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Abstract
We prove existence of solutions for an elastic body interacting with itself
through its Newtonian gravitational field. Our construction works for config-
urations near one given by a self-gravitating ball of perfect fluid. We use an
implicit function argument. In so doing we have to revisit some classical work
in the astrophysical literature concerning linear stability of perfect fluid stars.
The results presented here extend previous work by the authors, which was
restricted to the astrophysically insignificant situation of configurations near
one of vanishing stress. In particular, ‘mountains on neutron stars’, which are
made possible by the presence of an elastic crust in neutron stars, can be
treated using the techniques developed here.

Keywords: elasticity, perfect fluid, Newtonian gravity
PACS number: 04.40.Dg

1. Introduction

The matter models commonly used to describe stars in astrophysics are fluids. By a classical
result of Lichtenstein [14], a self-gravitating time-independent fluid body is spherically
symmetric in the absence of rotation. However, due to the presence of a solid crust, it is
possible for neutron stars to carry mountains (see [10]). In view of the result of Lichtenstein,
in order to describe something like ‘mountains on a neutron star’ it is necessary to consider
matter models which allow non-isotropic stresses, for example those of elasticity theory.

The currently known existence results for non-spherical self-gravitating time-indepen-
dent elastic bodies deal with deformations of a relaxed stress-free state. In [6] it was shown
that for a small body for which a relaxed stress-free configuration exists, there is a unique
nearby solution which describes the deformation of the body under its own Newtonian
gravitational field. The analogous result in Einstein gravity was given in [2]. However, a large
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self-gravitating object like a neutron stars does not admit a relaxed configuration. This is the
situation which we shall consider in this paper.

In section 2, we give an outline of the formalism of elasticity used in this paper,
following [3], and specializing to the time-independent case. Given a reference body, i.e., a
domain in three-dimensional Euclidean body space the physical body is its image in physical
space under a deformation map. The field theoretic description of the material in terms of
deformation maps gives the material frame (or Lagrangian) form of the theory, while the
description in terms of the inverses of the deformation maps, called configuration maps,
taking the physical body to the reference body, gives the Eulerian picture. The field equations
for Newtonian elasticity can be derived from an action principle in which the properties of the
matter are defined by a ‘stored energy function’ which depends on the configuration, and a
Riemannian reference metric on the body, called the body metric. The body metric is taken to
be conformal to the Euclidean metric with the conformal factor chosen so that the associated
volume element is that given by the particle number density of the reference configuration,
see below. This is done in section 3, working in the Eulerian setting. We consider here only
isotropic materials, for which the stored energy depends on the configuration map only via the
three principal invariants of the strain tensor4 defined with respect to the body metric.

The resulting Euler–Lagrange equations for a self-gravitating elastic body form a quasi-
linear, integro-differential boundary value problem for the configuration map, with an a priori
unknown boundary given by the condition that the normal stress be zero there. In section 3.3,
we reformulate the system in the material frame, as a system of equations on the reference
body, i.e. a fixed domain in Euclidean space. The system of equations on the body given in
section 3.3 replaces the free boundary of the physical body, by the fixed boundary of the
reference body, with a Neumann type boundary condition. For a large class of stored energy
functions we obtain by this procedure a quasilinear elliptic, integro-differential boundary
value problem, the solutions of which represent self-gravitating time-independent elastic
bodies.

There is no general existence theorem in the literature which can be applied to such
systems, except in the spherically symmetric case. A minimizer for the variational problem
describing a Newtonian self-gravitating body has been shown to exist, under certain condi-
tions, in [9]. This work does not assume closeness to a stress-free or fluid state. However, it is
unknown under what conditions this minimizer satisfies the Euler–Lagrange equations.
Specializing to the spherically symmetric case, the field equations for a self-gravitating, time-
independent body reduces to a system of ordinary differential equations, for which existence
of solutions is easier to show. For example, in the case of perfect fluid matter, which we will
use as background, as explained below, there is a simple condition on the equation of state
(see [18] for the relativistic case, the Newtonian case is analogous) guaranteeing existence of
solutions corresponding to a finite body. The properties of static, spherically symmetric elastic
bodies in general relativity have recently been studied using numerical techniques, see [4].
We shall in this paper construct ‘large’ non-spherical time-independent self-gravitating bodies
by applying the implicit function theorem to deform appropriate spherical background
solutions.

We choose our reference configuration as follows, see sections 3.4 and 3.5 for details. As
mentioned above, a Newtonian self-gravitating fluid body is spherically symmetric. In fact, a
fluid body centered at the origin is determined by specifying its stored energy ρe ( ) (in the
context of fluids usually referred to as internal energy) as a function of the physical density ρ

4 The strain tensor is the push-forward of the contravariant form of the metric on space, which in the present setting
can be taken to be the Euclidean metric.
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of the fluid, together with its central density, see again [18]. The fluid density ρ can be taken
as one of the principal invariants of the strain tensor.

Keeping these facts in mind, a time-independent self-gravitating fluid body with support
of finite radius, and non-vanishing density at the boundary, can be viewed as a special case of
an elastic material, with deformation map given by the identity, and with spatial density ρ̊. A
body metric conformal to the Euclidean metric is then chosen, with conformal factor such that
the volume element is equal to ρ̊. The two remaining principal invariants of the strain tensor
are represented in terms of expressions τ δ, which vanish at this background configuration,
see [19] for related definitions. We then choose a stored energy function which coincides with

ρe ( ) at the reference configuration, but which has elastic stresses for non-spherical config-
urations. The just described elastic body is then taken as the starting point of an implicit
function theorem argument.

Given the stored energy as a function of the principal invariants, the action and hence
also the Euler–Lagrange equations are specified. We introduce a one-parameter family of non-
spherical body densities ρλ˚ with ρ ρ=˚ ˚0 , the spherically symmetric density of the reference
body. Introducing a suitable setting in terms of Sobolev spaces, see section 4, we can
formulate the system of Euler–Lagrange equations in the material frame as a one-parameter
family of nonlinear functional equations ρ ϕ =λ λ[ ˚ , ] 0 . Our problem is then reduced to
showing that deformation maps ϕλ solving this equation exist for small λ ≠ 0.

In order to apply the implicit function theorem to construct such solutions, we must
analyze the Frechet derivative of  or equivalently the equations linearized at the reference
deformation. This is done in section 5, which forms the core of the paper. We start by
calculating the linearized operator. The result is (5.3). With our choice of stored energy, the
first variation of the action is ‘pure fluid’ (which is why the identity map is a solution of the
Euler–Lagrange equations at the reference configuration), but the second variation, i.e. the
Hessian of the action functional, evaluated at the reference configuration, or put differently,
the linearization at the identity of the Euler–Lagrange system of equations, does have an
elastic contribution. Proposition 5.1 gives an alternative way of writing the linearized
operator which will be essential later.

On geometrical grounds the kernel of the linearized operator contains the Killing vectors
of flat space, translations and rotations. For the application of the implicit function it is
essential to show that there are no further elements in the kernel. This is done for radial and
non-radial perturbations separately.

Lemma 5.3 gives sufficient conditions for the kernel to contain only the trivial radial
perturbation. This is the famous γ − >3 4 0 condition, which guarantees the absence of linear
time-harmonic radial fluid perturbations which grow exponentially (see [11] and historical
references therein). Here γ is the adiabatic index. For non-radial perturbations proposition 5.6
shows that there are just Killing vectors in the kernel. For fluids with vanishing boundary
density the analog of this statement is known in the astrophysical literature as the Anto-
nov–Lebovitz theorem (see [7] and references therein). Our result shows in particular that this
theorem is also true for fluids with positive boundary density. Theorem 5.6 states our result
that the kernel of the linearized operator contains only Euclidean motions.

To use the implicit function theorem we have also to control the cokernel. This is the
content of proposition 6.1 which gives a Fredholm alternative for the integro-differential
boundary value problem under consideration. Here, an analysis of the regularity properties of
the Newtonian potential, and the layer potential are needed. These results are given in the
appendix. Again, it turns out that the cokernel consists of infinitesimal Euclidean motions.

Now all the necessary pieces are in place for applying the implicit function theorem in
order to show the existence of a family of solutions in section 7. First we define, following
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the approach used in [2] the ‘projected equations’ by fixing some element of the kernel and
projecting on a complement of the cokernel. The implicit function theorem then applies, and
we obtain solutions of the projected equations, proposition 7.1. However, as is shown in
theorem 7.2, it turns out that these solutions are actually solutions of the full system. The
essential reason this holds is Newtonʼs principle of ‘actio est reactio’ i.e. the fact that the self-
force and self-torque acting on a body through its own gravitational field is zero, which
corresponds to (a nonlinear version of) the condition that the force lie in a complement of the
above cokernel.

Finally, in section 8 we demonstrate that if the family ρλ˚ is non-spherical for λ > 0, and
if the elastic part in the stored energy is non-vanishing, the solutions constructed are not
spherically symmetric for λ > 0. Our analysis gives a clear interpretation of the solutions
which have been constructed. They are near a particular self-gravitating time-independent
fluid body, and have a small deviation from spherical symmetry which is due to the presence
of the elastic terms in stored energy function, and hence also in the system of Euler–Lagrange
equations under consideration.

2. Preliminaries

We use the setup of [3], specializing to the time independent case, with some changes which
shall be specified below. Let  ,3 3  denote the body space and space, respectively. We
introduce Cartesian coordinates XA on 3 and xi on 3 . We will often write the coordinate
derivative operators in 3 and 3 as ∂A and ∂i, respectively, and also use the notations

= ∂u uA A, , and = ∂u ui i, . The body  is an open domain in 3 with closure  and boundary

∂. The physical state of the material is described by configuration →f : 3  and defor-
mation ϕ → : 3  maps. We assume ϕ∘ =f id. The gradients of ϕf , are denoted

ϕ ϕ= ∂ = ∂f f , ,i
A

i
A

A
i

A
i

and satisfy

ϕ δ=f .A
i

k
A

k
i

The body and space are endowed with Riemannian metrics bAB and gij.

Remark 2.1. In the Newtonian case we are considering here, we take the space metric to be
the flat, Euclidean metric δ=gij ij. Further, as will be explained below, we shall take the
metric bAB on  to be conformal to the Euclidean metric. However, in order to have a clear
view of the foundations, it is convenient to allow these for the moment to be general metrics.

