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C Curie constant  
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The discovery of stable radicals dates back 114 years when the first stable organic 

radical was synthesized by Prof. Gomberg (above photograph)[3] in 1900. Since then 

various types of stable organic radicals have been synthesized and utilized for various 

applications. This chapter starts with an overview of historical evolution of organic 

radicals thereafter some of their applications are discussed.  

CHAPTER 1 INTRODUCTION: AN OVERVIEW OF ORGANIC 

RADICALS 
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1.0 Prelude 

Radicals can be defined as the molecules with at least one unpaired electron and 

are usually considered as highly reactive or transient species. Depending on the stability 

of radicals, they can be divided into (1) transient radicals- which undergo fast bimolecular 

self-reactions at or close to the diffusion controlled limit, (2) persistent radicals- which 

undergo much slower bimolecular self-reaction and slow or unimolecular decay reactions, 

and finally (3) stable radicals- which can be isolated, handled and stored as a pure 

compound for prolonged periods under normal laboratory conditions. Since the first 

report of stable radical in 1900 by Moses Gomberg many different classes of stable 

radicals were discovered.[1-3] Some of which include triphenylmethyl, phenalenyl, 

nitroxide, verdazyl, phenoxyls, dithiadiazolyl radicals etc.[4-7] Now the organic radicals are 

not only looked as molecules for studying fascinating fundamental aspects of spin 

coupling and exchange interactions but are also utilized for many practical applications. 

1.1 Appraise of different kinds of radicals 

1.1.1 Triphenylmethyl radical  

The first stable organic radical Triphenylmethyl was accidently discovered in 1900 

by Moses Gomberg.[1]  The radical character of which was proven by its facile reaction 

with oxygen to form peroxide as shown in Scheme 1.1.   

 

Scheme 1.1: Gomberg’s synthesis of triphenylmethyl radical and its reaction with oxygen. 

In Gomberg’s synthesis, triphenylmethyl chloride was treated with Ag or Zn metal 

and a colored solution was obtained which upon oxidation yielded peroxide (Scheme 1.1). 
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In dilute deoxygenated solution it exists in equilibrium with its dimer (Figure 1.1). From 

this it was evident that the radical does not reside only on the central methyl carbon but 

is delocalized over the ortho- and para- positions. This was later proven by its EPR studies 

which showed larger hyperfine coupling for ortho- and para- hydrogen than for meta 

hydrogen.[8] 

 

Figure 1.1: Equilibrium between triphenylmethyl radical and its dimer. 

Thus in order to stabilize the triphenylmethyl radical various ortho- and para- 

substituted derivatives were synthesized.[9-10] The effect of substituents in stabilizing the 

radical was measured with EPR spectroscopy by determining the equilibrium constant for 

dissociation of dimers of radicals. Neumann et al. concluded that the captodative radicals 

are slightly more stable than the symmetrically disubstituted triaryls.[9] 

 

Scheme 1.2: Synthesis of perchlorotriphenylmethyl radicals. 

In 1971 perchlorodiphenylmethyl and perchlorotriphenylmethyl radicals were 

synthesized (Scheme 1.2).[11-12] Both radicals showed high stability in air with lifetime of 

decades and were characterized as inert carbon free radicals. The ortho- chlorine atoms 

on the aryl rings shielded the central radical and preventing its dimerization or reaction 

with oxygen. Later on several other derivatives of perchlorinated triphenylmethyl 
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radical/biradical were synthesized and their optical, electronic, and magnetic properties 

have been studied extensively.[13-17] 

1.1.2 Nitroxide radicals 

After the discovery of the stable organic radical (triphenylmethyl), the first organic 

nitroxide (Figure 1.2a) was prepared by Piloty and Schwerin in 1901.[18] Half century later 

its radical character was elucidated by Holden et al. in 1951 with EPR spectroscopy.[19] 

The nitroxide radicals are most studied, class of stable radicals owing to very high stability 

of some of their derivatives with respect to air, water and other radical reactions. Later 

very important contribution came from Wieland et al.[20-21] and Mayer et al.[22] who 

synthesized diarylnitroxides (Figure 1.2b). In 1959, Lebedev et al. reported the synthesis 

of 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (4-oxo-TEMPO) (Figure 1.2c), which initiated 

the development of TEMPO derivatives, a most widely used class of radicals as spin 

labels.[23-25] 

 

Figure 1.2: Structure of nitroxides. 

In general nitroxide radicals can be classified as compounds containing >N—O. 

group, which has one unpaired electron. The πN—O bond results from the overlapping of 

2pz orbitals of nitrogen and oxygen; it can be represented as following resonance 

structure (Scheme 1.3).[23] The spin density in nitroxide radicals mainly reside on nitrogen 

and oxygen atoms, but slightly higher on oxygen. 

               
Scheme 1.3: Resonance delocalization of nitroxide and nitronyl nitroxide radical. 
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The chemistry of nitronyl nitroxides, the resonance delocalized nitroxide radical, 

was developed by Ullman et al.[26]  Ullman’s synthesis of nitronyl nitroxide involves 

condensation of aldehyde with bishydroxylamine followed by oxidation with lead oxide 

(Scheme 1.4). Same as in the nitroxides the spin density of nitronyl nitroxide also reside 

mainly on oxygen and nitrogen atom and very little spin density on the substituent R 

because of the presence of a nodal plane in π SOMO.  Nitronyl nitroxides satisfy the 

prerequisite for stable nitroxide (i.e. no α-hydrogen) and thus can be synthesized with a 

large variety of R groups.[27-29]  

 

Scheme 1.4: Ullman’s synthesis of nitronyl nitroxide. 

Benzonitronyl nitroxide was first isolated in crystalline form by Tamura et al. in 

1997.[30-31]  Although this class of nitronyl nitroxide shows spin delocalization onto the 

annelated ring and adopts planar topology for strong intermolecular interactions, did not 

yet receive much attention.[32]  

 

Scheme 1.5: Synthesis of benzo nitronyl nitroxide. 

1.1.3 Phenoxyl radicals 

Phenoxyls are a venerable class of radicals. Although the phenoxyl radicals were 

introduced by Plummer in 1914,[33] their existence by EPR was first demonstrated in 

1960s.[34] Phenoxyls are electron deficient compounds, which make them highly reactive. 

The stabilization of phenoxyl radicals can be achieved by substituting bulky functional 
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group at ortho- and para- positions. This could be understood by considering following 

canonical forms (Figure 1.3). Computational studies suggested that spin density at oxygen 

atom is slightly higher than for ortho- and para- carbon atoms.[35] Studies by Lahti et al. 

showed that electron rich substituents at para position can possess as much spin density 

as the parent phenoxyl residue itself.[36] Reichard et al. proposed the generation of 

radicals related to phenoxyls can be from the mono-electronic oxidation of phenolic side 

chains of tyrosine in proteins and thus may be involved in some biological process. These 

residues are designated as tyrosyl.[37-38] 

 

Figure 1.3: Resonance structure of phenoxyl radical. 

The galvinoxyl radical also known as Coppinger’s radical was synthesized in 

1957,[39] and is of very special interest because of its exceptionally high stability and 

unusual magnetic properties.[40-41] Theoretical studies showed that, similar to simple 

phenoxyls there has been substantial spin density at para carbon atoms, thus it can be 

represented as two canonical forms (Figure 1.4).[42] 

 

Figure 1.4: Galvinoxyl radical. 

Another interesting molecule of this class is Yang’s biradical prepared in 1960.[43] 

This biradical exist in triplet ground state. Nearly 50 % of spin density lies on three 

carbons attached to the central carbon, thus the Yang’s biradical can be categorized as 

delocalized version of trimethylenemethane, prototypical triplet organic biradical (Figure 

1.5).[44-45]  
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Figure 1.5: Yang’s biradical.  

1.1.4 Hydrazyl radicals 

The hydrazyl radicals were discovered in 1922 by Goldschmidt.[2] While most of 

the hydrazyl radicals fall into the class of persistent radical, only few qualify as stable. One 

of the most stable derivatives of hydrazyl radical is DPPH (N,N’-Diphenyl-N’-

picrylhydrazyl) (Figure 1.6). Most of the stable radicals of this class resemble the structure 

of DPPH. Owing to exceptional stability and selective reactivity of DPPH it has been 

extensively used as (1) standard for the EPR spectroscopy (g-marker, g = 2.0037), (2) 

radical scavenger in polymer chemistry, and (3) as an indicator for antioxidant 

chemistry.[46-47] 

 

Figure 1.6: N,N’-Diphenyl-N’-picrylhydrazyl (DPPH)  radical. 

1.1.5 Phenalenyl radicals 

The entire family of phenalenyl and higher analogous derivatives are known as 

non-Kekulé polynuclear benzenoid molecules and can be considered as triangular open-

shell graphene fragments.[48] The first phenalenyl radical was prepared by Reid and Calvin 

independently in 1950s from the phenalene oxidation.[49-50] This radical was very sensitive 
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to air and in equilibrium with sigma dimer which further undergoes decomposition to 

yield highly fused polyaromatic hydrocarbon (Scheme 1.6).[49] 

 

Scheme 1.6: Synthesis of phenalenyl radical and its equilibrium with a sigma dimer. 

Computational studies have shown that although the spin density of the 

phenalenyl molecule is delocalized throughout the molecule, it mainly resides on six α-

carbon atoms i.e. the periphery of molecule as shown in the resonance structure (Figure 

1.7).  Thus substituent at the edges will effectively tune the electron spin distribution.  

 

Figure 1.7: Resonance structure of phenalenyl radical and structure of 2,5,8-tri-tert-butyl-

phenalenyl radical. 

The first stable neutral phenalene derivative was synthesized by Nakasuji et al.[51] 

Substitution of tert-butyl group at β-positions (2,5,8-positions) of phenalenyl effectively 

prevented the sigma dimerization and gave stable product which forms π-dimer. The 

magnetic susceptibility measurements showed a large antiferromagnetic exchange 

interaction, indicating spin singlet ground state of π-dimer.[52] 

1.1.6 Verdazyl radicals 

The verdazyl radicals can be considered as the resonance delocalized class of 
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hydrazyl radicals. Richard Kuhn and H.Trischmann in 1963 reported the surprisingly stable 

nitogenous free radical i.e. Verdazyl radical.[53-54] Verdazyls are 7π-cyclic radicals with π-

SOMOs, the nodal plane in this orbital passes through C6 and C3 carbon preventing the 

delocalization, but not the polarization, onto C-substituents (Figure 1.8a). In following 

years Neugebauer et al. developed the synthesis of two new kinds of verdazyl radicals, 3-

phenyl-1,5-dimethyl-6-oxo- or thioxo- verdazyl (Figure 1.8b) in 1988,[55] and 1,3,5-

triphenyl-6-oxo- or thioxo- verdazyl (Figure 1.8c) radicals in 1993,[56] the later radicals 

have higher stability than the former ones. Recently 1,5-diisopropyl substituted oxo-

verdazyl radical derivatives were also synthesized.[57] The N-isopropyl derivatives were 

found to be more stable than the N-methyl substituted derivatives. 

 

Figure 1.8: Verdazyl and 6-oxo- or 6-thioxo- verdazyl radicals. 

Now the verdazyls can be characterized into two types depending on the nature of 

C6 carbon, (i) saturated carbon at C6 developed by Kuhn et al.,[53] and (ii) oxo- or thioxo 

group at C6 developed by Neugebauer et al.[55-56] 

1.1.7 Dithiadiazolyl radicals 

One of the most studied heterocyclic thiazyl radicals, 1,2,3,5-dithiadiazolyls,  were 

first discovered in 1970s.[58-59] Synthesis of 1,2,3,5-dithiadiazolyl radicals always 

proceeded through the corresponding intermediate, dithiadiazolium cation, as shown in 

Scheme 1.7. The reduction of dithiadiazolium cation with metals or organo-metallic 

reagents or reducing anions gave corresponding 1,2,3,5-dithiadiazolyl radicals. Usually 

they are stable in oxygen free solution and in solid state. They show extremely high 
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thermal stability, as they are mostly purified by high vacuum sublimation.[60] 

 

Scheme 1.7: General procedure for synthesis of 1,2,3,5-dithiadiazolyl radical. 

In solution 1,2,3,5-dithiadiazolyl radicals are in equilibrium with dimers and nearly 

all the derivatives of these radicals adopt π-dimeric structures in solid state. A large 

number of 1,2,3,5-dithiadiazolyl radicals with different substituents have been 

structurally characterized by single crystal X-ray crystallography. Depending on the steric 

influence of substituent R as shown in Figure 1.9 mainly four different kinds of π-dimers 

are observed.[61-62]   

1.1.8 "Kekulé" versus "Non-Kekulé" polycyclic hydrocarbons 

Polycyclic conjugated biradicals can be divided into two parts, Kekulé and non-

Kekulé biradicals. The simplest examples of Kekulé and non-Kekulé structures are ortho- 

or para- xylene and meta-xylene, respectively. While meta-xylene can only be drawn as 

biradical structure, the ortho- or para-xylene can be drawn as biradicaloid as well as 

quinonoid form (Figure 1.10).[63]  

 

Figure 1.9: Different structural motifs of π-dimers of 1,2,3,5-dithiadiazolyl radicals (a) cis-

cofcial (b) twisted (c) trans-antrafacial (d) trans-cofacial (blue: nitrogen, yellow: sulfur, 

gray: carbon) (Figure adopted from ref[61]). 
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Figure 1.10: Kekulé versus non-Kekulé biradical structure. 

Non-Kekulé molecules are conjugated hydrocarbons with two or more formal 

radical centers. Non-Kekulé biradicals can be classified into non-disjoint and disjoint 

depending on the  shape of their two non-bonding molecular orbitals (NBMOs) (Figure 

1.11).[64]  

 

Figure 1.11: NBMOs of non-disjoint and disjoint non-Kekulé molecules. 

Both NBMOs of molecules with non-disjoint characteristics such as 

trimethylenemethane have electron density at the same atom. According to Hund's rule, 

each orbital is filled with one electron with parallel spin, avoiding the Coulomb repulsion 

by filling one orbital with two electrons. Therefore, such molecules with non-disjoint 

NBMOs are expected to prefer a triplet ground state. In contrast, the NBMOs of the 

molecules with disjoint characteristics such as tetramethyleneethane can be described 

without having electron density at the same atom. With such MOs, the destabilization 

factor by the Coulomb repulsion becomes much smaller than for non-disjoint type 

molecules, and therefore the relative stability of the singlet ground state to the triplet 

ground state will be nearly equal, or even reversed because of the exchange 

interaction.[65-66]  
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The classical and most extensively discussed example Kekulé biradical is 

Tschitschibabin’s biradical (Figure 1.12a), synthesized in 1907.[67-68] Non-Kekulé 

polynuclear aromatic hydrocarbons were proposed by Eric Clar in 1941. The simplest 

member of this class is triangulene. All the attempts to synthesize triangulene (Figure 

1.12b) by Clar et al. failed.[69-70] The first polynuclear non-Kekulé structure, trioxotriangule 

(Figure 1.12c) was synthesized in 1995 by Bushby et al.[71-72] 

 

Figure 1.12: Tschitschibabin’s and Clar’s hydrocarbons. 

 
Historical overview of organic radicals 

Year Research group Discovery 

1900 Moses Gomberg Triphenylmethyl radical- first stable organic radical[1] 

1901 Piloty and Schwerin Synthesis of first organic nitroxide radical[18] 

1907 Tschitschibabin Synthesis of Tschitschibabin's biradical[68] 

1914 Plummer et al. Discovery of phenoxyl radicals[4] 

1922 Goldschmidt et al. Synthesis of DPPH-first hydrazyl based radical[7] 

1957 Reid and Cavin First phenalenyl radical reported[47, 50] 

1959 Lebedev et al. Synthesis of 4-oxo-TEMPO-gave birth to TEMPO 

derivatives, most widely used radical[23] 

1963 Richard Kuhn and 

Trischmann 

Nitrogeneous free radical (verdazy) reported 

1968 Ullman et al. First synthesis of nitronyl nitroxide[26] 

1971 Donald Cram et al. Perchlorotriphenylmethyl radical-inert carbon free 

radical[11] 

1974 Banister et al. The structure of first DTDA radical salt was elucidated[58] 

1995 Bushby et al. Synthesis of first Clar’s hydrocarbon derivative[71] 
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1.2 Applications of organic radicals 

  

Figure 1.13: Some of the applications of organic radicals. 

In last two decades stable organic radicals (open shell molecules) have attracted 

large attention of researchers from both fundamental and applied aspects because they 

showed unique structural electronic properties and spin nature based functionalities that 

are intrinsically different from closed-shell molecules.[4-5, 7] Radicals can act as donors or 

acceptors and/or redox active centers. These are the desirable requirements for molecule 

based materials. Organic materials are expected to be easy processible, light weight, 

soluble in organic solvents, and/or optically transparent. Organic radicals have shown 

potential variety of applications in catalysis,[73-74] organic field effect transistors 

(OFETs),[75-77] sensors,[78] magneto conducting materials,[79] dye sensitized solar cells,[80-81] 

photo excited spin systems,[82-83] quantum magnets,[84] and batteries.[48, 85] They also have 

been used as ligand to form metal-organic complexes with transition metals and observed 

ferromagnetism, ferrimagnetism or anti-ferromagnetism.[86-87] Some examples of organic 
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radicals showing practical applications are discussed as follows.  

1.2.1 Quantum computing or quantum information processing 

The most fascinating applications of organic radicals is in the development of 

Quantum computers.[88-89] Today's computers, like a Turing machine, work by 

manipulating bits that exist in one of two states, 0 or 1. Quantum computers aren't 

limited to two states; they encode information as quantum bits, or qubits, which can exist 

in superposition. Qubits represent atoms, ions, photons or electrons and their respective 

control devices that are working together to act as computer memory and processor. 

Because the quantum computer can contain these multiple states simultaneously, it has 

the potential to be millions of times more powerful than today's most powerful 

supercomputers. The quantum algorithms can reduce the CPU time by many orders of 

magnitude.[90-92] 

Although in last decade the field of quantum computing (QC) or quantum 

information processing (QIP) developed rapidly the latest arrivals are the molecular 

qubits which links between both QC and chemistry. The existing qubits faces the problem 

of stability and scalability. The electron spin qubits have an advantage over nuclear spin 

qubits in the preparation of initialized states. This is because the gyromagnetic ratio for 

nuclear spin is 103 times smaller than that of electron spin which leads to low polarization 

of spin.[93-94]  

 

Figure 1.14: Biradical as a synthetic electron spin two-qubit system. 

Takui et al. reported the two-qubit weakly coupled biradical (Figure 1.14) as 

fundamental unit for constructing QC which can afford Controlled-NOT (CNOT) gate 

operations.[95] CNOT gate operations are essentially important gates to constitute a 
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universal set of quantum gates together with well-defined single qubit operation. 

1.2.2 Organic radical batteries 

 

Figure 1.15: A lithium-ion battery based on a radical polymer cathode (Figure adopted 

from ref[96]). 

One of the most studied applications of organic radical is their utilization as a 

cathode and/or anode materials in batteries (Figure 1.15). Their excellent electrochemical 

properties makes them ideal candidate as electrode active material for rechargeable 

batteries. While the nitroxide and phenoxyl radicals are used as p-type and n-type 

electrode material, respectively, the nitronyl nitroxide can serve as ambipolar material for 

constructing all organic batteries.[97] Recently organic radical or organic radical polymer 

based batteries with excelling charge-discharge capacity and cyclic stability exceeding 

that of Li-ion batteries have been reported.[98-101] 

1.2.3 Catalysis 

Nitroxides are found to be chemo/stereo selective organo-catalyst in several 

alcohol oxidation reactions of industrial application. Nitroxide catalyzed reactions are 

used for the oxidation of primary and secondary alcohols to aldehydes or carboxylic acids 

and ketones, respectively, in the presence of large functional groups. The observed 

chemoselectivity is mainly based on the relative oxidation rates. The large number of such 
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examples can be found in the literature.[74]   

 

Scheme 1.15: TEMPO as organo-catalyst for oxidation of alcohols. 

