
MNRAS 444, 1144–1156 (2014) doi:10.1093/mnras/stu1486

Explaining the subpulse drift velocity of pulsar magnetosphere
within the space-charge limited flow model

Viktoriya S. Morozova,1,2‹ Bobomurat J. Ahmedov3,4,5 and Olindo Zanotti6
1Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam, Germany
2Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
3Institute of Nuclear Physics, Ulughbek, Tashkent 100214, Uzbekistan
4Ulugh Beg Astronomical Institute, Astronomicheskaya 33, Tashkent 100052, Uzbekistan
5The Abdus Salam International Centre for Theoretical Physics, I-34151 Trieste, Italy
6 Laboratory of Applied Mathematics, University of Trento, Via Mesiano 77, I-38123 Trento, Italy

Accepted 2014 July 22. Received 2014 May 25; in original form 2014 February 11

ABSTRACT
We try to explain the subpulse drift phenomena adopting the space-charge limited flow model
and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with
the observed velocity of drifting subpulses. We apply the approach described in a recent
paper of van Leeuwen & Timokhin, where it was shown that the standard estimation of the
subpulse drift velocity through the total value of the scalar potential drop in the inner gap gives
inaccurate results, while the exact expression relating the drift velocity to the gradient of the
scalar potential should be used instead. After considering a selected sample of sources taken
from the catalogue of Weltevrede et al. with coherently drifting subpulses and reasonably
known observing geometry, we show that their subpulse drift velocities would correspond
to the drift of the plasma located very close or above the pair formation front. Moreover,
a detailed analysis of PSR B0826−34 and PSR B0818−41 reveals that the variation of the
subpulse separation with the pulse longitude can be successfully explained by the dependence
of the plasma drift velocity on the angular coordinates.
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1 IN T RO D U C T I O N

The research on pulsar magnetospheres started 45 yr ago from the
pioneering paper of Goldreich & Julian (1969), where it was shown
that the magnetic field, together with the fast rotation of the pulsar,
generates strong electric fields tending to pull out charged particles
from the surface of the neutron star and to form the plasma mag-
netosphere. However, the very next arising question – how many
particles will actually leave the surface of the star under the ac-
tion of this force – is still a subject of scientific debate. In fact,
the magnetic field which generates the pulling out electric field
also leads to the substantial increase in the cohesive energy of the
surface charged particles (positive ions in larger degree than elec-
trons), making the outer layer of the star very dense and strongly
bound. Medin & Lai (2007) showed that for each magnetic field
intensity, there exists a critical surface temperature, above which
the particles are able to freely escape from the surface of the star.
The magnetic field of pulsars is typically inferred from observa-
tions under the assumption that it is strictly dipolar, thus providing
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Bd = 2 × 1012
√

P Ṗ × 1015 G (here P is the period and Ṗ is the
period derivative of the pulsar). Using this formula, it turns out
that the majority of pulsars satisfy the condition for the free parti-
cle outflow. However, in many works, starting from Ruderman &
Sutherland (1975), it was suggested that the magnetic field close to
the surface of the pulsar should have a multipole structure, with the
surface magnetic field several orders of magnitude larger than the
estimated Bd. This idea is supported by X-ray observations (Zhang,
Sanwal & Pavlov 2005; Kargaltsev, Pavlov & Garmire 2006; Pavlov
et al. 2009), and several studies have been performed searching for
a mechanism of generation and maintenance of such small-scale
strong magnetic fields (see Geppert, Gil & Melikidze 2013, and
references therein).

The amount of charged particles extracted from the surface of
the star by the rotationally induced electric field is a key aspect
of any pulsar magnetosphere model. The model of Ruderman &
Sutherland (1975), for example, assumes that no particle leaves the
pulsar surface and there is a vacuum gap formed above the star with
a huge difference in the scalar potential between the bottom and the
top, i.e. ∼1012 V. According to this idea, the gap will be periodically
discharged and rebuilt, making it intrinsically ‘non-stationary’. On
the contrary, in the ‘stationary’ space-charge limited flow (SCLF)
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model of Arons & Scharlemann (1979), there is a free flow of
charged particles from the pulsar surface. The partially screened gap
model of Gil, Melikidze & Geppert (2003) combines some features
of both the previous models and is based on the assumption that the
vacuum gap discharge will lead to the back flow of charged particles
bombarding and heating the surface of the star, causing the thermal
ejection of ions from the surface and partially screening the original
accelerating electric field.

The choice among different models of pulsar magnetosphere
should be made by accurate comparison of their predictions with
the results of observations. A very interesting phenomena serving as
a diagnostic tool is the subpulse drift. Pulsar radio emission comes
to us in the form of pulses, which may look very different among
each other and typically consist of individual subpulses. Although
the average pulse profile is very stable and represents a unique
fingerprint of each pulsar, a range of successive pulses plotted on
top of each other in a so-called pulse stack, quite often shows
an organized phase shift of the subpulses forming drift bands. This
phenomenon was reported for the first time in Drake & Craft (1968),
while the first systematic analysis of ‘drifting’ pulsars dates back to
Backus (1981) and Rankin (1986). So far, the largest statistical study
of the phenomenon has been presented in the works of Weltevrede,
Edwards & Stappers (2006) and Weltevrede, Stappers & Edwards
(2007), who considered a sample of 187 pulsars, 55 per cent of
which show drifting subpulses. Usually, the subpulse drift bands are
characterized by the horizontal separation between them in subpulse
longitude, P2, and the vertical separation in pulse periods, P3. The
subpulse behaviour of the individual pulsars may be rather complex
and demonstrate smooth or abrupt change of drift direction, phase
steps, longitude and frequency dependence of the separation P2, or
even presence of subpulses drifting in the opposite directions at the
same time. For the graphical representation of the periods P2 and
P3, we refer the reader to fig. 1 of Weltevrede et al. (2006), where
one can find several examples of the different subpulse behaviour
of individual sources.

The vacuum gap model, and especially the partially screened gap
model, has been widely used to explain the subpulse drift phenom-
ena (Gil & Sendyk 2000; Melikidze, Gil & Pataraya 2000; Gil,
Melikidze & Geppert 2003; Gupta et al. 2004; Bhattacharyya et al.
2007; Gil et al. 2008), while for a long time, the SCLF model has
been regarded unable to account for it. However, recent analytical
(van Leeuwen & Timokhin 2012) and numerical (Timokhin 2010b;
Timokhin & Arons 2013) progresses have shown that the door can
be left open even for the SCLF model. The main goal of this pa-
per is to explain the subpulse drift velocity in the framework of
the relativistic SCLF model, without addressing the question of the
generation mechanism of the plasma features responsible for the
appearance of the subpulses, while trying to compare the results
with the available observational data.

The plan of the paper is the following. In Section 2, we give
a brief review of the models used so far to explain the subpulse
phenomena and motivate our choice to concentrate on the SCLF
model. In Section 3, we present the basic equations to explain
the subpulse drift velocity in the framework of the SCLF model.
In Section 4, we consider a set of pulsars from the catalogue of
Weltevrede et al. (2006) with coherently drifting subpulses, and try
to deduce in which regions of the pulsar magnetosphere the SCLF
model would predict the plasma with the observed velocities. In
Section 5, we focus on two specific sources, PSR B0826−34 and
PSR B0818−41, trying to account for their phenomenology. Finally,
Section 6 is devoted to the summary of the results obtained and to
the conclusions.

2 A B R I E F SU RV E Y O F E X I S T I N G M O D E L S

The first theoretical explanation of the subpulses was provided by
Ruderman & Sutherland (1975), who associated the subpulses with
the spark discharges of the vacuum gap above the pulsar surface. In
its original form, the model applied to the pulsars with antiparallel
angular velocity � and magnetic moment μ, and assumed that the
charged particles (positive ions) are tightly bound to the surface of
the star and cannot be pulled out by the rotationally induced electric
field. This requirement leads to the formation of a vacuum gap in the
region where the magnetic field lines are open and with a potential
drop between the top and the bottom of the order of 1012 V for typical
pulsar parameters. Due to the presence of strong curved pulsar
magnetic fields, the gap will be unstable and periodically discharged
by the photon-induced pair creation process. The discharges will
build up plasma columns, which are subject to the E × B drift
in the electromagnetic field of the magnetosphere. Ruderman &
Sutherland (1975) showed that, unless the potential drop of the gap
is completely screened, the plasma columns will not exactly corotate
with the star but always lag behind the rotation of the star, and this
is responsible for the visual drift of the subpulses along the pulse
longitude. The sparks are assumed to form rings and the so-called
tertiary periodicity P4 is the time needed for the spark carousel to
make one full rotation around the magnetic axis. Although in this
model, the subpulses cannot outrun the rotation of the star, due to
the effect of aliasing (Gil et al. 2003; Gupta et al. 2004), the apparent
velocity of the subpulses may be both positive (from earlier to later
longitudes) and negative (from later to earlier longitudes).