We let Vb be the volume element of b,

ε=( )V X X X b X X Xd d d d d d .b ABC
A B C

ABC
A B C

Here =b bdet AB and εABC is the Levi–Civita symbol. Similarly let Vg denote the volume
element of g. The number density n is defined by

= ( )( )f f f V f x n x V( ( )) ( ) . (2.1)i
A

j
B

k
C

b ABC g
ijk
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Let

=H f f g .AB
i
A

j
B ij

Making use of the body metric bAB we define

=H H b .B
A AC

CB

Note that unless explicitly specified, we do not raise and lower indices with bAB.

Remark 2.2. The eigenvalues of HB
A transform as scalars with respect to coordinate changes

both in 3 and in 3 . For transformations of 3 this follows from the fact that HB
A undergoes

a similarity transformation under pullback,

ζ ζ ζ= −( ) ( )H H* ,
B

A

C

A
D
C

B
D1

,
,

where ζ → : 3 3 . On the other hand, for a map → k: 3 3  it holds that the components
of HB

A transform as scalars, i.e.,

⎡⎣ ⎤⎦∘ = ( )H f k k g x H k x, * ( ) ( ( )).B
A

B
A

In local coordinates, we have

= ( )g n b fdet ,i
A

which in view of remark 2.2 gives

= ( )n Hdet .B
A 1 2

Let

= =
− −( )H H n Hdet . (2.2)B

A
B
A

B
A

B
A1 3 2 3

Then B
A depends on the body metric bAB only via its conformal class which can be

represented by

= −b n b[ ] .AB AB
2 3

Further, define

σ δ= − 1

3
tr . (2.3)B

A
B
A

B
A 

Given the conformal class of the body metric, we can in addition to the invariant n also define
the invariants

τ = −( )3 , (2.4)A
A

and

δ σ= ( )det . (2.5)B
A

See [19] for related invariants. It follows from the definition that the invariants τ δ, depend
only on the conformal class of the body metric b, and further, by remark 2.2 we have that

τ δn, , transform as scalars with respect to coordinate changes both in  and 3 .
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2.1. Kinematic identities

Given the above definitions, we have

ϕ
ϕ

∂
∂

= ∂
∂

= −n

f
n

n
nf, . (2.6)

i
A A

i

A
i i

A

Let ϕ= ∘−J n 1 . The Piola transform of a vector yi is ϕ= ∘Y Jf yA
i
A i . The Piola identity states

ϕ= ∘ ( )Y J y a, (2.7 )A
A

i
i

and similarly

= ∘ ( )y n y f b. (2.7 )i
i

A
A

Here A denotes the covariant derivative with respect to bAB. The covariant derivatives and
Piola transform also applies to two-point tensors, see [16] for details. We also have the
following versions of the Piola identities

ϕ ϕ= ∂ = ( ) ( )n
g

g n a
1

0, (2.8 )i A
i

i A
i

= ∂ =− − ( ) ( )n f
b

b n f b
1

0. (2.8 )A i
A

A i
A1 1

Let HAB be defined by the relation

δ=H H . (2.9)AC
CB B

A

A calculation shows

∂
∂

=n

H

n
H a

2
, (2.10 )

AB AB

∂
∂ ∂

= −( )n

H H

n
H H H H b

4
2 . (2.10 )

AB CD AB CD A C D B

2

( )

Further, we have

τ σ σ∂
∂

= =
H

H H , (2.11)
AB F A B

F
FA B

F
( )

and

⎜ ⎟⎛
⎝

⎞
⎠

σ
σ δ δ

∂
∂

= − + −
H

H H
1

3

1

3
. (2.12)B

A

CD CD B
A

R C D
A

B
R

D
R

B
A

( ) ) 

Example 2.1. Suppose ϕ is a conformal map, so that ϕ λ=g X b( * ) ( )AB AB. Then
λ δ= −HB

A
B
A1 and hence λ= −n 3 2. This gives

δ= , (2.13)B
A

B
A

ϕ= ( )b g[ ] * . (2.14)AB
AB
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Further, in this case, the invariants τ δ, vanish5 τ δ= = 0, and by (2.11) we have

τ∂
∂

=
ϕH

a0, (2.15 )
AB

conformal

τ∂
∂ ∂

= −
ϕH H

H H H H b
1

3
. (2.15 )

AB CD A C D B AB CD

2

conformal

( )

From the definition of the invariant δ we have δ σ= O ( )3 and hence in case ϕ is conformal,

δ δ∂
∂

= ∂
∂ ∂

=
ϕ ϕH H H

0 0. (2.16)
AB AB CD

conformal conformal

3. Field equations of a Newtonian elastic body

Let χ −f ( )1  denote the indicator function of the support −f ( )1  of the physical body, and let

= ∂ ∂U U Ug .g i j
ij2

The field equations for the static Newtonian self-gravitating elastic body are the
Euler–Lagrange equations for an action of the form

∫ Λ=


V , (3.1)g3




where

⎛
⎝⎜

⎞
⎠⎟Λ ρ χ ϵχ= + +− −

U

πG
U n

8
.f f

2

( ) ( )1 1 

Here ρ = mn is the physical density of the material, where m is the specific mass per particle,
and

ϵ ϵ= ( )H f, (3.2)AB

is the stored energy function, which describes the internal energy per particle of the material.
On the other hand, density of internal energy of the material in its physical state is ϵn . For a
stored energy of the form (3.2), termed frame indifferent, the action is covariant under spatial
diffeomorphisms. The converse also holds, see [5].

Let ζ denote the fields f U( , )A . The canonical stress–energy tensor is

Λ
ζ

ζ Λδ= ∂
∂ ∂

∂ −
( )

T .j
i

i
j j

i

Making use of the covariance of the action, one finds, see [13], that the Euler–Lagrange
equations take the form

= T 0, (3.3)i j
i

where ∇i denotes the covariant derivative with respect to the metric gij.

5 Conversely, when τ δ= = 0, the map ϕ is conformal.
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Let τ j
i and Θ j

i denote the contributions in Tj
i from the elastic field fA and the Newtonian

potential U, respectively, so that

τ χ Θ= +−T ,j
i

j
i

f j
i

( )1 
where

τ ϵ= ∂
∂

n
f

f ,j
i

i
A j

A

and

⎜ ⎟⎛
⎝

⎞
⎠Θ δ= −   

πG
U U U U

1

4

1

2
.j

i i
j

k
k j

i

3.1. Equations in Eulerian form

From the above, we see that the Eulerian form of the field equations for a self-gravitating
body are

τ ρ+ = −  U f a0, in ( ), (3.4 )i j
i

i
1 

τ =
∂ −

n b0, (3.4 )j
i

i
f ( )1 

Δ ρχ= −U πG c4 . (3.4 )g f ( )1 

Here ni is the outward pointing normal to the boundary ∂ −f ( )1  of the physical body. The
boundary condition (3.4b) follows from the conservation equation (3.3), see [2, lemma 2.2].
The Newtonian potential U is taken to be the unique solution to the Poisson equation (3.4c)
such that →U x( ) 0, as → ∞x .

3.2. Integral form of the Newtonian potential

With δ=gij ij, the solution to (3.4c) takes the form

ρχ= ⋆ −( )U E πG4 ,f ( )1 

where = −E x π x( ) 1 (4 | |) is the fundamental solution of Δ, i.e.,

∫ ρ= − ′
− ′

′
−

U x G
x

x x
x( )

( )
d ,

f B( )1

where xd is the Euclidean volume element.

Remark 3.1. Substituting the solution of the Poisson equation (3.4c) into the action (3.1),
one finds after a partial integration

⎜ ⎟⎛
⎝

⎞
⎠∫ ρ ρϵ= +

−
x

1

2
U d , (3.5)

f ( )1
 

where ϵ is given by (3.14). The form of the action given in (3.5), which is expressed in terms
of the configuration f A, can be compared with the energy expression discussed in [7, appendix
5.B].
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Using the differentiation formula for convolutions, we have

ρχ ρχ∂ = ∂ ⋆ = ⋆∂− −( ) ( )( )U πG E GE4 ,i i f i f( ) ( )1 1 

where in the last equality, the derivative is in the sense of distributions. Hence, the force is
given by the integral expression

⎛
⎝⎜

⎞
⎠⎟∫ ρ−∂ = ∂ ′ ′

= − ′
−

U x G
z

x x( )
1

( )d . (3.6)i
f B

i

z x x
( )1

3.3. Equations in material frame

We now write the elastic system in the material frame which is the form which we shall use.
The change of variables formula applied to (3.1) gives

⎜ ⎟⎛
⎝

⎞
⎠∫ ρ ϕ ρϵ= ∘ + X

1

2
˚ U ˚ d , (3.7) 

where Xd is the Euclidean volume element on , and where ϵ is taken to be of the form

ϵ ϵ= ( )H X, , (3.8)AB

with HAB the inverse of ϕ ϕ ϕ∘gA
i

B
j

ij . The Newtonian potential in the material frame is of the
form

∫ϕ ρ
ϕ ϕ

∘ = − ′
− ′

′U X G
X

X X
X( )( )

˚ ( )

( ) ( )
d .

Let

τ τ ϕ= − ∘( )b J f˜ . (3.9)i
A

k
A

i
k

Then τ̃ is minus the Piola transform of τ j
i, densitized by the factor b ( ρ= ˚ in Cartesian

coordinates). We have

τ ϵ
ϕ

= ∂
∂

b
˜ ( ) , (3.10)i

A

A
i

where the ϵ in (3.10) is understood to be as in (3.8). The Piola identity implies

τ τ ϕ= ∘ ( )b J˜ .A i
A

i j
i

With δ=gij ij and ρ δ=b ˚AB AB
2 3 , we have ρ ϕ= −J ˚ det ( )A

i1 , ρ=b ˚. In view of the definition

of τ̃i
A we have

τ τ= ∂ ˜ ˜ ,A i
A

A i
A

and we can write the system (3.4) in the material frame as

τ ρ ϕ−∂ + ∂ ∘ =( ) ( )U a˜ ˚ 0 in , (3.11 )A i
A

i 

τ =∂n b˜ 0, (3.11 )i
A

A 
where nA is the normal to ∂. Using the change of variables formula, and (3.6) the
gravitational term ρ ϕ∂ ∘U˚ ( )i in (3.11a) can be written in the integral form
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⎛
⎝⎜

⎞
⎠⎟∫ρ ϕ ρ ρ∂ ∘ = − ∂

′
′ ′

ϕ ϕ= −
( )( )U X G X

z
X X˚ ( ) ˚ ( )

1
˚ ( )d . (3.12)i i

z X X( ) ( )


3.4. The reference configuration

We now introduce the situation which we shall consider in the rest of this paper. We restrict
the space metric to be the flat metric δ=gij ij and work in Cartesian coordinates X( )A , x( )i on

the body and space respectively. The radial coordinates in 3 and 3 are

δ= =R X X X| | A B
AB and δ= =r x x x| | i j

ij . In the following, we will set the specific mass
=m 1 and denote both the number density and the density of the material by ρ.

