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Abstract: Nonclassical states of light are an important resource in today’s
quantum communication and metrology protocols. Quantum up-conversion
of nonclassical states is a promising approach to overcome frequency
differences between disparate subsystems within a quantum information
network. Here, we present the generation of heralded narrowband single
photons at 1550 nm via cavity enhanced spontaneous parametric down-
conversion (SPDC) and their subsequent up-conversion to 532 nm. Quantum
non-Gaussianity (QNG), which is an important feature for applications in
quantum information science, was experimentally certified for the first time
in frequency up-converted states.
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1. Introduction

Quantum non-Gaussian states of light cannot be expressed as mixtures of Gaussian states and
form a subclass of nonclassical states. Important quantum information tasks cannot be per-
formed with Gaussian states and Gaussian operations only, as for example stated in the no-go
theorems for entanglement distillation [1–3], quantum error correction [4] or quantum comput-
ing [5]. Non-Gaussian states are therefore an important resource in modern quantum informa-
tion processing. Filip and Mišta proposed a practical criterion to verify QNG characteristics of
specific quantum states of light [6], which was used to analyse single photons from SPDC [7]
and quantum dots [8]. The criterion was extended to show the QNG of noisy squeezed sin-
gle photons [9] and to study its robustness [10]. An alternative approach to witness QNG is
demonstrated in [11].

Quantum up-conversion is a versatile tool in today’s quantum optics experiments. It has the
potential to overcome frequency differences between disparate subsystems within a quantum
information network. Today, the generation and fiber-based transmission of nonclassical states
of light are most efficient at near infra-red wavelengths, for instance at the telecommunication
wavelength of 1550 nm [12]. Future quantum memories based on trapped atoms [13], ions [14]
or atomic ensembles [15] will potentially use shorter wavelengths, up to the visible spectrum.
Furthermore, the up-conversion into the visible regime enables the efficient detection of infrared
single photons with commercially available, low-noise and easy-to-handle silicon avalanche
photodetectors [16].

To make quantum up-conversion a useful tool in quantum networks the photon statistics
and in particular the nonclassical properties of the quantum states such as QNG have to be
preserved. In their pioneering work, Huang and Kumar demonstrated quantum frequency con-
version of a bright beam maintaining its nonclassical intensity correlations via second har-
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monic generation [17]. Recently, the up-conversion of squeezed vacuum states of light was
shown [18]. Quantum up-conversion can also be realized with high efficiency at the single pho-
ton level via sum-frequency generation with a strongly attenuated coherent signal field [19–21].
In addition, nonclassicality of up-converted single photons from quantum dots has been demon-
strated by measuring the second-order correlation function g(2)(0) [22]. However, quantum
non-Gaussianity has not been certified for up-converted single photons yet. Here, we demon-
strate for the first time QNG of frequency up-converted states.

2. Theoretical background

2.1. Cavity enhanced SPDC

Spontaneous parametric down-conversion (SPDC) is a widely used technique to produce corre-
lated photon pairs. It generally utilizes a non-linear crystal, which is pumped with a laser field.
In our experiment, this crystal is embedded in an optical cavity. If such a device is operated
above its oscillation threshold to produce bright fields in well defined spatial output modes, it is
commonly known as an optical parametric oscillator (OPO). Far below the oscillation threshold,
in a SPDC process photon pairs are generated to a very good approximation. The Heisenberg
equations of motion for the cavity modes of interest are [23]

dâ±(t)
dt

=− i
�

[
â±(t),Hsys

]− γ â±(t)+
√

2γ â±,in(t) , (1)

where â± (â±,in) are the (input) mode operators for the upper (+) and lower (-) sideband, γ is
the mean decay rate of the cavity, and the system Hamiltonian is given by

Hsys =�ω+â†
+â++�ω−â†

−â−

+ i�
(

εe−iωpt â†
+â†

−− ε∗eiωpt â+â−
)
.

