
Global linear gyrokinetic particle-in-cell simulations including

electromagnetic effects in shaped plasmas

A. Mishchenko∗, M. Borchardt, M. Cole, R. Kleiber, A. Könies, and A. Zocco

Max Planck Institute for Plasma Physics,

Wendelsteinstr. 1, 17491 Greifswald, Germany

R. Hatzky and T. Fehér

Max Planck Institute for Plasma Physics,

Boltzmannstr. 2, 85748 Garching, Germany

(Dated: April 2, 2015)

Abstract

We give an overview of recent developments in electromagnetic simulations based on the gyroki-

netic particle-in-cell codes GYGLES and EUTERPE. We present the gyrokinetic electromagnetic

models implemented in the codes and discuss further improvements of the numerical algorithm,

in particular the so-called pullback mitigation of the cancellation problem. The improved algo-

rithm is employed to simulate linear electromagnetic instabilities in shaped tokamak and stellarator

plasmas, which was previously impossible for the parameters considered.
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I. INTRODUCTION

Electromagnetic kinetic effects are of great importance in fusion plasmas for a wide va-

riety of phenomena. These include, for instance, Alfvénic dynamics, tearing modes, and

electromagnetic drift micro-instabilities. Since all these phenomena have characteristic fre-

quencies lower than the gyro-frequency, one can use the gyrokinetic approach, resulting

in a substantial reduction in computational costs. However, gyrokinetic electromagnetic

simulations suffer from the cancellation problem [1, 2]. This problem has been addressed

within the particle-in-cell (PIC) framework [2–5] as well as the Eulerian approach [6]. It

has been possible to perform global fully-gyrokinetic simulations of a large class of Alfvénic

modes, including their interaction with the fast particles. An overview of this work will be

given below. Despite substantial progress, a complete solution of the cancellation problem

has remained elusive, in particular for global modes in realistically shaped toroidal devices.

Recently, a new approach, based on mixed coordinates [7] and pullback mitigation [8], has

been suggested. This approach has the potential to mitigate the cancellation problem con-

siderably. In this paper, we implement pullback mitigation to globally simulate shaped

plasmas of an elongated tokamak and the Wendelstein 7-X [9] stellarator (W7-X). The fully

gyrokinetic system of equations is solved in these simulations for all particle species.

We give an overview of recent developments in electromagnetic simulations based on the

gyrokinetic PIC codes GYGLES and EUTERPE. The code GYGLES is a linear global (full

radius, full flux surface) gyrokinetic PIC code that is able to simulate up to three kinetic

species (ions, electrons and fast ions) in axisymmetric equilibria. It solves the field equations

for the electrostatic and parallel vector potentials. The most advanced fully-gyrokinetic

electromagnetic PIC simulations in tokamak and pinch geometries reported so far [10–14]

have been performed with the GYGLES code. The code EUTERPE is an extension of

the GYGLES code to permit nonlinear simulations and non-axisymmetric (VMEC [15])

equilibria.

Both codes have been applied to simulate Alfvénic instabilities in fusion-relevant plasmas.

Global Alfvén Eigenmodes [10], Toroidal Alfvén Eigenmodes (TAE) [10], their interaction

with fast particles [11] and the Alfvénic continuum [12, 14], and modification of TAE in-

stabilities into Energetic Particle Modes (EPM) [11, 14] have all been successfully studied

with the GYGLES code. Recently, the gyrokinetic internal m = 1 kink mode and m = 1
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reconnecting mode have been simulated [13] with GYGLES in screw pinch geometry.

The global gyrokinetic particle-in-cell code EUTERPE contains a hierarchical collection

of numerical tools of increasing complexity including a simple perturbative scheme (CKA-

EUTERPE, see Refs. [16, 17]), based on the reduced-MHD eigenvalue solver CKA [18];

a more advanced hybrid self-consistent fluid-electron gyrokinetic-ion model [19]; and the

most comprehensive, but also most computationally expensive, fully gyrokinetic model.