Ruderman & Sutherland (1975) estimated the subpulse drift ve-
locity to be proportional to the full potential drop across the gap,
resulting in excessively large values of the drift velocity compared
with the observed ones. Later on, Gil & Sendyk (2000), Melikidze
et al. (2000) and Gil et al. (2003) generalized this model to account
for arbitrary inclination angles χ between � and μ, and modified
it to allow for the partial outflow of ions and electrons from the
surface of the star, forming partially screened gap instead of the
pure vacuum. It was argued that the favourable conditions for the
spark discharge persist even if the original vacuum gap is screened
up to 95 per cent or more, making the velocity of drifting subpulses
consistent with the observed values. However, the partially screened
gap model requires surface values of the magnetic field of the or-
der of 1014 G, much larger than those deduced when the magnetic
field is dipolar,1 i.e. ∼1012 G. The partially screened gap model
has been used in a number of works to describe the subpulses of
specific pulsars as well as their X-ray emission (Gupta et al. 2004;
Bhattacharyya et al. 2007; Gil et al. 2008) and it has typically re-
vealed a strong predictive power.

In Clemens & Rosen (2004), Rosen & Clemens (2008) and Rosen
& Demorest (2011), the drifting subpulses are instead explained by
non-radial oscillations of the surface of the star. This model gives a
very natural explanation to the subpulse phase shift, relating it to the
intersection of the observer’s line of sight with the nodal line. The
empirical model of Wright (2003) relates the formation of drifting
subpulses to the interaction between electron and positron beams
travelling up and down between the inner and the outer gaps of the
pulsar magnetosphere.

Kazbegi, Machabeli & Melikidze (1991) and later Gogoberidze
et al. (2005) proposed a model where the subpulses are formed due

1 There are mechanisms which can provide long-living small-scale magnetic
field of the required strength at the surface of the pulsar (Geppert et al. 2013).
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to the modulation of the emission region by large-scale ‘drift waves’,
generated by oppositely directed curvature drifts of electrons and
positrons. Finally, Fung, Khechinashvili & Kuijpers (2006) pro-
posed a model to explain drifting subpulses that is based on the
diocotron instability in the pair plasma on the open field lines. De-
tailed description of all these models may be found in the review of
Kuijpers (2009) and references therein.

Recently, van Leeuwen & Timokhin (2012) have shown that the
order of magnitude estimation of the subpulse drift velocity used
in Ruderman & Sutherland (1975), and subsequent works, can be
replaced by a more precise expression, relating the velocity to the
radial derivative of the potential instead of the absolute value of the
potential drop. This simply comes from the fact that the subpulse
drift velocity is determined by the E × B drift of the distinct plasma
features in the magnetosphere, while the electric field responsible
for this drift is given by the gradient of the scalar potential. The
final expression for the subpulse drift velocity in degrees per period
is (van Leeuwen & Timokhin 2012)

ωD = 180◦

ξ

dṼ

dξ
, (1)

where Ṽ ≡ V /�Vvac is the scalar potential normalized to the po-
tential drop �Vvac = �Br2

pc/2c between the rotation axis and the
boundary of the (small) polar cap, rpc is the radius of the polar
cap, B is the value of the magnetic field (which van Leeuwen &
Timokhin 2012 assumed to be constant across the polar cap),
ξ ≡ θ/	 is the polar angle normalized to the colatitude of the
polar cap boundary 	, c is the speed of light. As emphasized in van
Leeuwen & Timokhin (2012), this velocity, being the true plasma
drift velocity in the open magnetic field line region, should introduce
periodic modulation to the observed radio emission from pulsars, in-
dependently on the particular emission generation mechanism. We
stress that this periodic modulation (which is exactly the tertiary
periodicity, mentioned before) can be found even in the spectra
of those pulsars which do not reveal regularly drifting subpulses
(Gil, Melikidze & Zhang 2007; Gil et al. 2008). The same is seen
for many pulsars listed in Weltevrede et al. (2006) and Weltevrede
et al. (2007).

The main reason for which the SCLF model has been so far
regarded unable to explain the subpulse drift phenomena is that
it has not a prescribed mechanism for the formation of spark-like
features, which are invoked to explain the subpulses in the vacuum
and in the partially screened gap models. However, recent progress
in numerical simulations of pulsar magnetosphere have shed new
light on this subject. One of the main tendencies in the numerical
studies of pulsar magnetosphere is to consider it as a global object,
with the different regions closely interlinked and interdependent.
For example, self-consistent simulations of pair cascades in the po-
lar cap region (Timokhin 2010b; Timokhin & Arons 2013) show
that the cascade behaviour is mostly determined by the global mag-
netospheric current density and that periods of plasma generation
are interleaved with quiet periods, both for the vacuum gap and
for the SCLF regimes. Based on that, van Leeuwen & Timokhin
(2012) proposed the idea that the distinct emitting features in the
inner magnetosphere, responsible for the appearance of the sub-
pulses, may be caused by global current filaments, similar to those
observed in auroras.

These arguments motivated us to adopt the approach of van
Leeuwen & Timokhin (2012) for studying the possible subpulse
behaviour within the SCLF model. In the rest of the paper, we do
not consider the problem of the subpulse generation. Rather, we
concentrate on the velocity given by equation (1), calculated from

the analytical expressions for the scalar potential in the relativistic
SCLF model, which are available in the literature (see Muslimov &
Tsygan 1992; Harding & Muslimov 1998, 2001, 2002). The main
issue that we try to address is whether it is possible, in the frame-
work of the SCLF model, to explain the observed subpulse drift
velocities, and if so, to infer in which part of the magnetosphere
they should be produced. In the second part of the paper, we will
instead apply our arguments to two specific sources.

3 SUBPULSE DRI FT VELOCI TY I N THE
F R A M E WO R K O F T H E S C L F M O D E L

Scharlemann, Arons & Fawley (1978) and Arons & Scharlemann
(1979) were the first to show analytic solutions for the scalar po-
tential in the vicinity of the pulsar polar cap and in the framework
of the SCLF model. In their analysis, the accelerating electric field
parallel to the magnetic field of the pulsar is due to the curvature of
magnetic field lines and to the inertia of particles. Later, Muslimov
& Tsygan (1992) have shown that, due to the effect of dragging of
inertial frames in general relativity, it is possible to obtain acceler-
ating electric fields which are two orders of magnitude larger than
those normally expected. This approach has further been elaborated
in Harding & Muslimov (1998, 2001, 2002). For convenience, in
this subsection, we present the main results found by Muslimov
& Tsygan (1992) as well as the expressions for the subpulse drift
velocity that we obtained, i.e. using equation (1).

In general relativity, the dipole-like magnetic field in the exterior
spacetime close to the surface of a slowly rotating neutron star
described by the metric

ds2 = −N2c2dt2 + N−2dr2

+ r2dθ2 + r2 sin2 θdφ2 − 2ωr2 sin2 θ dt dφ (2)

is given by the expressions

B̂r = B0
f (r̄)

f (1)
r̄−3 cos θ , (3)

B̂θ = 1

2
B0N

[
−2

f (r̄)

f (1)
+ 3

(1 − ε/r̄)f (1)

]
r̄−3 sin θ. (4)

Here, the spherical coordinates (r, θ , φ) are used with the polar axis
oriented along the magnetic moment of the pulsar, r̄ = r/R, R is the
radius of the neutron star, B0 = 2μ/R3 is the value of the magnetic
field at the pole, N = (1 − 2GM/rc2)1/2 is the lapse function of the
metric, G is the gravitational constant, M is the mass of the star, ω

is the frequency of dragging of inertial frames, ε = 2GM/Rc2 is the
compactness parameter, while the function f (r̄) is given by

f (r̄) = −3

(
r̄

ε

)3 [
ln

(
1 − ε

r̄

)
+ ε

r̄

(
1 + ε

2r̄

)]
. (5)

The polar angle of the last open magnetic field line 	 is equal to

	 ∼= sin−1

{[
r̄
f (1)

f (r̄)

]1/2

sin 	0

}
, (6)

where

	0 = sin−1

(
R�

cf (1)

)1/2

(7)

is the polar angle of the last open magnetic field line at the surface
of the star.

