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We propose a new parametric framework to describe in generic metric theories of gravity the spacetime of
spherically symmetric and slowly rotating black holes. In contrast to similar approaches proposed so far, we
do not use a Taylor expansion in powers of M /r, where M and r are the mass of the black hole and a generic
radial coordinate, respectively. Rather, we use a continued-fraction expansion in terms of a compactified radial
coordinate. This choice leads to superior convergence properties and allows us to approximate a number of
known metric theories with a much smaller set of coefficients. The measure of these coefficients via observations
of near-horizon processes can be used to effectively constrain and compare arbitrary metric theories of gravity.
Although our attention is here focussed on spherically symmetric black holes, we also discuss how our approach

could be extended to rotating black holes.
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I. INTRODUCTION

Black holes are one of the most intriguing, fascinating
and yet unsettling consequences of classical general relativ-
ity. Even when putting aside the acceptance and understand-
ing of the physical singularities hidden at their centers, the
mere existence of an event horizon leads to a number of un-
solved problems and long-standing debates. Yet, black holes
are some of the most cherished objects in modern astronomy
and evidence of their existence at different scales appears as
common as it is convincing.

Proof of the existence of an event horizon would not be dis-
putable if it appeared in terms of gravitational radiation, for
instance in the form of a quasinormal mode ringdown when a
new black hole is formed. However, it would become surely
difficult, if possible at all, when using the electromagnetic
emission coming from material accreting onto it [1]. At the
same time, our increasing ability to perform astronomical ob-
servations that probe regions on scales that are comparable or
even smaller than the size of the event horizon, will soon put
us in the position of posing precise questions on the physical
properties of those astronomical objects that appear to have all
the properties of black holes in general relativity.

A good example in this respect is offered by astronomical
observations of the radio compact source Sgr A*, which re-
sides at the center of our Galaxy and is commonly assumed
to be a supermassive black hole. Recent radio observations of
Sgr A* have been made on scales comparable to what would
be the size of the event horizon if it indeed were a black
hole [2]. Furthermore, in the near future, very long base-
line interferometric radio observations are expected to image
the so-called black-hole “shadow” [3], namely the photon ring
marking the surface where photons on circular orbits will have
their smallest stable orbit [4]. These observations, besides
providing the long-sought evidence for the existence of black
holes, will also provide the possibility of testing the no-hair
theorem in general relativity [5-7].

If sufficiently accurate, the planned astronomical observa-
tions will not only provide convincing evidence for the exis-

tence of an event horizon, but they will also indicate if devi-
ations exist from the predictions of general relativity. How-
ever, given the already large number of alternative theories of
gravity, and considering that this is only expected to grow in
the near future, a case-by-case validation of a given theory
using the observational data does not seem as viable an op-
tion. It is instead much more reasonable to develop a model-
independent framework that parametrizes the most generic
black-hole geometry through a finite number of adjustable
quantities. These quantities must be chosen in such a way
that they can be used to measure deviations from general rel-
ativity (or a black-hole geometry) and, at the same time, can
be estimated robustly from the observational data [8].

This approach is not particularly new and actually similar
in spirit to the parametrized post-Newtonian approach (PPN)
developed in the 1970s to describe the dynamics of binary
systems of compact stars [9]. A first step in this direction was
done by Johannsen and Psaltis [10], who have proposed a gen-
eral expression for the metric of a spinning non-Kerr black
hole in which the deviations from general relativity are ex-
pressed in terms of a Taylor expansion in powers of M/r,
where M and r are the mass of the black hole and a generic
radial coordinate. While some of the first coefficients of the
expansion can be easily constrained in terms of PPN-like pa-
rameters, an infinite number remains to be determined from
observations near the event horizon [10]. This approach was
recently generalized by relaxing the area-mass relation for
non-Kerr black holes and introducing two independent mod-
ifications of the metric functions g4+ and g, [11]. Unfortu-
nately, as discussed in [11], this approach can face some diffi-
culties:

1. The proposed metric is described by an infinite number
of parameters, which are roughly equally important in
the strong-field regime, making it difficult to isolate the
dominant terms.

2. The parametrization can be specialized to reproduce a
spherically symmetric black hole metric in alternative
theories only in the case in which the deviation from



the general relativity is small. This was checked for the
black holes in dilatonic Einstein-Gauss-Bonnet gravity
[12], for which the corresponding parameters were cal-
culated only in the regime of small coupling.

3. At first order in the spin, the parametrization cannot re-
produce deviations from the Kerr metric arising in al-
ternative theories of gravity. As an example, it cannot
reproduce the modifications arising for a slowly rotat-
ing black hole in Chern-Simons modified gravity.

In this paper we propose a solution to these issues and take
another step in the direction of deriving a general parametriza-
tion for objects in metric theories of gravity. More precisely,
we propose a parametrization for spherically symmetric and
slowly rotating black hole geometries which can mimic black
holes with a high accuracy and with a small number of free
coefficients. This is achieved by expressing the deviations
from general relativity in terms of a continued-fraction expan-
sion via a compactified radial coordinate defined between the
event horizon and spatial infinity. The superior convergence
properties of this expansion effectively reduces to a few the
number of coefficients necessary to approximate such spheri-
cally symmetric metric to the precision that can be in principle
probed with near-future observations. While phenomenolog-
ically effective, the approach we suggest has also an obvious
drawback. Because the metric expression we propose is not
the consistent result of any alternative theory of gravity, it does
not have any guarantee of being physically relevant or nothing
more than a mathematical exercise.

