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We propose a new parametric framework to describe in generic metric theories of gravity the spacetime
of spherically symmetric and slowly rotating black holes. In contrast to similar approaches proposed so far,
we do not use a Taylor expansion in powers of M=r, where M and r are the mass of the black hole and a
generic radial coordinate, respectively. Rather, we use a continued-fraction expansion in terms of a
compactified radial coordinate. This choice leads to superior convergence properties and allows us to
approximate a number of known metric theories with a much smaller set of coefficients. The measure
of these coefficients via observations of near-horizon processes can be used to effectively constrain and
compare arbitrary metric theories of gravity. Although our attention is here focussed on spherically
symmetric black holes, we also discuss how our approach could be extended to rotating black holes.
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I. INTRODUCTION

Black holes are one of the most intriguing, fascinating,
and yet unsettling consequences of classical general rela-
tivity. Even when putting aside the acceptance and under-
standing of the physical singularities hidden at their
centers, the mere existence of an event horizon leads to
a number of unsolved problems and long-standing debates.
Yet, black holes are some of the most cherished objects
in modern astronomy, and evidence of their existence at
different scales appears as common as it is convincing.
Proof of the existence of an event horizon would not be

disputable if it appeared in terms of gravitational radiation,
for instance in the form of a quasinormal mode ringdown
when a new black hole is formed. However, it would
become surely difficult, if possible at all, when using the
electromagnetic emission coming from material accreting
onto it [1]. At the same time, our increasing ability to
perform astronomical observations that probe regions on
scales that are comparable or even smaller than the size of
the event horizon, will soon put us in the position of posing
precise questions on the physical properties of those
astronomical objects that appear to have all the properties
of black holes in general relativity.
A good example in this respect is offered by astronomical

observations of the radio compact source Sgr A*, which
resides at the center of our Galaxy and is commonly assumed
to be a supermassive black hole. Recent radio observations of
Sgr A* have been made on scales comparable towhat would
be the size of the event horizon if it indeed were a black hole
[2]. Furthermore, in the near future, very long baseline
interferometric radio observations are expected to image the

so-called black-hole “shadow” [3], namely the photon ring
marking the surface where photons on circular orbits will
have their smallest stable orbit [4]. These observations,
besides providing the long-sought evidence for the existence
of black holes, will also provide the possibility of testing the
no-hair theorem in general relativity [5–7].
If sufficiently accurate, the planned astronomical obser-

vations will not only provide convincing evidence for the
existence of an event horizon, but they will also indicate if
deviations exist from the predictions of general relativity.
However, given the already large number of alternative
theories of gravity, and considering that this is only
expected to grow in the near future, a case-by-case
validation of a given theory using the observational data
does not seem as viable an option. It is instead much more
reasonable to develop a model-independent framework that
parametrizes the most generic black-hole geometry through
a finite number of adjustable quantities. These quantities
must be chosen in such a way that they can be used to
measure deviations from general relativity (or a black-hole
geometry) and, at the same time, can be estimated robustly
from the observational data [8].
This approach is not particularly new and actually

similar in spirit to the parametrized post-Newtonian
approach (PPN) developed in the 1970s to describe the
dynamics of binary systems of compact stars [9]. A first
step in this direction was done by Johannsen and Psaltis
[10], who have proposed a general expression for the metric
of a spinning non-Kerr black hole in which the deviations
from general relativity are expressed in terms of a Taylor
expansion in powers ofM=r, whereM and r are the mass of
the black hole and a generic radial coordinate. While some
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of the first coefficients of the expansion can be easily
constrained in terms of PPN-like parameters, an infinite
number remains to be determined from observations near
the event horizon [10]. This approach was recently gen-
eralized by relaxing the area-mass relation for non-Kerr
black holes and introducing two independent modifications
of the metric functions gtt and grr [11]. Unfortunately, as
discussed in [11], this approach can face some difficulties:
(1) The proposed metric is described by an infinite

number of parameters, which are roughly equally
important in the strong-field regime, making it
difficult to isolate the dominant terms.

(2) The parametrization can be specialized to reproduce
a spherically symmetric black hole metric in alter-
native theories only in the case in which the
deviation from the general relativity is small. This
was checked for the black holes in dilatonic
Einstein-Gauss-Bonnet gravity [12], for which the
corresponding parameters were calculated only in
the regime of small coupling.

(3) At first order in the spin, the parametrization cannot
reproduce deviations from the Kerr metric arising in
alternative theories of gravity.As an example, it cannot
reproduce the modifications arising for a slowly
rotating black hole in Chern-Simonsmodified gravity.

In this paper we propose a solution to these issues and
take another step in the direction of deriving a general
parametrization for objects in metric theories of gravity.
More precisely, we propose a parametrization for spheri-
cally symmetric and slowly rotating black hole geometries
which can mimic black holes with a high accuracy and with
a small number of free coefficients. This is achieved by
expressing the deviations from general relativity in terms of
a continued-fraction expansion via a compactified radial
coordinate defined between the event horizon and spatial
infinity. The superior convergence properties of this expan-
sion effectively reduces to a few the number of coefficients
necessary to approximate such spherically symmetric metric
to the precision that can be in principle probed with near-
future observations. While phenomenologically effective,
the approach we suggest has also an obvious drawback.
Because the metric expression we propose is not the
consistent result of any alternative theory of gravity, it does
not have any guarantee of being physically relevant or
nothing more than a mathematical exercise.
The paper is organized as follows. In Sec. II we describe

the proposed parametrization method. Section III is devoted
to the relation between the proposed parameters and the
parameters of the Johannsen-Psaltis spherically symmetric
black hole. In Sec. IVwe obtain values of the parameters that
approximate a dilatonblackhole,while inSec.Vwecompare
the photon circular orbit, the innermost stable circular orbit,
and the quasinormal ringing predicted within our approxi-
mation with the corresponding quantities obtained for the
exact solution of a dilaton black hole. In Sec. VIwe apply our

approach to slowly rotating black holes and, in the con-
clusions, we discuss applications for our framework and its
possible generalization for the axisymmetric case. Finally,
Appendix A is dedicated to a comparison of our para-
metrization framework with the alternative parametrization
of a spherically symmetric black hole proposed in Ref. [11].