(2)

The gain parameter ε = γ
√

P/Pth, with Pth being the threshold pump power for parametric
oscillation, is proportional to the mean pump field amplitude

√
P. The set of differential equa-

tions can be solved with straightforward methods. The temporal correlation function of the two
output modes is [23]

Γ(τ) =〈â†
+,out(t)â

†
−,out(t + τ)â−,out(t + τ)â+,out(t)〉

=

[
εγ
2

(
1
λ

exp(−λ |τ|)+ 1
μ

exp(−μ |τ|)
)]2

,
(3)

where λ = γ − |ε|, μ = γ + |ε|. In the experiment the modes corresponded to propagating
TEM00 modes at 810 (trigger) and 1550 nm (signal). The signal mode â−,out experiences a
stronger frequency filtering than the trigger mode because the SPDC cavity decay rate is smaller
at 1550 nm than at 810 nm. The signal mode additionally experiences frequency filtering in the
up-conversion cavity. We model the total filtering at 1550 nm with the transformation

â−(t)→ â−(t ′) =
∫ t ′

−∞
dyκ exp

(
(−κ(t ′ − y)

)
â−(y) , (4)

where κ is the bandwidth of the combined filter effect. The temporal correlations then read

Γ(τ) =
[

γεκ
2

( exp(−μ |τ|)
μ(κ − s(τ)μ)

+
exp(−λ |τ|)

λ (κ − s(τ)λ )

− (1+ s(τ))exp(−κ |τ|) 2κ2 −λ 2 −μ2

(κ2 −λ 2)(κ2 −μ2)

)]2

,

(5)
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where s(τ) =+1 for τ ≥ 0 and s(τ) =−1 for τ < 0. In Fig. 1 the effect of additional filtering of
the signal mode is shown. The narrower the linewidth of the extra filter, the more the temporal
correlations are smoothed out.
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Fig. 1. Calculated time shift between detection events of trigger (â+) and signal (â−) pho-
tons in our setup and the effect of extra-filtering of the signal mode. The narrower the
linewidth κ of the extra filter in the signal path, the more the correlations between trigger
and signal events are smoothed out. Parameters are γ = π·31 MHz, ε = 0.10γ .

2.2. Quantum up-conversion

Quantum up-conversion increases the optical frequency of a mode without destroying its quan-
tum coherences. We use sum-frequency generation, where a nonlinear crystal is pumped with a
strong coherent pump field. A signal field interacts with the pump and is up-converted to a field
with a frequency equal to the sum of the two initial frequencies. In 1990, Kumar showed that
the quantum properties of the signal field can be fully transferred to the up-converted field [24].

The Hamiltonian for this process is given by [24]

HQUC = i�ζ
(

âuâ†
f + â†

uâ f

)
,

where ζ is the coupling constant, proportional to the mean pump amplitude and the second-
order susceptibility χ(2). The evolution of the signal (fundamental â f and up-converted âu)
is

âu(t) = âu(0)cos(ζ t)+ â f (0)sin(ζ t) .

After the time tc = π/2ζ , the input field is completely converted into the output state: âu(tc) =
â f (0).

2.3. Quantum non-Gaussianity (QNG)

The property of quantum non-Gaussianity was originally proposed by Filip and Mišta [6]. Let
G be the set of all Gaussian states and mixtures thereof. Any state ρ which is not in G is defined
to be quantum non-Gaussian. The quantum non-Gaussian states can be conveniently identified
using a simple and experimentally feasible criterion based on photon number probabilities. For
a given (measured) vacuum probability p0 a maximum single-photon probability p1 achievable
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by a Gaussian state can be calculated. If the measured p1 is higher, then ρ /∈ G . A detailed
description of how to apply this criterion can be found in [7]. It is also possible to define
a witness of quantum non-Gaussianity, W = p1 + ap0 −WG(a), where a < 1 is a parameter
specifying the witness and WG(a) represents the maximum of p1 +ap0 achievable by Gaussian
states. Assuming Poissonian statistics of the measured coincidences, the statistical error of the
witness can be determined and one can express the witness in numbers of standard deviations
ΔW . A positive witness certifies QNG of the state, even though in general it can be a mixed
state with a positive Wigner function.