The cancellation problem [1, 2], being the major obstacle for full-gyrokinetic simulations,

does not appear in the reduced models, which therefore become flexible tools suitable for

approximate studies of certain parameter regimes. Such a study has been undertaken [17] in

stellarator geometry (Wendelstein 7-X and HELIAS reactor) using the perturbative CKA-

EUTERPE tool. Interesting regions of the parametric space, unstable with respect to Alfvén

Eigenmodes, have been identified. This information is a robust starting point for further

work with the more advanced physical models. The fluid-electron gyrokinetic-ion hybrid

model has been used extensively [19] to simulate internal kink modes and fishbones in

tokamak geometries, based on numerical equilibria at realistic aspect ratio and a finite

elongation. The fully-gyrokinetic electromagnetic model of the EUTERPE code has been

verified using the International Tokamak Physics Activity (ITPA) benchmark [20]. Further

improvements of the cancellation scheme [2–5] have been considered and presented in Refs. [7,

8]. These schemes are required to provide numerical stability when simulating electron

kinetics in electromagnetic regimes using the fully gyrokinetic description.

The structure of this paper is as follows. In Sec. II, the entire GYGLES/EUTERPE

toolset is presented for completeness. The standard gyrokinetic formulation is shortly de-

scribed in Sec. IIA; the mixed-variable formulation is discussed in Sec. II B; the reduced

models are addressed in Sec. IIIA and in Sec. III B. We describe our simulations in shaped

tokamak and stellarator (W7-X) plasmas in Sec. IV and conclude in Sec. V.

II. GYROKINETIC MODEL

A. Standard formulation

The most comprehensive model available in the GYGLES and EUTERPE codes is the

gyrokinetic Vlasov-Maxwell system of equations [21]. Each distribution function is split

3



into a background part and a perturbation fs = F0s + δfs with s = i, e, f indicating the

particle species (bulk plasma ions and electrons, fast particles). The background distribution

function is taken to be a Maxwellian. The perturbed distribution function δfs is found from

the linearized gyrokinetic Vlasov equation:

∂δfs
∂t

+ Ṙ(0) · ∂δfs
∂R

+ v̇
(0)
‖

∂δfs
∂v‖

= − Ṙ(1) · ∂F0s

∂R
− v̇

(1)
‖

∂F0s

∂v‖
(1)

Here, [Ṙ(0), v̇
(0)
‖ ] correspond to the unperturbed gyrocenter trajectories, while [Ṙ(1), v̇

(1)
‖ ] are

the perturbations of the trajectories (proportional to the electromagnetic field fluctuations).

Note that v‖ is not equal to the physical parallel velocity in this notation. Employing the

Hamiltonian formulation [21], the equations of motion are

Ṙ =
(

v‖ −
q

m
〈A‖〉

)

b∗ +
1

qB∗
‖

b×
[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

(2)

v̇‖ = − 1

m

[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

· b∗ (3)

Here, φ and A‖ are the perturbed electrostatic and magnetic potentials, µ is the magnetic

moment, m is the mass of the particle, B∗
‖ = b · ∇ × A∗, b∗ = ∇ × A∗/B∗

‖ , A
∗ = A0 +

(mv‖/q)b is the modified vector potential, A0 is the magnetic potential corresponding to

the equilibrium magnetic field, B = ∇×A0, b = B/B is the unit vector in the direction of

the equilibrium magnetic field, and the gyro-averaged potentials are defined as usual:

〈φ〉 =
∮ dθ

2π
φ(R+ ρ) , 〈A‖〉 =

∮ dθ

2π
A‖(R+ ρ) , (4)

with ρ the gyroradius of the particle and θ the gyro-phase. The perturbed electrostatic and

magnetic potentials are found self-consistently from the gyrokinetic quasineutrality equation

and parallel Ampère’s law (see Ref. [5] for numerical details):

−∇ ·








∑

s=i,f

q2sns

Ts

ρ2s



∇⊥φ



 =
∑

s=i,e,f

qsn1s ,





∑

s=i,e,f

β̂s

ρ2s
−∇2

⊥



A‖ = µ0

∑

s=i,e,f

j‖1s , (5)

where n1s =
∫

d6Z δfs δ(R+ ρ− x) is the perturbed gyrocenter density,

j‖1s = qs
∫

d6Z δfs v‖ δ(R + ρ − x) is the perturbed gyrocenter current, qs is the charge of

the particle, d6Z = B∗
‖ dR dv‖ dµ dθ is the phase-space volume, ρs =

√
msTs/(eB) is the

thermal gyroradius and β̂s = µ0n0sTs/B
2 is half the plasma species beta. The polarization

density is treated in the long-wavelength approximation and finite Larmor radius (FLR)

effects are neglected for electrons. The zeroth-order densities of the particle species satisfy
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the quasineutrality equation
∑

s qsn0s = 0 with s = i, e, f. In EUTERPE, the nonlinear and

collisional versions of the gyrokinetic system of equations are available, whereas GYGLES

is a linear axisymmetric collisionless code.