II. PARAMETRIZATION OF SPHERICALLY
SYMMETRIC BLACK HOLES

The line element of any spherically symmetric stationary
configuration in a spherical polar coordinate system
ðt; r; θ;ϕÞ can be written as

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2dΩ2; ð1Þ

where dΩ2 ≡ dθ2 þ sin2θdϕ2, and N and B are functions
of the radial coordinate r only.
For any metric theory of gravity whose line element can

be expressed as (1), we will next require that it could
contain a spherically symmetric black hole.1 By this we
mean that the spacetime could contain a surface where the
expansion of radially outgoing photons is zero, and define
this surface as the event horizon. We mark its radial
position as r ¼ r0 > 0 and this definition implies that

Nðr0Þ ¼ 0: ð2Þ
Furthermore, we will neglect any cosmological effect, so
that the asymptotic properties of the line element (1) will be
those of an asymptotically flat spacetime. Differently from
previous approaches, we find it convenient to compactify the
radial coordinate and introduce the dimensionless variable

x≡ 1 −
r0
r
; ð3Þ

so that x ¼ 0 corresponds to the location of the event
horizon, while x ¼ 1 corresponds to spatial infinity. In
addition, we rewrite the metric function N as

N2 ¼ xAðxÞ; ð4Þ
where

AðxÞ > 0 for 0 ≤ x ≤ 1: ð5Þ
We further express the functions A and B after introducing
three additional terms, ϵ, a0, and b0, so that

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ~AðxÞð1 − xÞ3;
ð6Þ

1Much of what discussed here for a black hole can be
employed also for the spacetime of a compact star. In this case,
however, suitable boundary conditions for the metric will need to
be imposed at the stellar surface x ¼ 0 [cf., Eq. (2)].
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BðxÞ ¼ 1þ b0ð1 − xÞ þ ~BðxÞð1 − xÞ2; ð7Þ

where the functions ~A and ~B are introduced to describe the
metric near the horizon (i.e., for x≃ 0) and are finite there,
as well as at spatial infinity (i.e., for x≃ 1).
Since we are not considering any specific theory of

gravity, we do not have precise constraints to impose on the
metric functions N and B. At the same time, we can exploit
the information deduced from the PPN expansion to
constrain their asymptotic expression, i.e., their behavior
for x≃ 1 [9]. More specifically, we can include the PPN
asymptotic behavior by expressing B and N as

N2 ¼ 1 −
2M
r

þ ðβ − γÞ 2M
2

r2
þOðr−3Þ

¼ 1 −
2M
r0

ð1 − xÞ þ ðβ − γÞ 2M
2

r20
ð1 − xÞ2

þOðð1 − xÞ3Þ; ð8Þ

B2

N2
¼ 1þ γ

2M
r

þOðr−2Þ

¼ 1þ γ
2M
r0

ð1 − xÞ þOðð1 − xÞ2Þ: ð9Þ

Here M is the Arnowitt-Deser-Misner (ADM) mass of the
spacetime, while β and γ are the PPN parameters, which are
observationally constrained to be [9]

jβ − 1j≲ 2.3 × 10−4; jγ − 1j≲ 2.3 × 10−5: ð10Þ
Note that we have expanded the metric function gtt to
Oðð1 − xÞ3Þ, but grr to Oðð1 − xÞ2Þ. The reason for this
difference is that the highest-order PPN constraint on grr,
i.e., the parameter γ, is at first order in (1 − x). Conversely,
the parameters β and γ set constraints on gtt at second order
in (1 − x).
By comparing the two asymptotic expansions (6)–(7)

and (8)–(9), and collecting terms at the same order, we
find that

1þ ϵ ¼ 2M
r0

; ð11Þ

a0 ¼ ðβ − γÞ 2M
2

r20
; ð12Þ

1þ ϵþ 2b0 ¼ γ
2M
r0

: ð13Þ

Hence, the introduced dimensionless constant ϵ is com-
pletely fixed by the horizon radius r0 and the ADM mass
M as

ϵ ¼ 2M − r0
r0

¼ −
�
1 −

2M
r0

�
; ð14Þ

and thus measures the deviations of r0 from 2M. On the
other hand, the coefficients a0 and b0 can be seen as
combinations of the PPN parameters as

a0 ¼
ðβ − γÞð1þ ϵÞ2

2
; ð15Þ

b0 ¼
ðγ − 1Þð1þ ϵÞ

2
: ð16Þ

or, alternatively, as

β ¼ 1þ 2½a0 þ b0ð1þ ϵÞ�
ð1þ ϵÞ2 ; ð17Þ

γ ¼ 1þ 2b0
1þ ϵ

: ð18Þ

Using now the observations constraints (10) on the PPN
parameters, we conclude that a0 and b0 are both small and,
in particular, a0 ∼ b0 ∼ 10−4.
As mentioned above, the functions ~AðxÞ and ~BðxÞ have

the delicate task of describing the black hole metric near its
horizon and should therefore have superior convergence
properties than those offered, for instance, by a simple Taylor
expansion. We chose therefore to express them in terms of
rational functions (see also Ref. [13]). Since the asymptotic
behavior of the metric is fixed by the conditions (6)–(7), it is
convenient to parametrize ~AðxÞ and ~BðxÞ by Padé approx-
imants in the form of continued fractions, i.e., as

~AðxÞ ¼ a1
1þ a2x

1 þ a3x
1þ � � �

; ð19aÞ

~BðxÞ ¼ b1

1þ b2x

1 þ b3x
1þ � � �

; ð19bÞ

where a1; a2; a3… and b1; b2; b3… are dimensionless
constants to be constrained, for instance, from observations
of phenomena near the event horizon. A few properties of
the expansions (19) are worth noting. First, it should be
noted that at the horizon only the first two terms of the
expansions survive, i.e.,

~Að0Þ ¼ a1; ~Bð0Þ ¼ b1; ð20Þ
which in turn implies that near the horizon only the lowest-
order terms in the expansions are important. Conversely, at
spatial infinity,

~Að1Þ ¼ a1
1þ a2

1 þ a3
1þ � � �

; ~Bð1Þ ¼ b1

1þ b2
1 þ b3

1þ � � �

:

ð21Þ
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Finally, while the expansions (19) effectively contain an
infinite number of undetermined coefficients, we will
necessarily consider only the first n terms. In this case,
we simply need to set to zero the nth terms, since if
an ¼ 0 ¼ bn, then all terms of orderm > n are not defined.
In practice, and as we will show in the rest of the paper,

the superior convergence properties of the continued
fractions (19) are such that the approximate metric they
yield can reproduce all known (to us) spherically sym-
metric metrics to arbitrary accuracy and with a smaller set
of coefficients. The inclusion of higher-order terms obvi-
ously improves the accuracy of the approximation but in
general expansions truncated at n ¼ 4 are more than
sufficient to yield the accuracy that can be probed by
present and near-future astronomical observations.