The paper is organized as follows. In Sec. II we describe the
proposed parametrization method. Sec. III is devoted to the
relation between the proposed parameters and the parameters
of the Johannsen-Psaltis spherically symmetric black hole. In
Sec. IV we obtain values of the parameters that approximate
a dilaton black hole, while in Sec. V we compare the pho-
ton circular orbit, the innermost stable circular orbit, and the
quasinormal ringing predicted within our approximation with
the corresponding quantities obtained for the exact solution
of a dilaton black hole. In Sec. VI we apply our approach to
slowly rotating black holes and, in the conclusions, we discuss
applications for our framework and its possible generalization
for the axisymmetric case. Finally, Appendix A is dedicated
to a comparison of our parametrization framework with the
alternative parametrization of a spherically symmetric black
hole proposed in Ref. [11].

II. PARAMETRIZATION OF SPHERICALLY
SYMMETRIC BLACK HOLES

The line element of any spherically symmetric stationary
configuration in a spherical polar coordinate system (¢, , 6, ¢)
can be written as

B2(r)
2 _ A2 2 2202
ds® = —N*(r)dt +N2(r)dr + r4dQ°, (1)

where dQ? = d6? + sin? 0d¢)2, and N and B are functions of
the radial coordinate 7 only.

For any metric theory of gravity whose line element can
be expressed as (1), we will next require that it could contain
a spherically symmetric black hole'. By this we mean that
the spacetime could contain a surface where the expansion of
radially outgoing photons is zero, and define this surface as
the event horizon. We mark its radial position as r = ry > 0
and this definition implies that

N(ro) = 0. )

Furthermore, we will neglect any cosmological effect, so that
the asymptotic properties of the line element (1) will be those
of an asymptotically flat spacetime. Differently from previ-
ous approaches, we find it convenient to compactify the radial
coordinate and introduce the dimensionless variable
r=1—-—, 3)
r
so that x = 0 corresponds to the location of the event horizon,
while z = 1 corresponds to spatial infinity. In addition, we
rewrite the metric function N as

N? = zA(x), 4)
where

A(x) >0 for 0<z<1. )

We further express the functions A and B after introducing
three additional terms, €, ag, and bg, so that

Alz)=1—e(1 —z) + (ap — e)(1 — )2 + A(z)(1 — z)3,
) (6)
B(z) =1+bo(1 —z) + B(z)(1 — x)?, (7

where the functions A and B are introduced to describe the
metric near the horizon (i.e., for x ~ 0) and are finite there, as
well as at spatial infinity (i.e., for x ~ 1).

Since we are not considering any specific theory of gravity,
we do not have precise constraints to impose on the metric
functions N and B. At the same time, we can exploit the in-
formation deduced from the PPN expansion to constrain their
asymptotic expression, i.e., their behaviour for x ~ 1 [9].
More specifically, we can include the PPN asymptotic be-
haviour by expressing B and N as

2M 2M?

N?=1-==4 (B35 +0 ()
—1- M5 2w
0 o
+0(1-2)), ®)

B? 2M 2M
= =1+7—+0(r?) =14+7—(1—-x)
r To

N
+0((1-2)?) . )

! Much of what discussed here for a black hole can be employed also for
the spacetime of a compact star. In this case, however, suitable boundary
conditions for the metric will need to be imposed at the stellar surface z =
0 [cf., Eq. 2)].



Here M is the Arnowitt-Deser-Misner (ADM) mass of the
spacetime, while 5 and ~y are the PPN parameters, which are
observationally constrained to be [9]

IB—1] <23 %1074, ly—1]<23%x107°.  (10)
Note that we have expanded the metric function g to
O ((1 —)3), but g, to O ((1—x)?). The reason for this
difference is that the highest-order PPN constraint on g,
i.e., the parameter =, is at first order in (1 — ). Conversely,
the parameters 3 and -~y set constraints on g;; at second order
in (1 —x).

By comparing the two asymptotic expansions (6)—(7) and
(8)—(9), and collecting terms at the same order, we find that

2M
l+e=—, (11)
To
2M?
aO:(ﬁ_,}O 2 (12)
To
2M
0

Hence, the introduced dimensionless constant € is completely
fixed by the horizon radius ry and the ADM mass M as

6_2]\/[—7"0_(12]\/[)’ (14)

and thus measures the deviations of o from 2M/. On the other
hand, the coefficients ag and by can be seen as combinations
of the PPN parameters as

(B—=7)(1+¢€)?

ag = o (1)
NGRS 1)

or, alternatively, as

2[ag + bo(1 + ¢€)]
(14¢)2 '

7:1+1+6. (18)

B=1+ (17)

Using now the observations constraints (10) on the PPN pa-
rameters, we conclude that ag and by are both small and, in
particular, ag ~ by ~ 1074

As mentioned above, the functions A(z) and B(x) have the
delicate task of describing the black hole metric near its hori-
zon and should therefore have superior convergence proper-
ties than those offered, for instance, by a simple Taylor expan-
sion. We chose therefore to express them in terms of rational
functions (see also Ref. [13]). Since the asymptotic behavior
of the metric is fixed by the conditions (6)—(7), it is conve-
nient to parametrize A(z) and B(z) by Padé approximants in

the form of continued fractions, i.e., as

~ aq
Alr) = ——@z >
L+ asx

1
+1+...