B. Mixed-variable formulation

In the mixed-variable formulation [7, 8] of the gyrokinetic theory, we deliberately split

the magnetic potential into ‘symplectic’ and ‘Hamiltonian’ parts:

A‖ = A
(s)
‖ + A

(h)
‖ (6)

This naming is inspired by Ref. [21]; the precise relation will become more clear in the

following. In these notations, the perturbed guiding-center phase-space Lagrangian [21] is

γ = qA∗ · dR+
m

q
µ dθ + q A

(s)
‖ b · dx + q A

(h)
‖ b · dx−

[

mv2‖
2

+ µB + qφ

]

dt (7)

We now perform the Lie transform [21] in such a way that the ‘Hamiltonian part’ A
(h)
‖

contributes to the gyrokinetic Hamiltonian, whereas the ‘symplectic part’ A
(s)
‖ enters the gy-

rokinetic symplectic structure. The resulting gyrokinetic phase-space Lagrangian is written

to first order:

Γ = qA∗ · dR+
m

q
µ dθ + q

〈

A
(s)
‖

〉

b · dR−
[

mv2‖
2

+ µB + q
〈

φ− v‖A
(h)
‖

〉

]

dt (8)

The formulation Eq. (8) is neither Hamiltonian nor symplectic and will, therefore, be dubbed

the ‘mixed-variable’ formulation, following Ref. [7]. The corresponding perturbed equations

of motion are

Ṙ(1) =
b

B∗
‖

×∇
〈

φ− v‖A
(s)
‖ − v‖A

(h)
‖

〉

− q

m
〈A(h)

‖ 〉b∗ (9)

v̇
(1)
‖ = − q

m

[

b∗ · ∇
〈

φ− v‖A
(h)
‖

〉

+
∂

∂t

〈

A
(s)
‖

〉

]

− µ

m

b×∇B

B∗
‖

· ∇
〈

A
(s)
‖

〉

(10)

For the scheme to work, an equation for ∂A
(s)
‖ /∂t is needed. We find useful to employ

∂

∂t
A

(s)
‖ + b · ∇φ = 0 (11)

The zeroth-order gyrocenter characteristics remain unchanged. The perturbed mixed-

variable distribution function is found from the gyrokinetic Vlasov equation. The elec-

trostatic potential and the ‘Hamiltonian part’ of the magnetic potential are found, respec-

tively, from the gyrokinetic quasineutrality equation and mixed-variable parallel Ampère’s
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law, which takes now the form:




∑

s=i,e,f

β̂s

ρ2s
−∇2

⊥



A
(h)
‖ = µ0

∑

s=i,e,f

j‖1s +∇2
⊥A

(s)
‖ (12)

with the usual notation. Invoking the pullback transformation [21], one can express the dis-

tribution function in the symplectic formulation in terms of the mixed-variable distribution

function as follows:

f
(s)
1s = f

(m)
1s +

qs 〈A(h)
‖ 〉

ms

∂F0s

∂v‖
(13)

We proceed modifying the standard algorithm [5] as follows.

1. At the end of each time step, we redefine the magnetic potential splitting, Eq. (6),

such that the entire instantaneous value of the parallel magnetic potential A‖(ti) is

collected in its ‘symplectic part’:

A
(s)
‖(new)(ti) = A‖(ti) = A

(s)
‖(old)(ti) + A

(h)
‖(old)(ti) (14)

2. As a consequence of the new splitting, Eq. (14), the ‘Hamiltonian’ part of the vector

potential must be corrected to preserve the total A‖:

A
(h)
‖(new)(ti) = 0 (15)

3. For this modified splitting, the new mixed-variable distribution function must coincide

with its symplectic formulation counterpart. The symplectic formulation distribution

function can be found invoking the pullback, Eq. (13), using the old values of the

mixed-variable distribution function and the ‘Hamiltonian’ part of the parallel vector

potential:

f
(m)
1s(new)(ti) = f

(s)
1s (ti) = f

(m)
1s(old)(ti) +

qs 〈A(h)
‖(old)(ti)〉
ms

∂F0s

∂v‖
(16)

The values of f
(m)
1s(old) and A

(h)
||(old) are found solving, respectively, the gyrokinetic equa-

tion and Ampère’s law, Eq. (12), at the current time step ti.