Definition 3.1. The reference configuration is given by choosing the body domain to be
B R( )0 , the ball of radius R0 i.e.

= <{ }X R ,0
with the trivial configuration and deformation =f id, ϕ = id, i.e.

δ ϕ δ= = = =f x x A X X i( ) , 1, 2, 3, ( ) , 1, 2, 3.A
i
A A i

A
i A

For a given, positive function ρ̊ on  called the reference density, we set

ρ δ=b ˚ .AB AB
2 3

In Cartesian coordinates X( )A , x( )i we have

ρ ρ ρ ϕ= =
−( ) ( )f˚det ˚det , (3.13)i

A
A
i 1

and the volume element of bAB takes the form

ρ=V X X˚ ( )d .b

For the reference configuration, we have

ρ ρ=x f x( ) ˚ ( ( )),

and the invariants τ δ, vanish,

τ δ= = 0.

We will assume an isotropic stored energy function, i.e. one depending on configurations only
via the invariants ρ τ δ( , , ), where ρ is given by (3.13) and and τ, δ are given by (2.4) and
(2.5), respectively. We restrict for simplicity to stored energy functions which have no
explicit dependence on the configuration f. Note that τ and δ are independent of ρ̊. By
Taylorʼs formula, ϵ ϵ ρ τ δ= ( , , ) can, for configurations near the reference configuration, be
written in the form

ϵ ρ τ δ ρ τ ρ τ δ δ ρ τ δ= + +e l m( , , ) ( ) ( , , ) ( , , ). (3.14)

for some functions l m, .
Here we may view ρe ( ) as the stored energy for a fluid configuration. Due to the fact that

the invariants τ δ, vanish to first order at the reference configuration, the Euler–Lagrange
equation in the reference state with =f id, ϕ = id will involve only ρe ( ˚).
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3.5. Static self-gravitating fluid bodies

We now consider a fluid with stored energy ρ=e e ( ) at the reference configuration =f id. A
calculation shows

τ ρ ρ δ= ′e ( ) ,j
i

j
i2

where ρ′ =e ed d . The pressure of a fluid is given in terms of the energy density ρϵ=μ by

ρ
ρ

= −p
μ

μ
d

d
,

or

ρ ρ ρ= ′p e( ) ( ). (3.15)2

Hence,

τ δ= p ,j
i

j
i

and equation (3.4) takes the form

ρ+ = p U a0, (3.16 )i i

=
∂ −

p b0, (3.16 )
f ( )1 

Δ ρχ= −U πG c4 . (3.16 )f ( )1 

Static fluid bodies in Newtonian gravity are radially symmetric (see [14]), ρ ρ= r( ). Let

∫ ρ= π s s s(r) 4 ( ) d
r

0

2
be the mass contained within radius r, so that = (R )0  is the total mass of the body. It
follows from the radial Poisson equation that

= U G
r

x

r

(r)
,i

i

2



and the self-gravitating fluid is therefore governed by the integro-differential equation

ρ
+ =p

r
G

r

1 d

d

(r)
0. (3.17)

2



Let ρ ρ> > 0c 0 be given and consider an equation of state ρ=p p ( ), where p is a smooth,
non-negative function with ρ >p(d d 0) in ρ ρ[ , ]c0 , with ρ =p ( ) 00 . Given an equation of
state ρp ( ) satisfying the above properties and given ρc, there is a unique static fluid body,
centered at the origin, which has boundary density ρ0 for some radius R0, see [18] for details

6.
For the case of a polytrope, equation (3.17) is equivalent to the Lane–Emden equation, cf [7,
(4-108c)].

The adiabatic index of the fluid is given by

γ ρ
ρ

=
p

pd

d
. (3.18)

6 This reference treats the relativistic case. The Newtonian case considered here is similar but simpler.

Class. Quantum Grav. 31 (2014) 185006 L Andersson et al

11



The following stability condition on γ ,
⎤⎦γ ρ ρ ρ− > ∈ (3 4 0, for , ,c0

plays an important role in our argument. As a simple explicit example of an equation of state
with the above stated properties, consider

ρ ρ= −p D ( ), (3.19)0

for some (dimensional) constant >D 0. Then we have

γ ρ ρ− = − +( )p D(3 4) 4 .0

It follows that for the equation of state (3.19), the stability condition holds for central density
ρc satisfying ρ ρ ρ< < 4c0 0.

4. The reference body and its deformation

We shall construct a family of static, self-gravitating elastic bodies by deforming a reference
body. The reference body is a static fluid body in the reference configuration, i.e. a solution of
the equations (3.16) with internal energy ρ=e e ( ), of radius R0 and density ρ̊. As in section
3.5 we assume that the boundary density is positive,

ρ ρ= >( )R˚ ˚ 0,0 0

and that ρ ρ= ′p e˚ ˚ ( ˚)2 , the pressure in the reference body, satisfy >p̊ 0 in , =p̊ 0 if =R R0

and ρ >pd ˚ d ˚ 0 in ̄. It follows that ρ ρ⩾ >˚ ˚ 00 . Note that the condition ρ =R˚ ( ) 00 is simply
the boundary condition (3.16b), which follows from the variational principle.

Given a static self-gravitating fluid reference body with internal energy function ρe ( ) we
consider deformed static self-gravitating bodies with isotropic stored energy function of the
form (3.14), with ϵ ρ ρ= e( , 0, 0) ( ). Let

ρ= ( )l l˚ ˚, 0, 0 .

We assume

>l̊ 0,

in  .

4.1. Analytical formulation

Let

× → × ∂∞ ∞ ∞ ∞  ( ) ( ) ( ): C ( ) C ; C ; C ;3 3 3    

be defined by

ρ ϕ τ ρ ϕ τ= − ∂ + ∂ ∘( )( )[ ] ( )˚, ˜ ˚ U , ˜ n . (4.1)A i
A

i i
A

A
Let H ( )s  and ∂H ( )s  denote the L2 Sobolev spaces, see [15, Chapitre 1] for background.
For ⩾k 1,  extends to a smooth map

→ × ∂+ +: H ( ) H ( ) H ( ).k k k2 1 2   
For simplicity, we assume k is an integer in the following.
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Remark 4.1. The same statement holds true if we replace the L2 Sobolev space by the spaces
+W ( )k p2 ,  and the corresponding boundary space ∂+ −B ( )k p p1 1 ,  , with ⩾k 0, >p 3. With

k = 0, this corresponds to the situation considered in [2].

The system (3.11) for a self-gravitating body takes the form

ρ ϕ =[ ]˚, 0,
which we consider as an equation for the deformation ϕ given a reference density ρ̊. Letting
λ ρ↦ λ˚ be a one-parameter family of reference densities, with ρ ρ=˚ ˚0 , we shall apply the
implicit function theorem to show that for λ sufficiently close to zero, there is a solution ϕλ of
the equation

⎡⎣ ⎤⎦ρ ϕ =λ λ˚ , 0.
In order to do this, we must analyze the Frechet derivative

ρϕ [ ]D id˚, .
This is done in the next section.

5. The linearized operator

Let ξi be a vector field on 3 and consider a one-parameter family of deformations, ϕs, with
ϕ = id0 , such that

ϕ ξ=
=s

X Xid
d

d
( ) ( ( )).s

i

s

i

0

The linearization with respect to ϕ of the map  , at the reference configuration, is given by

⎡⎣ ⎤⎦ρ ξ ρ ϕ=ϕ
=

[ ]D id˚, .
d

ds
˚, .

s
s

0

 

We define the operator ξ ξ↦ L [ ]i and the linearized boundary operator ξ ξ↦ l [ ]i by

ρ ξ ξ ξ= −ϕ ( )[ ]D id˚, . L [ ], l [ ] .i i
We now calculate the the explicit form of ξL [ ]i and ξl [ ]i .

5.1. Derivation

Let τ̊i
A be defined by

τ τ=
ϕ=

˚ ˜ .i
A

i
A

id

Then

τ δ= − p˚ ˚ . (5.1)i
A

i
A

Recall that with ϕ = id, we have δ=HAB AB. A calculation using the facts recorded in
section 2.1 gives
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⎜ ⎟

⎡⎣ ⎤⎦
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

τ ρ ϕ δ ρ
ρ

δ δ

ρ δ δ δ δ δ ξ

= +

+ − +

δ

δ

=s
p

p

l

d

d
˜ ˚, 2 ˚ ˚

d ˚

d ˚

4 ˚ ˚ 5

6

1

2
, (5.2)

s i

A

s
i

A
i
A

j
B

j
A

i
A

j
B AB

ij B
j

0

[

(
,

j
B

i
B

]

)

where ρ=l l˚ ( ˚, 0, 0). With ϕ = id, we have the identification ϕ=x X( )i i . We will sometimes
write Xi for ϕ X( )i . The chain rule gives

δ∂ = ∂ .i i
A

A

and we will often make use of this notation in the following. Further, define δ σξ( ˚ )ij by

δ σ ξ δ ξ= −ξ( )˚
1

3
,

ij
i j ij l

l
( , ) ,

so that δ σξ2( ˚)ij is the Euclidean space conformal Killing operator, acting on ξ.
The operator ξL [ ]i can now be written in the form

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦∫

ξ ρ
ρ

ξ ξ ρ δ σ

ρ ρ ξ ξ

= ∂ − + + ∂ + ∂

+ ′ ∂ ∂
− ′

− ′ ′

ξ( ) ( )L p
p

p l

G X X
X X

X X X a

[ ] ˚ ˚
d ˚

d ˚
˚ 4 ˚ ˚ ˚

˚ ( ) ˚ ( )
1

( ) ( ) d . (5.3 )

i i j
j

j i
j j

ij

i j
j j

, ,



Recalling that =p R˚ ( ) 00 , we find that the linearized boundary operator is given by

⎡
⎣⎢

⎤
⎦⎥ξ ρ

ρ
ξ ρ δ σ= + ξ

∂
( )l

p
n l n b[ ] ˚

d ˚

d ˚
4 ˚ ˚ ˚ (5.3 )i j

j
i ij

j
,



Here we have used the notation =n R X(1 )i i.
The operator Li is formally self-adjoint. This follows from the fact that it arises from a

variational problem, but can easily be checked explicitly. Let ξ η( , ) denote the L2 inner
product

∫ξ η ξ η= X( , ) d .i
i

The Greenʼs identity for ξ ξ−L l( [ ], [ ]) takes the form

∫ ∫ξ η ξ η ξ η ξ η− = −
∂ ∂

L L l S X l S X( [ ], ) ( , [ ]) [ ] d ( ) [ ]d ( ) . (5.4)i
i i

i 

The following proposition gives an alternate form for ξL [ ]i which will play an important role
in the following.