The scalar potential � in the polar cap region of the inner pul-
sar magnetosphere is obtained from the solution of the equation
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�� = −4π(ρ − ρGJ), where ρGJ is the Goldreich–Julian charge
density and ρ is the actual charge density in the open field line re-
gion of the magnetosphere. The boundary conditions of this Poisson
equation are (i) � = 0 at the surface of the star and along the last
open magnetic field lines, and (ii) E‖ = 0 at large distances from the
star. Very close to the surface of the star (r̄ − 1 � 1), the solution
reads

�low = 12
�0

r̄

√
1 − εκ	3

0 cos χ

∞∑
i=1

[
exp

(
ki(1 − r̄)

	0
√

1 − ε

)
− 1

+ ki(r̄ − 1)

	0
√

1 − ε

]
J0(kiξ )

k4
i J1(ki)

+ 6
�0

r̄

√
1 − ε	4

0H (1)δ(1) sin χ cos φ

×
∞∑
i=1

[
exp

(
k̃i(1 − r̄)

	0
√

1 − ε

)
− 1 + k̃i(r̄ − 1)

	0
√

1 − ε

]
J1(k̃iξ )

k̃4
i J2(k̃i)

, (8)

while at the distances 	0 � r̄ − 1 � c/�R, one gets

�high = 1

2
�0κ	2

0

(
1 − 1

r̄3

) (
1 − ξ 2

)
cos χ

+ 3

8
�0	

3
0H (1)

(
	(r̄)H (r̄)

	0H (1)
− 1

)
ξ (1 − ξ 2) sin χ cos φ.

(9)

Here, �0 = �B0R2/c, κ ≡ εβ, while β = I/I0 is the stellar moment
of inertia in units of I0 = MR2. The parameter ξ = θ/	 changes
from 0 to 1 inside the polar cap region, Jm is the Bessel function of
order m, ki and k̃i are the positive zeroes of the Bessel functions J0

and J1, arranged in ascending order. Moreover,

H (r̄) = 1

r̄

(
ε − κ

r̄2

)
+

(
1 − 3

2

ε

r̄
+ 1

2

κ

r̄3

) [
f (r̄)

(
1 − ε

r̄

)]−1
,

(10)

and δ(r̄) = d ln[	(r̄)H (r̄)]/dr̄ .
These results allow one to find the plasma drift velocity

vD = c
E × B

B2
(11)

in the polar cap region of the magnetosphere with the electric field
E = −∇� and the magnetic field in equations (3) and (4). One can
easily show that the largest contribution to the azimuthal drift in the
corotating frame of the star is due to the term −(cEθBr/B

2)φ̂,
which, after proper transformations (see subsection 2.2 of van
Leeuwen & Timokhin 2012 for the details), leads to the subpulse
drift velocity in degrees per period as given by equation (1). The
final expressions for the drift velocity, obtained from equations (8)
and (9) using J ′

0(x) = −J1(x) and J ′
1(x) = (J0(x) − J2(x))/2 look

like

ωD low = 180◦

ξ

12
√

1 − ε	0

r̄

⎧⎨
⎩ − 2κ cos χ

×
∞∑
i=1

[
exp

(
ki(1 − r̄)

	0
√

1 − ε

)
− 1 + ki(r̄ − 1)

	0
√

1 − ε

]
J1(kiξ )

k3
i J1(ki)

+ 	0H (1)δ(1) sin χ cos φ

∞∑
i=1

[
exp

(
k̃i(1 − r̄)

	0
√

1 − ε

)
− 1

+ k̃i(r̄ − 1)

	0
√

1 − ε

]
J0(k̃iξ ) − J2(k̃iξ )

2k̃3
i J2(k̃i)

⎫⎬
⎭ (12)

and

ωD high = 180◦

ξ

[
− 2ξκ

(
1 − 1

r̄3

)
cos χ + (1 − 3ξ 3)

× 3

4
	0H (1)

(
	(r̄)H (r̄)

	0H (1)
− 1

)
sin χ cos φ

]
. (13)

For inclination angles χ < 90◦ (except for the almost orthogonal
pulsars), the scalar potential in the polar cap region is positive, has
a maximum close to the magnetic axis and goes to zero at the last
open magnetic field lines, so that the value of ωD is negative almost
everywhere. From the point of view of observations, it means that
the SCLF model predicts negative drift (from larger to smaller lon-
gitudes) in the case of the outer line-of-sight geometry and positive
drift in the case of the inner line-of-sight geometry. In the rest of our
work, we claim that the velocities in equations (12) and (13) repre-
sent the true drift velocities of whatever features are responsible for
the subpulses in a specific portion of the magnetosphere [see also
van Leeuwen & Timokhin (2012)]. Moreover, the expressions (12)
and (13) predict the longitude-dependent (not constant) apparent
drift velocity of the subpulses along any observer’s line of sight,
unless the inclination angle of the pulsar is exactly zero and the
line of sight is exactly concentric with the magnetic field axis. In
Section 5, we will use this fact to explain the longitude dependence
of the subpulse separation in the case of two individual pulsars.

4 C O M PA R I S O N W I T H T H E O B S E RV E D
V E L O C I T I E S O F T H E D R I F T I N G SU B P U L S E S

Equations (12) and (13) give the subpulse drift velocity within the
SCLF model. In order to check whether these expressions predict
numbers in agreement with observations, we have used the data
from the catalogue of Weltevrede et al. (2006) and Weltevrede et al.
(2007).

These authors present the results of the observations of 187
pulsars in the Northern hemisphere at wavelengths of 21 and
92 cm. Pulsars revealing the drifting subpulses phenomenon are
divided into three classes, depending on the character of their
Two-Dimensional Fluctuation Spectrum (2DFS). Coherent drifters
(marked as Coh) have narrow pronounced feature in their 2DFS
spectra, meaning that P3 has a stable value through the observa-
tions. Diffuse drifters of the classes Dif and Dif∗ have a broader
feature in 2DFS spectra, which for Dif pulsars is clearly separated
from the alias borders of the spectra (P/P3 = 0 and P/P3 = 0.5),
while for Dif∗ pulsars is not (see Weltevrede et al. 2006 for more
details and examples). For our purposes, we considered the coher-
ent drifters from table 2 of Weltevrede et al. (2006, corresponding
to the observations at 21 cm), selecting only those with known in-
clination angle χ . The values of the inclination angles were taken
from Rankin (1993) and, if absent there, from Lyne & Manchester
(1988). The resulting sample is reported in Table 1. When two val-
ues of the periods P2 and P3 were given in Weltevrede et al. (2006),
we chose the first one.

We assumed all pulsars to have the typical numbers for com-
pactness ε = 0.4, κ = 0.15 and stellar radius R = 106 cm. A
clear picture of drifting subpulses is observed when the line of
sight of the observer grazes the emission cone, so that it is reason-
able to take ξ = 0.9. One may also notice that the second term in
equations (12) and (13), containing the dependence on φ, is smaller
than the first term (it depends on a higher degree of the small angle
	0) and plays a role mostly for the pulsars with large inclination
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Table 1. Coherent drifters from the catalogue of Weltevrede et al. (2006) for which the inclination angle χ is known from previous studies.

Pulsar name P (s) Ṗ P2 (◦) (21 cm) P3 (P) (21 cm) P2 (◦) (92 cm) P3 (P) (92 cm) χ (◦) β (◦)

B0148−06 1.4647 4.4 × 10−16 −12.5 +0.4
−1.9 14.2 ± 0.2 −14 +0.6

−0.5 14.4 ± 0.1 14.5 1.9a, 2.1b

B0149−16 0.8327 1.3 × 10−15 −9 +12
−1 5.8 ± 0.5 −13 +2

−4 5.7 ± 0.2 84 1.9a, 1.9b

B0320−39 3.0321 6.4 × 10−16 −18 +5
−3 8.4 ± 0.1 6.4 +0.2

−0.3 8.46 ± 0.01 69 2.3a

B0621−04 1.0391 8.3 × 10−16 25 +14
−16 2.055 ± 0.001 – – 32 0a

B0809+74 1.2922 1.7 × 10−16 −16 +1
−16 11.1 ± 0.1 −13.2 +0.1

−0.7 11.12 ± 0.01 9 4.5a

B0818−13 1.2381 2.1 × 10−15 −6.5 +0.2
−0.7 4.7 ± 0.2 −5.1 +0.1

−0.6 4.74 ± 0.01 15.5 5.1a, 2b

B1702−19 0.2990 4.1 × 10−15 −80 +6
−70 11.0 ± 0.4 −90 +40

−50 10.8 ± 0.2 85 − 4.1a, 4.1b

B1717−29 0.6204 7.5 × 10−16 −9.6 +3
−0.6 2.45 ± 0.02 −10.9 +0.4

−0.7 2.461 ± 0.001 28.9 4.6b

B1844−04 0.5978 5.2 × 10−14 80 +70
−45 12 ± 1 – – 23 4.1a

B2045−16 1.9616 1.1 × 10−14 17 +18
−2 3.2 ± 0.1 −26 +4

−2 3 ± 0.1 36 1.1a, 1.1b

B2303−30 1.5759 2.9 × 10−15 15 +3
−0.3 2.1 ± 0.1 10.6 +0.8

−0.2 2.06 ± 0.02 20.5 4.5a

B2310−42 0.3494 1.1 × 10−16 60 +20
−10 2.1 ± 0.1 13 +4

−6 2.1 ± 0.05 56 6.8a

B2319+60 2.2565 7.0 × 10−15 70 +60
−10 7.7 ± 0.4 80 +30

−20 5 ± 3 18 2.2a, 2.3b

Note: aValue taken from Rankin (1993).
bValue taken from Lyne & Manchester (1988).