4. Proceed, explicitly solving the mixed-variable system of equations (9)–(12) at the next

time step ti +∆t in the usual way, but using Eqs. (14)–(16) as the initial conditions.

This rearrangement between the symplectic and the Hamiltonian components of the ‘initial

conditions’ has to be done at each time step. Note that in general the parallel dynamics
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is determined by the time derivative of the total magnetic potential ∂A‖/∂t, whereas the

terms responsible for the cancellation problem are proportional to its instantaneous value

A‖(t). In our approach, we force the ‘symplectic part’ A
(s)
‖ to be a dominant contribution

to this value. The small residual A
(h)
‖ is self-consistently computed at each time step from

the gyrokinetic system of equations in the mixed-variable formulation, thus guaranteeing

correctness of the physical quantity ∂A‖/∂t, in accordance with the actual dynamics of the

system. This scheme is not limited to Alfvénic systems, which obey E‖ ≈ 0. It supplements

prior developments [5] to treat the cancellation problem and can reduce considerably the

numerical effort required (see Ref. [8] for details). In nonlinear case, the scheme can also be

used at the cost of the parallel nonlinearity being neglected. The truncation is related to

the implicit linearisation during the pullback step, Eq. (16). Further generalisations of the

scheme will be considered and reported elsewhere.

III. REDUCED MODELS

A. Fluid-electron model

The gyrokinetic model, although being comprehensive, can require a substantial numer-

ical effort. In addition, it is sometimes desirable to intentionally admit or exclude certain

physical effects such as the effect of the electron pressure gradient in a flexible way, which

may be impossible within the gyrokinetic formulation. We have therefore developed a hybrid

model which evolves the ion and fast ion distribution functions using the gyrokinetic PIC

method employing the symplectic formulation [21], while electron effects are treated by the

evolution of fluid moments. The electron continuity equation is

∂n1e

∂t
+ n0B · ∇

(

u‖1e

B

)

+BvE · ∇
(

n0

B

)

+
(

∇×A‖b
)

· ∇
(

n0u‖0e

B

)

+n0 (δv∗ − vE) ·
∇B

B
+

∇×B

B2
·
[

−∇p1e
e

+ n0∇φ
]

= 0 , (17)

where

vE =
b×∇φ

B
, δv∗ = 2

b×∇p1e
n0meeB

(18)

The equation for the perturbed pressure is

∂p1e
∂t

= −vE · ∇p0 = −b×∇φ

B
· ∇n0T0 (19)
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The magnetic potential is found solving the ideal Ohm’s law:

E‖ = −∇‖φ− ∂A‖

∂t
= 0 , (20)

and the parallel electron velocity is found from Ampère’s law:

e n0 u‖1e =
∑

s=i,f

j‖1s +
1

µ0
∇2

⊥A‖ (21)

The electrostatic potential is obtained from the usual gyrokinetic quasineutrality equation,

see Eq. (5).

Where kinetic bulk ion contributions are neglected, the fluid equations simplify to reduced

ideal MHD. Taking the sum qi ∂n1i/∂t+qe ∂n1e/∂t and using equation (17) with species labels

i and e respectively, we arrive at an equivalent equation in terms of the charge and parallel

current densities. It is possible in this way to treat both electrons and bulk ions as a single

fluid, while modelling fast ions gyrokinetically.

B. Perturbative hybrid MHD model

In the computationally most robust and simple perturbative hybrid MHD approach, one

finds the perturbed electromagnetic fields (the radial structure and the frequency) by solving

the reduced ideal-MHD vorticity equation:

ω2∇ ·
(

1

v2A
∇⊥φ

)

+∇ ·
[

b∇2
⊥(b · ∇)φ

]

−∇ ·
(

µ0j‖0
B

[∇× (b(b · ∇φ))]⊥

)

− (22)

−∇ ·
(

2µ0

B2

[

(b×∇φ) · ∇p0
]

(b× κ)
)

= 0

Here, vA is the Alfvén velocity, j‖0 is the ambient parallel current, p0 is the background

plasma pressure, and κ = (b · ∇)b is the magnetic field-line curvature. The perturbed

parallel magnetic potential A‖ is found from the ideal Ohm’s law, Eq. (20). The fast ions

are treated solving the linear or nonlinear gyrokinetic equation including all finite orbit

width and finite gyroradius effects.
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IV. SIMULATIONS