(19a)

. b
B(z) = 1b2m

ng
1+...

, (19b)
1+
1+

where a1, as,as ... and by, by, b3 ... are dimensionless con-
stants to be constrained, for instance, from observations of
phenomena near the event horizon. A few properties of the
expansions (19) are worth remarking. First, it should be noted
that at the horizon only the first two terms of the expansions
survive, i.e.,

B(0) = by, (20)

which in turn implies that near the horizon only the lowest-
order terms in the expansions are important. Conversely, at
spatial infinity

- aq ~ by

A(l)ZH—az,
—  as 1+
14 2

1+... 1+

“on

Finally, while the expansions (19) effectively contain an infi-
nite number of undetermined coefficients, we will necessarily
consider only the first n terms. In this case, we simply need to
set to zero the n-th terms, since if a,, = 0 = b,,, then all terms
of order m > n are not defined.

In practice, and as we will show in the rest of the paper,
the superior convergence properties of the continued fractions
(19) are such that the approximate metric they yield can re-
produce all known (to us) spherically symmetric metrics to
arbitrary accuracy and with a smaller set of coefficients. The
inclusion of higher-order terms obviously improves the accu-
racy of the approximation but in general expansions truncated
at n = 4 are more than sufficient to yield the accuracy that
can be probed by present and near-future astronomical obser-
vations.

III. COMPARISON WITH THE JOHANNSEN-PSALTIS
PARAMETRIZATION

To test the effectiveness of our approach in reproducing
other known spherically symmetric metric theories of grav-
ity, we obviously start from the Johannsen-Psaltis (JP) metric
in the absence of rotation [10]. In this case, the black-hole
line element is spherically symmetric and is given by the fol-
lowing expression for the slowly rotating dilaton black-hole



solution

@2D+h&ﬂ<1mw)ﬁ2

~ -1
+u+hwﬂ<1—%v> dr? +r2dQ*, (22)

where the function h is a simple polynomial expansion in
terms of the expansion parameter M /7, i.e.,

= (m\" @ P
h(r) = nl— ] =e— —_ —_— 4 ...
(r) n;ﬁ (r) €1r+€2r2 +63r3+
(23)

By construction, therefore, in the Johannsen-Psaltis metric
the horizon is located at

To = 2M7 (24)

while the relation between the ADM mass and the horizon
mass M is simply given by

€1

We can now match the asymptotic expansions for the met-
rics (1) and (22). More specifically, we can compare Egs. (6)
and (23), to find that at O ((1 — z)?) the following relations
apply between our coefficients and those in the JP metric

6:_%, (262)
1 €9
a0 =3 (61 . 5) (26b)

Similarly, comparing Egs. (7) and (23), we find that at
O(1—ux)

€
b= -

(26¢)
It follows that if we set €; = e = 0, as done originally in
Ref. [10], then € = 0 = a9 = by, thus implying that the
PPN term are taken to be 8 = v = 1. We will not make this
assumption hereafter.

We can also match the expansions for the metrics (1) and
(22) near the horizon. More specifically, we can obtain alge-
braic relations between our coefficients a,,, b,, and the coeffi-
cients €, of the JP metric by matching the g+ and g, metric
functions and their derivatives for » ~ r¢ or x ~ 0. A bit of
tedious but straightforward algebra then leads to the following

M=M (1 — 5) . 25) expressions
|
> €n €3 €4 €5 > €n €9 €3 €4 €5
=h = — == 4 — 4+ — ... bi=h = — = =4+ =4+ —+ — ...
w=hn|,_, POl R TR IR 1=h SRS TN RN
€1=€2=0 n=3 €1=0 n=2
(27a)
i en(n —3) i en(n —2)
(Tgh)/ n=4 2n b (Tzh)' n=3 2n (27b)
a9y = ——— - = = — -
2 7'2h =70 o0 €n ’ 2 T'h =70 o €n ’
€1=€e2=0 ﬁ €1=0 27
n=3 n=2
h 2,.3 3h) 4 h 2,.2 2p) !
as = (TO) r (’I" ) , by = (TO) r (T ) , (27¢)
2a1a9 rih? r=ro 2b1b2 r2h2 r=To
61:62:0 61:0
; AN
1 2 2030 (r°h)’ (TQ(T3h)/)
S h ) _ 27d
aa 12a1aza37r* (T (r5(h)) T=ro dayasagr? (r3n)’ r=ro ' (27d)
61:6220 61:6220
/
1 N/ (7“2h)/ (Tz(T‘Qh)')/
by — ( ( 2 (p2(p2p) ) _ , 27
4 12bybybar? r? (r?(r*h)’) r=ro  4a,agasr (r2hY r=ro (27e)
e1=0 e1=0
a5 = ) (27f)

where we have indicated with a prime ’ the radial derivative.

(

Clearly, expressions (27) can be easily extended to higher or-



ders if necessary.

A few remarks are worth doing. First, because of cancel-
lations, the terms a1, as, as ... do not depend on €; and eo;
similarly, the terms by, b2, bs . . . do not depend on €7, but they
do depend on €. Second, in the simplest case and the one
considered in Ref. [10], i.e., when only €3 # 0, the coefficient
as vanishes and our approximant for the function NV repro-
duces it exactly. Finally, and more importantly, expressions
(27) clearly show the rapid-convergence properties of the ex-
pansions (19). It is in fact remarkable that a few coefficients
only are sufficient to capture the infinite series of coefficients
needed instead in the JP approach [cf., for instance, expres-
sions (27b) for the coefficients a; and b ].