angles. Hence, for the purposes of this subsection, we fixed2 φ = π.
Under these assumptions, the drift velocities in equations (12) and
(13) for each individual pulsar depend only on the radial coordinate
r̄ . So, by solving numerically the equation

ωD low/high = P2

P3
(14)

for each pulsar of Table 1, we can find the altitude r̄0 − 1 of the
plasma features that are responsible for the subpulses. When solving
the equation (14) in the low-altitude approximation, we took the first
30 terms of the expansion (8), which reduces the error to less than
one per cent.

In Table 1, we have pulsars with both positive and negative sub-
pulse drift velocities, and no preferred direction of the drift (sign
of P2) was found in Weltevrede et al. (2006) and Weltevrede et al.
(2007). For comparison, we report in the table also the values of the
impact angle β, taken from Rankin (1993) and Lyne & Manchester
(1988), which is the angle of the closest approach between the mag-
netic axis and the line of sight. As we already mentioned, the SCLF
model predicts negative drift for the outer line of sight (positive β)
and positive drift for the inner line of sight (negative β). However,
from Table 1, we do not see a correlation between the signs of β

and P2. According to the vacuum/partially screened gap model, the
discrepancy between the predicted and the observed direction of the
drift is usually explained in terms of aliasing (Gupta et al. 2004).

One may assume that both the aliasing and the orientation of the
line of sight may serve as an explanation of the visible drift direc-
tion, depending on the individual pulsar properties. However, some
individual pulsars have non-trivial subpulse behaviour, which can
be a challenge for all existing models. There are pulsars showing
different sign of the drift velocity in different modes, or in the same
mode, like J0815+09. Six pulsars, having opposite drift senses in
different components are present in the catalogue of Weltevrede
et al. (2006). The pulsar B2045−16, reported in Table 1, has oppo-
site senses of the subpulse drift for the observations at 21 and 92 cm.
At least, six more pulsars among those reported by Weltevrede et al.
(2006) and Weltevrede et al. (2007) show a similar phenomenology.

2 In any case, we have verified that the results depend weakly on the param-
eters ξ and φ.

However, all of them are diffuse drifters (class Dif∗) at 92 cm (in-
cluding B2045−16), suggesting that aliasing is very likely to occur
for them.

For the purpose of our analysis, we have changed the sign of
all considered subpulse drift velocities from Table 1 to negative.
As a justification for this, we may point on the uncertainty in the
determination of the observing geometry (in different sources, one
may frequently find different estimations for the impact angle of the
same pulsars). At the same time, we leave space for the existence
of other yet unknown reason, responsible for the visible direction
of the drift. In this context, the question which we raise is the
following: are the typical values for the subpulse drift velocities of
different pulsars in general compatible with the predictions of the
SCLF model?

The results of our analysis are schematically represented in
Fig. 1. The red points represent the values of the altitude above
the surface of the star in units of stellar radii (r̄0 − 1) obtained from
equation (14), with the error bars calculated from the errors of P2

and P3 given in table 2 of Weltevrede et al. (2006, at 21 cm). The
green points represent the same quantity obtained from the obser-
vations at 92 cm (Weltevrede et al. 2007). The pulsars are arranged
in ascending order of the period. Black stars show the angular radii
of the polar caps at the surface of the star, 	0, for comparison.
Pulsars which are absent in the 92 cm catalogue are marked with
‘no data’. Arrow indicates the value of the altitude too large to fit in
the plot.

For the sake of comparison, we have also computed the altitudes
as given by the heights of the pair formation front (PFF) following
Hibschman & Arons (2001) and Harding & Muslimov (2001, 2002).
The expressions for the PFF location in the framework of the SCLF
model are given in the appendix. We recall that the main processes
determining the height of the PFF in pulsar magnetosphere are cur-
vature radiation and inverse Compton scattering (resonant as well
as non-resonant). In Fig. 1, the shaded blue regions indicate the PFF
altitude from Hibschman & Arons (2001) for the curvature radius of
the surface magnetic field lines starting from the values ∼R (lower
boundary of the shaded zones) up to the values of the standard dipo-
lar magnetic field (upper boundary of the shaded zones). The blue
points show the PFF altitudes from Harding & Muslimov (2001,
2002). The temperature of the star is taken to be T = 2 × 106 K.
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Figure 1. Values of the altitude above the surface of the star r̄0 − 1 obtained
by solving the equation (14) for the pulsars of Table 1. Red points corre-
spond to the observing wavelength at 21 cm, green points correspond to the
observing wavelength at 92 cm. The obtained altitudes are compared to the
PFF from Hibschman & Arons (2001, blue shadowed regions) and Harding
& Muslimov (2001, 2002, blue points). Black stars show the angular radius
of the polar cap 	0. Special cases are indicated as described in the text.
The figure does not report the two sources B1702−19 and B2045−16. The
first one does not admit a solution of equation (14) for any radial coordi-
nate, while the second one has opposite sense of the subpulse drift for the
observations at 21 and 92 cm.

Even though our approach fails for some of the considered pul-
sars, we find it very promising that for most of them, the altitude
corresponding to the observed value of the subpulse drift velocity
lies within the range or slightly above the PFF altitudes. It is a well-
known fact that radio emission in pulsar magnetosphere originates
at heights of the order of tens of stellar radii (Kramer et al. 1997;
Kijak 2001; Kijak & Gil 2003). However, it was assumed in Ru-
derman & Sutherland (1975) and subsequent works on drifting
subpulses that the geometrical pattern and drift velocity of the sub-
pulses are determined by the distribution of sparks within the gap,
i.e. very close to the surface of the star. In this respect, we think that
the heights that we have obtained, so close to the PFF values, are not
occasional and may reflect the fact that, whatever is the mechanism
of subpulse generation in the SCLF model, they are likely to form
in the vicinity of the PFF.

Our analysis was not meant to consider systematically all the
sources in the catalogue of Weltevrede et al. (2006), but rather it
was aimed at demonstrating the potential ability of the model in
accounting for the observations. While we are confident that the
main conclusion of this subsection may be applicable also to other
pulsars, a systematic study of all the sources may become necessary.

5 D ISCUSSION OF SPECIFIC SOURCES

The expressions for the subpulse drift velocity in equations (12) and
(13) derived in the framework of the SCLF model naturally con-
tain a dependence on ξ and φ, and they predict different velocities
for different regions of the polar cap, in contrast to the estimations
of the vacuum gap model. In this subsection, we attempt to ex-
ploit these additional degrees of freedom to explain the variability
of the subpulse velocities along the pulse longitude in the case of
two specific pulsars, i.e. PSR B0826−34 and PSR B0818−41. Al-
though not included in the catalogue of Weltevrede et al. (2006),
both of them have been repeatedly investigated at several observing

frequencies, and, since they have wide profiles allowing us to track
several subpulse drift bands at a time, they can be regarded as ideal
test cases.

5.1 PSR B0826−34

5.1.1 Basic parameters

The pulsar B0826−34, with spin P = 1.8489 s and Ṗ = 1.0 ×
10−15, has an unusually wide profile, extending through the whole
pulse period. The pulsar emits in its strong mode for 30 per cent
of the time. For the rest of the time, the pulsar stays in the weak
mode, with an average intensity of emission which is ∼2 per cent
of the emission of the strong mode (Esamdin et al. 2005, 2012;
Serylak 2011). Because of its weakness, the very existence of the
weak mode was confirmed only very recently and for a long time
it was thought to be a null pulsar (Durdin et al. 1979; Biggs et al.
1985; Bhattacharyya, Gupta & Gil 2008).