1.2.4 Dye sensitized solar cell 

Recently Nishide et al. reported the significant enhancement in conversion 

efficiency of dye sensitized solar cell (DSSC) by using stable radical 2-azaadamantan-N-

oxyl as highly reactive redox mediator (Figure 1.16).[81, 102] The increased conversion 

efficiency of DSSC can be attributed to high reactivity and yet reversible redox behavior of 

nitroxide radicals which dramatically enhanced the charge diffusion, electrode reaction 

rate, and the photovoltaic performance.  

Moreover Vardeny et al. used 3 % doping of spin 1/2 galvinoxyl radical in 

P3HT/PCBM solar cell, which improved solar cell efficiency by 18 %. The enhanced organic 

photovoltaic solar cell efficiency was attributed to suppressed polaron pair recombination 

at the donor-acceptor domain interfaces by doping with galvinoxyl radical.[80] 

 

Figure 1.16: Redox mediation process with nitroxide radical redox couple in a DSSC(Figure 

adopted from ref[80]). 
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1.2.5 Organic Magnets-A Brief History 

 

Figure 1.17: Organic magnets and ordering temperature. 

Organic magnets can be defined as the materials exhibiting bulk magnetic 

ordering and possessing unpaired electron spin residing in p-orbitals that contribute to 

magnetic ordering.[7, 103-105] This is contradictory to Heisenberg’s prediction in 1928 that 

the ferromagnetic long range order in an infinite lattice can be found only when it 

contains the heavy (metallic) element.[106] Later in 1963 theoretician McConnell derived 

the mechanism for ferromagnetic interaction between organic radicals containing atoms 

only from the first raw of periodic table.[107] After three decades the first of such material 

was found in 1991, p-nitrophenyl nitronyl nitroxide, which has critical temperature of 0.6 

K (Figure 1.17).[108] Soon after 2 years Chiarelli et al. found nitroxide biradical showing 

ferromagnetic transition at 1.48 K.[109] This area of research became more promising 

when fullerene derivative [TDAE]-[C60], was reported to show ferromagnetic ordering 

temperature as high as 16 K.[110] The highest reported ferromagnetic ordering 

temperature for a purely organic magnet is 36 K for β-phase of the dithiadiazolyl 

radical.[111] The inter-molecular interactions between unpaired electrons from different 

radicals is a necessary requirement for obtaining long range magnetic ordering in solid 

state.  

In this chapter up to here different types of stable radicals, their properties were 

discussed and finally a few of their applications were shown. In the next part of the 
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chapter the motivation and outline of PhD thesis is presented.  

1.3 Motivation and Objective 

Stable neutral organic biradicals are of special interest because they offer the 

possibility to tune the magnetic interactions through appropriate design of a spacer.[4, 7, 

112] Thus, by considering the topological rules of physics and at the same time employing 

the advanced methods of organic chemistry, molecules with predictable magnetic 

properties can be synthesized.[63, 113] Among the biradical family, antiferromagnetically 

(AF) coupled species can be considered as a source of interacting bosons.[114-115] 

Consequently, such biradicals can serve as molecular models of a gas of magnetic 

excitations which can be used for quantum computing (QC) or quantum information 

processing (QIP).[91-95, 116-117] Notably, initial small triplet state population in weakly AF 

coupled biradicals can be switched into larger in the presence of applied magnetic field. 

Such biradical systems are promising molecular models for studying the phenomena of 

magnetic field-induced Bose-Einstein condensation (BEC) in the solid state (Figure 

1.18).[118-119] 

 

Figure 1.18: Schematic representation of magnetic field induced quantum phase 

transition. 
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"The understanding of BEC under various and sometimes extreme conditions is the 

heart of cooperative "Sonderforschungsbereich/Transregio-49" (SFB/TR-49) project 

between Frankfurt, Mainz, and Kaiserslautern."  

To observe such phenomena it is very important to control intra as well as inter-

molecular magnetic exchange interactions. The intra-molecular magnetic exchange 

interactions can be tuned by either changing the length of the π-spacer molecule carrying 

the radical moieties or by changing the radical moiety while maintaining the same π-

spacer.[84, 120-121] The inter-molecular magnetic exchange interactions, which usually 

operate through hydrogen bond or other short inter-molecular contacts, highly depends 

on the crystal packing and are quite difficult to predict or control.[122-123] To some extent 

the inter-molecular magnetic exchange interactions can be regulated by employing the 

crystal engineering approach.[124-128] For instance, introduction of hydrogen bond donor 

or acceptor (or a combination of both) functional groups in the π-spacer fragment can 

result in additional hydrogen bonding, which in turn is advantageous for smooth 

transmission of magnetic interactions through the lattice. As a result multi-dimensional 

spin-networks can be constructed.  
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1.3.1 Different approaches to tune intra- and inter-molecular exchange 

interactions 

In our laboratory we have utilized different approaches to tune inter- and intra-

molecular exchange interactions as follows, 

 

 

 

   

Scheme 1.16: Schematic representation of AF coupled biradical system; dRR is the distance 

between two spin-centers. 

Approach 1: Varying the length of the π-system- using this approach intra-molecular 

exchange interaction can be tuned predictably. 

This is the most utilized approach to tune the intra molecular exchange 

interactions.[129-134] The experimental and theoretical investigation suggests that in 

nitronyl nitroxide radicals the electron spin-density is partially delocalized over the radical 

moiety. The magnetic exchange interactions between two radical moieties usually 

depend on the length and nature of the π-spacer. As shown in Table 1 bisnitronyl 

nitroxide (1) possesses the strongest intra-molecular antiferromagnetic exchange 

interaction among the nitronyl nitroxide biradical family. On moving from biradical 1 to 5 

the exchange interaction decreases drastically from -923.0 K to -2.4 K by varying the 

spacer length from 0.15 nm to 1.45 nm. By introducing longer spacer unit the distance 

between localized spin centers increases leading to decrease in spin-spin interaction. 

Thus using this approach tuning of intra-molecular exchange interaction is achieved. The 

limitation of this approach is the very large change in interactions and fine tuning of 
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exchange interaction could not be obtained due to synthetic limitations.   

Table 1: List of biradicals with their intra-molecular exchange interaction values.  

Biradicals dRR  
(nm) 

Intra-molecular 
exchange 
interaction 

 

0.15 -923.0 K[129, 132] 

 

0.57 -72.3  K[130]‏‏

 

 K[84]‏ 14.0- 1.01

 

1.24 -4.6 K[121] 

 

1.45 -2.4 K[121] 

 

Looking forward in this direction during the course of my dissertation, different 

other approaches have been studied to tune intra- as well as inter-molecular exchange 



An Overview of Organic Radicals Chapter 1 

 

22 
 

interactions which are summarized in the forth coming chapters.   

Approach 2: Functionalization of π-spacer- by this approach inter-molecular exchange 

interactions can be altered. (Discussed in chapter 3) 

Approach 3: Complex formation with diamagnetic metal ion- this approach is also 

utilized to alter inter-molecular exchange interactions. (Discussed in chapter 3) 

Approach 4: Varying the radical moiety- this is a novel approach to tune inter-molecular 

exchange interaction, as here the π-spacer is maintained the same. (Discussed in chapter 

4)  

Approach 5: Synthesizing positional isomers- in this approach the π-spacer and radical 

moieties were maintained and exchange interaction tuned by changing the position of 

radical moiety on the π-spacer.  (Discussed in chapter 5) 

Furthermore during our study on tuning of intra- and inter-molecular exchange 

interactions utilizing various approaches as mentioned above we have found the 

molecules 2,7-TMPNO and BPNO which exist in semi-quinoid form and exhibit 

exceptionally stronger magnetic exchange interactions.  

2,7-TMPNO possesses the singlet-triplet energy gap of ΔEST = –1185 K. So it is 

nearly unrealistic to observe the magnetic field induced spin switching. So we planned to 

study the spin switching of this molecule by photo-excitation. (Discussed in chapter 6) 

The similarity of molecule BPNO with Tschitschibabin’s HC allowed us to dig 

discrepancies related to ground state of Tschitschibabin’s HC. (Discussed in chapter 7)  

Finally in chapter 8 the synthesis and characterization of neutral paramagnetic 

HBC derivative (HBCNO) is discussed. The magneto liquid crystalline properties of HBCNO 

were studied by DSC and EPR spectroscopy.  
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Twinkle Twinkle little Spin 

Are you single or are you twin? 

Are you real or are you false? 

How I crave your resonant pulse 

—JOHN A. WEIL 
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2.1 Introduction 

Electron spin resonance (ESR) or electron paramagnetic resonance (EPR) 

spectroscopy was invented by the Russian physicist Zavoisky in 1945. EPR is resonant 

absorption of microwave radiation in the presence of applied magnetic field. The basis for 

EPR spectroscopy relies on the perturbation of the electron spin state by the application 

of applied magnetic field alike the NMR spectroscopy.  According to Pauli’s principle the 

spin quantum number of free electron is S = 1/2. In the presence of an applied magnetic 

field magnetic quantum number becomes effective (MS = +1/2 or MS  =   ̶1/2). Functions 

associated with magnetic quantum number (MS) are denoted as α and β. Due to the spin, 

electron possesses effective magnetic moment (µe) which is proportional to spin angular 

momentum (S).  

 𝜇𝑒 = −𝑔𝑒𝜇𝐵𝑆 2-1 

Where 𝜇𝐵  is Bohr magneton defined as 𝜇𝐵 = 𝑒ℎ/4𝜋𝑚𝑒, e and me are electron elementary 

charge and rest mass, respectively, and h is plank’s constant. ge is so called electron g-

factor or landé g-factor. For free electron the g-factor is 2.0023. 

2.2 Molecules with S = 1/2 

For a system with one unpaired electron placed in magnetic field experiences the 

quantization of spin state and exhibits discrete spin states according to the spin 

multiplicity rule, 2S + 1. The interaction between spin and field is described by the 

Zeeman-effect.  The interaction energy between the spin and the field is a negative value 

of the scalar product of effective magnetic moment and applied magnetic field.  

 𝐸 = − 𝜇𝑒 𝑩 2-2 

When the field is chosen along the z-direction (B = (0, 0, B)), the scalar product simplifies 

to, 

 𝐸 = − 𝜇𝑒,𝑧 𝐵 =  −(−𝑔𝑒𝜇𝐵𝑀𝑆 𝐵) 2-3 
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Therefore the energy for two different states, 

 
𝐸𝛼 = +

1

2
𝑔𝑒𝜇𝐵𝐵 2-4 

 
𝐸𝛽 = −

1

2
𝑔𝑒𝜇𝐵𝐵 2-5 

 Zeeman splitting,  ∆𝐸 =  𝐸𝛼 − 𝐸𝛽  = ℎ𝑣 =  𝑔𝑒𝜇𝐵𝐵 2-6 

In the absence of an applied field α or β spin states of the electron are degenerate 

as shown in Figure 2.1. Application of an applied field perturbs the degeneracy of the two 

spin states. The α spin state with magnetic moment opposite to the applied field, rises in 

energy while the β spin state having magnetic moment aligned with the applied field, 

decreases in energy as the strength of the applied field increases. When a frequency of 

energy which matches the energy separation between the two spin states is applied, the 

absorption occurs; this causes a transition between two spin states. The energy 

difference between two spin states is proportional to the applied magnetic field. The 

selection rule for transition between two levels is ΔMS = ±1.                                                                                   

 

Figure 2.1: Electron-Zeeman splitting as a function of applied magnetic field and 

absorption curve for S = 1/2 system.  
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Generally, continuous wave EPR spectrometers work at constant frequency (𝑣) and 

variable magnetic field (𝐵). One of the commonly used frequency ranges for EPR 

spectrometers is the X-band (9-10 GHz). EPR spectra are usually represented as its first 

derivative. From this EPR measurement, one of the most important data is the g-value, 

which can be calculated from𝑔𝑒 = ℎ𝑣/𝜇𝐵𝐵 , (simplifying this equation 𝑔 = 714.5 ×

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 (𝐺𝐻𝑧)

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑖𝑒𝑙𝑑 (𝐺)
), where 𝑣 is the frequency of the microwave radiation used. 

The g-value gives the information about the species of the atom on which the unpaired 

electron lies, the molecular orbitals in which the unpaired electron resides, the nature of 

the chemical bonds to which the unpaired electron belongs, and the surrounding 

molecular environments from which the unpaired electron experiences the interactions. 

2.3 Electron-Nuclear hyperfine interaction 

The notion hyperfine interaction comes from atomic physics, where it is used for 

the interaction of the electronic magnetic moment with the nuclear magnetic moment. 

Nuclei with an odd number of protons and an odd number of neutrons possess the 

property of nuclear spin angular momentum (I). Electron-nuclei interactions have several 

mechanisms, the most prevalent being the Fermi contact and dipolar interactions (Figure 

2.2). While the Fermi contact interaction is isotropic, the dipole interaction is anisotropic 

in nature. Dipole interactions occur between the magnetic moments of the nucleus and 

electron as an electron moves around a nucleus. However, as an electron approaches a 

 

Figure 2.2: Schematic representation of dipole interaction and Fermi contact. 
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nucleus, it has a magnetic moment associated with it. As this magnetic moment moves 

very close to the nucleus, the magnetic field associated with that nucleus is no longer 

entirely dipolar. The resulting interaction of these magnetic moments while the electron 

and nucleus are in contact is radically different from the dipolar interaction of the electron 

when it is outside the nucleus. This non-dipolar interaction of a nucleus and electron spin 

in contact is the Fermi contact interaction. The isotropic Fermi contact interaction is 

readily observed in solution EPR. The anisotropic coupling vanishes to zero in solutions 

because of the averaged motions of the system and can only be determined for radicals in 

a rigid matrix (crystals, powders, frozen solutions). Dipole interactions (or electron spin-

spin interactions) depend on the distance between spin and nucleus. This interaction 

gives the information about the position of spin on the molecule in solid lattice.  

The spin Hamiltonian for the unpaired electron of an organic radical in magnetic 

field experiencing hyperfine interaction is given by,  

 
𝐻 = 𝐻𝑍𝑒 + 𝐻ℎ𝑓 =  𝑔𝑒𝜇𝐵𝐵𝑆 +  ∑ 𝐴𝑛

𝑛

𝑺 𝑰𝒏  2-7 

 
𝑇ℎ𝑢𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙, 𝐸 = 𝐸𝑍𝑒 + 𝐸ℎ𝑓 =  𝑔𝑒𝜇𝐵𝐵𝑀𝑆 + ∑ 𝐴𝑛

𝑛

𝑀𝑆 𝑀𝑖,𝑛  2-8 

The first term is the Zeeman energy of electron, and the second term is the 

hyperfine coupling between electron and nucleus, where An is the hyperfine coupling 

constant. As explained earlier, 

 𝐴𝑛 = 𝐴0 +  𝐴𝑑𝑖𝑝  2-9 

where 𝐴0  and 𝐴𝑑𝑖𝑝  are Fermi (isotropic) and dipolar (anisotropic) hyperfine coupling 

constants, respectively.  

Figure 2.3 shows the hyperfine splitting by a nucleus X with I = 1/2 and I = 1 for a 

radical in magnetic field B. According to EPR selection rule ΔMS = ±1 and ΔMI = 0, two 

transition are allowed for I = 1/2 and three for I = 1. The numbers of hyperfine lines grow 
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multiplicatively with the number n of magnetic nuclei. Each additional nucleus splits every 

line to equidistant 2I + 1 lines of same intensity. For n number of equivalent nuclei the 

number of lines can be given by 2nI + 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Hyperfine splitting of electron-Zeeman levels for nucleus with I = 1/2 and 1. 
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2.4 Molecules with S > 1/2 

In case of biradicals two unpaired electrons are present in a system, thus the spin 

state depends on the alignment of two electrons. If unpaired electrons are aligned 

antiparallel (S = 0) the spin multiplicity is singlet (2S + 1 = 1), suggesting only a singlet 

state available, thus no EPR signal observed. In case of parallel aligned spin (S = 1) the 

multiplicity is triplet (2S + 1 = 3). So according to the selection rule, ΔMS = ±1, there are 

two allowed transitions as shown in Figure 2.4.   

 

Figure 2.4: Energy diagram for S = 1 system. 

For the biradicals, a simplest case of two spins system, the spin Hamiltonian can be 

written as, 

 
𝐻 =  𝑔𝑒𝜇𝐵𝐵𝑆𝑎 𝑆𝑏 − 2𝐽𝑎𝑏 𝑆𝑎 𝑆𝑏 + ∑ 𝑎𝑥𝑖𝑗

𝑖𝑗

 (𝑆𝑎 𝐼𝑖 + 𝑆𝑏𝐼𝑗)  2-10 

The empirical operator, 2𝐽𝑆𝑎 𝑆𝑏 , is the Heisenberg-Dirac-Van Vleck (HDVV) 

Hamiltonian and represents the exchange interactions. 𝑆𝑎 and 𝑆𝑏  are electron spin 

angular momentum operators and  𝐽𝑎𝑏 is the isotropic exchange coupling constant. The 

product of spin angular momentum operators can be expressed in terms of component 

and product (total) spin angular momentum operators, 

 𝑆𝑇𝑜𝑡
2 = (𝑆𝑎 + 𝑆𝑏 )2 = 𝑆𝑎

2 + 𝑆𝑏
2 + 2𝑆𝑎 𝑆𝑏  2-11 

𝒈𝝁𝑩𝑩 
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𝐌𝐒    
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 𝑆𝑎 𝑆𝑏 = 1/2(𝑆𝑇𝑜𝑡
2 − 𝑆𝑎

2 − 𝑆𝑏
2) 2-12 

Since, the Eigenvalue of S2 is S2 = S(S + 1), the total energy (ETot) of the state with STot 

originating from interacting spins  𝑆𝑎 and 𝑆𝑏 is given by,  

 𝐸𝑇𝑜𝑡 = −2𝐽𝑎𝑏 𝑆𝑎 𝑆𝑏 2-13 

 Therefore, 𝐸𝑇𝑜𝑡 = −2𝐽𝑎𝑏 [𝑆𝑇𝑜𝑡 (𝑆𝑇𝑜𝑡 + 1) − 𝑆𝑎 (𝑆𝑎 + 1) − 𝑆𝑏 (𝑆𝑏 + 1)] 2-14 

Thus coupling of two interacting spins results in a triplet and a singlet state (in total 4 spin 

states, Figure 2.5). For ferromagnetic coupling (J > 0), the energy of triplet state (S = 1) 

using above formula is, 

 
𝐸𝑇 = −

𝐽

2
 2-15 

In case of antiferromagnetic coupling (J < 0), the energy of singlet state (S = 0) is, 

 
𝐸𝑆 =

3𝐽

2
 2-16 

 The singlet triplet gap,   ∆𝐸𝑆 𝑇 = 𝐸𝑆 − 𝐸𝑇 = 2𝐽 2-17 

 
  

Figure 2.5: Energy level diagram for (a) ferromagnetic and (b) antiferromagnetic coupling. 
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respect to each other.  For the EPR spectra of biradicals in solution there are three 

possible cases, 

1) J >> ax, in the occasions when exchange interactions are much larger than the hyperfine 

coupling constant, for the n equivalent nuclei 2nI + 1 number of lines should be observed 

with ax half of the same observed for related mono radical species.  However the total 

width of the spectrum should be same as the observed for the mono radical. 

2) J < ax, in this case each of the radical species behave independently and can be treated 

as the uncorrelated spin-system. Here the observed EPR spectrum matches exactly as 

monoradical system with signal intensity doubled compared to later. 

3) J ~ ax, here the mixing of singlet and triplet state through hyperfine interaction is 

possible. The total spectral width would be larger and the number of spectral lines would 

be more than the observed for mono radical system. 