III. COMPARISON WITH THE
JOHANNSEN-PSALTIS PARAMETRIZATION

To test the effectiveness of our approach in reproducing
other known spherically symmetric metric theories of
gravity, we obviously start from the Johannsen-Psaltis
(JP) metric in the absence of rotation [10]. In this case,
the black-hole line element is spherically symmetric and is
given by the following expression for the slowly rotating
dilaton black-hole solution

ds2 ¼ −½1þ hðrÞ�
�
1 −

2 ~M
r

�
dt2

þ ½1þ hðrÞ�
�
1 −

2 ~M
r

�−1
dr2 þ r2dΩ2; ð22Þ

where the function h is a simple polynomial expansion in
terms of the expansion parameter ~M=r, i.e.,

hðrÞ≡X∞
n¼1

ϵn

�
~M
r

�n

¼ ϵ1
~M
r
þ ϵ2

~M2

r2
þ ϵ3

~M3

r3
þ � � � :

ð23Þ
By construction, therefore, in the Johannsen-Psaltis

metric the horizon is located at

r0 ¼ 2 ~M; ð24Þ
while the relation between the ADM mass and the horizon
mass ~M is simply given by

M ¼ ~M

�
1 −

ϵ1
2

�
: ð25Þ

We can now match the asymptotic expansions for the
metrics (1) and (22). More specifically, we can compare
Eqs. (6) and (23), to find that at Oðð1 − xÞ2Þ the following
relations apply between our coefficients and those in the
JP metric

ϵ ¼ −
ϵ1
2
; ð26aÞ

a0 ¼ −
1

2

�
ϵ1 −

ϵ2
2

�
: ð26bÞ

Similarly, comparing Eqs. (7) and (23), we find that at
Oð1 − xÞ

b0 ¼
ϵ1
2
: ð26cÞ

It follows that if we set ϵ1 ¼ ϵ2 ¼ 0, as done originally in
Ref. [10], then ϵ ¼ 0 ¼ a0 ¼ b0, thus implying that the
PPN term are taken to be β ¼ γ ¼ 1. We will not make this
assumption hereafter.
We can also match the expansions for the metrics (1)

and (22) near the horizon. More specifically, we can obtain
algebraic relations between our coefficients an, bn and the
coefficients ϵn of the JP metric by matching the gtt and grr
metric functions and their derivatives for r≃ r0 or x≃ 0.
A bit of tedious but straightforward algebra then leads to
the following expressions:

a1 ¼ hðrÞ
��� r ¼ r0
ϵ1 ¼ ϵ2 ¼ 0

¼
X∞
n¼3

ϵn
2n

¼ ϵ3
8
þ ϵ4
16

þ ϵ5
32

� � � ;

b1 ¼ hðrÞ
��� r ¼ r0
ϵ1 ¼ 0

¼
X∞
n¼2

ϵn
2n

¼ ϵ2
4
þ ϵ3

8
þ ϵ4
16

þ ϵ5
32

� � � ;

ð27aÞ

a2 ¼ −
ðr3hÞ0
r2h

���� r ¼ r0
ϵ1 ¼ ϵ2 ¼ 0

¼
P∞

n¼4

ϵnðn − 3Þ
2nP∞

n¼3
ϵn
2n

;

b2 ¼ −
ðr2hÞ0
rh

���� r ¼ r0
ϵ1 ¼ 0

¼
P∞

n¼3

ϵnðn − 2Þ
2nP∞

n¼2
ϵn
2n

; ð27bÞ

a3 ¼
hðr0Þ2r3
2a1a2

�ðr3hÞ0
r4h2

�0���� r ¼ r0
ϵ1 ¼ ϵ2 ¼ 0

;

b3 ¼
hðr0Þ2r2
2b1b2

�ðr2hÞ0
r2h2

�0���� r ¼ r0
ϵ1 ¼ 0

;

ð27cÞ

a4 ¼
1

12a1a2a3r4
ðr2ðr2ðr3hÞ0Þ0Þ0

���� r ¼ r0
ϵ1 ¼ ϵ2 ¼ 0

−
ðr3hÞ0

4a1a2a3r2

�ðr2ðr3hÞ0Þ0
ðr3hÞ0

�0���� r ¼ r0
ϵ1 ¼ ϵ2 ¼ 0

; ð27dÞ
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b4 ¼
1

12b1b2b3r3
ðr2ðr2ðr2hÞ0Þ0Þ0

���� r ¼ r0
ϵ1 ¼ 0

−
ðr2hÞ0

4a1a2a3r

�ðr2ðr2hÞ0Þ0
ðr2hÞ0

�0���� r ¼ r0
ϵ1 ¼ 0

; ð27eÞ

a5 ¼ � � � ; ð27fÞ

where we have indicated with a prime 0 the radial
derivative. Clearly, expressions (27) can be easily extended
to higher orders if necessary.
A few remarks are worth doing. First, because of

cancellations, the terms a1; a2; a3… do not depend on ϵ1
and ϵ2; similarly, the terms b1; b2; b3… do not depend on
ϵ1, but they do depend on ϵ2. Second, in the simplest case
and the one considered in Ref. [10], i.e., when only ϵ3 ≠ 0,
the coefficient a2 vanishes and our approximant for the
function N reproduces it exactly. Finally, and more impor-
tantly, expressions (27) clearly show the rapid-convergence
properties of the expansions (19). It is in fact remarkable
that a few coefficients only are sufficient to capture the
infinite series of coefficients needed instead in the JP
approach [cf., for instance, expressions (27b) for the
coefficients a1 and b1].