3. Experimental setup

Correlation
measurement

532 nm

810 nm

1550 nm

810 nm
SPDC

QUC
APD-B

APD-T

APD-A

FC

OPO
532 nm

1550 nm

532 nm

50:50

Fig. 2. Schematic of the experimental setup. Two doubly resonant optical parametric os-
cillators are pumped above (OPO) and below (SPDC) threshold with a continuous wave
532 nm pump field, producing bright fields and twin photons at 810 nm and 1550 nm. The
1550 nm photons are up-converted to 532 nm in the quantum up-converter (QUC) which is
pumped with a strong pump field at 810 nm and analysed in a Hanbury Brown and Twiss
setup with Si-APDs (APD-A and -B). The 810 nm photons heralding the existence of a
532 nm photon are detected at APD-T after transmitting the filter cavity (FC).

The experimental setup is depicted in Fig. 2. The main laser source was a Nd:YAG laser with
2 W output power, that was frequency doubled to 532 nm in a LiNbO3-based second harmonic
generator (not shown in the figure). A major fraction of the 532 nm field pumped a monolithic
non-degenerate, doubly resonant optical parametric oscillator (OPO) above threshold, provid-
ing up to 200 mW at 810 nm to pump the quantum up-converter (QUC). A smaller fraction of
the 532 nm field was used as the pump field for another nonlinear cavity (SPDC), which was
operated below threshold and generated twin photons at 810 nm and 1550 nm in a cavity en-
hanced SPDC process. The reflectivities of the mirrors of these two cavities were AR@532 nm,
HR@810&1550 nm on the incoupling mirror and HR@532 nm, 96.5 %@810&1550 nm on the
outcoupling mirror. The linewidths of the generated modes of the SPDC cavity at 810 nm and
1550 nm were 35 MHz and 19 MHz (FWHM), respectively, determined by scanning the cavity
and comparing the Airy pattern with frequency markers introduced by a phase modulation [25].

The QUC cavity was modified from to what was reported in [18, 26]. The new incoupling
mirror had reflectivities of HR@532 nm, 97 %@810 nm and 91 %@1550 nm. The linewidth for
the signal at 1550 nm was measured to be 68 MHz. With these modifications, the up-conversion
efficiency could be increased to 90.2±1.5 % for a pump power of 140 mW, determined with
the methods described in [26]. Periodically poled potassium titanyl phosphate (PPKTP) crystals
were embedded in all three cavities, actively stabilized to the phase matching temperatures.

The 810 nm heralding photons passed a Fabry Perot filter cavity to suppress uncorrelated
modes. This quasi-monolithic cavity consisted of two mirrors separated by 2.5 mm, each with
a reflectivity of 99 %@810 nm yielding a free spectral range of 60 GHz and a full width at half
maximum of 190 MHz (Finesse≈315). The transmitted photons were detected with a Si-APD
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(Perkin Elmer SPCM-AQRH-13).
The 532 nm photons were split on a balanced beamsplitter and detected with Si-APDs (Laser

Components COUNT-250B). All APD signals were recorded with an oscilloscope (Agilent
DSO7014A). In each measurement we took 2000 data streams with a duration of 2 ms each.

4. Results

The signal count rates were as high as 50 kHz, 120 kHz and 400 kHz, while increasing the gain
parameter (i.e. the pump power) from ε = 0.10γ to ε = 0.16γ and ε = 0.28γ , respectively. The
propagation efficiency (including 90.2 % up-conversion efficiency) was determined to be 68 %
by operating SPDC above threshold and comparing the 1550 nm power with the up-converted
field at 532 nm directly in front of the APDs. The APD quantum efficiency was 60-70 % (ac-
cording to the manufacturer’s datasheet). False triggering, due to insufficient filtering of the
810 nm mode, reduced the final detection efficiency to about 20 %.
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Fig. 3. Histogram of the two-fold coincidence detections at APD-T and APD-A (red), and
APD-T and APD-B (yellow) with theoretical curves (γ = π ·31MHz, κ = 1.4γ , ε = 0.10γ).
The delay for the three-fold coincidences of APD-T, APD-A and APD-B (grey points, right
y-axis) is defined as the time between counts at APD-A and -B given that the trigger APD-T
detected a photon (within a 100 ns time window).