2.5 Zero field splitting (zfs)  

In frozen solution or powder sample the degeneracy of triplet sub states is lifted or 

quantization of spin state takes place at zero applied magnetic field. This is called zero 

field splitting and can be accounted for the anisotropic dipole-dipole interactions of the 

magnetic moments of two interacting spins. This phenomenon can be described by the zfs 

parameters D and E. The phenomenological Hamiltonian to describe the spin-spin 

interaction energy can be written as, 

 
𝐻 = 𝑺 ∙ 𝑫 ∙  𝑺 2-18 

Where S is total spin operator of the two electrons (S = S1 + S2) and D is symmetrical 

traceless tensor. Since the dipole-dipole interactions are isotropic the Hamiltonian 

becomes, 

 𝐻 = 𝐷𝑋𝑋𝑆𝑋
2 +  𝐷𝑌𝑌𝑆𝑌

2 + 𝐷𝑍𝑍𝑆𝑍
2

 2-19 
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Where DXX, DYY, and DZZ are Eigenvalues of D in x, y and z directions. As D is the traceless 

tensor (DXX + DYY + DZZ = 0), only two independent parameters exist, known as zero field 

splitting parameters D and E. The expressions for D and E are,  

 𝐷 = 3/2 𝐷𝑍𝑍  2-20 

 𝐸 = 1/2|𝐷𝑋𝑋 − 𝐷𝑌𝑌| 2-21 

Including these parameters the spin Hamiltonian for a molecule with S ≥ 1 can be written 

as, 

  2-22 

 

 

The spin-spin Hamiltonian consists of two different interactions, spin-spin and 

spin-orbit coupling. For the organic molecules the most contribution to D comes from 

spin-spin coupling as spin-orbit coupling is negligible for lighter nuclei. Following the 

classical dipole-dipole interaction the element Dij for spin-spin coupling tensor D can be 

described as, 

 
𝐷𝑖𝑗 = − (

𝜇0

4𝜋ℎ
) 𝑔𝑒

2𝜇𝐵
2  〈

𝑑2𝛿𝑖𝑗 − 3𝑖𝑗

𝑑5
 〉 2-23 

 

Simplifying above equation, for an axially symmetrical system E = 0, the average 

distance (d) between two unpaired electron in a molecule can be calculated as, 

 
𝐷 = − (

3𝜇0

8𝜋ℎ
) 𝑔𝑒

2𝜇𝐵
2  〈𝑑−3 〉 2-24 

Further simplifying the equation the value of d can be obtained as, 

 𝑑 = 0.138/|𝐷|1/3, where d and D are in nm and cm-1 units, respectively 2-25 

While D is inversely proportional to the cube of the distance between two spins, E 

𝐻 =  𝑔𝑒𝜇𝐵𝐵𝑆𝑎.𝑏 − 2𝐽𝑎𝑏 𝑆𝑎 𝑆𝑏 + 𝐷 {(𝑆𝑍
2 −

1

3
 𝑆(𝑆 + 1))} + 𝐸 (𝑆𝑥

2 − 𝑆𝑦
2) + ∑ 𝐴𝑛
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describes the deviation of electron distribution from axial symmetry. D and E also have 

been called the axial and rhombic zfs parameters, respectively.  

2.6 Energy states in zfs 

 

 

Figure 2.6: Energy states as a function of electron distribution for cubic, axial, and 

rhombic symmetry, (a) D > 0, (b) D < 0.  
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TZ are the spin states. While in the TX-state spin axes is confined to the ZY plane with zero 

component along X-axis, for the TY-state the spin axis is confined to the XZ plane with zero 

component along Y-axis. Similarly for TZ-state the spin axis is confined to the XY plane with 

zero component along Z-axis. The energetic effects in zero field are due to the anisotropic 

electron distribution and can be described by zfs parameters D and E. D is defined as 

energy difference in higher and lower energy states and the parameter E is half of the 

energy difference of higher energy states. As shown in Figure 2.6, D is positive for oblate 

spin distribution, a flattening in one direction, and negative for prolate spin distribution, 

an elongation in one direction. Thus a geometrical shape of the spin distribution can be 

estimated from D and E.  

2.7 Determination of zfs parameters D and E using EPR 

 EPR is the technique used to determine energies of D and E. The simplest EPR 

spectrum of a triplet system is the one for cubic symmetry. There is no zero-field energy 

state splitting in the system with cubic symmetry as shown in Figure 2.4. Regardless of 

direction of applied magnetic field the splitting pattern remains the same. Moving from 

higher symmetric cubic system to lower symmetric axial system the two fold degeneracy 

of energy state is observed and the energy states of such triplet is described by D as 

shown in Figure 2.7. Here E = 0 because of the presence of axial symmetry. For this system 

the TX and TY states remains degenerate at zero field and application of applied magnetic 

field in X and Y direction result in absorption at the same field. Two absorptions are 

observed for an axial system. Thus the axial system is generally characterized by a four line 

spectrum with the distance between two outer most peaks equal to 2D as shown in Figure 

2.7c. On further propagating towards lower symmetric rhombic system the degeneracy is 

lifted completely at zero field. The zero field energy states are described by D and E.  

Three absorptions are observed for rhombic system giving a six line spectrum (Figure 

2.8d), because each canonical orientation results in different spectrum i.e. ΔMS = 1 

transitions occur at different field strengths.  From the spectrum it is possible to calculate 
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the energy of D and E as shown in Figure 2.8d. It should be noted that for the axial and 

rhombic system ΔMS = 2 transitions may also be observed at half field (B/2) of the ΔMS = 

±1 transition. The lower field, ΔMS = 2 transitions are usually forbidden. Here the selection 

rule is quite relaxed because at lower field the spin quantum numbers (MS = ± 1, 0) are 

not well defined.    

  

  

    

Figure 2.7: Energy diagram for axial system with S = 1 and D > 0. (a) Applied field aligned 

with molecular Z-axis. (b) Applied field aligned with molecular X- or Y- axis. (c) Simulated 

EPR spectra for this system.  
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Figure 2.8: Energy diagram for rhombic system with S = 1, D > 0, and │D│ ≠ 3 │E│. (a) 

Applied field aligned with molecular X-axis. (b) Applied field aligned with molecular Y- 

axis. (c) Applied field aligned with molecular Z-axis.  (d) Simulated EPR spectra for this 

system and determination of zfs parameters. 
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2.8 Ground State analysis and exchange-coupling constant (J) with 

EPR 

At thermal equilibrium and under the influence of the external applied magnetic 

field, according to the Maxwell–Boltzmann law the spin population splits between the 

two Zeeman levels, n+ and n−,  

 𝑛+

𝑛−
= 𝑒𝑥𝑝  [−(𝐸𝛼 − 𝐸𝛽)/𝑘𝐵𝑇] = 𝑒𝑥𝑝  [−

𝑔𝑒𝜇𝐵𝐵

𝑘𝐵𝑇
] 2-26 

Where kB is the Boltzmann constant and T is the absolute temperature. Following 

the above equation all the spin levels are therefore populated above 0 K in a Boltzmann 

distribution of spins in upper and lower spin sub levels. At 298 K, in field of about 3300 G 

the n+ / n-  is approximately 0.9986. Thus the population of two Zeeman level is almost 

equal, but the slight excess in lower level gives rise to net absorption. Further after the 

absorption the excess energy of upper level lost as consequences of the process called 

spin lattice relaxation. Thus the intensity of EPR signal is temperature dependent and 

follows the Curie law, 

 
𝐼𝐸𝑃𝑅 =

𝐶

𝑇
 2-27 

Where C is the Curie constant, and 𝐼𝐸𝑃𝑅 is the intensity of EPR signal which is 

inversely proportional to temperature. From the temperature dependent EPR spectra of 

ΔMS = ±1 transition the exchange coupling constant (J) can be calculated owing to 

Bleaney-Bower’s singlet-triplet model using the equation 2-28, 

 
𝐼𝐸𝑃𝑅𝑇 = 𝐶

3

(3 + 𝑒𝑥𝑝 (−
2𝐽

𝑘𝐵𝑇
))

 
2-28 

In precept the ground sate of a high spin molecule can be determined using temperature 

dependent EPR measurement data in a glass matrix. A linear increase of EPR signal 

intensity with temperature indicates no thermal population or depopulation of spin state 
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of molecule in given temperature range.     

2.9 Instrumentation 

 

Figure 2.9: Schematic block diagram continuous wave EPR spectrometer. 

The majority of CW EPR instruments are based on the general design shown in the 

schematic diagram (Figure 2.9). The plane polarized microwaves are generated by the 

klystron tube and the power level adjusted with the attenuator. The circulator behaves as 

a traffic circle and directs the microwaves to the cavity where the sample is mounted. At 

resonance, a portion of the microwaves are absorbed by the sample. The microwaves 

reflected back from the cavity are routed by the circulator to the diode detector. Excess 

of any microwave reflected from the diode are absorbed completely by the load.   
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2.10 Summary 

After having basic information about the principles of EPR spectroscopy a vast 

amount of information can be extracted from the EPR spectra measured using different 

experimental conditions (concentration, temperature etc).  

 The selection rules for EPR spectroscopy, ΔMS = ±1 and ΔMI = 0. Number of lines in 

EPR spectrum can be given by 2nI + 1. 

 g-value calculated using formulae,  𝑔 = 714.5 ×
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 (𝐺𝐻𝑧)

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑖𝑒𝑙𝑑 (𝐺)
.    

 g-value gives the information about the species of the atom on which the unpaired 

electron lies, the molecular orbitals in which the unpaired electron resides, the 

nature of the chemical bonds to which the unpaired electron belongs, and the 

surrounding molecular environments from which the unpaired electron 

experience the interactions. 

 The electron-nuclear hyperfine interaction pattern gives information about 

number and type of magnetic nuclei with which the unpaired electron interacts.  

 ZFS parameters D and E are usually obtained from the EPR spectrum measured at 

low temperature in solvent glass matrix. 

 Geometrical shape of spin distribution can be estimated from zfs parameters D 

and E. 

 Distance between two spins is inversely proportional to the cube root of zfs 

parameter D and can be calculated using the formulae, 𝑑 = 0.138/|𝐷|1/3, d and D 

are in nm and cm-1 units, respectively.   

 The ground state of high spin molecule can be determined using variable 

temperature EPR measurement in glass matrix. 

 From the variable temperature EPR spectrum exchange coupling constant can be 

calculated by fitting Bleaney-Bowers equation,  𝐼𝐸𝑃𝑅𝑇 = 𝐶
3

(3+𝑒𝑥𝑝(−
2𝐽

𝑘𝐵𝑇
))

 the sign 

of J gives information about the type of exchange interaction i.e. 
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antiferromagnetic or ferromagnetic.     
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The intra-molecular magnetic exchange interactions can be tuned by either 

changing the radical moiety or the π-spacer in a predictable manner. The inter-molecular 

exchange interactions cannot be simply tuned because of the unpredictable molecular 

self-organization in a crystal lattice. In this chapter we have shown the tuning of inter-

molecular magnetic exchange interactions, in the tolane bridged nitronyl nitroxide 

biradicals, utilizing the crystal engineering approach.  

 

Note: Large part of this chapter has been published in Crystal Growth and Design, 2014, 

DOI: 10.1021/cg5010787. 

CHAPTER 3 
TUNING THE INTER-MOLECULAR EXCHANGE 

INTERACTIONS IN TOLANE-BRIDGED NN 

BIRADICALS  
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3.1 Introduction 

 

Figure 3.1: Magnetic field induced quantum phase transition.  

Previously in our laboratory, it was found that tolane bridged nitronyl nitroxide 

biradical (NN, Scheme 3.1) undergoes quasi two dimensional magnetic field induced 

quantum phase transition at millikelvin temperatures in the routine laboratory magnetic 

field up to 11 T.[1] As shown in Figure 3.1, the AC susceptibility measurements were 

performed at sub Kelvin temperature under the applied magnetic field up to 11 T. The 

rounded double peak structure between lower critical field and the saturation field in the 

AC susceptibility measurements indicated the “Berezinskii-Kosterlitz-Thouless” type two-

dimensional magnetic field induced phase transition.[2-3] In this case the estimated inter- 

and intra-molecular exchange interactions were −1 to −2 K and −4.8 K, respectively.[4] 

These findings demonstrated the prospective utilization of weakly AF coupled nitronyl 

nitroxide biradicals to generate quantum magnets. Continuing our investigations in this 
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direction the tolane bridged biradicals, decorated with hydrogen bond donor and/or 

acceptor functional groups, were designed (Scheme 3.1) to achieve the fine tuning of the 

inter-molecular magnetic exchange interactions and to obtain a three-dimensional 

hydrogen bonded spin-lattice in the crystalline form.  

The focus of the present chapter was to study the structurally similar compounds 

exhibiting different magnetic behavior. It was expected to achieve such effect by retaining 

the intra-molecular exchange pathway through maintaining the geometry of the tolane 

bridge, and leaving the inter-molecular exchange interactions as the main variable. A 

functional group is a delicate, yet powerful tool with the potential to alter the motif of 

crystal packing. Therefore, it was intriguing to examine the influence of functional groups 

on the character and magnitude of the inter- and intra-magnetic exchange interactions.  

 

Scheme 3.1: Functionalized tolane bridged nitronyl nitroxide biradicals. 

3.2 Synthesis of functionalized tolane bridged biradicals 

The key precursor for the synthesis of nitronyl nitroxide biradicals are 

dialdehydes.[5] The general approach towards the synthesis of tolane bridged dialdehydes 

relied on Pd(II) catalyzed Sonogashira-Hagihara cross coupling reaction as shown in 

Scheme 3.2. Condensation of dialdehyde with 2,3-bis(hydroxylamino)-2,3-dimethyl 

butane (BHA) gave bisimidazolidine in quantitative yield. The oxidation of bisimidazole 

was performed with NaIO4 in DCM/H2O two phase mixtures.   
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Scheme 3.2: General synthetic route to the synthesis of functionalized tolane bridged (a) 

dialdehyde, (b) bisimidazolidine and (c) nitronyl nitroxide derivatives.   

Inspired by the literature procedures[6-7] for the synthesis of 

ethynylbisbenzaldehyde with good yields using one pot Pd catalyzed Sonogashira 

coupling reaction, as shown in Scheme 3.3a, Sonogashira coupling reactions were 

performed to obtain 4,4'-(ethyne-1,2-diyl)bis(3-bromobenzaldehyde) (NN1a). But the 

reaction ended in very poor yield with many side products. So it was necessary to find out 

an alternate route for the synthesis of NN1a. As shown in Scheme 3.3b the NN1a can be 

obtained by step wise Sonogashira coupling reaction of 4-iodo-3-bromo-benzaldehyde 

(2).[8-9] The Sonogashira coupling reaction of 2 with TMSA (trimethylsilylacetylene), 

yielded compound 6 (70% yield), which on deprotection of trimethylsilyl under mild basic 
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condition gave the product 7 in 90% yield. Further coupling of 7 with 2 resulted in the 

desired product NN1a in 65% isolated yield. Similarly aldehydes NN2a to NN4a were also 

synthesized in good yield following this stepwise Sonogashira reaction sequence. 

Scheme 3.3: (a) one pot and (b) stepwise Sonogashira coupling reaction for the synthesis 

of NN1a. 

The condensation of dialdehyde with BHA was sensitive to reaction solvent and 

the temperature. The reaction of NN1a and NN3a with BHA in toluene at 90 oC for two 

days gave the desired product NN1b and NN3b, respectively, in quantitative yields.  

Under similar reaction conditions the condensation reaction of NN2a and NN4a with BHA 

did not form the desired product, probably because of the poor stability of condensation 

product under these conditions. After several trials using different solvents and reaction 

temperatures the optimized conditions listed in Table 3.1 gave the best yields. Oxidation 

of bishydroxylamines is a gentle process, and must be performed with care to avoid the 
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formation of imino nitroxide radicals or mixed species.[10] Thus, oxidation with equimolar 

NaIO4 in an ice bath led preferably to the desired nitronyl nitroxide biradicals.[11]      

Table 3.1: Optimized reaction conditions for synthesis of NN1a-NN4a.                                                                      

 

The synthesized biradicals NN1-4 were characterized by UV-Vis, EPR and single 

crystal X-ray analysis. Magnetic measurements and DFT calculations were performed to 

collect information about the electronic structure and magnetic properties of the 

biradical species.  

3.3 UV-Vis analysis 

 

Figure 3.2: Characteristic n—π* transition of biradicals NN1-4 in toluene   (c ~ 10–4 M). 

Compound Solvent Temperature Time 

NN1a Toluene 90 oC 2 days 

NN2a Toluene 90 oC 2 days 

NN3a Toluene 65 oC 5 days 

NN4a DCM/MeOH Room temp. 7 days 
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The obtained biradicals were fairly good soluble in polar organic solvents. As they 

show prolonged stability in aprotic solvent like toluene or benzene, the UV-Vis 

measurements were performed in toluene with concentration of ~10–4 molar.  The UV-Vis 

spectrum of neutral radicals gave clear insight of the corresponding radical moieties. The 

biradicals NN1-4 displayed nearly identical weak absorption around 620-630 nm (Figure 

3.2). This weak absorption in visible range was a characteristic n—π* transition stemming 

from nitronyl nitroxide radical moiety. Thus the UV-Vis spectra confirmed the presence of 

radical moieties in the synthesized compounds.  

3.4 EPR analysis 

 

Figure 3.3. X-band EPR spectra of biradicals NN1-4 in toluene (c ~ 10–4 M) at room 
temperature and simulated EPR spectra. 
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The EPR spectra of biradicals were measured in toluene at ~10-4 molar 

concentration. The typical EPR spectra of biradicals consisted of nine well-resolved lines 

due to hyperfine coupling (hfc) of two electron spins with four equivalent nitrogen atoms 

at giso = 2.0068 (Figure 3.3) following the formula, 2nI + 1, for exchange coupled 

biradicals. The hfc and g-values were calculated by spectral simulation and are listed in 

Table 3.2. The experimental EPR spectra were in agreement with simulated one. The 

obtained hfc, aN1/2 = 0.372 mT, which is half of the hfc for mono nitronyl nitroxide. The 

EPR spectra for all biradicals demonstrated that the exchange interactions (J) between 

the radical moieties are much larger than the hyperfine coupling (J >> aN). 

3.5 Crystal structure analysis 

Magnetic interactions highly depend on the geometry and packing of the 

molecules in the crystal lattice. Therefore single crystal analysis of the radicals is a vital 

requirement to understand their magnetic properties. The single crystals were grown by 

slow diffusion of hexane to a solution of biradical in DCM at room temperature. Good 

quality single crystals were obtained for the biradicals NN1, NN2, and NN3.[12-13] All the 

attempts to obtain single crystal of NN4 failed. The unit cell parameters, space group and 

other crystallographic details are listed in crystallographic table (Appendix-III). Biradical 

NN1 crystallized in non-centro symmetric monoclinic, P21, chiral space group. Crystal 

structure analysis revealed that NN1 forms sheet structure. In the sheet molecules of 

NN1 recognizes each other through C―H…O and C―H…Br hydrogen bonds, forming the 

planar herringbone pattern in two dimensions (Figure 3.2a). The >N―O group of radical 

moiety in NN1 forms weak C―H…O hydrogen bonds with the phenyl and methyl protons 

of two neighboring molecules (highlighted blue area, Figure 3.4a). These sheets further 

stack through π―π interaction and C―H…O hydrogen bond (Figure 3.4b). Furthermore 

the torsion angles of the terminal nitronyl nitroxides with the benzene ring of the tolane 

bridge are 26.6° and 25.6°. 
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Figure 3.4: Crystal packing of NN1. 

Biradicals NN2 and NN3 were crystallized in monoclinic, Pc, and tetragonal, I41/a, 

space groups, respectively. Careful structural analysis showed that while NN1 exhibited 

only two dimensional hydrogen bonded network, interestingly the NN2 and NN3 formed 

three dimensional networks (Figure 3.5 and 3.6). This is probably due to more flexible 

and/or hydrogen bond donor functional groups attached to the tolane bridge in case of 

NN2 and NN3. In two dimensions the molecules of NN2 forms non planar herringbone 

pattern (Figure 3.5a). The molecules of NN2 recognize each other through π―π stacking 

and strong N―H…O hydrogen bonds. This two dimensional herringbone structure further 

(a) 

(b) 
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extends in three dimensions through N―H…O and C―H…O hydrogen bonds (Figure 3.5b). 

It should be noted that the >N―O group of the radical moiety in NN2 recognizes two 

neighboring molecules through amide functional group utilizing strong N―H…O hydrogen 

bond, thereby indicating the possible way to transmit magnetic exchange interaction 

through strong hydrogen bond. Interestingly NN3 forms non planar layered structure in 

two dimensions in which the two radical moieties form two different kinds of hydrogen 

bonding motifs (highlighted with green and yellow strips in Figure 3.6a).  While one of the 

radical moiety forms C―H…O hydrogen bond with methyl, the other radical moiety forms 

C―H…O hydrogen bond with the methoxy functional group and a phenyl ring. The Br 

functional group of NN3 is involved in inter layer C―H…Br hydrogen bond. Moreover 

torsion angles of terminal nitronyl nitroxides with tolane bridge are 22.7° and 13.4° for 

NN2 and 28.6° and 11.3° for NN3. One of the terminal radical moieties is more in plane 

with tolane compared to the other one. According to the crystal structure analysis we 

could significantly influence the pattern of the interacting spins in the lattice, and move 

from two to three dimensional order by directing new hydrogen bonding.   