Proposition 5.1. The operator Li in (5.3a) can be written as

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ξ ρ

ρ ρ
δ ρ δ ρ δ σ= ∂ + + ∂ξ ξ ξ( )L

p
U l[ ] ˚

1

˚

d ˚

d ˚
˚ ˚ 4 ˚ ˚ ˚ , (5.5)i i

j
ij
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where δ ρ ρ ξ=ξ ˚ ( ˚ )i i, and

∫

∫ ∫

δ ρ ξ

δ ρ ρ ξ

= − ∂ ′ ′
− ′

′

= −
′

− ′
′ + ′

− ′
′ ′ ′

ξ

ξ

∂

( )
( )

U X G
R X

X X
X

G
X

X X
X G

R

X X
X n X S X

˚ ( )
˚ ( ) ( )

d

˚ ( )
d

˚ ( )
( ) ( )d ( ).

j

j

i
i



 

Further, the boundary operator li in (5.3b) can be written as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ξ

ρ
δ ρ ρ ξ ρ δ σ= + ′ +ξ ξ

∂

( )l
p

U n n l n[ ]
d ˚

d ˚
˚ ˚ ˚ 4 ˚ ˚ ˚ . (5.6)i

j
j i

ij
j



Proof. Let us call the first, second and fourth term in (5.3a) respectively A, B and (second
line) C. The elastic term in the first line is not affected. We then have that

∫ρ ρ ξ ρ ξ= − ∂ ∂ ′ ′
− ′

′ − ∂ ∂C G X
X X

X X
X X X U X˚ ( )

˚ ( ) ( )
d ˚ ( ) ( ) ˚ ( ), (5.7)i j

j
j

i j

so that

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

∫

∫

ρ ρ ξ ξ ξ

ρ
ρ

ξ ρ ξ

ρ ξ ρ
ρ

ρξ

ρ

+ + = − ∂ ∂ ′ ′
− ′

′ + − ∂ + ∂

+ ∂ + ∂ ∂

= − ∂ ∂ ′ ′
− ′

′ + ∂
( )

( )( )A B C G X
X X

X X
X p p

p
X X U X

G
X X

X X
X

p

˚ ( )
˚ ( ) ( )

d ˚ ˚

˚
d ˚

d ˚
˚ ( ) ( ) ˚ ( )

˚ ( ) ( )
d ˚

d ˚

d ˚

˚

˚
. (5.8)

i j

j

i j
j

j i
j

i j
j j

i j

i j

j

i

j
j

, ,

,

,





To check the last equality in (5.8), we calculate

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥ρ

ρ

ρ ξ

ρ
ρ

ρ

ρ ξ

ρ
ρ

ρ
ξ

ρ
ξ ρ∂ = ∂ + ∂ − ∂

( )p p p p
˚

d ˚

d ˚

˚

˚
˚

d ˚

d ˚

˚

˚
˚

d ˚

d ˚

d ˚

d ˚
˚. (5.9)i

j
j

i
j

j

i j
j

j
j

i
,

, ,

But the first term in (5.9) can be rewritten as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ρ ξ

ρ
ξ ρ

ρ
ρ

ξ∂ ∂ = ∂ + ∂ −
∂

( ) ( )p p
U

˚ ˚
˚

˚ ˚
˚ ˚

˚
, (5.10)i j

j

j i
j

i
j j

,

where we have used the ρ′ = ′p U˚ ˚ ˚ . in the last term. Inserting (5.10) into (5.9) proves the
second equality in (5.8), which in turn proves (5.5). The proof of (5.6) is straightforward. □

The Euclidean invariance of the action (3.1) governing a self-gravitating body implies
that the linearized operator and the linearized boundary operator annihilate Euclidean Killing
vectors. For translations this follows from (5.3), and for rotations from (5.5), (5.6). We shall
show that under suitable conditions on the fluid equation of state, these are the only elements
in the kernel of the linearized operator ξ ξ ξ↦ − L l( [ ], [ ]). To achieve this, it is vital to
decompose the perturbations ξi into radial and non-radial parts.
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A vector field ξi on  is called radial if it is of the form ξ =X F R n X( ) ( ) ( )i i , and non-
radial if ∫ ξ =n Sd 0

S R
i

i( )2 for all ∈R R(0, )0 . If we consider conformal Killing vectors on ,
we have that translations, rotations and conformal boosts are non-radial, while dilations are
radial. The radial part of a vector field ξ is given by

∫ξ ξ= ′ ′ ′
∂

X
πR

X n X S X n X( )
1

4
( ) ( )d ( ) ( ). (5.11)r

i

B R

j
j

i
2 ( )

where B(R) is the Euclidean ball of radius R. This gives a unique decomposition

ξ ξ ξ= +r nr

of ξ into a radial and a non-radial part.

Lemma 5.2. Radial and non-radial vector fields are L2-orthogonal in terms of ( · , · ). Let ξ
be a vector field with radial and non-radial parts ξr and ξnr, respectively. Then ξL [ ]r is radial
and ξL [ ]nr is non-radial. If ξl [ ]i is zero, then ξ =l [ ] 0i r and ξ =l [ ] 0i nr .

Proof. The first claim is obvious. For the second claim concerning radial fields one simply
observes radial fields are—as vector fields—invariant under rotations, and that rotations
commute with Li, viewed as an operator from vector fields to co-vector fields. For non-radial
fields we could not find such a simple conceptual argument, but going through the terms in
(5.5) this is not difficult to check. For example, one can use the fact that δ ρξ ˚ has zero

spherical mean by ∫ ξ =∂ n Sd 0
B R

i
i( )

and the Stokes theorem. In a similar way we see that

∫ ξ =
∂

[ ]l n S Xd ( ) 0. (5.12)i nr
i


To prove the last claim in lemma 5.2, we note that when ξ =l [ ] 0i , it follows that

∫ ∫ξ ξ= − =
∂ ∂

[ ] [ ]l n S X l n S Xd ( ) d ( ) 0. (5.13)i r
i

i nr
i

 
But by spherical symmetry ξl [ ]i r is proportional to ni. Hence it follows from (5.13) that

ξ ξ ξ= +l l[ ] [ ]i r i r nr is zero. □
By the previous lemma, we have

ξ ξ ξ ξ ξ ξ= +( ) ( ) ( )[ ] [ ]L L L, [ ] , , (5.14)r r nr nr

and if ξ =l [ ] 0i ,

ξ ξ ξ ξ ξ ξ ξ ξ= + = =( ) ( ) ( )[ ] [ ] [ ] [ ]L L L l l, [ ] , , , with 0 . (5.15)r r nr nr i r i nr

Our next result concerns the first term in (5.15). Recall that

γ ρ
ρ

=
p

p
˚

˚

˚

d ˚

d ˚

is the adiabatic index of the reference body, cf (3.18).

Lemma 5.3. Let ξ = F R n( )i i with F a positive, smooth function defined on R[0, ]0 . Assume
ξ =l [ ] 0i , then

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥∫ξ ξ ρ− = ′ + ′ + + ′ −( )L π aR F bRFF cF

l
F

F

R
R( , [ ]) 4 2

8 ˚ ˚

3
d , (5.16)

R

0

2 2 2
20
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where

γ γ γ= = − = −( ) ( )a p b p c p˚ ˚, 2 ˚ ˚ 2 , 4 ˚ ˚ 1 . (5.17)

Remark 5.1. The elastic term in (5.16) is clearly non-negative, and zero only for a dilation
ξ ∂ = ∂Ri

i R. The integrand originating from the fluid and gravitational terms is a quadratic form
in ′RF F( , ) with determinant γ− = −ac b p4 ˚ (3 4)2 2 , and trace γ γ+ = + −a c p̊ [2 ˚ (3 ˚ 4)].
Thus, with >p̊ 0, the condition

γ − >3˚ 4 0 (5.18)

is a sufficient, but by no means necessary, condition for (5.16) to be positive7.

Proof. Integrate ξL [ ]i over  against ξi, using the form (5.3a). The result, using ξ =l [ ] 0i , is

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

∫

∫

ξ ξ ρ
ρ

ξ ξ ξ ρ δ σ δ σ

ρ ρ ξ ξ ξ

− = − + + +

− ′ ∂ ∂
− ′

− ′ ′

ξ ξ

×

( ) ( ) ( ) ( )L p
p

p l X

G X X
X X

X X X X X

, ˚ ˚
d ˚

d ˚
˚ 4 ˚ ˚ ˚ ˚ d

˚ ( ) ˚ ( )
1

( ) ( ) ( ) d d . (5.19)

i
j
j

i j
j i

ij

ij

i j
i j j

,
2

,
,



 

In order to carry out the integration with respect to ′X in the second term in the last line of
(5.19) with ξ =X F R n( ) ( )i i, we make use of the identity

∫ ρ ξ ρ ξ− ∂ ∂ ′ ′
− ′

′ =R X

X X
X π R X

˚ ( ) ( )
d 4 ˚ ( ) ( ). (5.20)i j

j

i

To see that this holds, we note that the divergence of the left side is equal to that of the right
side, and make use of the fact that there is no spherically symmetric, divergence-free, non-
vanishing vector field on  which is regular at the origin. We also have that

∫ ρ∂ ′
− ′

′ = −R

X X
X

n

R
R

˚ ( )
d ˚ ( ), (5.21)i

i

2


where ∫ ρ= ′ ′ ′R π R R R˚ ( ) 4 ˚ ( )d
R

0
2 , and

∫ ρ δ
ρ∂ ∂ ′

− ′
′ = −

−
−R

X X
X

n n

R
R π n n

˚ ( )
d

3
˚ ( ) 4 ˚ , (5.22)i j

ij i j
i j3


so that

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦∫ρ ρ ξ ξ

ρ ξ
δ ρ ξ

∂ ∂ ′
− ′

− ′ ′

= −
−

=

G R
R

X X
X X X

G R
n n

R
R G

R R

R

˚ ( )
˚ ( )

( ) ( ) d

˚ ( )
3

˚ ( ) 2
˚ ( ) ˚ ( )

. (5.23)

i j
j j

j ij i j
i3 3

 


Here we have used that the contribution of the last term in (5.22) cancels that from (5.20).
Evaluating the first line in (5.19) is of course completely straightforward. Thus for the non-
elastic part of (5.19) we find the expression

7 The role of γ̊ for the stability of perfect fluids has been known since the late 19th century, see [11].
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⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∫ ρ

ρ
ρ− ′ + + ′ + −π R

p
p F

F

R
p F

F

R

G F

R
R4 ˚

d ˚

d ˚
˚

2
˚

2 2 ˚ ˚
d . (5.24)

R

0

2
2

2
2

2

2

3

0 

But we know that

ρ′ = −p
G

R
˚

˚ ˚
, (5.25)

2



cf (3.17). Inserting (5.25) into (5.24) and integrating the last term by parts using =p R˚ ( ) 00

gives the result. □
Motivated by lemma 5.3 and the discussion in remark 5.1, we make the following

definition.

