, 1999.

[51] Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452.

[52] Schatschneider, B.; Liang, J.-J.; Reilly, A. M.; Marom, N.; Zhang, G.-X.; Tkatchenko, A.

Phys. Rev. B 2013, 87, 060104.

[53] Zhang, G.-X.; Tkatchenko, A.; Paier, J.; Appel, H.; Scheffler, M. Phys. Rev. Lett. 2011, 107,

245501.

[54] Klimeš, J.; Bowler, D. R.; Michaelides, A. Phys. Rev. B 2011, 83, 195131.

[55] Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van de

Walle, C. G. Rev. Mod. Phys. 2014, 86, 253–305.

[56] Gao, W.; Tkatchenko, A. Phys. Rev. Lett. 2013, 111, 045501.

[57] Tkatchenko, A.; Romaner, L.; Hofmann, O. T.; Zojer, E.; Ambrosch-Draxl, C.; Scheffler, M.

MRS Bull. 2010, 35, 435.

[58] Ruiz, V. G.; Liu, W.; Zojer, E.; Scheffler, M.; Tkatchenko, A. Phys. Rev. Lett. 2012, 108,

146103.

[59] Liu, W.; Tkatchenko, A.; Scheffler, M. Modeling Adsorption and Reactions of Organic

Molecules at Metal Surfaces, Acc. Chem. Res. (2014), doi: 10.1021/ar500118y.

[60] Liu, W.; Carrasco, J.; Santra, B.; Michaelides, A.; Scheffler, M.; Tkatchenko, A. Phys. Rev. B

2012, 86, 245405.

[61] Liu, W.; Filimonov, S. N.; Carrasco, J.; Tkatchenko, A. Nat. Commun. 2013, 4, 2569.

[62] Marom, N.; Moussa, J. E.; Ren, X.; Tkatchenko, A.; Chelikowsky, J. R. Phys. Rev. B 2011,

84, 245115.

[63] Marom, N.; Korzdorfer, T.; Ren, X.; Tkatchenko, A.; Chelikowsky, J. R. J. Phys. Chem. Lett.

2014, 5, 2395.

20