 

Figure 3.5: Crystal packing of NN2. 

(a) (b) 
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Figure 3.6: Crystal packing of NN3. 

3.6 Magnetic measurements 

 Crystal structure analysis provided the evidence about the possible ways of 

transmitting magnetic interactions in the lattice. On the basis of crystal structure data the 

information about the magnitude of exchange interactions cannot be obtained precisely. 

Therefore, magnetic susceptibility and magnetization of polycrystalline sample of 

biradicals were measured in the temperature range 2 K ≤ T ≤ 200 K using a SQUID 

magnetometer to understand the nature and extent of the magnetic exchange 

interactions prevailing in the synthesized tolane bridged biradicals. Background signals of 

(a) 

(b) 
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sample holder and diamagnetic correction were subtracted.[14] The SQUID measurements 

were performed by Dr. Yoshikazu Ito. 

  

Figure 3.7: (a) Molar magnetic susceptibility, χmol, (emu/mol/Oe) as a function of 

temperature under magnetic field 0.1 T.  (b)  Effective magnetic moment as a function of 

temperature under magnetic field 0.1 T.  

As shown in Figure 3.7a, the molar magnetic susceptibility (χmol) initially increased 

with the Curie-Weiss behavior at higher temperature region and decreased at lower 

temperature with a broad peak mainly caused by intra-molecular AF interactions. On 

further lowering the temperature, χmol abruptly decreases close to zero at 2 K which 

means the biradicals switch from a thermally populated magnetic spin triplet state to a 

non magnetic spin singlet ground state. All the biradicals exhibited Tmax from 6 to 8 K. The 

intra-dimer coupling constant Jintra of R-tolane-R’ was then estimated using an isolated 

dimer model (𝐻 =  −2𝐽𝑖𝑛𝑡𝑟𝑎𝑆𝑅𝑆𝑅′).
[15] The obtained intra-molecular exchange interaction 

values appeared in very narrow range from −3.2 to −4.5 cm−1 (Table 3.2). Notably the Jintra 

for functionalized tolane bridged biradicals NN1, NN2 and NN4 was very close to the non-

functionalized tolane NN biradical (Table 3.2). Only in case of NN3 the Jintra was slightly 

higher by 1 cm−1 compared to other functionalized tolane bridged biradicals. This very 

small change in Jintra may be originated from the captodative effect of two different 

functional groups (electron donor methoxy and electron acceptor bromo) attached to the 

tolane bridge in NN3.[16] These observations led to inference that the functionalization of 
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the tolane bridge didn't influence the intra-molecular magnetic exchange interactions 

significantly. The negative Weiss temperature was observed in all the biradicals indicating 

existence of AF intra- and inter-molecular magnetic exchange interactions. The observed 

effective magnetic moment (μeff) values for all biradicals were calculated from 

temperature dependence of magnetic susceptibility under 0.1 T (Figure 3.7b). At 200 K 

the magnetic moments were close to the theoretical value 2.45 μB for magnetically 

uncorrelated spins[17] of biradicals. 

 

Figure 3.8: Magnetization as a function of magnetic field at 2 K. 

The magnetization curves of all the biradicals NN1-4 were measured at 2 K to 

understand the influence of hydrogen bonds on inter-molecular exchange interactions. 

Interestingly, despite of having similar intra-molecular AF interactions, NN1, NN2 and 

NN4 showed significant differences in the magnetization under the influence of an 

applied magnetic field up to 5 T (Figure 3.8). This difference can only be attributed to 

substantial alteration of the inter-molecular exchange interactions because the intra-

molecular exchange interactions were quite similar. The NN3 with relatively higher Jintra 

showed smallest magnetic field dependence in comparison with the other functionalized 
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tolane bridged biradicals. In the presence of an applied magnetic field the population of 

triplet state increases in the order NN4 > NN1 > NN2 > NN3. These results are in 

accordance with the crystal structure analysis, where NN2 and NN3 possessing hydrogen 

bond donor functional group form hydrogen bonds with radical moiety, shows smaller 

raise in magnetic field induced triplet state population compared with NN1 and NN4. 

Therefore the hydrogen bonds played an important role in transmitting inter-molecular 

exchange interactions. 

Table 3.2. Magnetic properties of biradicals 

3.7 DFT calculations 

The intra-molecular exchange interaction energies of the biradical species were 

also estimated from the DFT calculations.[18] The geometry of biradical NN1-3 was taken 

from the X-ray diffraction determinations without further optimization. The geometry of 

NN4 obtained from the X-ray geometry of NN1 by replacing two bromo functional groups 

by a nitro group and hydrogen. The broken-symmetry approach proposed by Noodleman 

et al. was employed to elucidate the magnetic properties of the biradical species under 

 

Tmax         

(K) 

Θ             

(K)a 

Jintra(exptl)    

(cm−1)b 

Jintra(calcd)    

(cm−1)d 
g-factor 

hfc  (aN/2)    

(mT) 

NN - - −3.3c −6.3 - - 

NN1 6.5 −5.2 −3.6 −5.7 2.0068 0.372 

NN2 7.5 −9.0 −3.5 −5.4 2.0067 0.372 

NN3 8.0 −17.7 −4.5 −7.3 2.0072 0.372 

NN4 6.0 −3.5 −3.2 −6.4 2.0067 0.372 

NN+Ag 8.0 - - - - - 

aWeiss temperature, bEstimated from the magnetic susceptibility measurements 

(Figure 3.7a) using an isolated dimer model (S = 1/2), creference 1, dCalculated at 

UBLYP/6-31G(d) level of DFT. 
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study. The exchange coupling constant (J) was calculated by the generalized spin 

projection method suggested by Yamaguchi et al.[19-21] For the molecule with two 

exchange coupled unpaired electrons, the Heisenberg-Dirac-Van Vleck (HDVV) 

Hamiltonian,  

 𝐻 =  −2𝐽12𝑆1𝑆2, 3-1 

S1 and S2 are the spin angular momentum operators.     

 
𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝐽 =

(𝐸(𝐵𝑆)  −  𝐸(𝑇))

(𝑆2(𝑇)  − 𝑆2(𝐵𝑆))
 3-2 

where, E(BS) is the energy of the broken-symmetry (BS) solution, a mixture of singlet and 

triplet states with SZ = 0 and S2(BS) close to 1,  E(T) is the energy of the triplet  state with 

S2(T) close to 2, and S2 are the Eigenvalues of the spin operator for these states.   

 Thus the direct exchange yields,   𝐽 ≈  𝐸(𝐵𝑆)  −  𝐸(𝑇)  3-3 

All DFT calculations were performed with the Gaussian 09 program package.[22] 

For calculating J values the B3LYP is most commonly used functional[23-25] and to increase 

accuracy, polarization and diffuse functions were added to the basis set.[26] Thus we have 

initiated our calculation using unrestricted spin polarized density functional theory, 

UB3LYP/6-31G(d).  However the calculated intra-molecular exchange interaction values 

Jintra(calcd) were much higher than the Jintra(exptl) obtained from the magnetic 

measurements (Table 3.2 & 3.3). Recently Lee et al. have used scaling approach to 

correlate the Jintra(calcd) with Jintra(exptl) and obtained scaling factor of 0.38 for para and 

meta substituted phenylene biradicals using UB3LYP/6-311++G(d,p) level of theory.[27]  

Even after applying this scaling factor for tolane bridged biradicals the calculated values 

deviated largely from experimental results. The observed over estimation of calculated J 

values using UB3LYP functional can be attributed to the spin contamination from Hartree-

Fock.[28] Thus to avoid the Hartree-Fock contamination we calculated J with UBLYP 

functional using 6-31G(d) basis set. Interestingly UBLYP/6-31G(d) provided rather 
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accurate results. The calculated exchange interactions were very close to the same 

obtained from the magnetic measurements (Table 3.2). Additionally calculated spin 

density of triplet state of biradicals NN1-4 was localized over the radical moiety and 

functionalization of tolane bridge didn't influence the distribution of the spin density 

(Figure 3.9).   

Table 3.3. Summary of DFT calculations. 

 Method 
J        

(cm-1) 

E, eV      

(triplet) 

S2   

(triplet) 

E, eV          

(BS) 

S2       

(BS) 

NN 
UB3LYP/6-31G(d) −23.5 −43683.7450 2.1163 −43683.74792 1.1226 

UBLYP/6-31G(d) −6.36 −43665.54415 2.0281 −43665.54494 1.0295 

NN1 UBLYP/6-31G(d) −5.77 −183593.6877 2.0274 −183593.6884 1.0287 

NN2 UBLYP/6-31G(d) −5.52 −48253.3057 2.0284 −48253.3063 1.0297 

NN3 UBLYP/6-31G(d) −7.36 −116740.9387 2.0336 −116740.9396 1.0356 

NN4 UBLYP/6-31G(d) −6.44 −49229.37964 2.0314 −49229.38044 1.0323 

 

Figure 3.9. Spin density distribution in triplet state of NN1-4. 
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3.8 Co-ordination of NN with diamagnetic metal ion 

In the previous section it was shown that the inter-molecular magnetic exchange 

interactions can be tuned by introducing hydrogen bond donor or acceptor functional 

group to the spacer molecule. Another approach, to increase the dimensionality and 

tuning of magnitude of exchange interactions, is the co-ordination complex formation 

with diamagnetic metal ion. The diamagnetic metal ions such as Ag(I) and Cu(I), are 

believed not to mediate magnetic interactions, when complexed with stable organic 

radical ligands. However it has been shown that antiferromagnetic interactions between 

the radicals were operative through the diamagnetic metal ions.[29-32] Thus to obtain three 

dimensional structure and better inter-molecular exchange interactions the metal 

complex of silver with tolane bridged nitronyl nitroxide biradical (NN) have been 

synthesized. 

3.8.1 Synthesis 

To the solution of Ag(CF3COO) in minimum amount of methanol, the solution of 

tolane nitronyl nitroxide biradical (NN) in DCM was added. The resulting clear solution 

was filled in NMR tube over which hexane was added and allowed for slow diffusion. 

After few days dark blue colored needle shaped crystals suitable for single crystal X-ray 

diffraction were obtained.  

3.8.2 Crystal Structure 

The co-ordination complex of NN and Ag(CF3COO) (NNAg) was crystallized in 

triclinic Pī space group. Careful structure analysis revealed that there are four different 

coordination environments present in each repeating unit of complex (Figure 3.10). Two 

different types of chains of silver are connected by co-ordination through the tolane 

biradical forming ladder type architecture in two dimensions (Figure 3.11). This discrete 

repeating unit further extends in three dimensions by co-ordination through tolane 
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biradical and by O―H…O hydrogen bond (2.25 Å) formation between two coordinated 

water molecules (Figure 3.12). The repeating NN biradicals are separated by layer of silver 

cluster and recognizes each other through Ag metal ion. This is quite undesirable as an 

excessive layer of silver may dilute the inter-molecular exchange interactions. 

  

 

 

Figure 3.10. Four different coordination environments of Ag. 
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Figure 3.11. Discrete ladder type architecture formed by alternative ligand and silver 

chain. 

 

 

Figure 3.12. Further extension of repeating unit by coordination of ligand and hydrogen 

bond formation between coordinated water molecules. 

 

  O―H…O hydrogen 
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3.8.3 Magnetic properties 
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Figure 3.13. Magnetic susceptibility as a function of temperature under magnetic field 

0.1 T, Inset: Magnetization as a function of magnetic field at 2 K.     

To probe into magnetic properties of metal-complex, magnetic measurements 

were performed in the temperature range 2 K ≤ T ≤ 300 K.  The magnetic susceptibility 

measurements showed a similar behavior as the functionalized tolane bridged nitronyl 

nitroxides. Here the transition temperature Tmax from thermally populated magnetic spin 

triplet state to a non-magnetic spin singlet ground state is 8 K which in the same range as 

the Tmax for NN1-4 (Figure 3.13). This indicates that the exchange coupling constant Jintra is 

of same order of magnitude as NN and other tolane bridged nitronyl nitroxide derivatives. 

Thus the intra-molecular magnetic exchange interactions are not influenced by complex 

formation with Ag metal ion.  
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3.9 Summary 

In conclusion we have successfully introduced hydrogen bond donor and acceptor 

groups at the tolane bridge to obtain functionalized tolane bridged nitronyl nitroxide 

biradicals. Although the intra-molecular exchange interactions remained similar on 

functionalizing the tolane bridge, a significant difference in the magnetization was 

observed upon application of an external magnetic field. Crystal structure analysis 

revealed that hydrogen bond donor functional groups formed hydrogen bonds directly 

with the radical moieties and thereby increased the inter-molecular exchange 

interactions. Thus, by utilizing the crystal engineering approach the tuning of inter-

molecular exchange interactions was realized. Furthermore DFT calculations were 

employed to determine the exchange interactions. The calculated values of intra-

molecular coupling constant Jintra were well in accordance with the ones obtained from 

the magnetic susceptibility measurements.  Quantitative estimation of inter-molecular 

exchange interactions requires more sophisticated magnetic measurements. Additionally 

a metal-organic framework of NN with Ag metal ion was synthesized. Interestingly the 

intra-molecular magnetic exchange interactions were not influenced by complex 

formation with silver salt. 
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3.10 Synthetic details 

4-Amino-3-bromo benzaldehyde (1)  

 

The mixture of 2-bromoaniline (7.0 g, 40 mmol) was dissolved in DMSO (300 ml), 

concentrated aqueous HCl (30 ml) and CuCl2 (10.7 g, 80 mmol)  was added in a 500 ml 

round bottom flask with reflux condenser was heated at 90 °C for 8 hour.  The reaction 

was quenched with ice-water, the pH of mixture was adjusted to 8 with 10% solution of 

NaOH and the mixture was extracted with Et2O (4 X 100 ml). The solvent was evaporated 

and crude product was purified with column chromatography (9:1, Hexane: Ethyl 

acetate). The 4-amino-3-bromo benzaldehyde was obtained with 66% yield. M.P. 101 °C. 

1H NMR (250 MHz, CDCl3) δ 9.71 (s, 1H), 7.89-7.88 (d, 1H), 7.59-7.55 (dd, 1H), 6.75-6.72 

(d, 1H), 4.70 (s, 2H). MS-FD (8 kV, CH2Cl2) m/z: found 201.1 (100%).  

3-Bromo-4-iodobenzaldehyde (2)   

 

To the solution of 4-amino-3-bromobenzaldehyde (1) (3.4 g, 17 mmol) in 70 ml 

acetic acid, 18 ml HCl (6 molar) was added and the resulting suspension was cooled in 

ice/salt bath. To this cooled suspension the solution of NaNO2 (1.3 g 19 mmol) in 40 ml 

H2O was added slowly maintaining internal temperature of the reaction mixture <5 °C, 
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the solution was stirred for 30 minutes and then the resulting clear solution was poured 

into solution of KI (5.6 g, 35 mmol) and iodine (1.14 g, 4.5 mmol) in 40 ml H2O and the 

mixture was stirred for 90 minutes at room temperature. 100 ml of water added and the 

mixture was extracted with DCM (4 × 100 ml). The collected extracts were washed with 

aqueous Na2S2O4 solution (10% w/v, 2 × 100 ml), aqueous NaOH (2.0 M, 100 ml), water (2 

× 100 ml) and brine solution (50 ml). The 3-bromo-4-iodobenzaldehyde obtained in 72% 

yield. M.P. 65 °C. 1H NMR (250 MHz, CDCl3) δ 9.91 (s, 1H), 8.09-8.05 (m, 2H), 7.49-7.45 

(dd, 1H). MS-FD (8 kV, CH2Cl2) m/z: found 311.9 (100%).  

2-Amino-5-formylbenzonitrile (3) 

 

To the deoxygenated solution of 4-amino-3-bromobenzaldehyde (1) (4.75 mmol) 

in 8 ml DMF, ZnCN2 (2.85 mmol) and Pd(PPh3)4 (6 mol%) were added. The resulting 

solution was heated at 80 °C for 8 hour under argon. The reaction was mixture was 

cooled to room temperature, diluted with toluene, followed by washing with 2N NH4OH 

(10 ml × 2), brine (10 ml × 1), dried over MgSO4. The collected organic extract was 

concentrated under vacuum and purified by silica gel column chromatography (100:30, 

Hexane: Ethyl acetate). Yield 89%. M.P. 166 °C. 1H NMR (300 MHz, DMSO-d6) δ 9.62 (S, 

1H), 8.01-8.00 (d, 1H), 7.77-7.73 (dd, 1H), 7.16(S, 2H), 6.87, 6.84 (d, 1H). 13C NMR (75 

MHz, DMSO-d6) δ 189.03, 155.83, 138.22, 133.15, 125.07, 116.98, 115.34, 92.85. MS-FD 

(8 kV, CH2Cl2) m/z: found 145.4 (100%).  
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5-Formyl-2-iodobenzonitrile (4) 

 

Following the procedure same as for 2. Crystalline white solid obtained in 71% 

yield. M.P. 136 °C. 1H NMR (250 MHz, CDCl3) δ 9.98 (S, 1H), 8.18-8.14 (d, 1H), 8.08-8.07 (d, 

1H), 7.78-7.74 (dd, 1H). MS-FD (8 kV, CH2Cl2) m/z: found 256.5 (100%).  

4-Iodo-3-methoxybenzaldehyde (5) 

 

To the solution of 4-iodo-3-hydroxybenzaldehyde (1 mmol) in 10 ml acetone, 

K2CO3 (1.5 mmol) was added and stirred at room temperature for 30 minutes. To the 

resulting mixture iodomethane was added and heated to reflux for 5 hour. Reaction 

mixture was cooled to room temperature, volatiles were evaporated under vacuum. 

Crude product partitioned in DCM/water (50/20 ml), organic layer was separated washed 

with brine and dried over MgSO4. The solvent was removed under vacuum and crude 

product was purified by silica gel column chromatography (100:10, Hexane: Ethyl 

acetate). Yield 97%. M.P. 86 °C. 1H NMR (300 MHz, CDCl3) δ 9.95 (s, 1H), 8.00-7.97 (d, 1H), 

7.29 (d, 1H), 7.20-7.17 (dd, 1H), 3.96 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 191.44, 159.00, 

140.40, 137.96, 125.10, 108.73, 95.34, 56.71. 
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3-Bromo-4-((trimethylsilyl)ethynyl)benzaldehyde (6) 

 

The mixture of 3-bromo-4-iodobenzaldehyde (2) (1 mmol), Pd(PPh3)2Cl2 (5 mol%), 

CuI (10 mol%) in 5 ml Et3N was deoxygenated by bubbling with argon for 20 mins. To this 

TMSA (1.1 mmol) was added and solution left stirring at room temperature for overnight. 

The resulting mixture was filtered and washed with saturated ammoniumchloride 

solution followed by brine and dried over MgSO4. Solvent was removed under vacuum 

and the crude product was purified by silica gel column chromatography (100:3, Hexane: 

Ethyl acetate). 3-bromo-4-((trimethylsilyl)ethynyl) benzaldehyde was obtained with 70% 

yield as pale yellow oil. 1H NMR (300 MHz, CDCl3) δ 9.94 (s, 1H), 8.07 (d, 1H), 7.76-7.73 

(dd, 1H), 7.64-7.61 (d, 1H), 0.29 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 190.15, 136.63, 

134.16, 133.39, 131.17, 127.82, 126.65, 104.84, 102.34, −0.20. 