Definition 5.4. The reference body satisfies the radial stability condition if (5.18) holds, or
more generally, if the quadratic form in (5.16) is positive definite.

We now turn to the non-radial modes. These are analyzed using the form (5.5) and (5.6)
for ξL [ ]i respectively ξl [ ]i , for a non-radial vector field ξi, under the assumption ξ =l [ ] 0i .

Define

⎛
⎝⎜

⎞
⎠⎟δ

ρ
δ ρ ρ δ σ= +ξ ξ ξ

∂
( )μ

p
l n n˚

d ˚

d ˚
˚ 4 ˚ ˚ ˚ , (5.26)

ij
i j



Then, cf (5.3b), the condition ξ =l [ ] 0i , implies

ξ ρ ξ δ= ′ + =ξ∂l n U n μ[ ] ˚ ˚ ˚ 0. (5.27)i
i i

i 

Further, let U and u denote the Newtonian volume and single layer potentials, respectively,
i.e.

U ∫= − ′
− ′

′f G
f X

X X
X[ ]

( )
d , (5.28)

and

u ∫= − ′
− ′

′
∂

f G
f X

X X
S X[ ]

( )
d ( ). (5.29)

For convenience, we have not included the factor π1 4 here. Then we can write (see
proposition 5.1)

U u U u u⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥δ δ ρ ρ ξ δ ρ

δ ξ
= − = +

′
−

′
ξ ξ ξ

ξ
U n

μ

U

l n

U
˚ ˚ ˚ ˚

˚

˚
[ ]
˚

. (5.30)i
i

i
i

The following proposition, which is proved starting from 5.5 by a straightforward partial
integration and making use of the above definitions, provides a formula for an expression
which is essentially the second variation at the reference deformation ϕ = id of the material
form of the action given in equation (3.7).
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Proposition 5.5. Let ξi be a vector field such that ξ =l [ ] 0i . Then we have

U u U u

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

∫ ∫

∫ ∫

∫

ξ ξ
ρ ρ

δ ρ δ ρ
ρ

δ δ

δ ρ δ ρ
δ

δ δ ρ
δ

ρ δ σ δ σ

− = +
′

+ +
′

+
′

+
′

+

ξ ξ ξ ξ

ξ ξ
ξ

ξ ξ
ξ

ξ ξ

∂

∂

( )( ) ( )( )

( ) ( )

( ) ( )

L
p

X
U

μ μ S X

μ

U
X

U
μ

μ

U
S X

l X

, [ ]
1

˚

d ˚

d ˚
˚ ˚ d

1

˚ ˚
˚ ˚ d ( )

˚ ˚
˚

˚
d

1
˚

˚ ˚
˚

˚
d ( )

4 ˚ ˚ ˚ ˚ d . (5.31)
ij

ij

 

 



Remark 5.2. In addition to the elastic ‘bulk’ contribution (third term in the first line in
(5.31)), there are elastic contributions to all boundary terms in (5.31) respectively (5.29) via
δξ μ̊. In the absence of elasticity and when ρ =R˚ ( ) 00 , after insertion of (5.27), the expression
(5.31) boils down to the famous ‘Chandrasekhar energy’, [7, (5-49)]. Specializing to the
radial case with ξ =l [ ] 0i , the expression (5.31) of course coincides with (5.16). For this case
it turns out to be simpler to derive (5.16) directly.

The following result is a generalization of the Antonov–Lebovitz theorem, [7, §5.2]
which allows for the the case where ρ >R˚ ( ) 00 .

Proposition 5.6. Let ξi be a non-radial vector field such that ξ =l [ ] 0i . Then the quadratic
form ξ ξ− L( , ) is non-negative, and zero if and only if ξi is a Euclidean Killing vector field.

Remark 5.3. Our proof of proposition 5.6 follows closely the proof valid under the
assumption ρ =R˚ ( ) 00 given in the book of Binney and Tremaine, cf [7, appendix 5.C]. The
new edition, [8, appendix H] proves this result using a more direct argument due to [1]. We
have not been able to generalize that argument to the case ρ >R˚ ( ) 00 .

Proof. Note first of all that the last (purely elastic) term in (5.31) is non-negative and
vanishes only on infinitesimal conformal motions. The remaining terms, on the other hand,
depend only on pairs of functions, namely δ ρ δξ ξ μ( ˚, ˚), on × ∂ . Our claim amounts to the
fact that, when restricted to pairs δ ρ δξ ξ μ( ˚, ˚) with zero spherical mean, the sum of these terms

is non-negative and zero iff δ ρ δ ρ ρ= ′ − ′ξ ξ ∂μ c n U c n( ˚, ˚) ( ˚ ( , ), ˚ ˚ ( , ) | ) for some constant
vector c. To see that we take pairs δ ρ δ= ξ ξf μ( ˚, ˚) to lie in the Hilbert space  defined by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ ρ ρ

= ⊕ ∂
′

 L
p

X L
U

S X,
1

˚

d ˚

d ˚
d ,

1

˚ ˚
d ( ) , (5.32)2 2 

with scalar product

∫ ∫ρ ρ
δ ρ δ ρ

ρ
δ δ= +

′∂
( )( ) ( )( )f f

p
X

U
μ μ S X

1

˚

d ˚

d ˚
d

1

˚ ˚
d ( ), (5.33)1 2 1 2 1 2 
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and consider the operator →  : , defined by

U u U u

⎛

⎝
⎜⎜

⎛
⎝⎜

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟δρ δ ρ ρ δ ρ

δ
ρ δ ρ

δ
= +

′
+

′
ξ

ξ
ξ

ξ

∂

( )μ
p

μ

U

μ

U
˚, ˚ ˚

d ˚

d ˚
˚

˚

˚
, ˚ ˚

˚

˚
. (5.34)



The operator  is self-adjoint with respect to the scalar product in (5.32), due to the symmetry
of the Poisson kernel.

By lemma A.2, the volume potential U defines a continuous map →L ( ) H ( )2 2  .
Further, the layer potential u defines a continuous map ∂ → ∂L ( ) H ( )2 1  , cf lemma A.1.
Since the scalar product (5.33) defines a norm on  which is equivalent to the standard norm
on × ∂L ( ) L ( )2 2  , the operator →  : is compact. Furthermore it maps δρ δμ( ˚, ˚) with
vanishing spherical mean into themselves and its corresponding restriction is also self-adjoint
and compact. Now the expression in (5.31) minus the elastic term take the form

+ f f( ) . (5.35)

Since the operator  is compact and self-adjoint, it has a complete set of eigenfunctions with
real eigenvalues. We must show that for λ− in the spectrum of  it holds that λ ⩽ 1. Thus
consider

λ δ ρ ρ ρ δ+ =ξ ξ
p

U˚ ˚
d ˚

d ˚
˚ 0, in , (5.36)

and

λ δ ρ δ+ = ∂ξ ξ ∂( )μ U˚ ˚ ˚ 0, in , (5.37)

where U u
⎡
⎣⎢

⎤
⎦⎥δ δ ρ= +ξ ξ

δ

′
ξU [ ˚]
μ

U

˚

˚ . We write (5.36) in the form

Δδ
λ

ρ ρ δ+ =ξ ξU
πG

p
U˚ 4

˚
d ˚

d ˚
˚ 0. (5.38)

Furthermore we write δξ Ů in the form

∑δ δ= ′ = ′ξU U s U s R Y Ω˚ ˚ ˚ ( ) ( ), (5.39)
l

l l

where we suppress the index m of spherical harmonics.