The average pulse profile of B0826−34 consists of the main
pulse (MP) and the interpulse (IP), separated by regions of weaker
emission. The intensity of the MP is much larger than the intensity
of the IP at the frequencies 318 and 606 MHz, while at frequen-
cies larger than ∼1 GHz, the IP starts to dominate. The MP itself
has a double-peaked structure with a separation between the peaks
decreasing at higher frequencies, following the common trend de-
scribed by the radius-to-frequency mapping model of Kijak & Gil
(2003). A detailed description of the average profile evolution with
frequency may be found in Gupta et al. (2004) and Bhattacharyya
et al. (2008).

Additional relevant physical parameters are those related to the
observing geometry of PSR B0826−34, i.e. the values of the incli-
nation angle χ and of the impact angle β. Usually, the values of
these angles are determined by fitting the polarization profile of the
pulsar. According to the ‘rotating vector model’ of Radhakrishnan
& Cooke (1969), the polarization angle of the pulsar radio emission
is equal to

φPA = tan−1 sin χ sin l

sin(χ + β) cos χ − cos(χ + β) sin χ cos l
, (15)

where l is the pulse longitude, related to the azimuthal coordinate φ

by means of standard theorems of spherical geometry (Gupta et al.
2004)3 as

sin l = sin φ sin[ξ	]

sin(χ + β)
. (16)

However, in many cases, this method does not give a unique value
for the inclination and for the impact angles, but rather a wide range
of possible combinations (Miller & Hamilton 1993). For example,
early estimations of Biggs et al. (1985) for PSR B0826−34 based
on the polarization measurements suggested a large range for χ and
β with the best fit of χ = 53◦ ± 2◦ and β + χ = 75◦ ± 3◦, a fact
which does not agree with the large width of the profile. In Gupta
et al. (2004), these angles were estimated from the polarization

3 In the corresponding formula of Gupta et al. (2004), the azimuthal coor-
dinate with respect to the magnetic axis is denoted by σ , while φ is used to
denote the pulse longitude, which may introduce a confusion when making
comparison with our results. However, we preferred to keep the notation φ

for the azimuthal angular coordinate as in Muslimov & Tsygan (1992).
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Table 2. Subpulse drift velocity ranges of PSR B0826−34 measured at
different observing frequencies.

Observing
frequency

(MHz)

Measured
drift velocity

(◦/P) Reference
Average drift
velocity (◦/P)

318 −0.8−1.9 Gupta et al. (2004) 0.55
645 −1.5−2.1 Biggs et al. (1985) 0.3

1374 −3.2−3.6 Esamdin et al. (2005) 0.2
1374 −1−1.5 van Leeuwen &

Timokhin (2012)
0.25

information4 together with the frequency evolution of the profile
and were found to lie in the range5 1.◦5 ≤ χ ≤ 5.◦0 and 0.◦6 ≤ β ≤ 2.◦0.

5.1.2 Subpulse phenomenology

The drifting subpulses are seen almost along the whole range of
longitudes, showing from 5–6 up to 9 visible tracks at a time. The
character of the observed subpulse drift is irregular, the apparent
velocity reveals an oscillatory behaviour, changing sign with a peri-
odicity of the order of tens to several hundred periods of the pulsar.
The values of the apparent subpulse drift velocities were measured
in a number of papers for different observing frequencies (Biggs
et al. 1985; Gupta et al. 2004; Esamdin et al. 2005; van Leeuwen
& Timokhin 2012) and are reported in Table 2. In all cases, the de-
clared velocity range is not symmetric with respect to zero, having
a positive average velocity (see figs 5 and 6 of Esamdin et al. 2005
for an example of a positive average drift).

Another interesting property of PSR B0826−34 is the longitude
dependence of the period P2. Esamdin et al. (2005) reports the
values for P2 between 26.◦8 and 28◦ in the MP region (average
27.◦5) and between 19◦ and 23.◦5 in the IP region (average 22.◦2).
In order to explain this behaviour, the authors proposed a model of
spark carousel consisting of two rings of 13 sparks each, with the
separation between the sparks in the outer ring (responsible for the
MP) 27.5/22.2 ≈ 1.2 larger than in the inner ring (responsible for
the IP). In Gupta et al. (2004), P2 was found to vary between 21.◦5
and 27◦ with the mean value of 24.◦9. As a possible explanation of
the observed phenomena, the authors proposed a scheme where the
ring of sparks is centred not around the dipolar axis of the pulsar
magnetic field, but around the ‘local magnetic pole’, shifted with
respect to the global dipole one. This agrees well with the models
suggesting that the pulsar magnetic field has a multipole structure
near the surface of the neutron star (Gil & Sendyk 2000), which
arises due to the dynamo mechanism in the newborn stars (Urpin
& Gil 2004) or, more probably, due to the Hall drift (Geppert,
Rheinhardt & Gil 2003; Geppert, Gil & Melikidze 2013).

5.1.3 Analysis of the subpulse drift

We start our analysis of the subpulse drift by estimating the altitude
above the surface of the star, which would correspond to the average

4 We recall that the measurements of linear polarization are sometimes
contaminated by the orthogonal polarization mode switching. Single pulse
polarization observations may be necessary for the reconstruction of the
mode-corrected polarization angle swing (Gil & Lyne 1995).
5 These ranges include the values reported by Lyne & Manchester (1988)
χ = 2.◦1 and β = 1.◦2 and by Rankin (1993) χ = 3◦ and β = 1.◦1. On the
other hand, Esamdin et al. (2005) report the value of χ = 0.◦5.

subpulse drift velocities of PSR B0826−34 (cf. Section 4). Posi-
tive average observed drift velocities contradict our equation (12),
which predicts negative values for the drift velocity everywhere
across the polar cap of a nearly aligned pulsar. Since in the case
of PSR B0826−34, the observer’s line of sight lies most probably
entirely in the polar cap region, one cannot explain the positive ob-
served drift velocity with the negative impact angle β. However, one
can suppose that, rather than drifting in the positive direction with
some small velocity ω, the subpulses actually drift in the negative
direction, in such a way that, at every period, each successive sub-
pulse appears close to the place of the preceding one. For example,
taking the average value of the subpulse drift velocity from Gupta
et al. (2004) as 0.◦55/P and using the average value of the subpulse
separation P2 estimated there as 24.◦9 ± 0.◦8, one can see that similar
observed picture would be obtained if the subpulses were drifting
with the negative velocity (0.◦55 − 24.◦9)/P = −24.◦35/P, provided
the period P3 is close to the pulsar period P. The period P3 of
PSR B0826−34 is not yet reported in the literature, possibly be-
cause the subpulse tracks are irregular. Hence, the lack of obser-
vational indications legitimate us to assign any reasonable value to
P3. For instance, in the work of Gupta et al. (2004), good fits of
the observational data are obtained when the values of P3 are equal
to 1.00, 0.5 and 0.33P. For the purposes of our analysis, in this
subsection, we will assume that P3 ∼ P and that all the observed
drift velocities are in fact shifted by −24.◦9/P, so that the altitude
of the plasma features responsible for the subpulses in the case of
PSR B0826−34 should correspond to the average plasma drift ve-
locity −24.◦35/P. Assuming that the pulsar is nearly aligned, the best
result is obtained for r̄0 − 1 = 0.19. This altitude depends weakly
on the chosen angle χ , provided the latter is close to 0◦. This value
is somewhat higher than the predicted values for the PFF, which for
our reference temperature T = 2 × 106 K are 0.005 < hHA < 0.059
(depending on the value of fρ) and hHM = 0.062 (see the appendix
for the definition of hHA and hHM). However, one may notice that
the altitude of the PFF is quite sensitive to the temperature of the
star (in the case when it is controlled by the inverse Compton scat-
tering), and, for instance, for the temperature T = 0.5 × 106 K, the
corresponding values for hHA lie in the range 0.021−0.235, with
the same hHM.

Fig. 2 is devoted to the illustration of the geometry of
PSR B0826−34. In the upper panel, we show a sketch of the polar
cap, whose boundary is represented with a black circle. At the alti-
tude r̄0 − 1 = 0.19, the polar cap has an angular radius 	 ∼ 0.◦57
[cf. equation (7)]. It should be stressed that different observations
of the angular size of the polar cap do not provide consistent con-
clusions. According to Lyne & Manchester (1988), for instance,
	 ∼ 13◦P−1/3/2, which, for PSR B0826−34, gives 	 ≈ 5.◦3, i.e.
an order of magnitude larger compared to what we have found. On
the contrary, the angular size of the polar cap deduced from X-ray
observations is much smaller and close to the values that we have
obtained through equation (7).