3-Bromo-4-ethynylbenzaldehyde (7) 

 

To the solution of 3-bromo-4-((trimethylsilyl)ethynyl)benzaldehyde (6) (1 mmol) in 

10 ml 1:1 THF/MeOH, K2CO3  was added and mixture allowed to stir at room temperature 

for overnight. The resulting solution was diluted with DCM and washed with 1N HCl, 

followed by brine and dried over MgSO4. The solvent was removed under vacuum and 

crude product was purified by silicagel column chromatography (100:5, Hexane: Ethyl 

acetate). 3-bromo-4-((trimethylsilyl)ethynyl)benzaldehyde obtained with 90% yield. 1H 
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NMR (300 MHz, CDCl3) δ 9.95 (s, 1H), 8.08 (d, 1H), 7.79-7.76 (dd, 1H), 7.68-7.65 (d, 1H), 

3.60 (s, 1H). 13C NMR (75 MHz, CDCl3) δ 190.04, 137.06, 134.70, 133.41, 130.17, 127.86, 

126.56, 85.85, 81.39. 

4,4'-(Ethyne-1,2-diyl)bis(3-bromobenzaldehyde) (NN1a) 

 

The mixture of 3-bromo-4-iodobenzaldehyde (2) (1 mmol), 3-bromo-4-

ethynylbenzaldehyde (7) (1 mmol), Pd(PPh3)2Cl2 (5 mol%), CuI (10 mol%) in 6 ml Et3N and 

4 ml THF was deoxygenated by bubbling with argon for 20 minutes and solution left 

stirring at room temperature for overnight. The resulting mixture was filtered and washed 

with saturated ammoniumchloride solution followed by brine and dried over MgSO4. 

Solvent was removed under vacuum and crude product was purified by silicagel column 

chromatography (100:15, Hexane: Ethyl acetate). 4,4'-(ethyne-1,2-diyl)bis(3-

bromobenzaldehyde) was obtained with 65% yield as pale yellow solid. M.P. 190 °C. 1H 

NMR (300 MHz, CDCl3) δ 9.99 (s, 2H),  8.08 (d, 2H), 7.79-7.76 (dd, 2H), 7.73, 7.70 (d, 

2H).13C NMR (75 MHz, CDCl3) δ 190.01, 137.25, 134.46, 133.64, 130.36, 128.00, 126.67, 

95.16. MS-FD (8 kV, CH2Cl2) m/z: found 392.1 (100%).  

5-Formyl-2-((4-formylphenyl)ethynyl)benzonitrile (NN2a) 

 

Following the same procedure as for NN1a. Yield 83%. M.P. 169 °C. 1H NMR (300 
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MHz, CDCl3) δ 9.99 (s, 1H), 9.98 (s, 1H), 8.14-8.13 (d, 1H), 8.05-8.02 (dd, 1H), 7.87-7.84 (m, 

2H), 7.78-7.72 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 191.34, 189.18, 136.75, 135.86, 

133.84, 133.14, 132.95, 132.77, 131.75, 129.79, 127.39, 116.79, 116.43, 98.69, 88.44. MS-

FD (8 kV, CH2Cl2) m/z: found 258.5 (100%). 

3-Bromo-4-((4-formyl-2-methoxyphenyl)ethynyl)benzaldehyde (NN3a) 

 

Following the same procedure as for NN1a. Yield 86%. 1H NMR (300 MHz, CDCl3) δ 

10.00 (s, 1H), 9.97 (s, 1H), 8.13 (d, 1H), 7.83-7.80 (dd, 1H), 7.76-7.71 (m, 2H), 7.49-7.43 

(m, 2H), 4.01 (s, 3H).13C NMR (75 MHz, CDCl3) δ 191.43, 190.10, 160.89, 137.94, 136.82, 

134.40, 134.06, 133.54, 131.06, 127.97, 126.55, 123.68, 118.12, 109.33, 94.88, 93.61, 

56.34.MS-FD (8 kV, CH2Cl2) m/z: found 343.8 (100%). 

4-((4-Formylphenyl)ethynyl)-3-nitrobenzaldehyde (NN4a) 

 

Following the same procedure as for NN1a. Yield 43%. M.P. 154 °C. 1H NMR (300 

MHz, DMSO-d6) δ 10.12 (s, 1H), 10.05 (s, 1H), 8.66 (d, 1H), 8.27- 8.24 (dd, 1H), 8.06-8.04 

(d, 1H), 7.99-7.96 (d, 2H), 7.81-7.78 (d, 2H). 13C NMR (75 MHz, DMSO-d6) δ 191.81, 

190.47, 149.43, 136.27, 136.22, 135.52, 132.78, 132.33, 129.51, 126.75, 125.54, 121.45, 

98.36, 87.41. . MS-FD (8 kV, CH2Cl2) m/z: found 287.2 (100%).  
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NN1b and NN3b: dialdehyde (1 mmol) and BHA (2.5 mmol) were dissolved in 

toluene. The resulting solution was degassed with argon bubbling for 20 mins and heated 

under argon at 90 °C for 2 days. The reaction mixture was cooled to room temperature, 

the white precipitate was filtered and used as it is for next step. 

                                                                                                                                                          

NN2b: Following the same procedure as for NN1b except temperature was 

maintained 65 °C and reaction continued for 5 days. 

 

NN4b: Dialdehyde (1 mmol) and BHA (2.5 mmol) were dissolved in DCM:MeOH 

(1:2). The resulting solution was degassed with argon bubbling for 20 mins and stirred at 

room temperature under argon for 7 days. The resulting pale yellow precipitate filtered 

and used as it is for the next step. 
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General procedure for synthesis of biradicals: 

 

To the two phase H2O/CH2Cl2 (1:1) mixture, hydroxyl amines (100 mg, 0.16 mmol) 

and NaIO4 (0.32 mmol) were suspended. The reaction mixture was stirred in an ice bath. 

After 45 to 120 minutes (monitoring the reaction with TLC) the dark bluish-green organic 

phase was separated, washed with water, brine and dried over MgSO4. The aqueous 

phase was extracted with DCM. Solvent was removed under vacuum, residue was 

chromatographed over silica gel using hexane: ethylacetate (1:1) as eluent to obtain blue 

crystalline product. It should be noted that during the oxidation of bishydroxylamine 

NN2b the cyano functional group undergoes oxidation to amide.   

NN1: Yield 51%. M.P. 225 °C (decomp.). EPR (290 K, 10-4 M in toluene): nine lines, giso = 

2.0068, aN1/2 = 0.372 mT. UV-Vis (Toluene) λmax (n—π*) (ε, M-1 cm-1): 625 nm (395). 

NN2: Yield 43%. M.P. 228 °C (decomp.). EPR (290 K, 10-4 M in toluene): nine lines, giso = 

2.0067, aN1/2 = 0.372 mT. UV-Vis (Toluene) λmax (n—π*) (ε, M-1 cm-1): 622 nm (716). 

NN3: Yield 63%. M.P. 220 °C (decomp.). EPR (290 K, 10-4 M in toluene): nine lines, giso = 

2.0068, aN1/2 = 0.372 mT. UV-Vis (Toluene) λmax (n—π*) (ε, M-1 cm-1): 620 nm (540). 

NN4: Yield 45%. M.P. >250 °C (decomp.). EPR (290 K, 10-4 M in toluene): nine lines, giso = 

2.0067, aN1/2 = 3.72 mT. UV-Vis (Toluene) λmax (n—π*) (ε, M-1 cm-1): 630 nm (464). 
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2,7-Disubstituted tetramethoxypyrene-based neutral biradical donors are 

described. The fine tuning of magnetic exchange interactions was achieved by changing 

the radical moieties.  The experimental results were verified by DFT calculations. 

Note: Large part of this chapter has been published in Org. Lett. 2013, 15 (17), 4280. 

CHAPTER 4 
TUNING THE INTRA-MOLECULAR EXCHANGE 

INTERACTIONS  BY VARYING THE RADICAL 

MOIETY  

J/k
B
 = −14 K  J/k

B
 = −4.5 K  J/k

B
 = −9.0 K  
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4.1 Introduction 

In chapter 1, it was shown how inter-molecular exchange interactions can be 

tuned by utilizing the approach 1, i.e. by varying the length of π-spacer. But this approach 

coerces to change the π-spacer which in turn alters the crystal packing. Additionally the 

change in exchange coupling constant could be large. It is known that the different kind of 

radical moieties exhibit different exchange interactions. This is mainly due to the 

difference in spin delocalization from the radical moiety to the π-spacer. Thence it was 

planned to utilize approach 4, i.e. attachment of different radical moieties while 

maintaining the same π-spacer to tune intra-molecular exchange interactions.[1]  

The functionalization of polyaromatic hydrocarbons with stable radical moieties 

has attracted great attention because of their potential for applications in organic field 

effect transistors (OFETs),[2-4] sensors[5], magneto conducting materials,[6] photo excited 

spin systems,[7-8] quantum magnets,[9] and batteries.[10-11] Pyrene was chosen as a spacer 

molecule because of its planer structure, ability to act as donor for the synthesis of charge 

transfer complexes, and possibilities to obtain a high spin state on photo excitation. 

Moreover to the best of our knowledge, only C1 substituted pyrene based neutral mono 

radicals are known,[4, 12-14] nonetheless no pyrene based biradical has been reported to 

the date.  

The 2,7-disubstituted bis(nitronyl nitroxide) (NN) biradical (TMPNN), bis(imino 

 

Figure 4.1: Structure of pyrene with its (a) HOMO and (b) LUMO orbitals.  

(

a) 
(

b) 
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nitroxide)  (IN) biradical (TMPIN) and biradical TMPMIX which possesses both NN and IN 

radical moieties were synthesized and characterized by UV-Vis, EPR, SQUID, cyclic 

voltammetry (CV), and single crystal X-ray diffraction method. Additionally, the 

experimental results were verified by DFT calculations. 

4.2 Synthesis 

The pyrene is a unique example of polyaromatic hydrocarbons with a nodal plane 

passing through the 2,7-positions (Figure 4.1).[15-17]  Attachment of a radical moiety to the 

2,7-postions of pyrene involves a synthetic challenge because the negative electron 

density at these positions does not allow halogenation. Thus, an alternative synthetic 

route must be followed to functionalize the 2,7-positions of pyrene. 

 

Scheme 4.1: Synthesis of TMPNN, TMPIN, and TMPMIX. 
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Recently Baumgarten et al. reported the new synthetic route for 2,7-halogenation 

of pyrene.[18] As shown in Scheme 4.1, the 2- and 7- positions of pyrene can be activated 

by oxidizing pyrene to pyrene-4,5,9,10-tetraone (1), which can undergo efficient 

halogenation at these positions.  Further reduction of 2 gave the desired 2,7-

diiodotetramethoxy pyrene (3).[18] The precursor for the synthesis of nitronyl or imino 

nitroxide radical is dialdehyde (4) which was prepared in 71% yield by lithiation of 3 with 

n-BuLi and subsequent addition of DMF at –78 °C. Condensation of 4 with 

bis(hydroxylamino)-dimethylbutane (BHA) to obtain 5 was performed in benzene at 85 °C. 

Depending on the oxidation conditions of 5 the biradicals TMPNN, TMPIN, and TMPMIX 

were synthesized. Oxidation of 5 with two equivalents NaIO4 in DCM/H2O two phase 

mixture in an ice bath for 2.5 hour afforded TMPNN. Under similar reaction condition, 

with three equivalents of NaIO4, for longer period of time TMPMIX was obtained as major 

product along with small amount of TMPNN and TMPIN. This reaction was carefully 

monitored with TLC in order to avoid formation of TMPIN. The biradical TMPIN was 

prepared by oxidation of 5 with NaNO2/HCl at room temperature.  

4.3 Optical Properties  

The UV-Vis spectrum of neutral radicals gave clear insight of the corresponding 

 

Figure 4.2: Characteristic n—π* transition of biradicals TMPNN, TMPIN, and TMPMIX in 

toluene   (c ~ 10–4 M). 
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radical moieties. The UV-Vis spectra of the biradicals TMPNN, TMPIN, and TMPMIX 

measured in toluene showed characteristic λmax due to n—π* transition of  the radical 

moiety in the visible range (Figure 4.2).  While the blue color biradical TMPNN carrying 

two nitronyl nitroxide (NN) moieties absorbed at λmax = 601 nm (ε = 460 cm–1 M–1) and 

λmax = 641 nm (ε = 450 cm–1 M–1), the orange color biradical TMPIN carrying two imino 

nitroxide (IN) moieties absorbed at λmax = 520 nm (ε = 551 cm–1 M–1). Moreover, the grey 

color biradical TMPMIX, which possesses both NN and IN moieties simultaneously 

showed characteristic absorption at λmax = 599 nm (ε = 389 cm–1 M–1) and λmax = 642 nm (ε 

= 368 cm–1 M–1) due to the NN moiety, and λmax = 524 nm (ε = 393 cm–1 M–1) stemming 

from the IN moiety. Therefore, UV-Vis spectra clearly indicated the presence of both 

radical moieties NN and IN simultaneously in biradical TMPMIX. 

4.4 Electrochemical Analysis 

The donor ability and electrochemical properties of biradicals were investigated 

by Cyclic Voltammetry (CV) measurements. The CV experiments were carried out using a 

three-electrode cell in acetonitrile solution of Bu4NPF6 (0.1 M) with a scan rate of 100 

mV/s at room temperature. A Pt wire, a silver wire, and a glassy carbon electrode were 

used as the counter electrode, the reference electrode, and the working electrode, 

respectively. Ferrocene was used as an internal standard. The CV of TMPNN showed 

reversible redox waves (Figure 4.3) at Eox(onset) = 0.95 V and Ered(onset) = –0.48 V versus 

Ag/Ag+, the former can be assigned to resonance delocalization of oxoammonium cation 

while the latter is due to delocalization of aminoxy anion as shown in Scheme 4.2.[19]  The 

biradical TMPIN showed non-reversible oxidation wave at Eox(onset) = 1.24 V and quasi-

reversible reduction wave at Ered(onset) = –0.60 V.[20-21] Interestingly biradical TMPMIX 

displayed similar redox behavior as TMPNN with an additional non-reversible oxidation 

wave. This non-reversible wave can be assigned to oxidation of the IN radical moiety. The 

energy level of Singly Occupied Molecular Orbital (SOMO) and Lowest Unoccupied 

Molecular Orbital (LUMO) were estimated based on the formula,  
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  ESOMO =  − (Eox,onset −  E1/2 Fc+/Fc +  4.8) eV 4-1 

  ELUMO =  − (Ered,onset −  E1/2 Fc+/Fc +  4.8) eV 4-2 

As shown in Table 4.1 the electrochemical energy gap is in accordance with the 

optical energy gap. The higher SOMO level of biradicals showed their ability as donor 

molecule to form charge transfer complexes. 

 

 

Figure 4.3: Cyclic Voltammetry curve of biradicals TMPNN, TMPIN, and TMPMIX recorded 

in acetonitrile (Bu4NPF6 (0.1 M), scan rate of 100 mV/s). 

 

Scheme 4.2: Expected reversible redox mechanism 
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Table 4.1: Optical and electrochemical properties of biradicals. 

 λmax 

(nm) 
ε 

(cm–1M–1) 
EOx 

(V)a 
ERed 
(V)b 

ESOMO 
(eV)c 

ELUMO 
(eV)d 

Eg
EC 

(eV)e 
Eg

OP 
(eV)f 

TMPNN 
604 

641 

460 

450 
0.950 –0.485 –5.012 –3.578 1.434 1.614 

TMPIN 520 551 1.238 –0..603 –5.600 –3.750 1.850 2.049 

TMPMIX 

524 

599 

642 

393 

389 

368 

0.786 

1.246 
–0.705 –5.019 –3.526 1.492 1.624 

a,b0.1 M of n-Bu4NPF6, in acetonitrile, Pt electrode, scan rate 100 mVs–1. c,d Calculated 

based on formula ESOMO = –(Eox,onset – E(1/2) Fc+/Fc + 4.8) and ELUMO = –(Ered,onset – E(1/2) 

Fc+/Fc + 4.8) eV.   eElectrochemical energy gap.  fOptical energy gap calculated according 

to the absorption edge.   

4.5 Crystal structure analysis 

As magnetic interactions depend on the geometry and packing of the molecules in 

the crystal lattice,[12, 22-23] the single crystals of biradicals TMPNN, TMPIN, and TMPMIX, 

were obtained. The good quality crystals were grown by slow diffusion of hexane to the 

solution of biradicals in DCM under ambient conditions. The single crystals were 

investigated with single crystal X-ray diffraction. Crystal structure analysis revealed that 

molecules TMPNN, TMPIN, and TMPMIX were crystallized in monoclinic P21/n space 

group with similar unit cell parameters (Appendix-III). Further they also possess similar 

packing of the molecules in the crystal lattice. Thus, it was considered that these three 

biradicals are isomorphous. In two dimensions the molecules of biradical arranged in 

herring-bone fashion (Figure 4.5), utilizing inter- and intra-molecular C―H…O hydrogen 

bonds. However, interestingly a significant difference was observed in inter-planar 

spacing. The shortest π-π stacking distance was observed in biradical TMPNN (3.730 Å) 

followed by biradical TMPMIX (4.258 Å) and TMPIN (4.367 Å) (Figure 4.4). These 

differences can be attributed to the influence of the radical moiety on the pyrene core. 
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The torsion angles between the NN moiety and the pyrene ring in TMPNN are 15° (C3-C4-

C11-N1) and 14.8° (C5-C4-C11-N2). The IN moiety in TMPIN is nearly coplanar to the 

pyrene core with smaller torsion angle 3.9° (C3-C4-C11-N1). The intermediate torsion 

angles are observed in biradical TMPMIX, 5.4° (C3-C4-C9-N1) and 4.7° (C5-C4-C9-N2). 

Even though the different radical moieties showed different torsion angles with the 

pyrene core the overall crystal packing was not disturbed, and as discussed earlier the 

only difference observed, was in the inter-planar spacing.  

 

TMPNN 

 

 

TMPIN 

 

 

TMPMIX 

 

Figure 4.4: π-π stacking of the biradicals. 

( 

( 
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Figure 4.5: Two-dimensional herring-bone arrangement of biradical TMPNN. 

4.6 EPR spectra   

The X-band EPR spectra were recorded in oxygen free toluene at room 

temperature (Figure 4.6). The typical EPR spectrum of TMPNN consisted of well resolved 

nine lines due to hyperfine coupling (hfc) of two electron spins with four equivalent 

nitrogen atoms. The experimental spectrum of TMPNN showed a good agreement with 

the simulated one considering a nitrogen hfc (aN/2) value 0.373 mT (which is half of the 

hfc observed for mono nitronyl nitroxide aN = 0.748 mT) at g-value 2.0066. The biradical 

TMPIN with two imino nitroxide moieties contains two pairs of non-equivalent N atoms. 

Thus following the 2nI+1 rule, 25 line EPR spectrum was expected but due to overlapping 

of some transitions, a 13 line EPR spectrum was observed with same spectral width as for 

the mono radical. The 13 line spectrum of biradical TMPIN was reproduced with nitrogen 

hfc values aN1/2 = 0.225 and aN2/2 = 0.440 at g-value 2.0059. However, the non-symmetric 
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EPR spectrum of biradical TMPMIX was not simple to fit. This can be accounted by 

considering the interaction between two different kinds of radical moieties. The spectrum 

for TMPMIX was simulated by taking into account hfc of two similar and two different, in 

total three, N nuclei. Whereas the N nuclei of NN moiety are equivalent (with hfc aN1), the 

IN moiety possesses two non-equivalent N nuclei (with hfc aN2 and aN3). The best fitting 

hfc values were aN1/2 = 0.374 mT for two equivalent nuclei (corresponds to NN moiety), 

aN2/2 = 0.200 and aN3/2 = 0.460 for the other two non-equivalent N nuclei (corresponds to 

IN moiety) at g-value 2.0062. The EPR spectra for all biradicals demonstrated that the 

exchange interactions (J) between the radical moieties are much larger than the 

hyperfine coupling (J >> aN).  

  

 

 

Figure 4.6: X-band EPR spectra of biradical (a) TMPNN, (b) TMPIN, and (c) TMPMIX in 

toluene (c ~ 10‒4 M) at room temperature.  

(b) (a) 

(c) 
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4.7 Magnetic measurements 
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Figure 4.7: (a) Molar magnetic susceptibility, χmol, (emu mol-1 Oe-1) as a function of 

temperature. (b) effective magnetic moment, µeff, as a function of temperature under 

magnetic field 0.1 Tesla. 