IV. PARAMETRIZATION FOR DILATON
BLACK HOLES

As another test of the convergence properties of our
metric parametrization we next consider a dilaton-axion
black hole [14]. When both the axion field and the spin
vanish, such a black hole is described by a spherically
symmetric metric with line element

ds2 ¼ −
�
ρ − 2μ

ρþ 2b

�
dt2 þ

�
ρþ 2b
ρ − 2μ

�
dρ2 þ ðρ2 þ 2bρÞdΩ2:

ð28Þ
The radial coordinate r and the ADM mass M are
expressed, respectively, as

r2 ¼ ρ2 þ 2bρ; M ¼ μþ b; ð29Þ
where b is the dilaton parameter.
By comparing now the expansions of (1) and (28) at

spatial infinity, we find that

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

μ

s
− 1; ð30aÞ

a0 ¼
b
2μ

; ð30bÞ

b0 ¼ 0. ð30cÞ

Similarly, by comparing the near-horizon expansions we
find the other coefficients, which also depend on b=μ only
and are given by

a1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

μ

s
þ 1

1þ b=ð2μÞ − 3 −
b
2μ

; ð31aÞ

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b=μ

p
1þ b=ð2μÞ − 1; ð31bÞ

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

μ

q
− 1
2
− b2
4μ2

þ b
2μ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ b

μ

q
− 1

�
�
1þ b

2μ

�
2

; ð31cÞ

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b=μ

p
1þ b=ð2μÞ − 1 −

b2

ðbþ 2μÞ2 : ð31dÞ

It is clear that a1 and b1 vanish if b ¼ 0, in which case we
reproduce the line element of the Schwarzschild black hole
exactly. If b > 0, on the other hand, we could in principle
calculate as many coefficients of the continued fractions
(19) as needed; in practice already the very first ones
suffice. For example, for b=μ ¼ 1 and setting a3 ¼ 0, the
maximum relative difference between the exact and the
expanded expression for the metric function gtt is
≲3 × 10−4. This relative difference becomes ≲3 × 10−6

if the order is increased of one, i.e., if a4 ¼ 0 (see also the
discussion below on Fig. 1).

V. OBSERVABLE QUANTITIES WITHIN THE
PARAMETRIZATION FRAMEWORK

A high precision in the mapping of the metric functions
does not necessarily translate in an equivalent accurate
measure of near-horizon phenomena. Hence, to further test
the reliability of our continued-fraction expansions (19), we
next compare a number of potentially observable quantities
for a spherically symmetric dilaton black hole and for a
black hole in Einstein-aether theory, respectively. More
specifically, we calculate: the impact parameter for the
photon circular orbit, the orbital frequency for the inner-
most stable circular orbit, and the quasinormal ringing of a
massless scalar field. For all of these quantities, the metric
is either expressed analytically [i.e., Eq. (28) for a dilation
black hole] or numerically [i.e., for a black hole in Einstein-
aether theory], or in its parametrized form [i.e., via the
coefficients (30)–(31) for a dilation black hole].

A. Photon circular orbit and the innermost
stable circular orbit

In a spherically symmetric spacetime, a photon circular
orbit is defined as the null geodesic at radial position
r ¼ rph for which the following equations are satisfied,
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ds2 ¼ −NðrphÞ2dt2 þ r2phdϕ
2 ¼ 0; ð32Þ

d2rph ¼ −
N0ðrphÞNðrphÞ3

BðrphÞ2
dt2 þ NðrphÞ2rph

BðrphÞ2
dϕ2 ¼ 0;

ð33Þ

where we have implicitly assumed θ ¼ π=2 because of
the absence of a preferred direction. From these equations
we find that the equation for the radius is given by

rph ¼
NðrphÞ
N0ðrphÞ

; ð34Þ

and that the corresponding orbital frequency Ωph is

Ωph ¼
dϕ
dt

����
r¼rph

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðrphÞNðrphÞ

rph

s
¼ NðrphÞ

rph
: ð35Þ

Note that expression (35) depends only on the coefficients ϵ
and an, but not on the bn coefficients [cf., Eq. (4)]. We then
define the impact parameter of the photon circular orbit (not
to be confused with the dilaton parameter) as

bph ¼
1

Ωph
; ð36Þ

whose analytic expression in the case of a dilaton black
hole is [15]

bph ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 36b=μþ 8b2=μ2 þ ð9þ 8b=μÞ3=2

2

s
;

ð37Þ

which reduces to bph=μ ¼ 3
ffiffiffi
3

p
in the case of a

Schwarzschild black hole.
In the left panel of Fig. 1 we show the difference between

the exact values of bph computed via Eq. (37) and the ones
obtained after solving numerically Eq. (34) and making use
the continued-fraction expansions (19) with coefficients
(30)–(31). The differences are shown as a function of the
dimensionless dilaton parameter b=μ and different lines
refer to different levels of approximation, i.e., when setting
a2 ¼ 0 (blue line), a3 ¼ 0 (red line), and a4 ¼ 0 (magenta
line). The figure shows rather clearly that already when
setting a2 ¼ 0, that is, when retaining only the coefficients
ϵ; a0; b0; a1, and b1, the differences in the impact parameter
are of the order of ∼10−4μ for b ∼ 1

2
μ. These differences

become larger with larger dilaton parameter, but when
a4 ¼ 0 they can nevertheless be reduced to be ∼10−6μ even
for b ∼ μ.
In a similar way, we can calculate the innermost stable

circular orbit (ISCO) exploiting the fact that the geodesic
motion of a massive particle in the equatorial plane can be
reduced to the one-dimensional motion within an effective
potential,

VeffðrÞ ¼
E2

N2ðrÞ −
L2

r2
− 1; ð38Þ

FIG. 1 (color online). Left panel: Difference between the exact values of the dilaton black hole orbit impact parameter for a circular
orbit bph and the values obtained using the continued-fraction expansions (19). The results are shown as a function of the dimensionless
strength of the dilaton parameter b=μ. Different lines refer to different levels of approximation, i.e., a2 ¼ 0 (blue line), a3 ¼ 0 (red line),
and a4 ¼ 0 (magenta line). Note that even when a2 ¼ 0, the differences are≲10−4 for b≲ 1