Using the radial derivative of ρ″ + ′ =U R U πG˚ (2 ) ˚ 4 ˚ to eliminate ‴Ů , it is straightfor-
ward to show that (5.38) can be written in the form

⎜ ⎟⎛
⎝

⎞
⎠ρ ρ

λ′
′ ′ ′ − + − ′ − ′ − =( )

R U
R U s

l l

R
U s πG

p
U s

1
˚

˚ 2 ˚ 4 ˚
d ˚

d ˚
˚ 1

1
0. (5.40)l l l2

2 2
2

2

Integrating (5.40) over R(0, )0 against ′R U s˚ l
2 we find that

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦
⎥⎥∫ ρ ρ

λ
′ ′ + + − + −

− ′ ′ =( )( )

R U s
l l

R
πG

p
s R

R U s s R

˚ 2
4 ˚

d ˚

d ˚
1

1
d

˚ 0. (5.41)

R

l l

l l

0

2 2 2
2

2
2

0
2 2

0

0

Next observe that the expression for δξ Ů makes sense both in the interior and exterior region,

and that δξ Ů is continuous across ∂ and δ ′ξ Ů suffers a jump
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⎡⎣ ⎤⎦δ
δ

λ
ρ δ

λ
ρ δ′ =

′
= −

′
= −ξ

ξ ξ

∂
∂

( ) ( )
U πG

μ

U R

πG U

U

πG
s˚ 4

˚

˚
4 ˚ ˚

˚
4

˚ , (5.42)
0




where we have used (5.37) in the second equality. Since

⎡⎣ ⎤⎦ ρ″ = −
∂ ∂

U πG˚ 4 ˚ , (5.43) 

it follows that

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟δ

λ
ρ δ′ = −

′
∂

∂
s πG

s

U
[ ] 4 1

1 ˚
˚

(5.44)


This in turn implies that

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟λ

ρ
′ = −

′
[ ]( ) ( )s R πG

s

U
R4 1

1 ˚
˚

. (5.45)l
l

0 0

But, by virtue of the multipole expansion in the exterior region, we also have that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟′ ′ + + ′ = ⇒ ′ + − =

↓ ↓
( )U s

l

R
U s s

l

R
slim ˚ 1 ˚ 0 lim

1
0. (5.46)

R R
l l

R R
l l

0 00 0

Thus

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟λ

ρ
′ + − = −

′↑
( )s

l

R
s πG

s

U
Rlim

1
4

1
1

˚
˚

. (5.47)
R R

l l
l

0
0

0

Inserting (5.47) into (5.41), there results

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

∫

∫λ
ρ ρ ρ

′ ′ + + − + − ′

= − + ′

( )

( )

( )

( )

R U s
l l

R
s R R l U s R

πG
p

s R R U s R

˚ 2
d ( 1) ˚

4
1

1 ˚
d ˚

d ˚
d ˚ ˚ . (5.48)

R

l l l

R

l l

0

2 2 2
2

2
2

0
2 2

0

0

2
0
2 2

0

0

0

Thus (note that ′ >Ů 0 and, since δs has zero spherical mean, ⩾l 1) it follows that λ ⩽ 1 and
λ = 1 implies that sl = 0 for >l 1 and =s const1 . This in turn means that
δ = ′ = ∂ξ U U c n c U˚ ˚ ( , ) ˚i

i which implies

Δδ ρ= ′ξU πG c n˚ 4 ˚ ( , ). (5.49)

Thus δ ρ ρ= ′ξ c n˚ ˚ ( , ). It now follows that  restricted to quantities with zero spherical mean

has eigenvalues λ ⩽ 1 and λ = 1 implies that δ ρ ρ=ξ c˚ ˚i
i, . Furthermore (5.37) now

implies δ ρ= − ′ξ ∂μ U c n˚ ˚ ˚ ( , )| .
So far ξ itself was not involved in the argument. Going back to the (5.26) we infer that

δ σ =ξ ∂n n( ˚ ) | 0ij
i j  . Now, due to the presence of the elastic term in (5.31), it follows that

δ σ =ξ( ˚ ) 0ij everywhere in , whence ξ is a conformal Killing vector. Dilations and conformal

boosts are incompatible with δ ρ ρ=ξ c˚ ˚i
i, . The only remaining possibility is that

ξ = +c Ω Xi i
j
i j with =Ω Ωij ij[ ]. □

Summing up we obtain the
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Theorem 5.7. Assume that the radial stability condition, cf definition 5.4, holds. Then the
nullspace of Li, under the condition that li be zero consists exactly of infinitesimal Euclidean
motions.

As a final remark note that the Antonov–Lebovitz (i.e. non-radial–non-radial) part of the
previous argument does not require any condition on the background equation of state
involving γ . It implies in particular that the kernel of the pure fluid linearized operator acting
on non-radial modes is trivial, i.e. only consists of ξʼs being translations or satisfying
δ ρ =ξ ˚ 0. This in turn implies that there are no non-trivial non-spherical perturbations of a
Newtonian perfect-fluid star with given equation of state—which in turn is a linearized
version of the classical spherical-symmetry result of Lichtenstein.

6. Fredholm alternative

In this section we consider the operator

ξ ξ ξ→ − L l: ( [ ], [ ]).

We make use of the results and methods of [15, chapitre 2].
Let Lloc denote the local part of the operator L, corresponding to the first line of (5.3a).

Then ξ ξ ξ ξ→ = − L l( [ ], [ ])loc loc is an elliptic, formally self-adjoint differential operator
of second order. loc is therefore Fredholm as a map

→ × ∂+ +H H H( ) ( ) ( ),k k k2 1 2  
for ⩾k 0, k integer.

Further, let Z be the gravitational part of −L, given by the second line in (5.3a).
Explicitly, for ∈X ,

⎛
⎝⎜

⎞
⎠⎟∫ξ ξ ρ ρ ξ

ξ ρ Δ ρξ χ

= ∂ ∂ − − ∂ ∂
− ′

′ ′

= ∂ ∂ + ∂ ∂ −( )( )

Z X G X U X G X
X X

X X X

G X U πG X X

[ ]( ) ( ) ˚ ( ) ˚ ( )
1

˚ ( ) ( )d

( ) ˚ 4 ˚ ( ) ˚ ( ).

i
j

i j i j
j

j
i j i j

j1





By assumption, the reference density ρ̊ is smooth on  . By lemma A.2, Z is a bounded
operator

→Z H H: ( ) ( ),k k 
for ⩾k 0, k integer. Hence, ξ ξ↦ Z( [ ], 0) is a compact linear map

→ × ∂+ +H H H( ) ( ) ( ),k k k2 1 2  
and hence it follows that  is Fredholm, since a compact perturbation of a Fredholm operator
is again Fredholm, [12, theorem 37.5]. In particular,  has finite dimensional kernel and
closed range with finite dimensional cokernel given by ker * where * is the operator
mapping

× ∂ →− − − − −H H H( ) ( ) ( ),k k k1 2 2  
defined by

ξ Φ ξ Φ= , , * ,
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where 〈 〉· , · is the duality pairing. Explicitly, with Φ φ= v( , ) we have

∫ ∫ξ Φ ξ ξ τ= − +
∂

 L b X l S, [ ] d [ ] d ,i
i

i
i

 
and range is given by the space of τ=F b( , ) such that

∫ ∫ τ φ+ =
∂

b v X Sd d 0,i
i

i
i

 
for all Φ ∈ ker *. We have the Greenʼs identity

∫ ∫ ∫ ∫η ξ η ξ η ξ η ξ− = −
∂ ∂

L X L X l S X l S[ ]d [ ] d [ ]d ( ) [ ] d .i
i i

i i
i i

i

   
Now consider the case of Sobolev index k = 0. Since Φ ∈ ker * is equivalent to

ξ Φ ξ Φ= = , * , 0,

for all ξ ∈ H ( )2  , we have for Φ φ= ∈ v( , ) ker *,

∫ ∫
∫ ∫ ∫

ξ ξ φ

ξ ξ φ ξ

= − +

= − + + −

∂

∂ ∂
( )

L v X l S

L v X l v v l S

0 [ ] d [ ] d

[ ]d [ ] [ ]d .

i
i

i
i

i
i

i
i

i i
i

 

  
Since ξ ∈ H ( )2  is arbitrary, this gives immediately that =L v[ ] 0i . Further, we have that
ξ ξl( , [ ]) is a Dirichlet system on ∂, and hence it follows that =l v[ ] 0i and φ = vi i on ∂. It
follows from the analysis in [15] that the kernel and cokernel of  are independent of k, and
hence are well-defined. We end up with the following result.

Proposition 6.1. Assume that the radial stability condition, cf definition 5.4, holds. Let
⩾k 0, k integer. The operator ξ ξ ξ ξ↦ = − L l[ ] ( [ ], [ ]) is a Fredholm operator

→ × ∂+ +H H H( ) ( ) ( ),k k k2 1 2  
with finite dimensional kernel, and range consisting of τb( , )i i such that

∫ ∫ τ− + =
∂

b v X v Sd d 0,i
i

i
i

 
for all ∈v Lker .

7. Implicit function theorem

In this section, we assume that the radial stability condition, cf definition 5.4, holds. Let ρλ˚ ,
λ ϵ ϵ∈ −( , ) be a one-parameter family of densities on. Let ρ ϕ ρ ϕ τ ρ ϕ=λ λ λ[ ˚ , ] (b [ ˚ , ], [ ˚ , ])i i
where

ρ ϕ ρτ ρ ϕ

τ ρ ϕ τ

= − ∂ + ∂ ∘

=
∂

( )[ ]
[ ]

( )b U

n

˚, ˚ ˚ ,

˚, .

i A i
A

i

i i
A

A 
The Frechet derivative of  at the reference state λ ϕ= = id0, is

ξ ξ ξ ξ= = −ϕ λ ϕ= =
 ( )D L[ ], l[ ] .

id0,

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By theorem 5.7 and proposition 6.1 we have that the kernel and cokernel of ΦD  consists of
Killing vector fields, i.e. ζi of the form ω+c Xi

j
i j for constant ωc ,i j

i, ω ω=ij ij[ ].

Now let  be the projection defined by τ τ↦ ′ b b: ( , ) ( , )i
i

i i , with

ω′ = + +b b c X ,i i i ij
j

for suitable ωc ,i ij such that τ′b( , )i i are equilibrated, i.e.

∫ ∫ζ τ ζ′ − =
∂

b X Sd d 0,i
i

i
i

 
for all ζ ∈ keri . The above determines ′b i in terms of bi and τi and hence also the projection
operator .

We eliminate the kernel of = ϕ λ ϕ= = D | id0, by fixing the one-jet of ϕ at the origin.

Denote the space of ξ ∈ +H ( )i k2  with ξ =(0) 0i , ξ∂ =(0) 0i j by  and let  denote the
range of . Then we have that →  : is an isomorphism. Now the following result is an
immediate consequence of the implicit function theorem.

Proposition 7.1. Fix ⩾k 1 and ϵ > 0. For λ ϵ ϵ∈ −( , ), let λ ρ↦ λ˚ be a one-parameter
family of smooth functions on , so that ρ ρ=˚ ˚0 is a solution to ρ =id[ ˚, ] 0 . There is an

ϵ > 00 so that for λ ϵ ϵ∈ −( , )0 0 , there is a unique ϕ ∈λ
+H ( )k2  with ϕ =(0) 0,

ϕ δ∂ =(0)j
i

j
i, such that

⎡⎣ ⎤⎦ρ ϕ =λ λ ˚ , 0.