Another relevant quantity is the trajectory of the observer’s line
of sight, which is given by (Manchester & Taylor 1977)

ξ = 1

	(r̄)
sin−1

×
[

cos(χ + β) cos χ − sin χ cos φ
√

sin2(χ + β) − sin2 φ sin2 χ

1 − sin2 χ sin2 φ

]
,

(17)

with 0 ≤ φ < 2π, and is represented with a green line in the upper
panel of Fig. 2. The range of the coordinate ξ along the line of
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Subpulse velocity in SCLF 1151

Figure 2. Upper panel: observing geometry of PSR B0826−34 (the coor-
dinate axes show the values of the angular coordinate θ in degrees). The
black circle indicates the polar cap, with the centre in the magnetic pole
(black point ‘M’), while the green circle indicates the trajectory of the line
of sight of the observer, with the centre on the axis of rotation (green point
‘R’). ‘l = 105◦’ (rather than l = 0◦) is used as origin of the pulse longitude in
order to bring the plots in the visual correspondence with the ones from the
literature. Lower panel: polarization angle as a function of longitude in our
model. The plot is shifted in longitude for easier comparison with previous
results from the literature (see discussion in the text).

sight approximately coincides with that estimated in Gupta et al.
(2004) as 0.25−0.85. In agreement with the tiny size of the polar
cap, we have chosen the inclination angle and the impact angle as
χ = 0.◦225 and β = 0.◦098. The resulting ratio is consistent with
the available observational data, which uses the relation χ/β ≈
sin χ/sin β = (dψ/dφ)max, where (dψ/dφ)max is the value of the
steepest gradient of the polarization angle curve, estimated to be
2.◦0 ± 0.◦5/◦ in Gupta et al. (2004) and 1.◦7/◦ in Lyne & Manchester
(1988).6 The lower panel of Fig. 2 reports the polarization pro-
file computed through equation (15). It should be compared with
fig. 6(d) of Biggs et al. (1985) and with the upper panel of fig. 1 of
Gupta et al. (2004).7

The upper panel of Fig. 3 shows the 3D plot of the plasma
drift velocity (equation 12) in the polar cap region (0 < ξ < 1,

6 This makes our picture for the observed geometry a bit different from
fig. 10 of Esamdin et al. (2005), where the angle β is apparently larger than
χ .
7 Note that the plots of the polarization angle and of apparent drift velocity
in this subsection are shifted in longitude in order to make them easier
comparable with the corresponding plots in the literature, associating zero
of the pulse longitude with the bridge region before the IP. In our analysis, the
zero of the azimuthal angle and of the pulse longitude is instead associated
with the peak of the MP. The shift is taken to be 105◦ to match the distance
between the second zero of the position angle curve and the end of the pulse
from the top panel of fig. 1 of Gupta et al. (2004).

Figure 3. Upper panel: 3D visualization of the plasma drift velocity across
the polar cap (0 < ξ < 1, 0 < φ < 2π) of a pulsar with the parameters of
PSR B0826−34 (the radial coordinate is taken to be r̄ = 1.19). The solid
blue line shows the observer’s line of sight according to the model presented
in Fig. 2. Lower panel: the dashed line represents the plasma drift velocity
ωD low along the line of sight of the observer. The blue solid line shows
the projection of the plasma drift velocity on the trajectory of the line of
sight (actually measured velocity). The values reported on the right vertical
axis represent the drift velocity shifted by the constant value 24.◦9/P, as it
appears to the observer.

0 < φ < 2π) for the set of parameters of PSR B0826−34 and for
the radial coordinate r̄ = 1.19.8 The expression (12) diverges for
the values of ξ close to zero and we cut this region from the plot.
One may notice that, in spite of the complexity of the expression
(12), the resulting angular dependence of the plasma drift velocity
is quite smooth. The blue solid line shows the line of sight of
the observer, which corresponds to the green circle in Fig. 2. In
our model, we associate the region around φ = 0 to the MP of
PSR B0826−34, while the region around φ = π is associated with
the IP. The lower panel of Fig. 3 shows the drift velocities along the
line of sight of the observer. The green dashed line shows the actual
values of the plasma drift velocity ωD low (left vertical axis) at the
points crossed by the line of sight as a function of the azimuthal
angle φ. The blue solid line shows the drift velocity which the
observer will actually measure, i.e. the drift velocity (equation 12)
projected on the trajectory of the line of sight across the polar cap

ωproj = ω√
1 +

(
dξ

dφ

)2
. (18)

This is again plotted as a function of the azimuthal angle φ, and
the green and the blue curve coincide at φ = 0 and φ = π, as they
should. The values indicated on the right vertical axis represent the
projected velocity ωproj shifted by the constant value 24.◦9/P and

8 The first 200 terms of the infinite series of the expression (12) are plotted.
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Figure 4. Comparison of the variation of the plasma drift velocity along the
pulse longitude (solid blue curve) with the corresponding variation of the
period P2 of PSR B0826−34, measured in Gupta et al. (2004). The values
of P2 from the upper panel of the fig.8 of Gupta et al. (2004) are shifted on
37◦ (black points), to bring them in better visual correspondence with the
velocity curve (the value of shift is not a result of fit, but estimated by eye).

give the values of the drift velocity, apparent to the observer. Interest-
ingly, one can see that these values cover the observed range of drift
velocities reported by Gupta et al. (2004), namely (0.8−1.9)◦/P .
This suggests that the diversity in the measured velocity of
PSR B0826−34 may be explained with the intrinsic angular de-
pendence of the plasma drift velocity across the pulsar polar cap.

Following a similar argument, we can try to explain the ob-
served longitude dependence of the subpulse separation P2 of
PSR B0826−34. The subpulse drift velocity is usually defined
as ω = P2/P3. However, one may alternatively assume that the
observed subpulse separation P2 is, in fact, determined by the ve-
locity ω, which, in turn, is defined by the physical condition of
the plasma at any given point of the polar cap. Intuitively, if one
imagines the carousel of sparks (or any other feature responsible
for the subpulse phenomena) moving around the polar cap with the
longitude-dependent velocity, it seems plausible that in the regions
with lower velocity, the subpulse tracks will tend to look closer,
while in the regions with larger velocity, they will look farther away
from each other. From the observations of other pulsars, we know
that the values of P3, which, we recall, also enters the expression
of the apparent drift velocity, are essentially the same at different
observing frequencies for a given pulsar (Weltevrede et al. 2006,
2007; Bhattacharyya, Gupta & Gil 2009), suggesting that this sub-
pulse parameter expresses some persistent property. We therefore
argue that the longitude dependence of P2 is explained in terms of
the longitude dependence of the drift velocity of the features that
generate the subpulse, while P3 could represent a specific charac-
teristic property of the individual pulsar.

In order to support this point of view, we have tried to make
the analysis of the longitude dependence of P2 reported in Gupta
et al. (2004) and our results are reported in Fig. 4. The solid blue
curve shows the absolute value of the projected drift velocity (equa-
tion 18), as a function of the pulse longitude l.9 The grey points
represent the observed values of P2 given in the top panel of fig.

9 Note, that, apart for the 105◦ shift in the longitude, the shape of the velocity
in Fig. 2 is different from that in Fig. 3, since the pulse longitude is in general
different from the azimuthal angle φ.

8 of Gupta et al. (2004) along the pulse profile, shifted by 105◦ to
bring them in correspondence with our longitude scale. Note that,
due to the adopted assumption P3 ∼ P, these values of the pulse
separation should reproduce the values of the drift velocity along
the pulse. The black points are the same as the grey ones, but shifted
by 37◦ in longitude. Although the value of this shift is chosen ‘ad
hoc’ and is not the result of a fitting procedure, there is a positive
uncertainty in our choice of the origin of the longitude (see foot-
note 7), as well as a possible longitude shift between the 318 MHz
data of Gupta et al. (2004) and the 606 MHz data of Biggs et al.
(1985), containing the polarization data that we have chosen as a
reference here. In spite of the uncertainties, the correspondence that
we have found between the data points and the analytical curve
is very promising and needs further investigation and comparison
with more data.

Finally, as already mentioned before, the measured subpulse drift
velocity of PSR B0826−34 reveals an irregular behaviour on the
time-scales of tens to hundreds of period, for which a firm explana-
tion is still lacking. Indeed, our basic model, described in Figs 2 and
3, predicts a certain value of the drift velocity for a certain value of
the pulse longitude, while the observed sequences of pulses taken
from Esamdin et al. (2005), Gupta et al. (2004) and van Leeuwen &
Timokhin (2012) suggest that the velocity at a given pulse longitude
changes with time. Gupta et al. (2004) explained these variations
within the partially screened gap model by invoking small fluctua-
tions of the polar cap temperature around the mean value10 (Gil et al.
2003). On the contrary, van Leeuwen & Timokhin (2012) argued
that the potential drop in the polar cap region may be determined not
only by the local physical conditions, but by the global structure of
the magnetosphere (Timokhin 2010a,b; Kalapotharakos et al. 2012;
Li, Spitkovsky & Tchekhovskoy 2012). As a result, the long term
changes of the observed drift rate may be related to the evolution
of the magnetospheric current density distribution, for example,
due to switches between meta-stable magnetosphere configurations
(Timokhin 2010a).