A. General remarks

The schemes described above are discretised equivalently in EUTERPE and GYGLES,

the perturbation of the distribution functions being represented with markers and the field

quantities with finite elements. In the fluid-electron model, the fluid moments are also

discretised with finite elements. Many physical phenomena have been considered with these

codes (see Sec. I for an overview). All the models available in the GYGLES/EUTERPE

toolset have been cross-benchmarked and verified within the framework of the International

Tokamak Physics Activity [20].

In this paper, gyrokinetic mixed-variable and reduced fluid-electron simulations using the

EUTERPE code in shaped tokamak and stellarator (W7-X) plasmas will be considered.

B. Linear electromagnetic simulations in elongated tokamak geometry

First, we consider a TAE in a tokamak configuration [11, 20] with the minor radius

ra = 1 m, the major radius R0 = 10 m, the magnetic field on axis B0 = 3 T, and the safety

factor profile q(r) = 1.71+0.16 (r/ra)
2 (here, r is the small radius). The background plasma

profiles (corresponding to Maxwellian unperturbed distribution functions) are chosen to be

flat with the ion (hydrogen) density ni = 2 × 1019 m−3, the electron density defined by

the quasi-neutrality ne = ni + nf , and flat bulk-species temperatures Ti = Te = 1 keV.

A Maxwellian is also chosen for the unperturbed distribution function of the fast particles

(deuterium ions). The fast-particle temperature Tf = 0.4 MeV is also flat and the fast-

particle density is given by the expression:

nf(spol) = n0f exp
[

− ∆nf

Lnf
tanh

(

spol − snf
∆nf

)]

(23)

with spol being the square root of the normalised poloidal flux, snf = 0.5 the position of

the maximal value of κnf = |∇nf |/nf , n0f = 0.75 × 1017 m−3 the fast particle density at

spol = snf , ∆nf = 0.2 the characteristic width of the density profile, and Lnf = 0.3 deter-

mining the strength of the fast particle density gradient. We note here that the Maxwellian

distribution function is the simplest choice sufficient for the proof-of-principles simulations

such as described in this paper. Since we use the δf approach, F0 is fixed and does not
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change during the simulations. Hence, such issues as a relaxation of F0 to the nearby equi-

librium do not appear in praxis. It is, therefore, safe to use such a choice of the distribution

function also within the mixed-variable formalism. We agree, however, that a more realistic

distribution function must be implemented in future studies, especially for fast ions when

such heating methods, such as the Neutral Beam Injection, are considered.

In the configuration described, we simulate the TAE with the toroidal mode number

n = − 6 and the dominant poloidal harmonics m = 10 and m = 11. The ambient magnetic

field is computed numerically using the VMEC code [15]. In this code, the magnetic field

is determined by the safety factor; the ambient plasma pressure profile, neglected for low-

beta magnetic configurations considered here; and the shape of the plasma boundary whose

cylindrical coordinates [Rc(θ), Zc(θ)] are given by the expressions:

Rc(θ) = R0 + ra cos θ , Zc(θ) = κ ra sin θ (24)

Here, θ is the poloidal angle and κ is the elongation of the plasma cross-section. In the

following we will vary the elongation from κ = 1.0 (circular cross-section) to κ = 1.8

(elongated tokamak). It has been observed in previous simulations that the cancellation

problem becomes more severe at a finite elongation. It was hypothesised that this is caused

by an enhanced poloidal mode coupling in shaped plasmas. This coupling appears to amplify

certain inconsistencies in the cancellation terms related to the side band formation which

are hard to capture by the standard cancellation scheme [2–5]. In future, a more detailed

and rigorous understanding of this issue can be developed. In the present publication, we

circumvent this problem using mixed variables [7] and the pullback mitigation scheme [8].