IV. PARAMETRIZATION FOR DILATON BLACK HOLES

As another test of the convergence properties of our met-
ric parametrization we next consider a dilaton-axion black
hole [14]. When both the axion field and the spin vanish, such
a black hole is described by a spherically symmetric metric
with line element

—2u p+2b

ds> =— (° a2+ (P20 00 (0 + 2bp)d02 .

’ (p+2b> +(,0—2u> 7+ (o7 + 20p)
(28)

The radial coordinate r and the ADM mass M are expressed,
respectively, as

r? = p® + 2bp, M=pu+b, (29)

where b is the dilaton parameter.
By comparing now the expansions of (1) and (28) at spatial
infinity, we find that

e:,/1+ﬁ—1, (30a)
7!
b
ap = — , (30b)
2p
bo =0, (30c)

Similarly, by comparing the near-horizon expansions we find
the other coefficients, which also depend on b/ only and are
given by

b 1 b
—2 14— -3, 31
S (T R YIET 2 Gy
V1+b/p
b= YR 31b
o G
b1 b ([ b
142 -2+ 2 J1+2-1
+u 2 4u2+2u< +M )
az = b 2 5(31C)
1 N
<+2u)
JI+b 2
bo +o/n b (31d)

T L1wo/u) (b2

It is clear that aq and b; vanish if b = 0, in which case we
reproduce the line element of the Schwarzschild black hole
exactly. If b > 0, on the other hand, we could in principle cal-
culate as many coefficients of the continued fractions (19) as
needed; in practice already the very first ones suffice. For ex-
ample, for b/p = 1 and setting ag = 0, the maximum relative
difference between the exact and the expanded expression for
the metric function g4 is < 3 X 10~%. This relative difference
becomes < 3 x 1076 if the order is increased of one, i.e., if
a4 = 0 (see also the discussion below on Fig. 1).

V. OBSERVABLE QUANTITIES WITHIN THE
PARAMETRIZATION FRAMEWORK

A high precision in the mapping of the metric functions
does not necessarily translate in an equivalent accurate mea-
sure of near-horizon phenomena. Hence, to further test the
reliability of our continued-fraction expansions (19), we next
compare a number of potentially observable quantities for a
spherically symmetric dilaton black hole and for a black hole
in Einstein-aether theory, respectively. More specifically, we
calculate: the impact parameter for the photon circular orbit,
the orbital frequency for the innermost stable circular orbit,
and the quasinormal ringing of a massless scalar field. For all
of these quantities, the metric is either expressed analytically
[i.e., Eq. (28) for a dilation black hole] or numerically [i.e., for
a black hole in Einstein-aether theory], or in its parametrized
form [i.e., via the coefficients (30)—(31) for a dilation black
hole].

A. Photon circular orbit and the innermost stable circular
orbit

In a spherically symmetric spacetime, a photon circular or-
bit is defined as the null geodesic at radial position r = rpy
for which the following equations are satisfied

ds® = =N (rpn)?dt* + 13,d¢* = 0, (32)
N/(’I’ h)N(’I’ }1)3 N(T’ h)2’l” h
2 _ p P 2 P p 2 _
dPron = Blron)? dt® + Blron)? d¢? =0,
33)

where we have implicitly assumed 6 = 7/2 because of the
absence of a preferred direction. From these equations we
find that the equation for the radius is given by

N (rpn)
Tph = ; (34)
P N ()
and that the corresponding orbital frequency 2y, is
d N’ N N
Qpn = o (rph) N (pn) _ (rpn) . (35)
dt r=rpn Tph Tph

Note that expression (35) depends only on the coefficients ¢
and a,, but not on the b,, coefficients [cf., Eq. (4)]. We then
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FIG. 1. Left panel: Difference between the exact values of the dilaton black hole orbit impact parameter for a circular orbit by, and the
values obtained using the continued-fraction expansions (19). The results are shown as a function of the dimensionless strength of the dilaton
parameter b/ ui. Different lines refer to different levels of approximation, i.e., a2 = 0 (blue line), ag = 0 (red line), and a4 = 0 (magenta line).
Note that even when as = 0, the differences are < 10™* for b < %,u. Right panel: The same as in the left panel but for the ISCO frequency.

define the impact parameter of the photon circular orbit (not
to be confused with the dilaton parameter) as

1
boh = =—

. 36
o (36)

whose analytic expression in the case of a dilaton black hole
is [15]

27 +36b/ 1 + 8b2/u2 + (9 + 8b/u)>'?
bm:u¢ i SR+ O+ 8/

2 b

which reduces to by, = 3+/3 in the case of a Schwarzschild
black hole.

In the left panel of Fig. 1 we show the difference between
the exact values of by, computed via Eq. (37) and the ones
obtained after solving numerically Eq. (34) and making use
the continued-fraction expansions (19) with coefficients (30)—
(31). The differences are shown as a function of the dimen-
sionless dilaton parameter b/ and different lines refer to dif-
ferent levels of approximation, i.e., when setting a2 = 0 (blue
line), a3 = 0 (red line), and a4 = 0 (magenta line). The
figure shows rather clearly that already when setting ao = 0,
that is, when retaining only the coefficients ¢, ag, by, a1, and
b1, the differences in the impact parameter are of the order of
~ 107 i for b ~ % 1. These differences become larger with
larger dilaton parameter, but when a4 = 0 they can neverthe-
less be reduced to be ~ 1076 i even for b ~ p.