The alternative explanation that we may propose is that the ob-
served variations are related to stellar oscillations. In our preceding
research (Morozova, Ahmedov & Zanotti 2010; Zanotti, Morozova
& Ahmedov 2012), we have studied the influence of the non-radial
stellar oscillations on the scalar potential of the polar cap region
of the magnetosphere. The oscillation velocity at the stellar surface
modulates the linear velocity of the pulsar rotation, introducing a
new term in the charge density, in the scalar potential and in the ac-
celerating electric field above the surface of the star. We also shown
that oscillations may increase the electromagnetic energy losses of
the pulsar, causing its migration above the death-line in the P−Ṗ di-
agram. Taking into account that PSR B0826−34 is located relatively
close to the death-line (τ = 3 × 107 yr, Bd = 1.4 × 1012 G) and that
it is very intermittent, staying in the ON state for only 30 per cent of
the time, it is likely that this pulsar is visible only when it oscillates,
which may also determine the character of variation of the observed
subpulse velocity.11

10 The key assumption of this interpretation is that the visible subpulse
velocity is in fact the aliased value of the true (higher) one, so that the
periodic change of the apparent drift direction corresponds to the slowing
down and speeding up of the intrinsic drift rate with respect to its average
value.
11 The observed periodicity of hundreds of seconds may be reached by core
g modes of the neutron star (McDermott, van Horn & Hansen 1988).
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5.2 PSR B0818−41

5.2.1 Basic parameters

The pulsar B0818−41, with the main parameters P = 0.545 s,
τ = 4.57 × 108 yr, Bd = 1.03 × 1011 G, was discovered during
the second pulsar survey (Manchester et al. 1978; Hobbs et al.
2004). The width of the average pulse profile of PSR B0818−41
is close to 180◦ with a pronounced subpulse drift along a wide
range of longitudes. The typical subpulse drift pattern (see fig. 2 of
Bhattacharyya et al. 2007 at the frequency of 325 MHz) consists
of an inner region with slower apparent drift velocity, surrounded
by an outer region with larger intensity of subpulses and steeper
drift. Multifrequency observations of Bhattacharyya et al. (2009)
at 157, 244, 325, 610 and 1060 MHz show that at lower frequen-
cies the subpulses become weaker and may be seen only in the
outer regions at 244 MHz and only in the trailing outer region at
157 MHz. The observing geometry, i.e. the values of the inclina-
tion angle and of the impact angle, is not uniquely determined for
this pulsar and the polarization profile admits several interpreta-
tions. However, based on the average polarization behaviour, Qiao
et al. (1995) concluded that the inclination angle of PSR B0818−41
should be small. Unique nulling properties of PSR B0818−41 are
studied in Bhattacharyya, Gupta & Gil (2010).

5.2.2 Subpulse phenomenology

The value of P3 = 18.3 ± 1.6P was found in Bhattacharyya et al.
(2007), observing at the frequency 325 MHz, by means of the fluc-
tuation spectrum analysis, and the same value was confirmed later
in Bhattacharyya et al. (2009) for all other observing frequencies. In
the inner part of the subpulse drift region, where several (typically 3
to 4) subpulse tracks are observed within one pulse, the value of P2

was found from the second peak of the autocorrelation function to
be 17.◦5 ± 1.◦3 (Bhattacharyya et al. 2007). In the outer regions of the
profile, the value of P2 is larger (already from the visual inspection
of the subpulse tracks) and not easily measurable, because typically
no more than one subpulse per pulse is seen in these regions. Esti-
mations for the different observing frequencies and different parts
of the profile can be found in Bhattacharyya et al. (2009), while the
average value of P2 may be taken around 28◦ (Bhattacharyya et al.
2007).

As indicated in Gupta et al. (2004), the measured values of the
periods P2 and P3 are not necessarily equal to the true intrinsic ones.
The value of P3 may be affected by aliasing, which starts to play a
role when P3 < 2P. The value of P2 is affected by the finite time
required for the line of sight to traverse the polar cap as well as by
the difference between the longitude l along the pulse (in which we
measure P2) and the azimuthal coordinate φ around the magnetic
axis. However, if we assume that there is no aliasing, the correction
to the measured value of P2 due to the finite traverse time is given
by a factor of 1/[1 + P2/(360◦P3)] [derived from the equation 5 of
Gupta et al. (2004)], which in our case is ∼0.997. As long as we
are not concerned with the structure of the carousel as a whole and
we do not consider the possibility of aliasing in our calculations,
we assume everywhere that the measured values of P2 and P3 are
equal to the intrinsic ones.

5.2.3 Analysis of the subpulse drift

As in the previous subsection, we start the analysis from the de-
termination of r̄ , corresponding to the measured subpulse drift ve-
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Figure 5. Upper panel: observing geometry of PSR B0818−41 (the coor-
dinate axes show the values of the angular coordinate θ in degrees). The
black circle indicates the polar cap, while the green circle indicates the tra-
jectory of the line of sight of the observer. Lower panel:polarization angle
as a function of longitude in our model.

locity of PSR B0818−41. Choosing for this estimation χ = 0 and
ξ = 0.5 and using the other known parameters of the pulsar, we
get r̄0 = 1.011 for ωD = −0.◦956/P (this value of r̄0 depends very
weakly on the chosen ξ and χ , provided the inclination angle is
small). For comparison, assuming that the temperature of the polar
cap is T = 3 × 106 K, the altitude of the PFF hHA lies in the range
0.013−0.106 for the different values of fρ and hHM = 0.182, while
for the temperature T = 4 × 106 K, the corresponding values for the
hHA are 0.0097−0.0796 with the same hHM. So, the estimated value
for the altitude lies close to the lower boundary obtained through
the PFF approach.

Fig. 5 is devoted to the illustration of the geometry of
PSR B0818−41, with the inclination angle between the magnetic
and the rotational axes χ = 0.◦34 and the impact angle β = 0.◦51. The
considered geometry corresponds to an outer line of sight, which,
within the SCLF model, naturally results in negative value of the
subpulse drift velocity. The chosen inclination and impact angles
are much smaller than those suggested before in the literature.12

These small values are required by the fact that the size of the
polar cap is very small 	 = 0.◦94 at the considered altitude. How-
ever, one may notice that the G-2 geometry of Bhattacharyya et al.
(2009), which gives the best fit to the polarization angle profile of
PSR B0818−41, effectively corresponds to an outer line of sight
with χ = 180◦−175.◦4 = 4.◦6 and β = 6.◦9, so that sin β/sin χ = 1.5.
Based on this, we chose the inclination and impact angles of our
geometry to satisfy β/χ = 1.5 in order to match the polarization

12 The two geometries proposed by Bhattacharyya et al. (2009) have
χ = 11◦, β = −5.◦4 (G-1) and χ = 175.◦4, β = −6.◦9 (G-2).
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Figure 6. Curved subpulse drift bands of PSR B0818−42 generated
through the SCLF model (solid blue lines), to be compared with those
reported in fig. 2 of Bhattacharyya et al. (2007). Tracks are plotted for the
whole longitude range of the average profile, while vertical black lines in-
dicate the boundaries of the region where drifting subpulses are actually
observed.

profile of the pulsar. The polarization angle, calculated through the
‘Rotating Vector Model’, is plotted in the lower panel of the Fig. 5
as a function of the longitude and reproduces well the observational
data (cf. fig. 6 of Bhattacharyya et al. 2009).

We can use the geometry of Fig. 5 to model the observed be-
haviour of the subpulse tracks. Starting from the trailing end of the
profile (because the drift velocity is negative), we evolve the az-
imuthal coordinate φ with time using the projected velocity (equa-
tion 18). At each time step, we calculate the corresponding pulse
longitude using relation (16) and add a new subpulse track ev-
ery P3 = 18.3P. The resulting pattern of the subpulse motion for
200 pulses as a function of pulse longitude is shown in Fig. 6
through blue solid lines, which may be directly compared to fig. 2 of
Bhattacharyya et al. (2007). The solid vertical lines indicate the re-
gion, where the subpulse drift is actually observed. We estimated
its width as 120◦, corresponding to the pulse longitudes 140−260◦

of fig. 2 of Bhattacharyya et al. (2007). Note that the centre of the
profile there is slightly shifted with respect to 180◦. When compared
to the observational data, we find that the SCLF model is able to
reproduce the curved subpulse tracks reasonably well.