In Fig. 1, the frequency of the TAE is shown as a function of the elongation. The mod-

ification of the frequency is related to the deformation of the shear Alfvén continuum by

the elongation, which creates new gaps in the continuum structure. To show this defor-

mation, we compare the shear Alfvén continua at κ = 1, in Fig. 2, and at κ = 1.8, in

Fig. 3. In Fig. 2 (circular cross-sections), one sees only the toroidicity gap, with the TAE

frequency indicated by the red dashed line. In contrast, in Fig. 3 (elongated tokamak), both

the toroidicity and the ellipticity gaps appear in the spectrum. The toroidal gap together

with the corresponding TAE frequency (indicated with the red dashed line) are shifted to

lower frequencies by the elongation, which introduces new couplings of the poloidal Fourier

harmonics and therefore creates additional gaps in the continuum. The growth rate of the
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TAE decreases with the elongation, as shown in Fig. 4. Note that a similar finding has

been reported in Ref. [22]. In Figs. 1 and 4, we compare our fully-gyrokinetic simulations

with the corresponding fluid-electron simulations and find a good agreement. In Fig. 5, we

show the eigenmode structure of the electrostatic potential, here computed at the elongation

κ = 1.2. A typical TAE structure can be seen at this elongation. A similar mode has also

been observed at κ = 1.8 shown in Fig. 6. Here, one sees that the coupling to the poloidal

sidebands is stronger compared to the previous case.

C. Linear electromagnetic simulations in Wendelstein 7-X geometry

Now, we consider the Wendelstein 7-X [9] stellarator. This machine is the world-wide

largest optimised stellarator and will begin its operation soon. Here, we present global gy-

rokinetic simulations of Ion-Temperature-Gradient (ITG) driven modes computed including

electromagnetic effects.

In our simulations, we distinguish between the ‘equilibrium beta’ βeq used to compute

the ambient magnetic field and the ‘gyrokinetic beta’ determining the bulk plasma profiles.

The ‘equilibrium beta’ determines the degree of the stellarator optimisation whereas the

‘gyrokinetic beta’ is responsible for the Alfvénic dynamics in the given ambient magnetic

field. In this paper, we choose the ambient magnetic field, computed numerically using the

VMEC code [15], in such a way that 〈βeq〉 = 2µ0〈p〉/〈B2〉 = 3% with the pressure profile

given by the expression p/p(0) = 1− 1.67s+0.67s2. Here, 〈. . .〉 denotes the volume average

and s is the normalised toroidal flux.

The bulk plasma profiles are chosen to have β∗ = µ0n∗T∗/B
2
∗ = 0.005 corresponding to

‘gyrokinetic‘ β = 4β∗ = 2%. Here n∗ is the plasma density averaged over the entire plasma

volume, T∗ = Te(s = 0.5) is the characteristic electron temperature (with s being the

normalised toroidal flux) and B∗ = B(s = 0, ζ = 0) is the characteristic ambient magnetic

field (with ζ being the toroidal angle). The plasma size is determined by the parameter

Lx = 458.2 which is approximately the ratio Lx ≈ 2.2 ra/ρs with ra being the average minor

radius of the non-axisymmetric device and ρs =
√
miT∗/(eB∗) the characteristic ion sound

gyroradius. The plasma density and temperature profiles are defined as functions of the
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normalised toroidal flux according to the expressions:

n(i,e)(s) = n0 exp
[

− ∆n

Ln
tanh

(

s− s0
∆n

)]

(25)

T(i,e)(s) = T0 exp

[

− ∆T(i,e)

LT(i,e)

tanh

(

s− s0
∆T(i,e)

)]

(26)

with s0 = 0.5, ∆n = 0.3, 1/LTi = 3.5, ∆Ti = 0.3, and a flat electron temperature profile.

The parameters n0 and T0 are determined by the plasma size Lx and its pressure β∗. For

this choice, the volume-averaged ‘equilibrium beta‘ is approximately the volume-averaged

‘gyrokinetic beta‘ although the profiles differ. In our simulations, we prefer to change the

plasma profiles while keeping the ambient magnetic configuration fixed. This procedure

allows to separate effects of the plasma profiles on the mode stability from those of the

ambient magnetic field. In future, role of the finite-beta modifications of the magnetic

equilibrium will be addressed, too. Here, we remark only that the particle orbits in the

vacuum and in a high-beta W7-X stellarator configurations may differ substantially.