The counting statistics of APD-A and -B triggered on APD-T are shown for ε = 0.10γ in
Fig. 3. The temporal profile of the up-converted photons clearly shows the smoothed out expo-
nential decay predicted by Eq. (5). The theoretical curve was obtained by using a mean decay
rate of γ = π · 31MHz and an extra filtering effect of the signal mode with κ = 1.4γ . As al-
ready briefly discussed in section 2.1, this filtering of the signal mode is caused by asymmetric
decay rates of the SPDC cavity and the transmission of the signal through the up-conversion
cavity. Note that due to the relatively large linewidth of the filter cavity FC (190 MHz), the trig-
ger mode experiences only negligible frequency filtering. In this graph, three-fold coincidence
events do not show any significant contribution to the statistics.

When the pump power for SPDC is higher, the probability of generating more than one
photon pair within the same coherence time increases. In Fig. 4 the counting statistics are
shown for a measurement with ε = 0.28γ , i.e. 2.8 times the pump amplitude compared to the
measurement shown in Fig. 3. The three-fold coincidences indicated by the grey circles now
significantly contribute to the counting statistics.
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Fig. 4. Histogram of the two- and threefold coincidences, as in Fig. 3 with the only dif-
ference being that ε = 0.28γ . The three-fold coincidences significantly contribute to the
statistics.
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Fig. 5. g(2)(0) values in dependence of the coincidence window Δt and gain parameter ε .
For all ε , the states show (nonclassical) subpoissonian statistics. For increasing coincidence
windows more background noise is recorded and the multiphoton probability (1− p0− p1)
increases.

The second order coherence function value, is calculated by g(2)(0) = 2(1− p0− p1)/[2(1−
p0)− p1]

2, where the probabilities p0 and p1 were estimated from the measured count rates. The
two-fold (R1A and R1B) and three-fold (R2) coincidence rates were experimentally determined
for a certain number of trigger events R0. The vacuum probability is then given by

p0 = 1− R1A +R1B +R2

R0
(6)
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and the single photon probability can be bounded from below by

p1 >
R1A +R1B

R0
− T 2 +(1−T )2

2T (1−T )
R2

R0
, (7)

where the beam splitter ratio is given by T = R1A/(R1A +R1B). Further details can be found
in [7]. The measured g(2)(0) values are plotted against the coincidence window Δt in Fig. 5,
for three different gain parameters ε . The coincidence window is the time interval, symmetric
about the detection of a photon in APD-T, within which detections of photons in APD-A and
APD-B are considered a coincidence detection. The g(2)(0) reaches values smaller than 0.05
for coincidence windows less than 34 ns, when ε = 0.10γ . For increasing coincidence windows
the g(2)(0) value increases as more three-fold coincidence events are registered. If the gain
parameter ε (i.e. the pump amplitude) is increased, the multiphoton probability (1− p0 − p1)
increases, as does g(2)(0). For very small coincidence windows (<5 ns) the absolute number of
coincidences is small, causing the statistical fluctuations in Fig. 5.

The sub-Poissonian statistics indicated by a g(2)(0) smaller than unity are a strong signature
for the nonclassicality of the states. An even stronger feature of nonclassicality is a negative
Wigner function, the hallmark of single-photon states [27]. However, due to mixture with vac-
uum, the negativity of such states decreases, or even vanishes, when losses exceed 50 %. Nev-
ertheless, it is still possible to certify the quantum non-Gaussianity of the state, a useful feature
for quantum information tasks. The measured probabilities p0 and p1 are therefore used to an-
alyze whether the up-converted states ρ are quantum non-Gaussian or not. The result is shown
in Fig. 6. In the plot the witness of QNG, W , in numbers of standard deviations, ΔW , is shown
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Fig. 6. Quantum non-Gaussianity of the up-converted states. The witness of QNG, in num-
bers of standard deviations, is plotted against the size of the coincidence window and three
different gain parameters ε . If the witness is positive, then ρ /∈ G . QNG could be verified
with more than 16 standard deviations when ε = 0.10γ and Δt=34 ns.