To get an insight into the magnetic exchange interactions operating in biradicals, 

magnetic susceptibilities and magnetizations of polycrystalline samples were measured in 

(a) 

(b) 
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the temperature range of 2 K ≤ T ≤ 300 K using SQUID magnetometer. Background signals 

of sample holder and diamagnetic correction were subtracted.[24] As shown in Figure 4.7a, 

the molar magnetic susceptibility (χmol) initially increased with the Curie-Weiss behavior 

at higher temperature region and decreased at lower temperature with a broad peak 

mainly caused by intra-molecular antiferromagnetic (AF) interactions. On further lowering 

the temperature χmol decreases close to zero at 2 K which means the biradicals switch 

from a thermally populated magnetic spin triplet state to a non-magnetic spin singlet 

ground state. The biradical TMPNN showed highest Néel temperature (TN = 18 K) followed 

by the biradical TMPMIX (TN = 11.5 K) and TMPIN (TN = 5.5 K). The intra-dimer coupling 

constant Jintra of R-Py-R’ was then estimated using an isolated dimer model (H = –

2JintraSR.SR’).
[25] Among the three biradicals strongest intra-molecular exchange 

interactions thus operate between the NN moieties of biradical TMPNN (Jintra = –14.0 K) 

and weakest between the IN moieties of biradical TMPIN (Jintra = –4.5 K). The intermediate 

magnetic exchange interactions were obtained by replacing one of the NN moieties in 

biradical TMPNN by IN moiety i.e the biradical TMPMIX (Jintra = –9.0 K). Thus fine tuning of 

magnetic exchange interactions was achieved by utilizing different radical moieties while 

maintaining the same π-spacer. Moreover, the negative Weiss temperature (Table 4.2) 

was observed in all biradicals indicating existence of AF intra- and inter-molecular 

magnetic interactions. The observed effective magnetic moment (μeff) values for all 

biradicals were calculated from the temperature dependence of the magnetic 

susceptibility under 0.1 T (Figure 4.7b). At room the temperature the magnetic moments 

were close to the theoretical value 2.45 μB for magnetically uncorrelated spins of 

biradicals.[26] μeff was temperature independent down to 40 K, below which it decreased 

sharply due to the strong AF inter-dimer interactions. 

Moreover, magnetization curves of all biradicals were measured at 2 K (Figure 

4.8). Whereas biradicals TMPNN and TMPMIX showed very small applied magnetic field 

dependence up to 5 T, the biradical TMPIN showed gradual increase in magnetization 

with applied magnetic field. This means the biradicals TMPNN and TMPMIX demonstrate 

strong AF intra-molecular coupling, keeping the singlet state at 5 T and only the biradical 
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TMPIN present a switching from singlet to the triplet spin state with the applied magnetic 

field owing to the moderate AF interactions.  

0 1 2 3 4 5

0.0
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0.2

0.3
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
B

 TMPNN

 TMPIN

 TMPMIX

 

Figure 4.8: Magnetization as a function of magnetic field at 2 K. 

Table 4.2: Magnetic properties of biradicals. 

 

Radical g-factor 
N 

nuclei 
aN/2   
(mT)a 

TN 

(K)b 
Θ     

(K)c 
Jintra(K)d, 

calc 
Jintra(K)e, 

exp 

TMPNN 2.0066 4 0.373 18.0 ‒4.3 –14.5 –14.0 

TMPIN 2.0059 
2 
2 

0.225 
0.440 

5.5 –5.7 –3.7 –4.5 

TMPMIX 2.0062 
2 
1 
1 

0.374 
0.200 
0.460 

11.5 –4.2 –8.0 –9.0  

aHyperfine coupling constant values in mT,  bNéel temperature, cWeiss-temperature.  

dCalculated using UBLYP/ 6-31G(d). eCalculated by fitting with isolated dimer model (s = 

1/2). 
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4.8 DFT Calculations 

The intra-molecular exchange interaction energies of the biradical species were 

also estimated from the broken-symmetry DFT calculations (Appendix-I).[27]  The 

geometry of biradical was taken from the X-ray diffraction determination without further 

optimization. The broken-symmetry approach proposed by Noodleman et al. was 

employed to elucidate the magnetic properties of the biradical species under study. The 

exchange coupling constant (J) was calculated by the generalized spin projection method 

suggested by Yamaguchi et al.[28-30] Calculations were performed at UBLYP/6-31G(d) level 

of theory. The calculated exchange interactions were very close to the same obtained 

from the magnetic measurements (Table 4.3). Good agreement between the latter 

estimations and the results of magnetic measurements support the suggested structure 

of magnetic interactions within the crystalline phase and the experimentally observed 

trend in the strength of intra-molecular exchange interactions within the biradical family 

R-Py-R’: –JNN-Py-NN> –JNN-Py-IN> –JIN-Py-IN. 

   

TMPNN TMPIN TMPMIX 

Figure 4.9: SOMO orbital calculated using DFT quantum  calculations (UBLYP/6-31G). 
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4.9 Summary 

2,7-Disubstituted tetramethoxypyrene based neutral biradicals possessing NN and 

IN radical moieties were successfully synthesized. The fine tuning of the physical and 

magnetic properties was achieved by changing the radical moieties. The TMPMIX is a 

unique example of biradical with NN and IN radical moieties simultaneously. Furthermore 

the complex EPR spectrum of TMPMIX could be simulated using suitable parameters. The 

experimentally obtained intra-molecular exchange coupling constant (Jintra) values are 

well in accordance with the theoretical ones.  

4.10 Synthetic Details 

 

4,5,9,10-Tetramethoxypyrene-2,7-dicarbaldehyde (4)  

To the oven dried Schlenk flask 2,7-diiodo-4,5,9,10-tetramethoxypyrene (400 mg, 

0.69 mmol) was dissolved  in 60 ml THF and cooled to –78 °C. At this temperature 6 ml n-

BuLi (1.6 M) hexane solution was added drop wise under argon and stirred for 3 hour. 

Then 10.3 mmol of DMF was added and continued stirring at –78 °C for 2.5 hour. The 

reaction was mixture warmed to room temperature and hydrolyzed in saturated NH4Cl 

solution. The yellow precipitate (192 mg) was collected by vacuum filtration in 71% yield. 

M.P 323 °C.1H NMR (250 MHz, CDCl3) δ (ppm) 4.19 (s, 12H), 8.89 (s, 4H), 10.43 (s, 2H).13C 

NMR (75 MHz, CDCl3) δ (ppm) 61.92, 120.70, 123.71, 130.58, 135.21, 146.06, 193.40. MS-

FD (8 kV, CH2Cl2) m/z: found 387.8 (100%). ESI-HRMS: found 401.1005 calculated 

401.1001 for C22 H18 O6 Na. 
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2,2'-(4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,4,5,5-tetramethylimidazo-

lidine-1,3-diol) (5) 

The 4,5,9,10-tetramethoxypyrene-2,7-dicarbaldehyde (200 mg, 0.52 mmol) and 

BHA (390 mg, 2.6 mmol) were suspended in argon bubbled 80 ml benzene in a round 

bottom flask equipped with a water condenser. The resulting suspension was refluxed 

under argon for 2 days. The precipitate formed, was filtered and washed with benzene to 

obtain a pale yellow product (250 mg) in 74% yield, and used as it is without any 

purification for the next step. 

 
 

2,2'-(4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,4,5,5-tetramethylimidazo-
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lidine-1-oxyl-3-oxo) (TMPNN)  

2,2'-(4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,4,5,5-tetramethylimidazolidine-

1,3-diol) (100 mg, 0.16 mmol) and  NaIO4 (0.32 mmol) were suspended in two phase 

H2O/CH2Cl2 (1:1) mixture and the reaction mixture stirred in an ice bath. After 2.5 hour 

the dark bluish-green organic phase was separated, washed with water, brine and dried 

over MgSO4. The aqueous phase was extracted with DCM. Solvent was removed under 

vacuum, and the residue was chromatographed over silica gel using hexane: ethylacetate 

(1:1) as eluent to obtain blue crystalline product (25 mg) in 25% yield. M.P > 300 °C 

(decomp). EPR (298 K, 8 × 10‒4 M in toluene): nine lines, giso = 2.0066, aN1/2 = 0.0.373 mT. 

UV-Vis (toluene) λmax (ε, M‒1 cm‒1): 604 nm (460), 641 nm (450).  

 

2,2'-(4,5,9,10-tetramethoxypyrene-2,7-diyl)bis(4,4,5,5-tetramethylimidazo-

lidine-1-oxyl) (TMPIN) 

2,2'-(4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,4,5,5-tetramethylimidazolidine-

1,3-diol) (100 mg, 0.16 mmol) was suspended in two phase H2O/CH2Cl2 (1:1) mixture. To 

the resulting mixture NaNO2/HCl solution (60 mg NaNO2, 6 drops of HCl) in water was 

added and stirred for 10 mins at room temperature. The orange organic phase was 

separated and washed with water followed by brine and dried over MgSO4. Solvent was 
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removed under vacuum, and the residue was chromatographed over silica gel using 

hexane: ethylacetate (2:1) as eluent to give orange solid (35 mg) in 36% Yield. EPR (298 K, 

8 × 10‒4 M in toluene): thirteen lines, giso = 2.0059, aN1/2 = 0.225 mT and aN2/2 = 0.460 

mT. UV-Vis (Toluene) λmax (ε, M‒1 cm‒1): 520 nm (551).  

 

2,2'-(4,5,9,10-tetramethoxypyrene-2,7-diyl)(4,4,5,5-tetramethylimidazol-

idine-1-oxyl-3-oxo)(4,4,5,5-tetramethylimidazolidine-1-oxyl) (TMPMIX)  

2,2'-(4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,4,5,5-tetramethylimidazolidine-

1,3-diol) (100 mg, 0.16 mmol) and NaIO4 (0.48 mmol) were suspended in two phase 

H2O/CH2Cl2 (1:1) mixture. The reaction mixture was stirred in an ice bath (reaction 

monitored by TLC). After 3 hour the dark grey organic phase was separated, washed with 

water, brine and dried over MgSO4. The aqueous phase was extracted with DCM. Solvent 

was removed under vacuum, and the residue was chromatographed over silica gel using 

hexane: ethylacetate (1:1) as eluent and the desired product obtained as grey powder (18 

mg) in 25% yield along with 5 mg of 1 and 6 mg of 2. M.P > 300 °C (decomp). EPR (298 K, 8 

× 10‒4 M in toluene): giso = 2.0062, aN1/2 = 0.374 mT, aN2/2 = 0.200 mT and aN3/2 = 0.460 

mT. UV-Vis (Toluene) λmax (ε, M‒1 cm‒1): 524 nm (393), 599 nm (389), 642 nm (368).  
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In this chapter the tuning of intra-molecular exchange interactions by synthesizing 

the positional isomers of biradical is described utilizing the approach 5. This approach 

allowed us to tune exchange interactions while maintaining the same π-spacer as well as 

the radical moieties.   

 

CHAPTER 5 
TUNING THE INTRA-MOLECULAR EXCHANGE 

INTERACTIONS BY SYNTHESIZING THE 

POSITIONAL ISOMERS OF BIRADICALS  
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5.1 Introduction 

The magnetic exchange interactions in organic biradicals highly depend on the 

type and position of the radical moiety on the spacer molecule.[1] In previous chapters it 

was shown how intra-molecular exchange interactions can be tuned either by changing 

the radical moiety while maintaining the same π-spacer (Approach 4, Chapter 4)[2] or 

changing the π-spacer while keeping the same radical moiety (Approach 1, Chapter 1).[3-5] 

Thus, it was intriguing to design the biradical systems in which the magnetic exchange 

interactions can be tuned without changing either the radical moiety or a π-system 

(Approach 5). This approach allows tuning of intra-molecular magnetic exchange 

interactions while conserving same π-spacer as well as radical moiety. This could be 

realized by appropriate choice of the spacer unit and the radical moiety. The π-spacer 

should be chosen such that it can be functionalized at several positions selectively. 

Thereby synthesizing positional isomers of biradicals it may be possible to tune the 

exchange interactions.   

The 4,5,9,10-tetramethoxy pyrene (TMP)[6] was chosen as a spacer unit as its 

dihalo-positional isomers can be synthesized which in turn used as precursors for the 

synthesis of biradicals. The tert-butylnitroxide was opted as radical moiety owing to its 

high stability and ease of synthesis. Thus, we have planned to synthesize following 

positional biradical isomers of TMP. 

 

Figure 5.1: 1,6-, 1,8- and 2,7- positional isomers of TMP based biradicals. 
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The antiferromagnetically coupled 1,6-, 1,8-, and 2,7- positional isomers of TMP 

based biradicals (Figure 5.1) were synthesized and characterized by FD-Mass, EPR and UV-

Vis spectral analysis. The intra-molecular magnetic exchange interactions were 

investigated using DFT calculations. In the first part of the chapter the structural property 

relationship was investigated for isomeric mono radicals 1-TMPNO and 2-TMPNO (Figure 

5.2), which were obtained as side product during the synthesis of biradicals. Otherwise 

they can be easily synthesized from 1-bromo-TMP or 2-bromo-TMP. Furthermore 

synthesis of tri- and tetra-radical (1,3,6-TMPNO and 1,3,6,8-TMPNO) was also attempted 

to realize high spin system and the obtained results are discussed in details in the 

following sections (Figure 5.3). 

 

Figure 5.2: Mono radicals 1-TMPNO and 2-TMPNO. 

 

Figure 5.3: Tri- and tetra- radical 1,3,6-TMPNO and 1,3,6,8-TMPNO. 
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5.2 Mono radicals, 1-TMPNO and 2-TMPNO 

The UV-Vis spectra of 1-TMPNO and 2-TMPNO showed distinct features for the 

pyrene as well as radical absorption pattern (Figure 5.4). While 1-TMPNO showed 

absorption band for pyrene at 339 and 356 nm, 2-TMPNO displayed the same at 312 and 

354 nm with different extinction coefficient as shown in Figure 5.4. Both the radicals 

exhibited the characteristic n—π* transition for tert-butylaminoxyl radical moiety which 

appeared as a shoulder of pyrene absorption peak in 1-TMPNO and as a distinguished 

peak in 2-TMPNO. The UV-Vis analysis clearly indicated the influence of position of radical 

moiety on electronic structure of pyrene core. This was also reflected in EPR 

measurements. 

  

Figure 5.4: UV-Vis spectra of 1-TMPNO and 2-TMPNO. 

The room temperature EPR spectrum of 1-TMPNO in toluene consisted of three 

lines having equal intensity due to hyperfine coupling (hfc) with nitrogen (Figure 5.5). The 

obtained hfc constant from the spectral simulation, was aN = 16 G at g-value 2.0068. 

Interestingly 2-TMPNO gave an EPR spectrum which comprises of triplet of triplet 

because of hfc with aminoxyl nitrogen and two ortho protons (Figure 5.6). The spectral 

simulation gave the hfc constant values aN = 8 G and aH = 1.96 G at g-value of 2.0067. Thus 

the EPR analysis indicated the extent of spin delocalization is higher in case of 2-TMPNO 

(a) (b) 
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than in 1-TMPNO.  

  

Figure 5.5:  EPR spectra of 1-TMPNO in toluene (a) at room temperature and (b) in 

frozen state at 140 K. 

 

 

Figure 5.6:  EPR spectra of 2-TMPNO in toluene (a) at room temperature and (b) in 

frozen state at 140 K. 

Single crystals of both radicals were successfully obtained. Single crystal X-ray 

analysis revealed that 1-TMPNO and 2-TMPNO crystallized in triclinic and monoclinic 

space groups, respectively. The crystal packing analysis indicated no short contacts 

between radical centers ruling out presence of any substantial inter-molecular magnetic 

interactions (Figure 5.9). Notably very significant difference was observed in torsion angle 

of aminoxyl group with pyrene core in isomers. The radical moiety was, in plane with the 

pyrene core for 2-TMPNO (torsion angle 13°) and out of plane for 1-TMPNO (torsion angle 

(a) (b) 

(a) (b) 
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60°) (Figure 5.7). Using the single crystal geometries the spin densities were calculated 

with DFT. In concurrence with EPR measurements, the spin density was localized in 1-

TMPNO but highly delocalized in 2-TMPNO (Figure 5.8).   

       

Figure 5.7: Crystal structure of (a) 1-TMPNO and (b) 2-TMPNO. 

  

Figure 5.8: Spin density distribution in (a) 1-TMPNO and (b) 2-TMPNO. 

(a) (b) 

(a) (b) 
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Figure 5.9: Crystal packing and hydrogen bond pattern of (a) 1-TMPNO and (b) 2-TMPNO. 
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To probe the influence of the position of radical moiety on the electrochemical 

property of TMPNO, cyclic volatammetry (CV) measurements were carried out. The CV 

spectra were measured in acetonitrile using ferrocene as an internal standard.  

Interestingly while 2-TMPNO gave a reversible oxidation (E1/2(ox) = 0.94 V) and reduction 

wave (E1/2(red) = −0.91 V), the 1-TMPNO displayed a reversible oxidation (E1/2(ox) = 0.79 

V) and a non-reversible reduction wave (Figure 5.10). The oxidation peak could be 

assigned to resonance delocalization of oxoammonium cation while the reduction peak 

was due to delocalization of aminoxy anion. This indicated the position of the radical 

moiety not only influences the electronic structure of pyrene but also the affinity of the 

radical moiety towards oxidation or reduction.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Cyclic Voltammetry curve of 1-TMPNO and 2-TMPNO recorded in acetonitrile 

(Bu4NPF6 (0.1 M), scan rate of 100 mV/s).  

(b) 

(a) 



Tuning the Jintra by Synthesizing the Positional Isomers of Biradicals Chapter 5 

 

 

109 

5.3 Biradicals, 1,6-, 1,8- and 2,7-TMPNO 

 

Scheme 5.1: Synthesis of 1,6- and 1,8-TMPNO. 

4,5,9,10-Tetramethoxypyrene (TMP)  can be efficiently brominated by Br2 in CCl4 

as a solvent at room temperature . Depending on the equivalence of bromine used and 

reaction time mono-, di-, tri- or tetra- bromo-4,5,9,10-tetramethoxypyrene  can be 

synthesized. Dibromo-4,5,9,10-tetramethoxypyrene (DBrTMP)  was obtained in just 10 

min after the addition of 2 M bromine in CCl4 to the solution of TMP in CCl4, as an 

inseparable mixture of 1,6- and 1,8- isomers (Scheme 5.1). These two isomers could not 

be separated by column chromatography. After the purification by silica gel column 

isomeric mixture of DBrTMP was used in next step for the synthesis of radicals. Reaction 

of DBrTMP with n-BuLi in diethyl ether and subsequent addition of 2-methyl-2-

nitrosopropane gave bishydroxylamine which was also used for further reaction without 

separating the isomers. Oxidation of bishydroxylamine yielded desired the biradicals. 

Both isomers showed poor separation as well as stability on silica-gel column but could be 

well separated over the alumina column. Along with desired biradicals the small amount 
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(~5%) of monoradical 1-TMPNO was also separated from the column. The limited stability 

of 1,6- and 1,8- TMPNO allowed their characterization only by FD-Mass, EPR, UV-Vis and 

DFT calculations. The isomers were distinguished by low temperature EPR measurements 

in toluene glass matrix.  

Synthesis and detailed characterization of 2,7-TMPNO is explained in Chapter 6. 

2,7-TMPNO was found to be existing in semi-quinoid form (Scheme 5.2) with very strong 

intra-molecular exchange interactions (ΔEST (= 2J/kB) = −1185 K).  

 

Scheme 5.2: The structural transformation of 2,7-TMPNO with temperature. 

    

Figure 5.11: UV-Vis specrum of (a) 1,6-TMPNO and (b) 1,8-TMPNO. 

1,6-TMPNO and 1,8-TMPNO displayed similar UV-Vis spectra as mono radical 1-

TMPNO. While 1,6-TMPNO showed pyrene absorption at 342 and 360 nm, 1,8-TMPNO 

absorbed at 342 and 358 nm (Figure 5.11). For both biradicals the absorption due to 

radical moiety appeared as a shoulder to the pyrene absorption. This indicated unlike 2,7-

TMPNO, the 1,6-TMPNO and 1,8-TMPNO exist in complete biradicaloid structure.  

(a) (b) 
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Figure 5.12: EPR spectra of 1,6-TMPNO in toluene (a) at room temperature and (b) in 

frozen state at 140 K and 1,8-TMPNO in toluene (c) at room temperature and (d) in frozen 

state at 140 K.  