First, we consider the case with a flat density profile. The dominant poloidal and toroidal

mode numbers are, respectively, m0 = 58 and n0 = − 47. The poloidal mode number for

the parameters chosen kθρs ≈ 2.2m0/Lx = 0.279. In this case, there is a global unstable

mode, whose temporal evolution is shown in Fig. 7. One sees that the mode evolution is

approximately harmonic. The long-time quasi-mode transient effects may also be present

but their detailed evaluation is beyond the scope of our simulations. The poloidal mode

decomposition of φ(s, θ, ζ = 0) is shown in Fig. 8. One sees that the mode shows some

slab-like features, such as a dominant harmonic. Note that the slab-like character of the

mode is expected in W7-X even for kθρs ≈ 0.3, in contrast to tokamaks, since the connection

length between bad and good curvature is much smaller [23] in W7-X than in an equivalent

tokamak. A similar observation can be made in Fig. 9, where the Fourier spectrum of the

electrostatic potential measured at s = 0.5 is shown. This spectrum has a well-pronounced

dominant Fourier harmonic, as is expected for slab-like modes.

In Fig. 10, the poloidal cross-section of the electrostatic potential is shown at the toroidal

angle ζ = 0. One can see mode activity both at the inner and the outer side of the torus,

again in contrast to tokamaks where the mode activity is usually concentrated on the outer

side. The characteristic poloidal scale of the mode changes with the poloidal angle. In

Fig. 11, the modification of the electrostatic potential structure with the toroidal angle is

shown at the flux surface s = 0.5. One sees that the mode has a flute-like character (one
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stellarator period is shown here).

Now, consider the effect of the density profile. In Fig. 12, the frequency and the growth

rate are plotted as functions of the inverse characteristic length of the density profile, see

Eq. (25). The frequency ω and the growth rate γ of the mode is determined fitting the

function f(t) = exp(γt)(a cosωt + b sinωt) to a signal obtained in the simulations, such as

plotted in Fig. 7. The accuracy of such a fit is usually within few percents. Interestingly, the

growth rate is nearly insensitive with respect to the density profile in the electromagnetic

case, in contrast to the usual ITG mode which can be stabilised at a larger density gradient

or smaller ηi. We hypothesise that the ITG stabilisation by the Alfvén wave coupling is

compensated by some drive, caused for example by the ballooning or the trapped-electron

effects. Much more simulations will be needed in future to address this physics in more detail.

The purpose of this paper is to demonstrate a principle feasibility of such simulations.

The mode remains slab-like also at a finite density gradient, as shown in Fig. 13, where

the Fourier decomposition of the mode is plotted measured at the flux surface s = 0.5. Here,

the inverse characteristic length of the density profile 1/Ln = 3.0. The poloidal cross-section

of the electrostatic potential at the toroidal angle ζ = 0.0 for the case 1/Ln = 3.0 is plotted

in Fig. 14. One sees that here, similarly to Fig. 10, the mode develops both on the inner and

the outer sides of the torus. Again, the characteristic poloidal scale of the mode changes

with the poloidal angle.

V. CONCLUSIONS

In this paper, we have presented the GYGLES/EUTERPE toolset developed to study

global electromagnetic modes in tokamak and stellarator geometries. A fully gyrokinetic

model, both in the standard and in the mixed-variable formulations, and two reduced models,

the fluid-electron and the perturbative hybrid MHD model, have been formulated.

The mixed-variable formulation makes electromagnetic global fully gyrokinetic simula-

tions in complicated shaped magnetic geometries feasible. In this paper, we have presented

TAE simulations in elongated tokamak geometry and electromagnetic ITG simulations in

W7-X stellarator geometry.

In the tokamak, the elongation effect on the frequency and the growth rate has been

studied. The frequency is modified according to continuum reshaping caused by new gaps
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which are created by the elongation. In our simulations, the growth rate is decreased and

the mode stabilised by the plasma elongation, similarly to the finding of Ref. [22]. There

it was suggested that the reduction of mode growth rates due to elongation is mainly the

result of reduced fast-particle drive. Elongation in effect increases the average radius and

reduces the average radial gradient of the fast-particle distribution.

In the stellarator, we have considered the ITG instability including electromagnetic ef-

fects. It has been found that this mode has a slab-like character and is not stabilised by the

finite density gradient, in contrast to the conventional ITG intuition which suggests that

the mode is stable at small ηi = ∇ log Ti/∇ logn. In fact, the growth rate of the electromag-

netic mode is only weakly affected by the density gradient and the mode structure remains

slab-like. This result is of practical interest for W7-X where the conventional electrostatic

ITG mode could be stabilised by a finite density gradient. In this paper, we have shown

that such a stabilisation will not necessarily be achieved when the electromagnetic effects

are taken into account. As a word of caution, we note that benchmarks with other codes

and models are needed and forseen in order to establish the reliability of the code and its

results in stellarator geometry. This work has already been started in Ref. [24] and will be

continued in future. In tokamak geometry, benchmarks beyond the ITPA case [20] have been

performed in the present paper for the elongated tokamak geometry. Further benchmarks

have been described in Ref. [24].