7.1. Equilibration

Recall that the the field equation in the Eulerian picture takes the form

τ χ Θ+ =− ( ) 0.i j
i

f j
i

( )1 

For ζi a Killing field we have ζ = 0i j( ) and hence

∫ ∫ζ τ χ Θ ζ τ χ Θ+ = − + =− −
 

 ( ) ( )x xd d 0,j i
ij

f
ij

i j
ij

f
ij

( ) ( )3
1

3
1 

since τ τ=ij ij( ) and Θ Θ=ij ij( ). Recall

Θ ρχ= ∂− U.i j
i

f j( )1 
Applying the change of variables formula and the Piola identity, and taking into account the
boundary condition τ =∂ −n | 0j

i
i f ( )1  we have

⎡⎣ ⎤⎦∫ ζ ϕ τ ϕ= ∘ − ∂ + ∂ ∘( )U X0 ˜ d ,j
A j

A
j

and hence b( , 0)i is equilibrated with respect to ζ ϕ∘i .
We are now ready to prove

Theorem 7.2. Assume that the radial stability condition holds. Fix ⩾k 1 and ϵ > 0. For
λ ϵ ϵ∈ −( , ), let λ ρ↦ λ˚ be a one-parameter family of smooth functions on , so that ρ ρ=˚ ˚0
is a solution to ρ =id[ ˚, ] 0 , and ρ ρ=λ ∂˚ | 0 for λ ϵ ϵ∈ −( , ). There is an ϵ > 00 so that for

λ ϵ ϵ∈ −( , )0 0 , there is a unique ϕ ∈λ
+H ( )k2  with ϕ =(0) 0, ϕ δ∂ =(0)j

i
j
i, such that
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⎡⎣ ⎤⎦ρ ϕ =λ λ˚ , 0.

Proof. Let ϕλ be the solution to ρ ϕ =λ λ [ ˚ , ] 0 constructed in proposition 7.1, and let K
denote the space of Killing fields on 3. By the proof of proposition 7.1 we have that the load

ρ ϕ= λ λb b [ ˚ , ]i i corresponding to ϕλ satisfies ∈b Ki . On the other hand, we have by the
above discussion that

∫ ζ ϕ ζ∘ = ∈λb K0, for all .i
i

i


For ϕλ sufficiently close to id this implies bi = 0. Since ϕλ depends continuously on λ, the
result follows. □

8. Non-spherical nature of solutions

It is important to understand that the method we have developed in this work is capable of
‘building mountains’, i.e. that the solutions we construct are indeed non-spherical. Before
proving that this is the case, it will be useful to make a few observations on the pure fluid
case, where the action in the material frame (3.7) takes the (static Euler–Poisson) form

⎜ ⎟
⎛
⎝

⎞
⎠∫

∫

ρ ϕ ρ ρ ϕ

ρ ρ
ϕ ϕ

=

− ′ ′
− ′

−

×

( )[ ] X e X X

G
X X

X X

X X

˚; ˚ ( ) ˚ det ( )d

2
˚ ( ) ˚ ( )

d d

( ) ( )
. (8.1)

ep B
j 1 

 

Let ψ be a diffeomorphism ψ →:   (in particular ψ maps ∂ into itself). Further, let
ρ ρ ψ ψ= ∘ ∂ ∂ψ X˚ ˚ |( )|, where ψ ψ∂ ∂ =X|( ) | det ( )A

i , and ϕ ϕ ψ= ∘ψ . Then the action given by
(8.1) satisfies the covariance property

⎡⎣ ⎤⎦ρ ϕ ρ ϕ= ψ ψ[ ]˚ ; ˚ ; . (8.2)ep ep 
This covariance property is of course reflected by the fact that the Eulerian variable
ρ ρ ϕ ρ ϕ ϕ= ∂ ∂ − −x X x[ ˚, ]( ) ( ˚ |( )| )( ( ))1 1 remains unchanged under the action of ψ on ρ ϕ( ˚, ). It
follows that the Euler–Poisson system is symmetric8 under the action of the infinite
dimensional group of volume preserving diffeomorphisms ψ of , i.e. when ψ leaves the
volume form ρ X˚ d invariant, then

ρ ϕ ψ ρ ϕ∘ =[ ] [ ]˚; ˚; .ep ep 
Next recall from a theorem of Moser [17] that for any positive densities ρ̊1, ρ̊2 in ̄ such that

∫ ∫ρ ρ=X X˚ d ˚ d1 2  there exists a diffeomorphism ψ →:  , such that ρ ρ ψ ψ= ∘ ∂ ∂X˚ ˚ |( )|2 1 .
Thus, for fluids, any change of density ρ̊ leaving its integral over  unchanged, should be
viewed as a mere change of gauge. Note that ∫ ρ X˚ d is nothing but the total mass of the

physical solution, namely ∫ ρ ρ ϕϕ x x[ ˚, ]( ) d
( ) .

8 Not that covariance refers to a change of both the field variable ϕ and the background field, whereas symmetry
refers to change of field variable leaving the background invariant. For example, special relativistic Maxwell theory
(the background field in this case being the Minkowski metric) is covariant under spacetime diffeomorphisms but
symmetric under Poincare transformations.
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Remark 8.1. The above transformation properties explain the fact that the linearized
operator (5.3), in the absence of the elastic terms, has a kernelcontaining translations plus the
infinite dimensional set of vector fields ξ satisfying δ ρ =ξ ˚ 0 and ξ =n | 0i

i  . When the radial
stability condition, definition 5.4, holds, the proofs of lemma 5.3, and of proposition 5.6 in
the case where l̊ is zero, show that the kernel in fact consists of these vector fields. Finally, we
remark that the transformation properties can be used to derive the identity stated in
proposition 5.1. The proof of the last statement is left to the reader.

Let δρ λ ρ= λ λ=˚ (d d ) ˚ | 0. Before stating our proposition on lack of spherical symmetry we
prove two lemmas. The first concerns the form of the perturbed Eulerian density and Cauchy
stress.

Lemma 8.1. There holds

⎡⎣ ⎤⎦λ
ρ ρ ϕ δρ δ ρ= −λ λ

λ
ξ

=

d

d
˚ , ˚ ˚, (8.3)

0

and

⎡⎣ ⎤⎦λ
τ ρ ϕ

ρ
δρ δ ρ δ ρ δ σ= − −λ λ

λ
ξ ξ

=
( ) ( )p

l
d

d
˚ ,

d ˚

d ˚
˚ ˚ 4 ˚ ˚ ˚ . (8.4)ij ij

ij
0

Proof. The proof of (8.3) follows easily from (3.13). The proof of (8.4) follows from (5.2)
together with (3.9). □

The second lemma concerns the linearized problem.

Lemma 8.2. The linearized problem, namely

ρ ξ ρ δρ= −ϕ ρ[ ] [ ]D Did id˚, . ˚, . ˚ (8.5)˚ 
takes the explicit form

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟ ∫

ρ
ρ ρ

δ ρ δ ρ δ σ

ρ
ρ ρ

δρ ρ
δρ

∂ + + ∂

= ∂ − ∂
′

− ′
′

ξ ξ ξ( )
( )

p
U l

p
G

X

X X
X a

˚
1

˚

d ˚

d ˚
˚ ˚ 4 ˚ ˚ ˚

˚
1

˚

d ˚

d ˚
˚ ˚

˚ ( )
d , (8.6 )

i
j

ij

i i 

for the bulk and

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟ρ

δ ρ ρ ξ ρ δ σ
ρ

δρ+ ′ + =ξ ξ

∂ ∂

( )p
U n n l n

p
n b

d ˚

d ˚
˚ ˚ ˚ 4 ˚ ˚ ˚

d ˚

d ˚
˚ , (8.6 )j

j i
ij

j
i

 

for the boundary part.

Proof. The left-hand side of (8.5) is clearly given by (5.5). To deal with the right-hand side,
we first note that since the invariant τ is independent of ρ̊, the elastic contribution to the right-
hand side of (8.6a) is zero. Now the form of the right-hand side of equation (8.6a) follows by
explicit computation from the fluid Euler–Lagrange equation, namely
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⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟∫

ρ ϕ
ρ ρ ϕ

ϕ

ρ ρ

= − ∂
∂

∂

− ∂ ′ ′
′ϕ ϕ

−

= −

( )
[ ]

( )

e

G X
z

X X

˚,
˚ ˚ det

˚ ( )
1

˚ ( )d , (8.7)

i A

B
j

A
i

i

z X X

1

( )





in . Finally, the form of the right-hand side in the boundary condition (8.6b) follows easily
from

τ ρ
ρ

δ= −ρ [ ]D
p

id˜ ˚,
d ˚

d ˚
, (8.8)i

A
i
A

˚

which in turn follows from (5.1). □
We now state our result on lack of spherical symmetry.

Proposition 8.3. Suppose >l̊ 0. and that the stability condition (5.18) is satisfied. Let a
non-zero function δρ̊ on  be given, which has only ⩾l 2 non-zero modes9 in its spherical
harmonics expansion, and which has δρ =∂˚ | 0 .

Then the perturbed stress of the physical body, given by (8.4), is not spherically
symmetric. Here the perturbed stress is calculated with respect to the unique vector field ξi

solving equation (8.5), constructed as in section 7.

Remark 8.2. The proof of proposition 8.3 applies more generally in the case when the
quadratic form, defined by (5.16) with the elastic terms set to zero, is positive definite.

Proof. We first show that with the given δρ̊, the right-hand side of (8.6a), which we shall
denote by Hi, is non-zero. Assume for a contradiction, that Hi is zero.

Since δρ̊ has only ⩾l 2 modes, it holds that

∫ δρ =X˚ d 0
and hence there is a vector field ηi such that δ ρ δρ=η ˚ ˚ and η =∂n | 0i

i  .
Inserting δ ρη ˚ into the right-hand side of equation (8.6a), and taking into account that

δρ =δ˚ | 0 , we see that Hi is identical to ηL [ ]i given by (5.5) for the particular case when the
elastic term is absent, i.e., with =l̊ 0.

It follows from δρ =∂˚ | 0 that the vector field ηi satisfies η∂ =∂| 0i
i  . Hence we have

that η is in the null space of the operator Li given by (5.5) and satisfies the boundary condition
(5.27), both in the case =l̊ 0. Then the proof of proposition 5.6 in the case where =l̊ 0
shows that either η is a translation Killing vector or δ ρ =η ˚ 0. If δ ρη ˚ we have a contradiction,
and hence η is a translation. However, in this case, δρ̊ has only l = 1 components, and it
follows that δρ =˚ 0, which gives a contradiction. Thus we have proved that Hi is non-zero.