The room temperature EPR spectra of biradicals in toluene consisted of five lines 

due to hyperfine coupling of two equivalent nitrogen atoms (Figure 5.12). The spectral 

simulation gave the hfc constant aN/2 = 8 G, which was half of the hfc constant for the 

mono radical 1-TMPNO at a g-value of 2.0068. This indicated, J >> aN, the exchange 

interactions were much larger than the hfc constant. The EPR measurement of biradicals 

in toluene glass matrix at 140 K gave distinct fine structure spectra as shown in Figure 

5.12. The zero field splitting was observed due to dipolar (anisotropic) interaction of 

unpaired electrons in a molecule.  For an axial system the magnitude zfs parameter D is 

related to intra-radical distance (d) by 1/d3. The D value increases as the distance 

between the radical center decreases. The average intra radical distance can be obtained 

(a) (b) 

(c) (d) 
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by using the formulae, 𝑑 = 0.138/|𝐷|1/3, d and D are in nm and cm–1 units, respectively 

(details are given in Chapter 2).    

The 1,6- and 1,8- biradical isomers of TMPNO were distinguished from the 

magnitude of zfs parameter D. From the point dipole calculations using above formula the 

D value should be larger for 1,8-isomer compared to 1,6-isomer. Thus the EPR spectrum 

with D value 92 G was assigned to 1,8-TMPNO and with D value of 58 G assigned to 1,6-

TMPNO.  The calculated average intra radical distances were 6.74 Å and 7.85 Å for 1,6-

TMPNO and 1,8-TMPNO, respectively. Additionally a ΔMS = 2 transition was also observed 

for both the radicals supporting the biradical nature of the molecules.  The number of 

lines for the half field ΔMS = 2 transition are more than one instead of the expected just 

single line for biradical species. This discrepancy can be accounted for the different 

orientation of radical moieties in frozen state or the stronger inter molecular interactions. 

5.4 Tri and tetra radicals, 1,3,6-TMPNO and 1,3,6,8-TMPNO 

 
Scheme 5.3: Synthesis of 1,3,6-TMPNO. 
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Scheme 5.4: Synthesis of 1,3,6,8-TMPNO. 

 

Figure 5.13: NMR spectrum of TBrTMP. 
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Figure 5.14: NMR spectrum of TetBrTMP. 

The 1,3,6-TMPNO and 1,3,6,8-TMPNO were also synthesized like 1,6- or 1,8-

TMPNO using the corresponding tribromo and tetrabromo TMP derivatives. 1,3,6-

tribormo-4,5,9,10-tetramethoxypyrene (TBrTMP) and  1,3,6,8-tetrabormo-4,5,9,10-

tetramethoxypyrene (TetBrTMP)  were synthesized from 4,5,9,10-tetramethoxypyrene 

using similar synthetic procedure as for DBrTMP employing the larger amount of Br2 and 

continuing reaction for longer time. TetBrTMP could be obtained in very pure form, 

TBrTMP contains small amount of impurity of TetBrTMP. The mass spectrum of TBrTMP 

showed a small peak corresponding to TetBrTMP. This small impurity of TetBrTMP could 

not be separated by column. Formation of products 1,3,6-TMPNO and 1,3,6,8-TMPNO 

was confirmed by FD-Mass.   

While all the attempts to obtain single crystals of 1,3,6-TMPNO failed, the single 

crystals of 1,3,6,8-TMPNO were successfully obtained.  Surprisingly crystal structure 

analysis revealed that 1,3,6,8-TMPNO undergoes intra-molecular self-oxidation as shown 

in Scheme 5.4, via oxidation of the double bond of the pyrene by two nitroxide radical 

moieties, giving a biradical species (Figure 5.15). The UV-Vis and EPR analysis indicated 
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1,3,6-TMPNO also undergoes self-oxidation, similar to 1,3,6,8-TMPNO, yielding the 

corresponding  mono radical as shown in Scheme 5.3. 

 

Figure 5.15: Crystal structure of 1,3,6,8-TMPNO. 

  

Figure 5.16: UV-Vis specrum of 1,3,6-TMPNO and 1,3,6,8-TMPNO.  

As shown in Figure 5.16, the absorption spectra of 1,3,6-TMPNO and 1,3,6,8-

TMPNO loses the features originating from the pyrene core. This indicated the 

destruction of the pyrene core in 1,3,6-TMPNO and 1,3,6,8-TMPNO. Both molecules 

showed similar absorption pattern with absorption maxima at λmax = 330 nm and a 

shoulder around 420 nm stemming from the characteristic n—π* transition of the radical 

moiety.  

The 1,3,6-TMPNO gave EPR spectrum alike 1-TMPNO (Figure 5.17a) with same g-

(a) (b) 
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value and hfc constant (Table 5.1). Thus 1,3,6-TMPNO possesses only one free aminoxyl 

radical moiety while two radical moieties were involved in the oxidation of the pyrene 

core. The 1,3,6,8-TMPNO exhibited the EPR spectrum consist of five lines with two 

equivalent nitrogen hfc constant aN/2 = 8 G at g-factor 2.0068 (Figure 5.17c). This showed 

the biradical nature of 1,3,6,8-TMPNO.  When the EPR spectrum was measured in frozen 

toluene glass matrix zfs was observed with 2D = 163 G (Figure 5.17d). Using the formula 

discussed earlier the obtained distance between two radical moieties, 7.01 Å, was in 

accordance with the calculated spin-spin distance (7.5 Å) from point dipole calculation. 

This slight difference can be accounted by the delocalization of spin density into the 

pyrene. Additionally a forbidden ΔMS = 2 transition at half field was also observed at 140 

K for 1,3,6,8-TMPNO owing to thermally accessible triplet state.     

  

  

Figure 5.17: EPR spectra of 1,3,6-TMPNO in toluene (a) room temperature (b) 140 K and 

1,3,6,8-TMPNO in toluene (c) room temperature (d) 140 K. 

(a) (b) 

(c) (d) 
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5.5 Biradical 1,3-PyNO with triplet ground state 

Calder et. al reported the meta coupled biradical, N,N'-di-tert-butyl-m-

phenylenebinitroxide (1,3-PhNO, Figure 5.18)  which exist in triplet ground state.[7] The 

polyaromatic compound with triplet ground state is of special interest to obtain magneto 

conducting material. Thus keeping structure of 1,3-PhNO in mind we planned to 

synthesize pyrene based biradical 1,3-PyNO presuming to have triplet ground state.    

 

Figure 5.18: Structure of 1,3-PhNO 

 

Scheme 5.5: Synthesis of 1,3-PyNO. 
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The 1,3- positions of pyrene can be brominated selectively by first introducing  

tert-butyl group at 2-position. The 2-tert-butylpyrene undergoes efficient bromination at 

6,8-positions as shown in Scheme 5.5.[8-9] The bromination was carried out at −78 °C using 

Br2 in dichloromethane. The tert-butyl nitroxide radical moieties were substituted in 

similar way as 1,6/1,8-TMPNO to obtain desired product 1,3-PyNO. The biradical 1,3-

PyNO was unstable in solution as well as in solid state. It undergoes decomposition to 

monoradical (Scheme 5.5) and several other unidentified products. The poor stability of 

1,3-PyNO allowed its characterization only by mass and EPR analysis.   

The EPR spectrum of 1,3-PyNO measured in toluene glass matrix at 140 K is shown 

in Figure 5.19. The central peak marked by ** corresponds to mono radical impurity.  The 

obtained spectrum was typical of randomly oriented triplet state for a rhombic system (E 

≠ 0).[7, 10] The spectrum was little complex as it can be originated from the superimposed 

spectra of the conformational isomers of 1,3-PyNO as shown in Scheme 5.6. Additionally 

315 320 325 330 335 340 345 350 355

160 165 170 175

M
S
=1

magnetic field (mT)

 1,3-PyNO

2D
D + 3E

D - 3E

D = 0.016 cm
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-1

**

M
S
=2

 

Figure 5.19:  EPR spectrum of 1,3-PyNO measured in toluene glass matrix at 140 K (inset 

ΔMS = 2 transition).  
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a half field transition was also observed with intensity much lower than the ΔMS = 1 

transition. This was because of the much smaller value of D than the Zeeman splitting. 

The separation between extreme pair of lines gave 2D while separation between inner 

pair was D − 3E and the remaining pair D + 3E. The estimated zfs parameters were D/hc = 

0.016 cm−1 and E/hc = 0.008 cm−1. The figured average inter spin distance, 5.53 Å, using 

zfs parameter D, was quite larger than the distance between two N centers of the 

molecule (4.9 Å) from the point dipole calculation. 

 

Scheme 5.6: Conformational isomers of 1,3-PyNO. 

Table 5.1: Summary of EPR parameters.  

Radical Spectral 

width (G) 

hfc (G) g  (ΔMS = 1) 

290 K 

g (ΔMS = 2) 

140 K 

2D, (G)  

140 K 

d, (Å) 

1-TMPNO 32 16 (aN) 2.0068 - - - 

2-TMPNO 24 12.3(aN), 

1.96(aH) 

2.0067 - - - 

1,6-TMPNO 32 8(aN/2) 2.0068 4.012 116 7.85 

1,8-TMPNO 32 8(aN/2) 2.0068 4.012 184 6.74 

1,3-PyNO 28 7(aN/2) 2.0068 4.022 334 5.53 

1,3,6-TMPNO 32 16(aN) 2.0068 - - - 

1,3,6,8-TMPNO 32 8(aN/2) 2.0068 4.011 164 7.01 
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5.6 Calculation of intra-molecular magnetic exchange interactions 

in biradicals using DFT 

The DFT calculations were performed to get an insight into magnetic exchange 

interactions operating between radical moieties in biradicals 1,6-, 1,8-, 2,7-, and 1,3,6,8-

TMPNO. The DFT calculations were executed with the Gaussian 09 program package[11] 

employing the unrestricted BLYP functional[12] and the 6-31G(d) basis set.[13] The geometry 

of biradical 2,7-TMPNO and 1,3,6,8-TMPNO was taken from X-ray diffraction 

determinations without further optimization. The X-ray structure geometry of 

monoradical 1-TMPNO was used for 1,6-TMPNO  and 1,8-TMPNO by including one more 

radical moiety with same bond lengths and torsion angles at desired positions. All the 

attempts to optimize geometry for these two biradicals failed. Geometry optimization 

always led to distortion of the pyrene core for 1,6-TMPNO and 1,8-TMPNO.   

While the biradicals 1,6-TMPNO and 1,8-TMPNO  showed similar triplet state spin 

density distribution, they showed large difference compared to the other two biradicals 

2,7-TMPNO and 1,3,6,8-TMPNO (Figure 5.20). The biradical 2,7-TMPNO which exist in 

semi-quinoid form showed larger spin density distribution along the nodal plane of 

pyrene giving rise to extremely strong antiferromagnetic intra-molecular exchange 

interaction, exchange coupling constant Jintra = −1005 K. The biradicals 1,6-TMPNO and 

1,8-TMPNO  displayed spin density distribution along the periphery of pyrene core while 

nearly no spin density in the central part.  The moderate exchange coupling constant 

(Jintra) values −121.6 K and −108.1 K were obtained for 1,6-TMPNO and 1,8-TMPNO,  

respectively. The spin density was more localized around the radical moiety and 

conjugated part of 1,3,6,8-TMPNO, with nearly no spin density around the oxidized part of 

the molecule. Surprisingly although the distance between two radical moieties in 1,3,6,8-

TMPNO was the same as for 1,8-TMPNO, the Jintra for former was very small −0.41 K. This 

was probably due to localization of spin density because of the destruction of the pyrene 

core. It should be noted although the distance between two radical moieties is in the 

order 2,7-TMPNO > 1,6-TMPNO > 1,3,6,8-TMPNO > 1,8-TMPNO, the calculated Jintra 
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follows the order  2,7-TMPNO >> 1,6-TMPNO > 1,8-TMPNO >> 1,3,6,8-TMPNO (Table 5.2). 

This was highly in contradiction to approach 1, which says that exchange interactions 

decrease as spin centers move away from each other. The only logical reason again came 

from spin density distribution. These findings showed that in these biradical systems the 

exchange interaction operated more through bond than space and highly depend on the 

position of the radical moiety on pyrene core and the spin density distribution along the 

π-spacer.  

  

 

       

Figure 5.20: Spin density distribution of triplet state of (a) 1,6-, (b) 1,8-, (c) 2,7- and (d) 

1,3,6,8- TMPNO calculated at UBLYP/6-31G(d) level of theory. Hydrogen atoms are 

omitted for clarity.  

(a) (b) 

(c) (d) 
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The exchange coupling constant was also calculated for 1,3-PyNO with the 

optimized geometry at unrestricted B3LYP/6-31g level of theory. The exchange 

interactions were calculated using the method described before. The earlier theoretical 

and experimental analysis showed the intra-molecular exchange interactions in meta 

coupled nitroxide biradical, 1,3-PhNO, were ferromagnetic with singlet-triplet energy gap  

2J/kB ≥ 300 K.[14-16]  Interestingly the calculated intra-molecular exchange interactions in 

1,3-PyNO were also ferromagnetic but with much lower singlet-triplet energy gap 2J/kB = 

96.8 K. This aberrant behavior can be attributed to extent of delocalization of spin 

density. In case of 1,3-PhNO the spin density was delocalized on the phenyl ring, while in 

1,3-PyNO the spin delocalization was not only limited to the aromatic ring connecting 

both the radical moiety but also extended throughout the pyrene core. This extended 

delocalization of spin reduces the exchange interaction and thereby the singlet-triplet 

energy gap decreases. This behavior was in concomitance with EPR measurements where 

the zfs was smaller than expected from the point dipole calculations.  

 

 

Figure 5.21: Spin density distribution in triplet state of 1,3-PyNO calculated at UBLYP/6-

31G(d) level of theory. Hydrogen atoms omitted for clarity. 
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Table 5.2: Energy of BS and triplet states. 

5.7 Summary 

 The structure-property analysis of isomeric mono radicals 1-TMPNO and 2-TMPNO 

showed that position of radical moiety highly influences the electronic structure of the 

aromatic core. 

 The 1,6-, 1,8-, and 2,7- positional isomers of TMP based antiferromagnetically 

coupled biradicals have been successfully synthesized.  

 The 1,6- and 1,8- isomers could be separated in the final step of synthesis. The 

isomers 1,6-TMPNO and 1,8-TMPNO were distinguished from the magnitude of zfs 

parameter D. 

  While the biradical 2,7-TMPNO exist in semi-quinoid structure, the biradical 1,6-

TMPNO and 1,8-TMPNO exist in biradicaloid form.  

 The synthesis of tri- and tera- radicals 1,3,6-TMPNO and 1,3,6,8-TMPNO were also 

attempted but due to excessive spin density two of the radical moiety oxidizes one 

double bond of pyrene to give corresponding mono and biradical species, respectively.  

 The ferromagnetically coupled biradical 1,3-PyNO was also synthesized and found 

Molecule E, eV   (BS),         

(<S2> ) 

E, eV   (triplet),      

(<S2> ) 

Jintra, 

(K) 

ΔEST, 

(K)a 

drr,  

(Å)b 

1,6-TMPNO -44806.60482           

(0.99) 

-44806.59434             

(2.00) 

-121.6 -243 8.6 

1,8-TMPNO -44808.97459             

(0.99) 

-44808.96528               

(2.00) 

-108.1 -216 7.2 

2,7-TMPNO -44813.72592                

(0.82) 

-44813.62375             

(2.00) 

-1005 -2010 9.8 

1,3,6,8-TMPNO -60429.26894             

(1.00) 

-60429.26891             

(2.00) 

-0.41 -0.82 7.4 

1,3-PyNO -36645.39117      

(1.00) 

-36645.39534 

(2.01) 

48.4 96.8 4.9 

aSinglet-triplet energy gap = 2J/kB, bdistance between two N-center of biradical. 
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to exist in triplet state.  This biradical showed poor stability in solution and solid state 

thus it was characterized only by EPR and FD-Mass.  

 DFT calculations were performed to get an insight into intra-molecular magnetic 

exchange interactions. 

 The calculated exchange coupling constant Jintra follows the order 2,7-TMPNO >> 

1,6-TMPNO > 1,8-TMPNO >> 1,3,6,8-TMPNO. Theoretical analysis showed that the 

exchange interactions highly depend on distribution of spin density.  

 Tuning of exchange interactions was achieved in positional isomers maintaining 

the same radical moiety and π-spacer.  
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5.8 Synthetic details 

4,5,9,10-Tetramethoxypyrene and tert-BuNO were synthesized according to literature 

procedures.[6, 17-18]      

    

2-Methyl-2-nitrosopropane (t-BuNO)  

To the solution of sodium tungstate (Na2WO4
.2H2O, 1.04 g) in water, tert-

butylamine (19 g) was added and cooled in ice bath. To this H2O2 solution (27 ml of 30% 

H2O2 in 13 ml H2O) was added drop wise over 1.5 hr while maintaining the temperature of 

reaction bath below 10 °C. The stirring was continued for an additional 1 hr. Then NaCl 

was added to break the emulsion. The blue organic layer was separated and purified by 

distillation to give 2.5 g (28% yield) of 2-methyl-2-nitrosopropane as blue liquid, which 

dimerizes giving white needles upon cooling.      

1,6(/1,8)-Dibromo-4,5,9,10-tetramethoxypyrene 

 

To the round bottom flask containing 4,5,9,10-tetrameythoxypyrene (1 g, 3.1 

mmol),  and Na2CO3 (150 mg) in 50 ml CCl4, 12 ml 2 M Br2 in CCl4 was added drop wise 

over 10 min. The reaction mixture was stirred for 20 min at room temperature. The 

resulting solution was poured into saturated Na2S2O3 to remove unreacted Br2. Organic 

layer was separated washed with water, brine and dried over MgSO4. The solvent was 
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removed under vacuum and the residue chromatographed over silica gel using hexane: 

ethyl acetate (100:5) as eluent. The 1,6 and 1,8-dibromo isomers were obtained as 

inseparable mixture in 94% yield (1.4 g). (MS-FD= 479.9 (100%)). 

N,N'-(4,5,9,10-tetramethoxypyrene-1,6-diyl)bis(N-oxy-tert-butylamine) and 

N,N'-(4,5,9,10-tetramethoxypyrene-1,8-diyl)bis(N-oxy-tert-butylamine) 

 

To a solution of 1,6(/1,8)-dibromo-4,5,9,10-tetramethoxypyrene (400 mg, 0.84 

mmol) in 65 ml diethyl ether, 2.6 ml (5 equivalents) 1.6 M n-BuLi hexane solution was 

added drop wise at −78 °C and stirred for 1 hour at same temperature. The mixture was 

gradually warmed to −10 to −5 °C and further stirred for 1.5 hour. To the resulting 

mixture was added the solution of t-BuNO dimer (5 equivalents) in 8 ml diethyl ether 

drop wise  at −78 °C, and stirred for 1 hour and warmed to room temperature. The 

mixture was hydrolyzed with aqueous ammonium chloride. Organic layer was separated, 

washed with water and brine, and dried over MgSO4. Solvent was removed under vacuum 

and the residue used as it is for next step without any purification. To the slurry of crude 

product in 30 ml chloroform 200 mg of Ag2O was added and stirred for 2 hour. The 

mixture was filtered through celite and solvent evaporated, the residue purified by 

alumina preparative TLC using hexane:ethylacetate  (100:5) as eluent. At this stage both 

isomers can be separated. Yield 1,6-TMPNO 60 mg, 1,8-TMPNO 50 mg (26% in two steps). 

1,6-TMPNO: (MS-FD= 494.1(100%)), UV-Vis (Toluene)  λmax (ε, M–1 cm–1)  287 (3.9 X 104), 

342 (2.3 X 104), 360 (2.6 X 104), EPR (298 K, 10–4 M in toluene): five lines, giso = 2.0068, 
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aN/2 = 8 G. 1,8-TMPNO: (MS-FD= 494.5 (100%), UV-Vis (Toluene) λmax (ε, M–1 cm–1)  287 

(3.8 X 104), 342 (2.25 X 104), 358 (2.6 X 104), EPR (298 K, 10–4 M in toluene): five lines, giso 

= 2.0068, aN/2 =  8 G.    