2
μ. Right panel: The same as in the left panel

but for the ISCO frequency.
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where E and L are the constants of motion, i.e., energy and
angular momentum, respectively. A circular orbit then is
the one satisfying the following conditions,

VeffðrÞ ¼ 0 ¼ V 0
effðrÞ; ð39Þ

while the ISCO is defined as the radial position ro at which

V 00
effðroÞ ¼ 0: ð40Þ

Substituting (38) into (39) and (40), we obtain the
following algebraic equation for the ISCO radius ro,

3NðroÞN0ðroÞ − 3roN02ðroÞ þ roNðroÞN00ðroÞ ¼ 0; ð41Þ

which we can solve numerically to calculate the corre-
sponding orbital frequency as

ΩISCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðroÞNðroÞ

ro

s
: ð42Þ

Here, too, expression (42) depends only on the coefficients
ϵ and an, but not on the bn coefficients.
The ISCO frequency (42) can of course be compared

with the exact expression in the case of a dilaton black hole,
which is given by

ΩISCO ¼ 1

2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

ð1þ κÞð1þ κ þ κ2Þ3
r

; ð43Þ

where

κ ≡
�
1þ b

μ

�
1=3

; ð44Þ

and expression (43) reduces to the well-known result
of ΩISCOM ¼ ð1=6Þ3=2 in the case of a Schwarzschild
spacetime.
A comparison between the values of the ISCO frequency

estimated from expressions (42) and (43) is shown in the
right panel of Fig. 1, which reports the differences in units
of μ and as a function of the dimensionless dilaton
parameter b=μ. As for the left panel, different curves refer
to different levels of approximation, i.e., a2 ¼ 0 (blue line),
a3 ¼ 0 (red line), and a4 ¼ 0 (magenta line). Also in this
case, the differences in the ISCO frequency are of the order
of ∼10−6μ for b ∼ 1

2
μ and can reduced to be ∼10−7μ even

for b ∼ μ by including higher-order coefficients.
Finally, we have compared the values for the impact

parameter and the ISCO frequency also for another spheri-
cally symmetric black hole, namely, the one appearing in
the alternative Einstein-aether theory of gravity [16]. In this
case, the metric is not known analytically, but we have used
the numerical data for the metric functions as discussed in
Ref. [17]. More specifically, for a large number of pairs of

the aether parameters cþ and c−, we have obtained a
numerical approximation of the gtt metric function NðrÞ in
terms of the coefficients ϵ, a0, a1, and a2 of our continued-
fraction expansions (19). Using these coefficients, we have
then calculated numerically the values of bph and ΩISCO as
discussed above and compared with the corresponding
values in general relativity.
The results of this comparison are reported in Fig. 2,

whose left panel refers to the impact parameter for a
circular photon orbit, while the right panel to the ISCO
frequency. The two panels are meant to reproduce Figs. 2
and 4 of Ref. [17] and they do so with an accuracy of
fractions of a percent. Note that the differences in bph and
ΩISCO with respect to general relativity can be quite large
for certain regions of the space of parameters (e.g., cþ ≃ 1).
These regions, however, are de-facto excluded by the
observational constraints set by binary pulsars (see the
discussion in Ref. [18]).

B. Quasinormal ringing

Another way to probe whether the metric parametrization
(1) and the continued fraction expansions (19) represent an
effective way to reproduce strong-field observables near a
black hole is to compare the response to perturbations. We
recall, in fact, that if perturbed, a black hole will start
oscillating. Such oscillations, commonly referred to as
“quasinormal modes,” represent exponentially damped oscil-
lations that, at least at linear order, do not depend on the
details of the source of perturbations, but only on the black
hole parameters (see [19] for a review). The relevance of
these oscillations is that they probe regions of the spacetime
that are close to the light ring, but are global and hence do
not depend on a single radial position. At the same time, the
gravitational-wave signal from a perturbed black hole can be
separated from a broad class of the environmental effects,
allowing us to expect a good accuracy of the quasinormal
modes’ measurement [20]. Furthermore, both of the con-
tinued-fraction expansions (19) are involved and hence also
some of the bn coefficients will be nonzero.
For simplicity, we have considered the evolution of a

massless scalar field Φ as governed by the Klein-Gordon
equation

□Φ ¼ 0; ð45Þ
where □ is the Dalambertian operator. Substituting in (45)
the ansatz

Φðt; r; θ;ϕÞ ¼ Ψðt; rÞYlðθ;ϕÞ=r; ð46Þ
where Ylðθ;ϕÞ are Laplace’s spherical harmonics, we
obtain for each multipole number l the following wavelike
equation,

� ∂2

∂t2 −
∂2

∂r2� þ VlðrÞ
�
Ψðt; rÞ ¼ 0; ð47Þ
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where we have introduced the (tortoiselike) radial
coordinate

dr� ¼
BðrÞ
N2ðrÞ dr; ð48Þ

and the effective potential is given by

VlðrÞ ¼
lðlþ 1Þ

r2
N2ðrÞ þ 1

r
d
dr�

N2ðrÞ
BðrÞ : ð49Þ

It was shown in Ref. [13] that the rational approximation
for NðrÞ and BðrÞ in some region near the black hole
horizon in reduced Einstein-aether theory allows one to
calculate accurately at least the quasinormal modes with
the longest damping time. In order to test our approxima-
tion in the case of the dilaton black hole, we have compared
the black hole response in the time domain, found using
either the exact representation of the metric (28) or the
parametrized one via the coefficients (30)–(31).
The numerical solution of the evolution equation was

made using a characteristic integration method that involves
the light-cone variables u≡ t − r� and v≡ tþ r� [21], with
initial data specified on the two null surfaces u ¼ u0 and
v ¼ v0. The results of these calculations are shown in Fig. 3,
whose left panel reports the l ¼ 0 solution of the scalar field
at r ¼ 2r0 as function of time both in the case of an exact
dilaton black hole (blue line) and of the corresponding
parametrized expansion (red line). The relative differences
are clearly very small already with a3 ¼ 0 ¼ b3, as shown in

the right panel of Fig. 3, and amounting at most to fractions
of a percent.