We plan to expand our stellarator studies towards effects caused by radial electric

fields, collisions and nonlinearity. Both electromagnetic microturbulence and the Alfvénic

eigenmodes, such as the stellarator TAE, will be considered in this research. The fully

gyrokinetic treatment of stellarator plasmas allows for a consistent description of damping

mechanisms which were lacking in our previous study [17]. The reduced modelling will be

expanded to include resistive effects and fluid-electron nonlinearities.
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FIG. 1: (Color online) The frequency of the TAE mode as a function of the elongation. Tokamak

geometry is considered here. The gyrokinetic simulations are compared with the fluid-electron

model and a good agreement is found.
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FIG. 2: (Color online) Shear Alfvén continuum at the elongation κ = 1. The toroidicity gap

is observed. Tokamak geometry is considered here. The TAE frequency corresponding to the

elongation κ = 1 is indicated with the red dashed line.
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FIG. 3: (Color online) Shear Alfvén continuum at the elongation κ = 1.8. The toroidicity and the

ellipticity gaps are observed. The TAE eigenmode frequency is indicated with the red dashed line.

One sees that the elliptic coupling of the poloidal Fourier harmonics pushes the toroidal gap to the

lower frequencies. Tokamak geometry is considered here.
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FIG. 4: (Color online) The growth rate of the TAE mode as a function of the elongation. Tokamak

geometry is considered here. The gyrokinetic simulations are compared with the fluid-electron

model and a good agreement is found.
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FIG. 5: (Color online) Eigenmode structure of the electrostatic potential computed at the elon-

gation κ = 1.2. A typical TAE structure can be seen at this elongation. Tokamak geometry is

considered here.
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FIG. 6: (Color online) Eigenmode structure of the electrostatic potential computed at the elonga-

tion κ = 1.8. The coupling to the poloidal sidebands is stronger here compared to Fig. 5. Tokamak

geometry is considered on this plot.
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FIG. 7: (Color online) Temporal evolution of the dominant m = 58 poloidal Fourier component

of the electrostatic potential φ(s = 0.56, θ, ζ = 0). An electromagnetic ITG mode is considered in

W7-X for β∗ = 0.005 (which corresponds to a characteristic physical β = 2%).
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FIG. 8: (Color online) Poloidal Fourier decomposition of the electrostatic potential φ(s, θ, ζ = 0).

W7-X geometry is considered here.
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FIG. 9: (Color online) Fourier spectrum measured at s = 0.5. Here, the density profile is flat. The

spectrum has a dominant harmonic (slab-like). W7-X geometry is considered on this plot.
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FIG. 10: (Color online) Poloidal cross-section of the electrostatic potential measured at ζ = 0 for

a flat density profile. It is observed that the characteristic poloidal scale of the mode changes with

the poloidal angle. W7-X geometry is considered here.
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FIG. 11: (Color online) Modification of the electrostatic potential structure with the toroidal angle

measured at s = 0.5 (one stellarator period is shown). W7-X geometry is considered here.
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FIG. 12: (Color online) The frequency and the growth rate as functions of the density gradient.

The normalisation to 2.2ωci/Lx ≈ cs/ra is used. The ion temperature gradient 1/LTi = 3.5 and a

flat electron temperature profile have been used. Interestingly, the growth rate is nearly insensitive

with respect to the density profile, in contrast to the usual ITG behaviour. W7-X geometry is

considered here.
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FIG. 13: (Color online) Fourier spectrum for the EM mode at κn = 3.0 (finite density gradient).

The electromagnetic Fourier spectrum remains slab-like also at the finite density gradient. W7-X

geometry is considered here.
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FIG. 14: (Color online) Poloidal cross-section of the electrostatic potential of an electromagnetic

ITG mode in W7-X measured at the toroidal angle ζ = 0 for the inverse characteristic length of

the density profile 1/Ln = 3.0. Note the change in the characteristic poloidal scale of the mode

with the poloidal angle.
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