In a similar way, we can calculate the innermost stable cir-
cular orbit (ISCO) exploiting the fact that the geodesic motion

of a massive particle in the equatorial plane can be reduced to
the one-dimensional motion within an effective potential

E? L?
Ver(r) = 2= — 5 — 1,

N2(r) 72 (38)

where F and L are the constants of motion, i.e., energy and
angular momentum, respectively. A circular orbit then is the
one satisfying the following conditions

Ve (1) =0 =Vi(r). (39)
while the ISCO is defined as the radial position r, at which

G (ro) = 0. (40)

Substituting (38) into (39) and (40), we obtain the following
algebraic equation for the ISCO radius r,,

3N(ro)N'(ro) = 3roN' ?(ro) + 1o N (ro)N" (ro) = 0, (41)

which we can solve numerically to calculate the correspond-
ing orbital frequency as

N'(ro)N(ro) _

To

Q =

ISCO

(42)

Here too, expression (42) depends only on the coefficients e
and a,,, but not on the b,, coefficients.



The ISCO frequency (42) can of course be compared with
the exact expression in the case of a dilaton black hole, which
is given by

1 K
Qo = — 43
ISCO 2”\/<1+H)(1+/€+H2)3 b ( )

where

b\ 1/3
K= (1 + ) , (44)
Iz

and expression (43) reduces to the well-known result of
Qoo M = (1/6)3/2 in the case of a Schwarzschild space-
time.

A comparison between the values of the ISCO frequency
estimated from expressions (42) and (43) is shown in the right
panel of Fig. 1, which reports the differences in units of 1 and
as a function of the dimensionless dilaton parameter b/ . As
for the left panel, different curves refer to different levels of
approximation, i.e., az = 0 (blue line), as = 0 (red line), and
a4 = 0 (magenta line). Also in this case, the differences in
the ISCO frequency are of the order of ~ 1076 y for b ~ % I
and can reduced to be ~ 10~ y even for b ~ p by including
higher-order coefficients.

Finally, we have compared the values for the impact param-
eter and the ISCO frequency also for another spherically sym-
metric black hole, namely, the one appearing in the alternative
Einstein-aether theory of gravity [16]. In this case, the met-
ric is not known analytically, but we have used the numerical
data for the metric functions as discussed in Ref. [17]. More
specifically, for a large number of pairs of the aether parame-
ters ¢4 and c_, we have obtained a numerical approximation
of the g4 metric function N(r) in terms of the coefficients
€, ag, a1, and ao of our continued-fraction expansions (19).
Using these coefficients, we have then calculated numerically
the values of by, and €, as discussed above and compared
with the corresponding values in general relativity.

The results of this comparison are reported in Fig. 2, whose
left panel refers to the impact parameter for a circular photon
orbit, while the right panel to the ISCO frequency. The two
panels are meant to reproduce Figs. 2 and 4 of Ref. [17] and
they do so with an accuracy of fractions of a percent. Note
that the differences in by, and €, with respect to general
relativity can be quite large for certain regions of the space of
parameters (e.g., ¢4 ~ 1). These regions, however, are de-
facto excluded by the observational constraints set by binary
pulsars (see the discussion in Ref. [18]).

B. Quasinormal ringing

Another way to probe whether the metric parametriza-
tion (1) and the continued fraction expansions (19) represent
an effective way to reproduce strong-field observables near a
black hole is to compare the response to perturbations. We
recall, in fact, that if perturbed, a black hole will start oscillat-
ing. Such oscillations, commonly referred to as “quasinormal
modes”, represent exponentially damped oscillations that, at

least at linear order, do not depend on the details of the source
of perturbations, but only on the black hole parameters (see
[19] for a review). The relevance of these oscillations is that
they probe regions of the spacetime that are close to the light
ring, but are global and hence do not depend on a single radial
position. At the same time, the gravitational-wave signal from
a perturbed black hole can be separated from a broad class of
the environmental effects, allowing us to expect a good ac-
curacy of the quasinormal modes’ measurement [20]. Fur-
thermore, both of the continued-fraction expansions (19) are
involved and hence also some of the b,, coefficients will be
nonzero.

For simplicity, we have considered the evolution of a mass-
less scalar field ® as governed by the Klein-Gordon equation

0® =0, (45)

where [ is the Dalambertian operator. Substituting in (45) the
ansatz

B(t,r,0,0) = V(t,7r)Ye(0,0)/r, (46)

where Yy (0, ¢) are Laplace’s spherical harmonics, we obtain
for each multipole number ¢ the following wave-like equation,

02 0?
(5 - gz + Vi) )Wt =0, @)

where we have introduced the (tortoise-like) radial coordinate

_ B()
N2(r)

dr, dr, (48)

and the effective potential is given by

vitr) = ey 4

1 d N%*(r)
rdr, B(r) "

(49)

It was shown in Ref. [13] that the rational approximation for
N(r) and B(r) in some region near the black hole horizon in
reduced Einstein-aether theory allows one to calculate accu-
rately at least the quasinormal modes with the longest damp-
ing time. In order to test our approximation in the case of
dilaton black hole, we have compared the black hole response
in the time domain, found using either the exact representa-
tion of the metric (28) or the parametrized one via the coeffi-
cients (30)—(31).