VI. SLOWLY ROTATING BLACK HOLES

We are in position now to make the first step towards the
parametrization of black holes that are not spherically
symmetric. We believe that the natural way to choose
the parameters is taking into account the asymptotical
behavior of the corresponding metric, which is defined by
multipole moments [22], as well as its near-horizon
behavior. Unfortunately, only a very limited number of
such metrics is known in alternative theories of gravity that
can be used for comparison. Indeed, to the best of our
knowledge, a black hole with independent multipole
moments was studied only in general relativity and dis-
cussed in Refs. [23,24]. At the same time, even the
parametrization of an axisymmetric stationary black hole
is far from being a trivial question, since the corresponding
metric is defined by four functions of two variables.
As a warm-up exercise, in this section we will consider

spacetime metrics having only a small deviation from the
spherical symmetry and hence extend the general expres-
sion (1) by introducing a new function ω in the gtϕ metric
function and by retaining it only at the first order, i.e.,

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2dΩ2

− 2ωðr; θÞr2sin2θdtdϕþOðω2Þ; ð50Þ

and with the condition that ω has a falloff with radius that is
faster than r−1, i.e., that
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FIG. 2 (color online). Left panel: Relative difference in the photon circular orbit impact parameter bph between general relativity and
the alternative Einstein-aether theory (cf., Fig. 4 of Ref. [17]). The differences are reported within the mathematically allowed ranges for
the aether parameters cþ and c−. The contours correspond to the following values (from left to right): 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5. Right panel: the same as in the left panel but for the ISCO frequency (cf., Fig. 2 of Ref. [17]). The impact parameter and ISCO
frequencies were calculated using continued-fraction expansions with a3 ¼ 0.
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rωðr; θÞ ≪ 1; ð51Þ

implying that the event horizon remains at r ¼ r0.
2

Because we are not considering any consistent
(alternative) theory of gravity, but we are simply prescrib-
ing ad-hoc expression for the metric, we cannot impose
additional constraints on the function ω. However, if we
assume that the function ω depends on the radial coordinate
r only, then we obtain a metric which can be associated
with a slowly rotating black hole in Hořava-Lifshitz theory
[25], in Einstein-aether gravity [26], in Chern-Simons
modified gravity [27], or with dilatonic Einstein-Gauss-
Bonnet [28] and dilaton-axion black holes [14].
In this case, the asymptotic behavior is given

ωðr; θÞ → ωðrÞ ¼ 2J
r3

þOðr−4Þ

¼ 2J
r30

ð1 − xÞ3 þOðð1 − xÞ4Þ; ð52Þ

where J is the spin of the black hole and we take it to
be J ≪ M2.
The parametrization of the function ω can then be made

in analogy with what was done for the nonrotating case and
again we use a Padé approximation in terms of continued
fractions in the form

rωðrÞ ¼
�

r0
1 − x

�
ωðxÞ

¼ ω0ð1 − xÞ2 þ ω1ð1 − xÞ3
1þ ω2x

1þ ω3x
1þ���

: ð53Þ

Since r0ωðxÞ ¼ ω0ð1 − xÞ3 þOðð1 − xÞ4Þ, the first coef-
ficient is simply given by ω0 ≡ 2J=r20, while the higher-
order ones, ω1;ω2;ω3…, are fixed by comparing series
expansion of ω near the event horizon r0.
As an example, we consider the first-order correction to

the dilaton black hole (28) due to rotation given by the
following line element [14]

ds2 ¼ −
�
ρ− 2μ

ρþ 2b

�
dt2 þ

�
ρþ 2b
ρ− 2μ

�
dρ2

−
�
4aðμþ bÞ
ρþ 2b

	
sin2θdtdϕþ ðρ2 þ 2bρÞdΩ2 þOða2Þ:

ð54Þ
By comparing the asymptotical and near-horizon expan-
sions we find that

ω0 ¼
a
2μ

; ð55aÞ

ω1 ¼
a
2μ

� ffiffiffiffiffiffiffiffiffiffiffi
μ

μþ b

r
− 1

�
; ð55bÞ

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμþ bÞp

− μ − b
2μþ b

; ð55cÞ

ω3 ¼
μb

ð2μþ bÞ2 : ð55dÞ

FIG. 3 (color online). Left panel: Evolution of the scattered scalar field jΨj for the l ¼ 0 perturbations at r ¼ 2r0 as computed using
the exact dilaton black hole metric with b=μ ¼ 1 (blue solid line) or the corresponding parametrized form with a3 ¼ 0 ¼ b3 (red dashed
line). Right panel: relative difference in the evolution of jΨj shown in the left panel.

2Determining in the metric (50) the location where grr ¼ 0will
also involve the square of the metric function gtϕ, which we take
to be zero in the slow-rotation approximation.
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Since we consider a ≪ μ, the coefficients (55) imply that
ω0 ≪ 1 and ω1 ≪ 1, thus satisfying the constraint (51).
The other coefficients are not small and depend on the
dilaton parameter only. Of course, it is possible to find as
many coefficients in (53) as needed for an accurate
approximation for the function ω.
In order to test the convergence properties of (53) we

again study the ISCO frequency for the equatorial orbits
(i.e., θ ¼ π=2) of a massless particle in the background of a
slowly rotating dilaton black-hole metric (50). In this case,
the effective potential reads

VeffðrÞ ¼
E2r2 − 2ELωðrÞr2 − L2N2ðrÞ

NðrÞ2r2 þ ωðrÞ2r4 : ð56Þ

We assume now that the energy E and the angular
momentum L are positive, thus implying that a > 0 for
the corotating and a < 0 for the counter-rotating particles,
respectively. We then solve numerically the set of equations

VeffðroÞ ¼ 0; ð57aÞ

V 0
effðroÞ ¼ 0; ð57bÞ

V 00
effðroÞ ¼ 0; ð57cÞ

finding at the radial coordinate of the ISCO ro > r0 the
corresponding frequency ΩISCO,

ΩISCO ¼
−g0tϕ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0tϕ

2 − g0ttg0ϕϕ
q
g0ϕϕ

������
r¼ro

¼ ωðroÞ þ
ω0ðroÞro

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðroÞN0ðroÞ

ro
þ
�
ωðroÞ þ

ω0ðroÞro
2

�
2

s
:

ð58Þ

Of course, these frequencies can be computed also for
the parametrized metric (55) at different level of approxi-
mation. A comparison between the two calculations is
summarized in Fig. 4, which shows the absolute value of
the difference between the exact value of ΩISCO and the
approximate one as a function of the normalized spin
parameter a=μ. As in the previous figures, here too different
curves (all computed for b ¼ μ=2) refer to different degrees
of approximation: a2 ¼ 0 ¼ ω2 (blue line), a3 ¼ 0 ¼ ω3

(red line), and a3 ¼ 0 ¼ ω3 (magenta line). Also in this
case it is apparent that the use of a larger number of
coefficients in continued fraction expansions, (19a) and
(53), leads to a monotonic increase of the accuracy of the
ISCO frequency.