Further, by construction, Hi has only ⩾l 2 components. To make concrete what this
means for a (co-)vector field, recall that any covector κi can be written in the form

κ δ ϵ= + − ∂ + ∂( )an n n b n ci i i
j

i
j

j i
jk

j k

where a b c, , are scalar fields on × R[0, ]0
2 with a unique, and b c, unique up to constants.

The triple of scalars a b c( , , ) corresponding to covector Hi has non-zero ⩾l 2 components in

9 The index l should not be confused with ρ τ δl ( , , ) or l̊ .
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its spherical harmonics expansion. Due to the stability condition (5.18), the boundary value
problem given (8.6) has a solution ξi, which is unique up to Killing vectors.

Recall that Killing vectors have only ⩽l 1 components. It follows that we can set the
⩽l 1 components of ξi to zero, and get a solution which we also denote ξi to (8.6), such that ξi

has only ⩾l 2 components.
Finally we show that the the perturbed Eulerian stress tensor (8.4) is not spherically

symmetric. To do this we note that if it were spherically symmetric, then its trace free part
would be of the form

ρ δ σ δ− = −ξ ( )( )l A n n4 ˚˚ ˚ 3 (8.9)
ij

ij i j

for some function A depending only on R. Since by construction ξi is non-zero and has only
⩾l 2 modes, equation (8.9) can have a solution only if A = 0 and ξi is a conformal Killing

vector. But conformal Killing vectors have only ⩽l 1 modes, which is a contradiction.
Therefore, the perturbed Eulerian stress is not spherically symmetric, which completes the
proof. □

We finally point out that it would be interesting to have information about the spherical
behavior of ξ ∂n |i

i , since this describes the shape of mountains to order λ. However, this
would require a detailed analysis of the boundary value problem given by (8.6), which we
defer to later work.
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Appendix. Estimates for the Newtonian potential

Here we prove some potential theoretic estimates which are used in our analysis. We discuss
here only estimates in the setting of L2 Sobolev spaces Hs. See [21, chapter 4] for background.
The analogous results hold in the setting of Sobolev spaces of Lp type W s p, .

Consider n, ⩾n 3, with Cartesian coordinates x( )i , and with the Euclidean metric. Let Ω
be a smooth, bounded domain in n, with boundary ∂Ω. Let ni be the outward directed normal
to ∂Ω. The trace of a function f on ∂Ω is denoted ∂ fTr Ω .

Let ωn be the area of the unit sphere in n, and let ω= − −E x1 ( | | )n
n 2 be the funda-

mental solution of the Laplace equation. The volume potential of a function f is

∫= − ′ ′ ′f x E x x f x x[ ]( ) ( ) ( )d ,
Ω


and the layer potential f[ ] is

∫= − ′ ′ ′
∂

f x E x x f x S x[ ]( ) ( ) ( )d ( ),
Ω


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where Sd is the induced volume element on ∂Ω. We shall need the following standard result,
cf [20, chapter 7, proposition 11.2]. (See also [20, chapter 7, proposition 11.5] the assumption
that the complement of Ω is connected made in [20, chapter 7, proposition 11.5] is not
relevant for the continuity property which we need here.)

Lemma A.1.  defines a bounded operator ∂ → ∂−H Ω H Ω: ( ) ( )s s1 .

Let χΩ denote the indicator function of Ω, i.e.

⎧⎨⎩χ = ∈
∉x

x Ω
x Ω

( )
1 ,
0 ,Ω

and let δ∂Ω be the delta-distribution supported on ∂Ω. Let f be sufficiently regular so that the
trace ∂ fTr Ω is defined. Then the following identity is valid in the sense of distributions.

⎡⎣ ⎤⎦χ χ δ∂ = ∂ − ∂( ) ( )f f fnTr . (A.1)i Ω i Ω
i

Ω

To see this, let ϕ ∈ ∞ C ( )n
0 and let ξi be a vector field on n. Then we have

∫ ∫
∫
∫ ∫

ϕξ χ ϕ ξ χ ϕ ξ χ

ϕξ χ ϕ ξ χ

ϕ ϕ ξ χ

∂ = ∂ − ∂

= − ∂ − ∂

= − − ∂
∂

 





( ) ( )
( )

( )

x x

x

n S x

d d

d

d d .

i
i Ω i

i
Ω i

i
Ω

i
i

Ω i
i

Ω

i
i

i
Ω

n n

n

Ω
n

Specializing to the case ξ ∂ = ∂k
k i gives (A.1). From (A.1) we have immediately, by the chain

rule and the differentiation formula for convolutions,

⎡⎣ ⎤⎦∂ = ∂ −[ ]f f fn[ ] . (A.2)i i
i  

We can now prove the following.

Lemma A.2. Let ⩾s 0, s integer. Then  defines a continuous map

→ +H Ω H Ω: ( ) ( ).s s 2

Proof. The case s = 0 follows from the standard interior estimate for the Poisson equation,
[15, chapitre 2, théorème 3.1]. The proof now proceeds by induction, with s = 0 as base. Let

⩾s 1 and suppose we have proved the statement for −s 1. Let ∈f H Ω( )s . By the trace
theorem, [21, chapter 4, proposition 4.5], ∈ ∂∂

−fn H ΩTr [ ] ( )Ω
i s 1 2 and by lemma A.1,

∈ ∂+fn H Ω[ ] ( )i s 1 2 . Now, fn[ ]i is harmonic in Ω with trace on ∂Ω in +H s 1 2. It follows
that ∈ +fn H Ω[ ] ( )i s 1 . Further, by the induction hypothesis, ∂ ∈ +f H Ω[ ] ( )i

s 1 , and hence
∂ ∈ +f H Ω[ ] ( )i

s 1 . Again by the induction hypothesis, ∈ +f H Ω[ ] ( )s 1 , and hence it
follows that ∈ +f H Ω[ ] ( )s 2 , which closes the induction and gives the result. □

References

[1] Aly J-J and Pérez J 1992 On the stability of a gaseous sphere against nonradial perturbations Mon.
Not. R. Astron. Soc. 259 95–103

Class. Quantum Grav. 31 (2014) 185006 L Andersson et al

29

http://dx.doi.org/10.1093/mnras/259.1.95


[2] Andersson L, Beig R and Schmidt B 2008 Static self-gravitating elastic bodies in Einstein gravity
Commun. Pure Appl. Math. 61 988–1023

[3] Andersson L, Oliynyk T A and Schmidt B G 2011 Dynamical elastic bodies in Newtonian gravity
Class. Quantum Grav. 28 235006

[4] Andréasson H and Calogero S 2014 Spherically symmetric steady states of John elastic bodies in
general relativity arXiv: 1403:2565

[5] Beig R and Schmidt B G 2003 Relativistic elasticity Class. Quantum Grav. 20 889–904
[6] Beig R and Schmidt B G 2003 Static, self-gravitating elastic bodies Proc. R. Soc. A 459 109–15
[7] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton Series in Astrophysics) (Princeton,

NJ: Princeton University Press)
[8] Binney J and Tremaine S 2008 Galactic Dynamics (Princeton Series in Astrophysics) (Princeton,

NJ: Princeton University Press)
[9] Calogero S and Leonori T 2012 Ground states of self-gravitating elastic bodies arXiv: 1208.1792
[10] Chamel N and Haensel P 2008 Physics of neutron star crusts Living Rev. Relativ. 11 10
[11] Chandrasekhar S 1957 An Introduction to the Study of Stellar Structure (New York: Dover)
[12] Conway J B 2000 A Course in Operator Theory (Graduate Studies in Mathematics vol 21)

(Providence, RI: American Mathematical Society)
[13] Kijowski J and Magli G 1997 Unconstrained variational principle and canonical structure for

relativistic elasticity Rep. Math. Phys. 39 99–112
[14] Lichtenstein L 1933 Gleichgewichtsfiguren Rotierender Flüssigkeiten (Berlin: Springer)
[15] Lions J-L and Magenes E 1968 Problèmes Aux Limites non Homogènes et Applications vol 1

(Travaux et Recherches Mathématiques no. 17) (Paris: Dunod)
[16] Marsden J E and Hughes T J R 1994 Mathematical Foundations of Elasticity (New York: Dover)

(Corrected reprint of the 1983 original)
[17] Moser J 1965 On the volume elements on a manifold Trans. Am. Math. Soc. 120 286–94
[18] Rendall A D and Schmidt B G 1991 Existence and properties of spherically symmetric static fluid

bodies with a given equation of state Class. Quantum Grav. 8 985–1000
[19] Tahvildar-Zadeh A S 1998 Relativistic and nonrelativistic elastodynamics with small shear strains

Ann. Inst. Henri Poincaré Phys. Theor. 69 275–307
[20] Taylor M E 1996 Partial Differential Equations II: Qualitative Studies of Linear Equations

(Applied Mathematical Sciences vol 116) (New York: Springer)
[21] Taylor M E 2011 Partial Differential Equations I: Basic Theory (Applied Mathematical Sciences

vol 115) 2nd edn (New York: Springer)

Class. Quantum Grav. 31 (2014) 185006 L Andersson et al

30

http://dx.doi.org/10.1002/(ISSN)1097-0312
http://dx.doi.org/10.1088/0264-9381/28/19/195023
http://arXiv.org/abs/1403:2565
http://dx.doi.org/10.1088/0264-9381/20/5/308
http://dx.doi.org/10.1098/rspa.2002.1031
http://arXiv.org/abs/1208.1792
http://dx.doi.org/10.12942/lrr-2008-10
http://dx.doi.org/10.1016/S0034-4877(97)81475-9
http://dx.doi.org/10.1090/S0002-9947-1965-0182927-5
http://dx.doi.org/10.1088/0264-9381/8/5/022

	1. Introduction
	2. Preliminaries
	2.1. Kinematic identities

	3. Field equations of a Newtonian elastic body
	3.1. Equations in Eulerian form
	3.2. Integral form of the Newtonian potential
	3.3. Equations in material frame
	3.4. The reference configuration
	3.5. Static self-gravitating fluid bodies

	4. The reference body and its deformation
	4.1. Analytical formulation

	5. The linearized operator
	5.1. Derivation

	6. Fredholm alternative
	7. Implicit function theorem
	7.1. Equilibration

	8. Non-spherical nature of solutions
	Acknowledgements
	Appendix.
	References