The numerical solution of the evolution equation was made
using a characteristic integration method that involves the
light-cone variables u = t — r, and v = t + r, [21], with
initial data specified on the two null surfaces u = wug and
v = vg. The results of these calculations are shown in Fig. 3,
whose left panel reports the £ = 0 solution of the scalar field at
r = 2rq as function of time both in the case of an exact dilaton
black hole (blue line) and of the corresponding parametrized
expansion (red line). The relative differences are clearly very
small already with a3 = 0 = b3, as shown in the right panel
of Fig. 3, and amounting at most to fractions of a percent.
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VI. SLOWLY ROTATING BLACK HOLES

We are in position now to make the first step towards the
parametrization of black holes that are not spherically sym-
metric. We believe that the natural way to choose the param-
eters is taking into account the asymptotical behaviour of the
corresponding metric, which is defined by multipole moments
[22], as well as its near-horizon behaviour. Unfortunately,
only a very limited number of such metrics is known in al-
ternative theories of gravity that can be used for comparison.
Indeed, to the best of our knowledge, a black hole with inde-
pendent multipole moments was studied only in general rela-
tivity and discussed in Refs. [23, 24]. At the same time, even
the parametrization of an axisymmetric stationary black hole
is far from being a trivial question, since the corresponding
metric is defined by four functions of two variables.

As a warm-up exercise, in this section we will consider
spacetime metrics having only a small deviation from the
spherical symmetry and hence extend the general expres-
sion (1) by introducing a new function w in the g, metric
function and by retaining it only at the first order, i.e.,

B2(r)
N2(r)
—2w(r, )r?sin® 0 dtdp + O(w?), (50)

dr? + r?dQ?

ds* = —N?(r)dt* +

and with the condition that w has a falloff with radius that is
faster than 1, i.e., that

rw(r,f) < 1, (51

implying that the event horizon remains at 7 = 7 2.

Because we are not considering any consistent (alternative)
theory of gravity, but we are simply prescribing ad-hoc ex-
pression for the metric, we cannot impose additional con-
straints on the function w. However, if we assume that the
function w depends on the radial coordinate r only, then we
obtain a metric which can be associated with a slowly rotating
black hole in Horava-Lifshitz theory [25], in Einstein-aether
gravity [26], in Chern-Simons modified gravity [27], or with
dilatonic Einstein-Gauss-Bonnet [28] and dilaton-axion black
holes [14].

In this case, the asymptotic behavior is given

wlr,0) = w(r) = 25 +0 (r~Y)
_ %7(1 P o (1-2)Y), (52
0

where J is the spin of the black hole and we take it to be
J < M?.

The parametrization of the function w can then be made
in analogy with what was done for the nonrotating case and

2 Determining in the metric (50) the location where g"" = 0 will also in-
volve the square of the metric function g4, which we take to be zero in the
slow-rotation approximation.

again we use a Padé approximation in terms of continued frac-
tions in the form

ratr) = (12 ) wlo)

=wo(l—x)* +

wi(l—x)3

wWoX
I+ w3

1+...

Since row(z) = wo(l — )3 + O ((1 — z)*), the first coeffi-
cient is simply given by wy = 2.J/rZ, while the higher-order
ones, wi,ws, ws . . ., are fixed by comparing series expansion
of w near the event horizon rg.

As an example, we consider the first-order correction to the
dilaton black hole (28) due to rotation given by the following
line element [14]

p+2b p—2u

da(p+0)] . o 2 2
{ PR }sm Odt dp + (p~ + 2bp)dQ2

+ O(d?). (54)

(53)

1+

By comparing the asymptotical and near-horizon expansions
we find that

wo = % (552)
Wy = % <\/E 1> : (55b)
oy — u(u;;l:)r;u—b) (550)
wy = (Q;LMJIZI))? (55d)

Since we consider a < p, the coefficients (55) imply that
wo < 1 and wy <K 1, thus satisfying the constraint (51). The
other coefficients are not small and depend on the dilaton pa-
rameter only. Of course, it is possible to find as many coeffi-
cients in (53) as needed for an accurate approximation for the
function w.

In order to test the convergence properties of (53) we again
study the ISCO frequency for the equatorial orbits (i.e., =
7/2) of a massless particle in the background of a slowly ro-
tating dilaton black-hole metric (50). In this case, the effective
potential reads

E?r? —2ELw(r)r? — L2N?%(r)

Verr(r) = N(r)2r?2 + w(r)?rt

(56)

We assume now that the energy F and the angular momentum
L are positive, thus implying that @ > 0 for the co-rotating
and a < 0 for the counter-rotating particles, respectively. We
then solve numerically the set of equations

Vest(r0) = 0, (57a)
s (ro) =0, (57b)
Y (ro) =0, (57¢)
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FIG. 4. Difference between the exact values of the ISCO frequen-
cies in the equatorial plane for the dilaton black hole in the slow-
rotation approximation regime and the values obtained using the
continued-fraction expansions. Different curves, shown as functions
of the rotation parameter, refer to the different levels of approxi-
mation: az = 0 = wy (blue line), a3 = 0 = ws (red line), and
as = 0 = w4 (magenta line). In all cases we have taken a reference
value of b = p1/2.

finding at the radial coordinate of the ISCO r, > ry the cor-

responding frequency €.