As a concluding remark we note that a possible and
rather popular approach to extend the parametrization (1) to
rotating black holes would be the application of the
Newman-Janis algorithm [29] to the metric (1) after having
fixed the parameters ϵ; a0; b0; a1; b1;…. Although there is
no proof that such a rotating configuration corresponds to a
black hole solution in the same theory, the method works
for some theories, e.g., the application of the Newman-
Janis method to the metric (28) allows one to obtain the
metric for the axion-dilaton black hole [30]. Therefore, it
would be interesting to compare the coefficients (55) with
those obtained at first order after the application of the
Newman-Janis algorithm.
Yet, it is clear that this approach would not provide

us with the most generic form for an axisymmetric black
hole, simply because, in general, the geometry cannot be
parametrized by one rotation parameter only. What is
needed, instead, is a general framework which naturally
comprises a set of parameters that account for the multipole
moments of the spacetime and are not necessarily restricted
to follow the relations expressed in terms of mass and
angular momentum that apply for a Kerr black hole.
Investigating this approach is beyond the scope of this
initial paper, but will be the focus of our future work.

VII. CONCLUSIONS

We have proposed a new parametric framework to
describe the spacetime of spherically symmetric and
slowly-rotating black holes in generic metric theories of

FIG. 4 (color online). Difference between the exact values of
the ISCO frequencies in the equatorial plane for the dilaton black
hole in the slow-rotation approximation regime and the values
obtained using the continued-fraction expansions. Different
curves, shown as functions of the rotation parameter, refer to
the different levels of approximation: a2 ¼ 0 ¼ ω2 (blue line),
a3 ¼ 0 ¼ ω3 (red line), and a4 ¼ 0 ¼ ω4 (magenta line). In all
cases we have taken a reference value of b ¼ μ=2.
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gravity. The new framework provides therefore a link
between astronomical observations of near-horizon physics
with the properties of black holes in alternative theories of
gravity, and which would predict deviations from general
relativity. Unlike similar previous attempts in this direction,
our approach is based on two novel choices. First, we use a
continued-fraction expansion rather than the traditional
Taylor expansion in powers of M=r, where M and r are
respectively the mass of the black hole and a generic radial
coordinate [10,11]. Second, the expansion is made in terms
of a compactified radial coordinate with values between
zero and one between the horizon and spatial infinity. These
choices lead to superior convergence properties and allows
us to approximate a number of known metric theories with
a much smaller set of coefficients.
These parameters can be calculated very accurately for

any chosen spherically symmetric metric and, at the same
time, they can be used via astronomical observations to
measure near-horizon phenomena, such as photon orbits or
the position ISCO. As a result, the new parametrization
provides us with powerful tool to efficiently constrain the
parameters of alternative theories using future astronomical
observations.
Another important advantage of our approach is that we

can use not only the asymptotic parameters from the PPN
expansion, but also the near-horizon parameters, which are
well-captured already by the first lowest-order coefficients.
More specifically, the most important parameters for the
near-horizon geometry are expressed simply in terms of the
coefficients ϵ (which relates the ADM mass and the event
horizon), a1, b1, and ω1. The use of other higher-order
parameters increases the accuracy of the approximation,
but does not change significantly the observable quantities.
The latter, in fact, are captured to the precision of typical
near-future astronomical observations already at the low-
est order.
The rapid convergence of our expansion is also useful for

the analysis of black-hole spacetimes in alternative theories
where the metric is known only numerically. Using as a
practical example the alternative Einstein-aether theory of
gravity, we have shown that it is possible to reproduce to
arbitrary accuracy the numerical results by using a small set
of coefficients in the continued-fraction expansion. In turn,
adopting such coefficients it is also possible to obtain an
analytical representation of the metric functions, which can
then be used to study the stability of such black holes, the
motion of particles and fields in their vicinity [31], or to
construct viable approximations for metrics with incorrect
asymptotical behavior, e.g., due to the presence of magnetic
fields [32,33].
As a concluding remark we note that our approach has so

far investigated spherically symmetric spacetimes and
hence black holes that are either nonrotating or slowly
rotating. It would be interesting to find a generalization of
our framework for the parametrization of axisymmetric

black holes, for instance, via the application of the
Newman-Janis algorithm. However, while this is techni-
cally possible, it is unclear whether such approach will turn
out to be sufficiently robust. We believe, in fact, that a
parametrization of axisymmetric black holes must com-
bine, together with a rapidly converging expansion, also
information on the parametrized post-Newtonian parame-
ters, on the multipole moments, on the horizon shape, as
well as parameters that define the near-horizon geometry.
This task, which is further complicated by the lack of
known axisymmetric back-hole solutions in alternative
theories of gravity (cf., [34]), will be the focus of our
future work.
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APPENDIX: JOHANNSEN-PSALTIS
PARAMETRIZATION FOR THE

DILATON BLACK HOLE

In order to explore convergence properties of our para-
metrization framework, we consider in this appendix the
alternative parametrization of a spherically symmetric
black hole in generic metric theories of gravity which
has been recently proposed in Ref. [11],

ds2 ¼ −½1þ htðrÞ�
�
1 −

2 ~M
r

�
dt2

þ ½1þ hrðrÞ�
�
1 −

2 ~M
r

�−1
dr2 þ r2dΩ2; ðA1Þ

where, instead of the function hðrÞ in (22), two different
functions are introduced:

htðrÞ≡X∞
n¼1

ϵtn

�
~M
r

�n

¼ ϵt1
~M
r
þ ϵt2

~M2

r2
þ ϵt3

~M3

r3
þ � � � ;