for measurements with three different gain parameters ε , dependent on the coincidence window
size Δt. For each ε and Δt, the parameter a of the QNG witness W was optimized such as to
maximize W/ΔW . If the witness is positive, then ρ /∈ G . For low gain ε = 0.10γ , the witness
of QNG was positive for all coincidence windows smaller than 300 ns, reaching a maximum
of 16 standard deviations at Δt=34 ns. For higher gain, the multiphoton contribution increases,
which lowers the witness. For ε = 0.16γ and Δt ≥120 ns the witness is negative, indicating a
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state that possibly could be expressed as a convex mixture of Gaussian states. For even higher
gain (ε = 0.28γ) the witness of QNG is never positive, since as the mode approaches thermal
statistics [28], higher photon number contributions show up and background noise increases.

The maximum achievable witness can be calculated by applying the following model. We
assume an initial two-mode squeezed vacuum state, produced by the SPDC and characterized
by the pump parameter ε . Both modes propagate through lossy channels with transmittances ηS

(signal) and ηT (trigger) that account for all imperfections of the setup, i.e. quantum efficiency
of the APDs, limited up-conversion efficiencies or other optical losses. With these considera-
tions, one can calculate the count rates R0, R1 and R2 and thereby determine the probabilities
p0 and p1. The maximum achievable witness Wmax can then be obtained by maximizing the
witness over the parameter a, cf. section 2.3. The model predicts that Wmax decreases with in-
creasing gain ε , which is consistent with the experimental data. The highest value of of Wmax is
therefore achieved in the weak squeezing limit (ε → 0), where higher photon numbers become
negligible and the single photon probability is simply given by the signal detection efficiency
ηS, p1 = ηS, and p0 = 1−ηS. In our experiment, this efficiency is bounded from below by
ηS = 0.2, which yields a maximum witness Wmax = 0.00486. Evaluating the experimental data,
the maximum witness that we could achieve was Wexp = 0.00315, when ε = 0.10γ . As this
reduction was most likely caused by dark counts and background noise, that were not included
in the model, our experimental data are in good agreement with the theoretical predictions.
Furthermore, the experiment was not performed exactly in the weak squeezing limit. At least
the gain had to be ε = 0.10γ to achieve sufficiently high probability of conditional generation
of the single photon state and to accumulate enough data during the experiment.

5. Discussion and conclusion

We present the frequency up-conversion of heralded single photons from 1550 to 532 nm. For
the first time, frequency up-converted states were shown to possess quantum non-Gaussianity
and we achieved a significance of up to 16 standard deviations. The single photon contribution
in the states with QNG certified with more than five standard deviations was up to 22.6 % (with
ε = 0.16γ , Δt = 80 ns). The g(2)(0) values were smaller than 0.05 (ε = 0.10γ , Δt ≤ 34 ns). Our
result shows that negative Wigner functions are also within reach in up-converted states when
the optical losses were minimized. In particular, insufficient filtering of the trigger mode, lim-
ited quantum efficiencies of the APDs and propagation losses prevented us from fully benefiting
from the high up-conversion efficiency, which was determined to be 90.2±1.5%. One or two
additional filter cavities with different free spectral ranges would suppress uncorrelated modes
more efficiently, but a more complex setup with technically elaborate cavity locking techniques
would be required. Anti-reflection coated fibers would minimize the propagation losses, since
the coupling efficiency could be increased and an optical isolator would no longer be required.
Nonetheless, with such improvements we expect that our setup is capable of reaching a sin-
gle photon contribution of 60 %, mainly set by the high up-conversion efficiency (≈ 90%) and
quantum efficiency of the APDs (70 %).
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