2 o
~Gip T \/ 9t — 90T W' (70)70
QISco = 7 = w(TO) + 9
Ioe —
N(ro)N'(r, (ro)ro\ 2
+ \/<T )T (ro) | (w(r0)+w (; r ) . (58)
o

Of course, these frequencies can be computed also for the
parametrized metric (55) at different level of approximation.
A comparison between the two calculations is summarized
in Fig. 4, which shows the absolute value of the difference
between the exact value of 2., and the approximate one
as a function of the normalized spin parameter a/u. As in
the previous figures, here too different curves (all computed
for b = u/2) refer to different degrees of approximation:
as = 0 = wsy (blue line), a3 = 0 = w3 (red line), and
a3 = 0 = w3 (magenta line). Also in this case it is appar-
ent that the use of a larger number of coefficients in continued
fraction expansions (19a) and (53), leads to a monotonic in-
crease of the accuracy of the ISCO frequency.

As a concluding remark we note that a possible and rather
popular approach to extend the parametrization (1) to rotating
black holes would be the application of the Newman-Janis al-
gorithm [29] to the metric (1) after having fixed the parame-
ters €, ag, by, a1, by, . . .. Although there is no proof that such a
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rotating configuration corresponds to a black hole solution in
the same theory, the method works for some theories, e.g., the
application of the Newman-Janis method to the metric (28) al-
lows one to obtain the metric for the axion-dilaton black hole
[30]. Therefore, it would be interesting to compare the coeffi-
cients (55) with those obtained at first order after the applica-
tion of the Newman-Janis algorithm.

Yet, it is clear that this approach would not provide us with
the most generic form for an axisymmetric black hole, simply
because, in general, the geometry cannot be parametrized by
one rotation parameter only. What is needed, instead, is a gen-
eral framework which naturally comprises a set of parameters
that account for the multipole moments of the spacetime and
are not necessarily restricted to follow the relations expressed
in terms of mass and angular momentum that apply for a Kerr
black hole. Investigating this approach is beyond the scope of
this initial paper, but will be the focus of our future work.

VII. CONCLUSIONS

We have proposed a new parametric framework to describe
the spacetime of spherically symmetric and slowly rotating
black holes in generic metric theories of gravity. The new
framework provides therefore a link between astronomical ob-
servations of near-horizon physics with the properties of black
holes in alternative theories of gravity, and which would pre-
dict deviations from general relativity. Unlike similar previ-
ous attempts in this direction, our approach is based on two
novel choices. First, we use a continued-fraction expansion
rather than the traditional Taylor expansion in powers of M /r,
where M and r are respectively the mass of the black hole and
a generic radial coordinate [10, 11]. Second, the expansion is
made in terms of a compactified radial coordinate with values
between zero and one between the horizon and spatial infin-
ity. These choices lead to superior convergence properties and
allows us to approximate a number of known metric theories
with a much smaller set of coefficients.

These parameters can be calculated very accurately for any
chosen spherically symmetric metric and, at the same time,
they can be used via astronomical observations to measure
near-horizon phenomena, such as photon orbits or the posi-
tion ISCO. As a result, the new parametrization provides us
with powerful tool to efficiently constrain the parameters of
alternative theories using future astronomical observations.

Another important advantage of our approach is that we
can use not only the asymptotic parameters from the PPN
expansion, but also the near-horizon parameters, which are
well-captured already by the first lowest-order coefficients.
More specifically, the most important parameters for the near-
horizon geometry are expressed simply in terms of the coef-
ficients € (which relates the ADM mass and the event hori-
zon), a1, by, and wy. The use of other higher-order parame-
ters increases the accuracy of the approximation, but does not
change significantly the observable quantities. The latter, in
fact, are captured to the precision of typical near-future astro-
nomical observations already at the lowest order.

The rapid convergence of our expansion is also useful for



the analysis of black-hole spacetimes in alternative theories
where the metric is known only numerically. Using as a prac-
tical example the alternative Einstein-aether theory of gravity,
we have shown that it is possible to reproduce to arbitrary
accuracy the numerical results by using a small set of coeffi-
cients in the continued-fraction expansion. In turn, adopting
such coefficients it is also possible to obtain an analytical rep-
resentation of the metric functions, which can then be used to
study the stability of such black holes, the motion of particles
and fields in their vicinity [31], or to construct viable approx-
imations for metrics with incorrect asymptotical behaviour,
e.g., due to the presence of magnetic fields [32, 33].

As a concluding remark we note that our approach has so
far investigated spherically symmetric spacetimes and hence
black holes that are either nonrotating or slowly rotating. It
would be interesting to find a generalization of our frame-
work for the parametrization of axisymmetric black holes,
for instance, via the application of the Newman-Janis algo-
rithm. However, while this is technically possible, it is un-
clear whether such approach will turn out to be sufficiently
robust. We believe, in fact, that a parametrization of ax-
isymmetric black holes must combine, together with a rapidly
converging expansion, also information on the parametrized
post-Newtonian parameters, on the multipole moments, on
the horizon shape, as well as parameters that define the near-
horizon geometry. This task, which is further complicated by
the lack of known axisymmetric back-hole solutions in alter-
native theories of gravity (cf., [34]), will be the focus of our
future work.