ðA2aÞ

hrðrÞ≡X∞
n¼1

ϵrn

�
~M
r

�n

¼ ϵr1
~M
r
þ ϵr2

~M2

r2
þ ϵr3

~M3

r3
þ � � � :

ðA2bÞ
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In particular, we will determine the numerical values of
the coefficients ϵt1; ϵ

r
1; ϵ

t
2; ϵ

r
2… to produce an approximation

of the metric of a dilaton black hole (28). Although this can
be done in different ways, the coefficients must obey the
constraints that the theory naturally imposes on them. As a
result, the large-distance properties of the functions htðrÞ
and hrðrÞ provide a series of constraints that fix the
coefficients once an asymptotic expansion for the metric
functions is made. In this way, we find that [cf., Eqs. (26)
and (30)]

~M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμþ bÞ

p
; ðA3aÞ

ϵt1 ¼ 2 − 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

μ

s
; ðA3bÞ

ϵt2 ¼
2b
μ
þ 4 − 4

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

μ

s
; ðA3cÞ

ϵr1 ¼ 0…: ðA3dÞ

Figure 5 shows the relative difference for the impact
parameter of the photon circular relative to a dilaton black

hole as computed using the parametrization (A2), and
shown as function of the dimensionless strength of the
dilaton parameter. Different lines refer to different levels
of approximation, i.e., 0 ¼ ϵt4 ¼ ϵt5 ¼ ϵt6 ¼ � � � (blue line),
0 ¼ ϵt5 ¼ ϵt6 ¼ ϵt7 ¼ � � � (red line), and 0 ¼ ϵt6 ¼ ϵt7 ¼
ϵt8 ¼ � � � (magenta line), and so on. The dashed lines of
the same color correspond to our continued-fraction
approximation having the same number of parameters.
More specifically, the first three of these lines should be
compared with the corresponding ones in Fig. 1, con-
sidering, for instance, that the red line in Fig. 1 amounts
to specifying four coefficients (i.e., ϵ, a0, a1, and a2),
which is the same number that is involved when consid-
ering the red line in Fig. 5 (i.e., ϵt1, ϵ

t
2, ϵ

t
3, ϵ

t
4). Clearly, the

errors in the novel parametrization are overall smaller
for the same number of fixed coefficients in the expan-
sion. A qualitatively similar figure can be produced also
for the measurement of the ISCO but we do not report it
here for compactness.
We should note that the errors in the parametrization

(A2) can be made smaller if we fix the first two
coefficients, i.e., ϵt1 and ϵt2, from the asymptotic expan-
sion at large distance, but we compute the remaining
coefficients from the near-horizon behavior. This is
simply because the impact parameter is a strong-field
quantity and hence its approximation necessarily
improves if the coefficients are constrained near the
horizon. On the other hand, the real problematic feature
of the parametrization (A2) is that the coefficients are
roughly equally important near the horizon [11]. As a
result, if one fixes the coefficients by matching the near-
horizon behavior of the metric functions, the expression
for the same coefficient will be different for different
orders of approximations, making the approach not useful
for constraining the parameters of the theory.
Finally, as mentioned in the Introduction, a particularly

serious difficulty of the parametrization (A2) is that it
does not reproduce the correct rotating metric even in
the regime of slow rotation. This can be shown rather
simply for the slowly rotating dilaton black hole, for
which both the dilaton and the rotating Johannsen-Psaltis
black hole can be obtained with the help of the Newman-
Janis algorithm. More specifically, the generalized
Johannsen-Psaltis black hole in the regime of slow
rotation reads [11]

ds2 ¼ −½1þ htðrÞ�
�
1 −

2 ~M
r

�
dt2

þ ½1þ hrðrÞ�
�
1 −

2 ~M
r

�−1
dr2 þ r2dΩ2

− 2asin2θ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ htðrÞÞð1þ hrðrÞÞ

p

−
�
1 −

2 ~M
r

�
ð1þ htðrÞÞ

�
dtdϕþOða2Þ: ðA4Þ

FIG. 5 (color online). Difference between the exact values of
the dilaton black-hole orbit impact parameter for a circular orbit
bph and the values obtained using the generalized Johannsen-
Psaltis metric with the coefficients calculated by comparing the
asymptotic expansions for the metric functions. The results are
shown as a function of the dimensionless strength of the dilaton
parameter b=μ. Different lines refer to different levels of
approximation, i.e., 0 ¼ ϵt4 ¼ ϵt5 ¼ ϵt6 ¼ � � � (blue line), 0 ¼
ϵt5 ¼ ϵt6 ¼ ϵt7 ¼ � � � (red line), and 0 ¼ ϵt6 ¼ ϵt7 ¼ ϵt8 ¼ � � � (ma-
genta line), and so on. The dashed lines of the same color
correspond to our continued-fraction approximation having the
same number of parameters; hence the first three lines should be
compared with those of Fig. 1 with the same color.
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By comparing the diagonal elements of (A4) and (54) we
conclude that r2 ¼ ρ2 þ 2bρ, while htðrÞ and hrðrÞ must
approximately be such that

�
1 −

2 ~M
r

�
ð1þ htÞ≃ ρ − 2μ

ρþ 2b
; ðA5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ htÞð1þ hrÞ

p ≃ dρ
dr

¼ r
ρþ b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 2bρ

p
ρþ b

: ðA6Þ

As a result, an inconsistency emerges for the off-diagonal
element of the metric (A4), for which

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ htÞð1þ hrÞ

p
−
�
1 −

2 ~M
r

�
ð1þ htÞ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 2bρ

p
ρþ b

−
ρ − 2μ

ρþ 2b
≠
2ðμþ bÞ
ρþ 2b

; ðA7Þ

unless b ≪ ρ. Thus, for any approximation of the functions htðrÞ and hrðrÞ, the slowly rotating regime of the dilaton black
hole is not reproduced by the metric (A4). Similar arguments were used to show that the Newman-Janis algorithm is not
able to generate rotating black-hole solutions in modified gravity theories [35].
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