The pattern of the subpulse tracks obtained with our model is
symmetric by construction. However, according to the observations
of Bhattacharyya et al. (2009), the drift bands of the trailing outer
region of the pulse appear to be steeper than the drift bands of the
leading outer region. Although a clean explanation for this effect is
still missing, we argue that some degree of asymmetry can be due
to the effects of retardation, aberration and refraction of the signal
in the outer magnetosphere (Petrova 2000; Gangadhara & Gupta
2001; Gupta & Gangadhara 2003; Weltevrede et al. 2003).

We emphasize that the original spark model of Gil & Sendyk
(2000), on the basis of very general arguments, predicts that
the pulsar polar cap should be densely filled by equidistant
equal-size sparks. On the contrary, the carousel pattern proposed

later in Esamdin et al. (2012), Bhattacharyya et al. (2007) and
Bhattacharyya et al. (2009) has larger and wider separated sparks in
the outer ring in order to explain the observed subpulse behaviour
[compare fig. 1 of Gil & Sendyk (2000) with fig. 10 of Esamdin
et al. (2005)]. We find it interesting that, within the SCLF model, it
is possible to explain the observed curved subpulse tracks by means
of the velocity variations only, without breaking the assumption
that the features responsible for the subpulses are equal in size and
equidistant. This supports the argument, already presented in the
previous subsection, according to which the variations of P2 with
the pulse longitude, observed for many pulsars, may be completely
explained by the variability of the subpulse drift velocity across the
polar cap, while the value of P3, which seems to be independent
of the pulse longitude and even of the observing frequency, should
reflect an intrinsic characteristic property of the individual pulsar.

One interesting observation made in Bhattacharyya et al. (2009)
is that the leading and trailing outer regions of the pulse profile
maintain a unique phase relationship, with the maximum of the
energy in the trailing component being shifted in time by ∼9P with
respect to the maximum of the energy in the leading component.
Based on this observation, the authors propose an elegant solution
to the aliasing problem, arguing that the considered shift may not be
explained without aliasing and suggesting the model of 20 sparks
ring with first-order alias and a true drift velocity of 19.◦05/P as
the most plausible description of the system. As an alternative, we
propose that the position of the picks of the pulse profile is not
strictly determined by the position of the sparks in the outer ring,
but modulated by the outer regions of the magnetosphere. One may
assume, as it is customary, that the major radio emission mechanism
of the pulsar is due the formation of the secondary plasma from the
energetic photons emitted by the primary particles. Near the axis
this process is negligible due to the large curvature radius of the
magnetic field lines, while on the edges of the polar cap region, the
acceleration potential itself drops to zero. This produces the ‘hollow
cone’ distribution of the secondary plasma in the magnetosphere
above the PFF [see Petrova (2000), Weltevrede et al. (2003), where
this model is used for the study of magnetospheric refraction, also
Fung et al. (2006)]. We therefore believe that such a distribution
modulates the emission profile and changes the position of the
maxima with respect to the position of the outer ring of sparks.
However, this issue is beyond the scope of this paper and we leave
it for a future study.

6 C O N C L U S I O N S

The phenomena of drifting subpulses are typically explained by
resorting to the vacuum or to the partially screened gap models
of pulsar magnetospheres. For example, the partially screened gap
model allows for the formation of a spark carousel due to discharges
of the large potential drop through the inner polar gap and these
sparks are thought to be responsible for the appearance of subpulses.
However, it has been recently shown by van Leeuwen & Timokhin
(2012) that the expression used for the estimation of the subpulse
drift velocities, both in the vacuum and in the partially screened gap
model, is not accurate enough.

On the other hand, considering the pulsar magnetosphere as a
global object, one can propose alternative mechanisms for the for-
mation of distinct emitting features representing subpulses and in
this paper, we have reconsidered the ability of the SCLF model to
explain this phenomenology. The SCLF model provides analytical
solutions for the scalar potential in the polar cap region of the pulsar
magnetosphere in the case of free outflow of the charged particles
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from the surface of the star. Hence, the drift velocity of subpulses
along the pulse can be interpreted in terms of the plasma drift ve-
locity, which in turn depends on the gradient of the scalar potential
rather than on its absolute value.

After considering a selected sample of sources taken from the
catalogue of Weltevrede et al. (2006), we have found the following
conclusions:

(i) the SCLF model predicts the subpulse drift velocities com-
patible to the observed ones at heights above the surface of the star
close to the PFF;

(ii) the angular dependence of the plasma drift velocity in the
SCLF model provides a natural explanation for the variation of the
subpulse separation P2 along the pulse. In particular, it may explain
the curved subpulse drift bands of PSR B0818−41 and the range of
the observed subpulse velocities of PSR B0826−34.

These results suggest that the role of the SCLF model in ex-
plaining the drifting subpulse phenomena has been underestimated,
calling for additional investigations and systematic comparisons
with all available observations.
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A P P E N D I X A : PA I R FO R M AT I O N F RO N T

All mechanisms proposed for the generation of radio emission in the
pulsar magnetosphere require the presence of an electron–positron
plasma. Within the SCLF model, primary particles, extracted from
the surface of the star by the rotationally induced electric field, ac-
celerate in the inner magnetosphere and emit high-energy photons,
which in turn produce electron–positron pairs in the background
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magnetic field. The three main processes responsible for the emis-
sion of photons by the primary particles are curvature radiation
(CR), non-resonant inverse Compton scattering (NRICS) and reso-
nant inverse Compton scattering (RICS). Copious pair production
in the open field lines region leads to the screening of the acceler-
ating electric field and stops the acceleration of the particles above
the so-called PFF.

The determination and even the definition of the PFF is not a
trivial task. It was thoroughly investigated in the framework of
the SCLF model by Hibschman & Arons (2001) and Harding &
Muslimov (2001, 2002), with slightly different approaches. Hib-
schman & Arons (2001) define the location of the PFF as the place
where the number of pairs created per primary particle is equal to
κ , which means that the space charge density is large enough to
screen the accelerating component of the electric field. Harding &
Muslimov (2001, 2002), instead, locate the PFF front where the
first electron–positron pair is produced. In Harding & Muslimov
(2001, 2002), it is shown that the full screening of the accelerating
electric field is not even possible for many pulsars, while the PFF is
still formed. The difference between these two approaches affects
significantly the inverse Compton scattering, while the results for
the CR are essentially the same.

The expressions for the height of the PFF in units of the stellar
radius obtained in Hibschman & Arons (2001) are

hHA
CR = 0.678B

−5/6
12 P 19/12f 1/2

ρ , (A1)

hHA
NRICS = 0.119B

−1/2
12 P 1/4T −1

6 f 1/2
ρ , (A2)

hHA
RICS = 12.0B

−7/3
12 T

−2/3
6 fρ . (A3)

Here, B12 = B/1012 and T6 = T/106. The quantity fρ , which de-
scribes the curvature of the field lines in the considered regions,
changes from fρ = 0.011P−1/2 for the multipolar field with radius
of curvature equal to the stellar radius, to fρ = 1 for the dipolar
field. In Fig. 1, these two cases correspond to the lower and upper
boundaries of the blue shaded regions.13

13 Here, for NRICS, we report only the values obtained in the Klein–Nishina
regime, as it will dominate for typical pulsar parameters.

The expressions for the height of the PFF in units of the stellar
radius obtained in Harding & Muslimov (2001, 2002) are

hHM
CR ≈ 0.03

⎧⎨
⎩

1.9P
11/14
0.1 B

−4/7
12 if P

9/4
0.1 < 0.5B12

3.0P
7/4
0.1 B−1

12 if P
9/4
0.1 > 0.4B12

, (A4)

hHM
NRICS ≈ 0.01

⎧⎨
⎩

3(P/B12)2/3 if P � 0.4B
4/7
12

4P 5/4/B12 if P � 0.4B
4/7
12

, (A5)

hHM
RICS ≈ 0.01

⎧⎨
⎩

7P 2/3B−1
12 if P � 0.1B

6/7
12

17P 5/4B
−3/2
12 if P � 0.1B

6/7
12

. (A6)

The values for the PFF shown in Fig. 1
are min(hHM

CR , hHM
NRICS, h

HM
RICS) for the blue points,

min(hHA
CR , hHA

NRICS, h
HA
RICS) with fρ = 0.011P−1/2 for the lower

boundaries of the blue shaded regions and min(hHA
CR , hHA

NRICS, h
HA
RICS)

with fρ = 1 for the upper boundaries of the blue shaded regions.
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