Appendix A: Johannsen-Psaltis parametrization for the dilaton
black hole

In order to explore convergence properties of our
parametrization framework, we consider in this appendix the
alternative parametrization of a spherically symmetric black
hole in generic metric theories of gravity which has been re-
cently proposed in Ref. [11],

ds* = — [1 4 h'(r)] (1 - 2]\2) dt?

-1
+[1+ A" (r)] (1 - 2?”) dr® 4+ r2dQ? (A1)

where, instead of the function h(r) in (22), two different func-
tions are introduced:

< (m\" R
t — t _t t t
h(T)_Zlﬁn<r> _617+627+63TT+.'.’
(A2a)
T S T M ! TM T‘Mz TM3
h(T):Zlﬁn<r> 2617+627‘T+637‘T+.'.'
(A2b)

In particular, we will determine the numerical values of the
coefficients €}, €7, eb, €5 ... to produce an approximation of
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the metric of a dilaton black hole (28). Although this can be
done in different ways, the coefficients must obey the con-
straints that the theory naturally imposes on them. As a result,
the large-distance properties of the functions h®(r) and h"(r)
provide a series of constraints that fix the coefficients once an
asymptotic expansion for the metric functions is made. In this
way, we find that [cf., Egs. (26) and (30)]

M =+/p(un+0), (A3a)
b
e=2-2/1+—, (A3Db)
n
2b [ b
h="14-4 1+;, (A3c)
=0 (A3d)

Figure 5 shows the relative difference for the impact pa-
rameter of the photon circular relative to a dilaton black hole
as computed using the parametrization (A2), and shown as
function of the dimensionless strength of the dilaton parame-
ter. Different lines refer to different levels of approximation,
ie,0=¢€ = =€ =...(blueline), 0 = €} = €§ = €&, =
... (red line), and 0 = € = €& = € = ... (magenta line), and
so on. The dashed lines of the same color correspond to our
continued-fraction approximation having the same number of
parameters. More specifically, the first three of these lines
should be compared with the corresponding ones in Fig. 1, in
the following sense: considering, for instance, that the red line
in Fig. 1 amounts to specifying four coefficients (i.e., €, ag, a1,
and as), which is the same number that is involved when con-
sidering the red line in Fig. 5 (i.e., €}, €}, €}, €}). Clearly, the
errors in the novel parametrization are overall smaller for the
same number of fixed coefficients in the expansion. A qualita-
tively similar figure can be produced also for the measurement
of the ISCO but we do not report it here for compactness.

We should note that the errors in the parametrization (A2)
can be made smaller if we fix the first two coefficients, i.e., €}
and €}, from the asymptotic expansion at large distance, but
we compute the remaining coefficients from the near-horizon
behavior. This is simply because the impact parameter is
a strong-field quantity and hence its approximation neces-
sarily improves if the coefficients are constrained near the
horizon. On the other hand, the real problematic feature of
the parametrization (A2) is that the coefficients are roughly
equally important near the horizon [11]. As a result, if one
fixes the coefficients by matching the near-horizon behavior
of the metric functions, the expression for the same coefficient
will be different for different orders of approximations, mak-
ing the approach not useful for constraining the parameters of
the theory.

Finally, as mentioned in the Introduction, a particularly se-
rious difficulty of the parametrization (A2) is that it does not
reproduce the correct rotating metric even in the regime of
slow rotation. This can be shown rather simply for the slowly
rotating dilaton black hole, for which both the dilaton and the
rotating Johannsen-Psaltis black hole can be obtained with the
help of the Newman-Janis algorithm. More specifically, the
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FIG. 5. Difference between the exact values of the dilaton black-hole
orbit impact parameter for a circular orbit bp1, and the values obtained
using the generalized Johannsen-Psaltis metric with the coefficients
calculated by comparing the asymptotic expansions for the metric
functions. The results are shown as a function of the dimensionless
strength of the dilaton parameter b/ . Different lines refer to differ-
ent levels of approximation, i.e., 0 = €, = ef = 5 = ... (blue line),
0=cl =ci =€ =...(redline),and 0 = € = & = ¢ = ...
(magenta line), and so on. The dashed lines of the same color corre-
spond to our continued-fraction approximation having the same num-
ber of parameters; hence the first three lines should be compared with
those of Fig. 1 with the same color.

generalized Johannsen-Psaltis black hole in the regime of slow
rotation reads [11]

ds* = — [1+ h'(r)] (1 - 2M) dt?

r

~ -1
+ 147" (r)] (1 - 2i”> dr? +r2dQ* (Ad)

~2asin2 @ (\/(1 TR+ hr ()

- (1 - 2]\2) 1+ ht(r))> dtd¢ + O(a®).

r
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By comparing the diagonal elements of (A4) and (54) we
conclude that 7 = p* + 2bp, while h'(r) and A" (r) must
approximately be such that

2M e P~ 21
(1 71)(1+h)—p+2b’ (A5)
2
TR D A W

“dr  p+b  p+b
As a result, an inconsistency emerges for the off-diagonal el-
ement of the metric (A4), for which

(1+ht)(1+h")— (1 - 21”) (1+h")

VPP +20p  p—2p
- p+b p+2b
2(n+0b
2 Antb)
p+2b

(AT)

unless b < p. Thus, for any approximation of the functions
ht(r) and h"(r), the slowly rotating regime of the dilaton
black hole is not reproduced by the metric (A4). Similar argu-
ments were used to show that the Newman-Janis algorithm is
not able to generate rotating black-hole solutions in modified
gravity theories [35].
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