1,3,6-Tribromo-4,5,9,10-tetramethoxypyrene 

 

To a round bottom flask containing 4,5,9,10-tetrameythoxypyrene (500 mg), 

Na2CO3 (85 mg) in 25 ml CCl4 , Br2 in CCl4 (10 ml, 2 M) was added drop wise ( in 3 portions 

in the time interval of 2 hour each). The reaction mixture was stirred for 8 hour at room 

temperature. The resulting solution was poured into saturated Na2S2O3 to remove 

unreacted Br2. Organic layer was separated washed with water, brine and dried over 

MgSO4. The solvent was removed under vacuum and residue chromatographed over silica 

gel using hexane: ethyl acetate (100:5) as eluent. 1,3,6-tribromo-4,5,9,10-

tetramethoxypyrene was obtained in 75% yield along with small amount of 1,3,6,8-

tetrabromo-4,5,9,10-tetramethoxypyrene. 1H NMR (300 MHz, CD2Cl2) δ 8.52 (s, 1H), 8.18-

8.21 (m, 2H), 4.07 (bs, 3H), 3.98, 3.97, 3.96, 3.95, 3.94, 3.93 (m, 9H). MS-FD= 559.7 

(100%).    

1,3,6,8-tetrabromo-4,5,9,10-tetramethoxypyrene  

 



Tuning the Jintra by Synthesizing the Positional Isomers of Biradicals Chapter 5 

 

 

128 

To a round bottom flask containing 4,5,9,10-tetrameythoxypyrene (400 mg) and 

Na2CO3 (160 mg) in 25 ml CCl4, the 24 ml 2 M Br2 in CCl4 was added drop wise ( in 4 

portions in the time interval of 2 hour each). The reaction mixture was stirred for 

overnight at room temperature. The resulting solution poured into saturated Na2S2O3 to 

remove unreacted Br2. The organic layer was separated, washed with water, brine and 

dried over MgSO4. The solvent was removed under vacuum and residue 

chromatographed over silica gel using hexane: ethyl acetate (100:5) as eluent. 1,3,6,8-

tetrabromo-4,5,9,10-tetramethoxypyrene was obtained in 63% Yield. 1H NMR (300 MHz, 

CD2Cl2) δ 8.62 (s, 2H), 4.03 (s, 12H). 13C NMR (75 MHz, CD2Cl2) δ 147.66, 141.87, 126.24, 

124.00, 113.96, 61.53.MS-FD= 637(100%).    

N,N',N''-(4,5,9,10-Tetramethoxypyrene-1,3,6-triyl)tris(N-oxy-tert-

butylamine) 

 

Following the same procedure as for 1,6-TMPNO, instead of dibromoTMP, tribromoTMP 

was used.16% Yield. MS-FD= 580.7 (100%).  UV-Vis (Toluene) λmax (ε, M–1 cm–1)  331 (1.4 X 

104), EPR (298 K, 10–4 M in toluene): three lines, giso = 2.0068, aN = 16 G.                     
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N,N',N'',N'''-(4,5,9,10-Tetramethoxypyrene-1,3,6,8-tetrayl)tetrakis(N-oxy-

tert-butylamine) 

 

Following the same procedure as for 1,6-TMPNO, instead of dibromoTMP, 

tetrabromoTMP was used. 32% Yield. MS-FD= 666.8 (100%). UV-Vis (Toluene) λmax (ε, M–1  

cm–1)  333 (1.2 X 104), EPR (298 K, 10–4 M in toluene): five lines, giso = 2.0068, aN/2 = 8 G.                      

N,N'-(7-(Tert-butyl)pyrene-1,3-diyl)bis(N-oxy-tert-butylamine) 

 

Following the same procedure as for 1,6-TMPNO, instead of dibromoTMP,  1,3-dibromo-

7-(tert-butyl)pyrene was used. 1,3-PyNO: < 5% Yield. MS-FD= 430.6 (100%).           
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2,7-TMPNO (4,5,9,10-tetramethoxypyrene-2,7-bis(tert-butylnitroxide)) was found 

to exist in semi-quinoid form with an unprecedented strong intra-molecular magnetic 

exchange interaction of 2J/kB = ‒1185 K operating over a distance of 10 Å.  Structural 

transformations were observed by varying the temperature, from more quinoid structure 

at low temperature to more benzenoid structure at higher temperature. Moreover, this 

molecule undergoes a spin transition from singlet to spin polarized triplet state upon 

photo-excitation revealed by TREPR spectroscopy. The spin Hamiltonian parameters were 

determined to be S = 1, g = 2.0065, D = −0.0112 cm‒1, and E = −0.0014 cm‒1 by spectral 

simulation with the hybrid Eigenfield/ exact diagonalization method.  

 

Note: Large part of this chapter has been published in Chem. Eur. J, 2014, 2014, 20, 

12041-12045  

CHAPTER 6 
PHOTO-EXCITED HIGH-SPIN STATE OF 

2,7-TMPNO 
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6.1 Introduction 

Tuning of magnetic properties by external stimuli has attracted much attention 

because of applicability of such materials in future molecular memory and switching 

devices.[1] External perturbations like temperature, pressure, electrochemical redox 

reactions, and chemical treatments are widely used to control magnetic properties. 

Recently photo induced magnetization has attained a great interest and photo induced 

spin transitions, valance tautomerisms and photo magnets have been reported.[2-3] In 

purely organic based materials photo induced magnetization is of special interest because 

such materials can be designed precisely by proper choice of the aromatic core and the 

radical moiety.[4-7] 

 

Figure 6.1: Representative examples of organic photo-excited high spin molecules. 
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Even though the very first example purely organic based photo-excited high spin 

system through radical-triplet pair mechanism in fullerene linked nitroxide (1) was 

reported in 1995 by Corvaja et al., there are only a limited number of new systems 

explored up to date.[8] Some of which include tetraphenylporphinatozinc(II) (ZnTPP) co-

ordinated with p-pyridylnitronylnitroxide (2) (1996)[9] by Yamauchi et. al, phenyl 

anthracene and diphenyl anthracene covalently bonded to imino nitroxide (3 and 4)  

(2000 and 2001)[10-11] or verdazyl (2002),[12] verdazyl attached to pyrene (5) (2004)[13] by 

Teki et al. and perylenediimides linked to tert-butyl nitroxide and TEMPO (6) (2009 and 

2010)[14-15] by Wasielewski et at. (Figure 6.1). In most of the cases photo-excited high spin 

states were observed because of dynamic electron spin polarization (DEP) which was 

induced by enhanced anisotropic intersystem crossing.[16-17] It was found that the spin 

state highly depends on the type of the radical moiety and its position at the π-

conjugated system.[18-20] Moreover recently Teki et al. have shown utilization of stable 

radicals to protect pentacene derivative (7) from photo degradation. The life time of 

pentacene increased significantly by attachment of nitronyl nitroxide or verdazyl radical 

moiety at 6-position of pentacene.[21] Here they utilized the property of organic radicals 

to scavenge energy of photo-excited state which leads to enhanced stability.     

The photochemical properties of pyrene makes it an interesting building block for 

the detection of high spin excited systems.[22] Its potential for this application, however, 

has not been explored in detail decently, since only one report so far was published.[13]  In 

this regard and to satisfy our quest to explore the photo-excited high spin state of pyrene 

based biradical system, molecule 2,7-TMPNO (4,5,9,10-tetramethoxypyrene-2,7-bis(tert-

butylnitroxide))  was designed. The tert-butylnitroxide radical moiety was chosen as a 

spin source because of its good stability and ability to delocalize over π-spacer. The 

radical moieties were attached to the nodal plane of pyrene. The molecule was 

characterized by EPR, UV-Vis, SQUID and single crystal X-ray diffraction. The time resolved 

electron paramagnetic resonance (TREPR) spectroscopy and picoseconds transient 

absorption (TA) spectroscopy were used to probe the excited state dynamics.   



Photo-excited High-Spin State of 2,7-TMPNO Chapter 6 

 

 

136 

Astonishingly structural analysis by UV-Vis, EPR and X-ray suggested that 2,7-

TMPNO possesses semi-quinoid structure in solution as well as in the solid state.[23] The 

experimentally estimated singlet-triplet energy gap, ΔEST (= 2J/kB) = ‒1185 K, was well 

supported by theoretical investigation which showed that the ground state is spin paired 

singlet with a very large singlet-triplet energy gap ‒1415 K or ‒2010 K determined using 

B3LYP/6-31G* or BLYP/6-31G* level of theory, respectively. The TREPR analysis revealed 

that upon photo-excitation the triplet state was stimulated. 

6.2 Synthesis 

 

Scheme 6.1: Synthesis of 2,7-TMPNO. 

 2,7-TMPNO was synthesized as shown in Scheme 6.1. Lithiation of 2,7-diiodo-

(4,5,9,10)-tetramethoxypyrene (8)[24] with n-BuLi followed by subsequent addition of 2-

methyl-2-nitrosopropane gave bishydroxylamine. It was separated as white powder and 

used as it is for next step without any purification. The product formation was confirmed 

by FD-Mass. The oxidation of bishydroxylamine with Ag2O in DCM yielded the desired 

product 2,7-TMPNO (45%) along with small amount (~5%) of monoradical 2-TMPNO. Both 

radicals could be separated using silica-gel column chromatography in a very pure form 

using hexane/ethyl acetate as eluent.  
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6.3 UV-Vis Analysis 

The UV-Vis spectra of 2-TMPNO and 2,7-TMPNO were recorded in toluene at 

room temperature.  The UV-Vis spectra of both radicals depicted large differences. The 

monoradical 2-TMPNO showed weak absorptions at λmax = 415 nm and 438 nm (ε = 862 

and 838 cm‒1 M‒1, Figure 6.2a) which was characteristic for the n—π* transition of tert-

butylaminoxyl radical moiety. The 2,7-TMPNO showed very strong absorption at λmax = 

472 nm (ε = 1.6 × 104 cm‒1 M‒1 ) along with weak absorption at higher wavelength λmax = 

608 nm (ε = 1280 cm–1 M–1, Figure 6.2b). Following the literature by Iwamura et al. the 

strong absorption at 472 nm can be attributed to a partial quinoid structure.[25]  In order 

to visualize any structural transformation with temperature (quinoid to benzenoid), the 

2,7-TMPNO in toluene was subjected to variable temperature UV-Vis measurements from  

293 K to 353 K. Interestingly upon increasing the temperature a gradual decrease in molar 

absorptivity occurred at λmax = 472 nm and λmax = 608 nm (Figure 6.4). This indicated that 

the weak absorption at 608 nm is also related to the quinoid structure and as the 

intensity of absorption at λmax = 472 nm decreases with temperature the structural 

transformation from quinoid to benzenoid is expected.   

  

Figure 6.2: Uv-Vis spectra of (a) 2-TMPNO (b) 2,7-TMPNO in toluene at room 

temperatures.      

(b) (a) 
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Figure 6.3: Uv-Vis spectra of (a) 2,7-TMPNO in toluene with different concentration (c.a. 

4.5 x 10‒5 and 4.5 x 10‒6) and different path length of cell (c.a. 20 mm  and 100 mm (b) 2-

TMPNO (black) and 2,7-TMPNO (red) film on quartz slide. 

No significant change in absorptivity or peak position was observed when UV-Vis 

spectra of 2,7-TMPNO measured either by varying the concentration or using different 

optical path length of the cell. This suggests that the UV-Vis spectral change with 

temperature can only be attributed to structural change and not because of the 

aggregation (Figure 6.3a). Moreover the UV-Vis spectra of thin film of 2,7-TMPNO showed 

similar features as in solution with a tiny red shift of peaks by 8-9 nm which proves that 

2,7-TMPNO in solution retains a similar structure as in the solid state (Figure 6.3b).  

 

Figure 6.4: Uv-Vis spectra of 2,7-TMPNO (a) at different temperatures in toluene (b) 
decrease in signal intensity at λmax = 472 nm with temperature (black dot) and Arrhenius 
fit (red line). 

(a) (b) 

(a) (b) 
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The temperature dependence of absorption maxima at 472 nm stemming from 

the quinoid structure was analyzed using Arrhenius equation as shown below. The 

activation energy from the Arrhenius fit was determined to be 949 K.    

 𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝑘𝑒𝑞 = A exp (−
𝛥𝐸𝑒𝑞

𝑘𝐵𝑇
) 6-1 

Here, Keq and Eeq are the equilibrium constant and the energy gap between the 

spin singlet semi-quinoid (SQ) structure and the benzenoid (BZ) structure as shown in 

Scheme 6.2.  

 

Scheme 6.2: Structural equilibrium of semi-quinoid structure (left) and transformation 

into biradical upon photo-excitation (right).     
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6.4 EPR analysis 

 

 

 

Figure 6.5: (a) EPR spectra 2-TMPNO (red), 2,7-TMPNO (blue) in toluene at room 

temperature (b) temperature dependent EPR spectra of 2,7-TMPNO in toluene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: (c) individual EPR spectra of 2,7-TMPNO in toluene at different temperature. 

(b) 

 
 (b) 

(a) 

 
 (b) 
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Figure 6.6: EPR spectra of 2,7-TMPNO in toluene at 353 K (black) and simulated spectrum 

(red). 

The EPR spectrum of 2-TMPNO consisted of triplet of triplets due to hyperfine 

interactions of the unpaired electron of one NO. moiety with two ortho hydrogen atoms 

of pyrene. Surprisingly, freshly prepared solution of 2,7-TMPNO at 293 K did not show the 

expected five line EPR spectrum for a strongly coupled biradical with integrated signal 

intensity double that of a monoradical 2-TMPNO but a very low signal intensity spectrum 

was observed with tiny shoulders in between the triplets (Same concentration and EPR 

experimental parameters used to record spectra of 2-TMPNO and 2,7-TMPNO, Figure 

6.5a).[26-28] Upon increasing the temperature these tiny shoulders became more 

predominant and at 353 K the five line pattern for biradical was observed (Figure 6.5b). 

The observed spectrum at 353 K could be reproduced by spectral simulation considering 

two equivalent nitrogen hfc (aN/2) value 6.25 G at g = 2.0067 (Figure 6.6). Thus the 

initially observed spectrum at low temperature could originate from a trace amount of 

mono radical impurity, which may have masked very low intensity five line spectrum for 

the biradical. The sample for variable temperature EPR measurement was prepared by 

dissolving few crystals in toluene in order to achieve very high purity.    

Moreover, single crystals of 2,7-TMPNO were EPR active, demonstrating that the 

sample is indeed paramagnetic and does not possess a complete singlet quinoid form in 

the solid state. A single crystal of 2,7-TMPNO was subjected to variable temperature EPR 
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measurements. Notably, significant increase in EPR signal intensity was observed upon 

raising the temperature from 273 K to 353 K (Figure 6.7a) reflecting inverse Curie like 

behavior, thus enhancing the paramagnetic content. These results were in concomitance 

with observations from the variable temperature UV-Vis measurement, where the 

absorption peaks due to quinoid structure, decreased upon increasing temperature. Thus 

increase of the EPR signal intensity with temperature can be imputed to enhanced 

population of triplet state following the structural transformation from more quinoid 

structure at low temperature to more biradicaloid at higher temperature. Additionally the 

single crystal of 2,7-TMPNO showed angular dependence (anisotropy of g-factor). As 

shown in Figure 6.7b, the significant shift of g-factor was observed upon rotating the 

crystal by 90°. The temperature dependent EPR spectra of randomly oriented multiple 

crystals of 2,7-TMPNO is shown in Figure 6.8. Due to anisotropy of g-factor the averaged 

3 line spectrum was observed which also displayed the similar temperature dependent 

behavior as for the one single crystal.  

  

Figure 6.7: (a) Variable temperature EPR spectra of single crystals of 2,7-TMPNO and (b) 

angular dependence of 2,7-TMPNO single crystal.  

The temperature dependence of EPR signal of 2,7-TMPNO crystallites (Figure 6.9) 

was well analyzed by the singlet-triplet energy gap of ΔEST = ‒1185 K applying the singlet-

triplet activation for the intensity using Bleaney and Bowers equation 6-2.[29-30] This 

activation energy can be taken as lower limit if some uncoupled spins are still present.  

(b) 

 
 (b) 

(a) 
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 𝐼 = 3(𝐶/𝑇)exp(−
∆𝐸𝑆𝑇

𝑘𝐵𝑇
)/(1 + 3exp (−

∆𝐸𝑆𝑇

𝑘𝐵𝑇
)) 6-2 

 

 

Figure 6.8: (a) Variable temperature (VT) EPR spectra and (b) integrated VT EPR spectra 

of multiple crystals of 2,7-TMPNO.  

 

Figure 6.9: Intensity change of EPR spectral maxima of 2,7-TMPNO with temperature 

(black dot) and Bleanley and Bower's fit (red line). 

In solution, the absorption change as shown in Figure 6.4a and their Arrhenius fit 

indicate the equilibrium on the structural transformation from more SQ structure at low 

temperature to more BZ structure with weakly-coupled biradical character at higher 

temperature as shown in Scheme 6.2. The activation energy of ΔEeq = 949 K is smaller 

than the singlet-triplet activation energy gap of ΔEST = ‒1185 K and it seems that the 

open-shell form of T0 in SQ is an intermediate structure between S0 of SQ and BZ 

structure. Therefore, the T0 state in SQ might play the role of the intermediate state of 

the structure transformation (Scheme 6.3).   

(a) (b) 
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Scheme 6.3: Plausible explanation between the equilibrium and the energy locations 

among T0 and S0 of SQ structure and BZ structure. 

Furthermore the variable temperature EPR spectra were also measured for 2-

TMPNO (Figure 6.10). Unlike 2,7-TMPNO, 2-TMPNO showed Curie like behavior, with 

increasing the temperature the EPR signal intensity decreases. This demonstrated that 

the EPR activity of 2,7-TMPNO is not because of impurity of mono radical as both the 

sample displayed different temperature dependent behavior. 

  

Figure 6.10: (a) Variable temperature (VT) EPR spectra and (b) integrated VT EPR spectra 

of 2-TMPNO. 

(a) (b) 
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6.5 Single Crystal Analysis 

 

 

 

 

 

 

Figure 6.11:  Crystal structure of 2,7-TMPNO and 2-TMPNO. 

To get an insight into the structure of the radicals good quality single crystals were 

grown from DCM/hexane solution of 2,7-TMPNO and 2-TMPNO. The single crystal X-ray 

analysis revealed that monoradical 2-TMPNO crystallizes in P21/c space group. As the 

case for majority of phenylaaminoxyls radicals, tert-butylaminoxyl groups in 2-TMPNO is 

slightly out of the plane of pyrene (torsion angle 13°).  

The biradical 2,7-TMPNO crystallized in monoclinic C2/c space group. Two tert-

butylaminoxyl groups adopt syn configuration which are nearly coplanar with the pyrene 

ring (torsion angle 4.1°). The elongation of N(1)–O(3) bond lengths (1.289 Å) and 

shortening of C(4)–N(1) bond lengths (1.405 Å) was observed in comparison with typical 

N–O (1.27 Å)  and C–N (1.41 Å)  bond lengths in phenylaminoxyls,[31-32] while a tiny change 

in alternating C–C bonds was detected (Figure 6.11). The co-planarity of the aminoxyl 

group with pyrene induces better overlap of π-orbitals of the radicals and pyrene favoring 

the quinoid structure. The molecules of 2,7-TMPNO recognizes each other through 

C―H…O hydrogen bond forming a planar self-assembled hexagonal host-guest structure 

in two-dimensions (Figure 6.12). This planar assembly further extends through π−π 

stacking forming a sheet structure in three-dimensions. No close contacts between 
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aminoxyl groups are found pointing to the absence of significant inter-molecular spin 

exchange in crystal lattice. The UV-Vis, EPR and crystal structure analysis led to the 

inference that 2,7-TMPNO possesses semi-quinoid structure in solution as well as in solid 

state. Moreover with increasing temperature the molecule approaches a more benzenoid 

form.   

 

Figure 6.12: 2 and 3-dimensional arrangement of molecules in crystal lattice of 2,7-

TMPNO. 
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6.6 Magnetic measurement & DFT calculations 

The magnetic susceptibility of polycrystalline sample of 2,7-TMPNO was measured 

as a function of temperature in the temperature range 2 to 300 K. The magnetic 

susceptibility measurement revealed that the effective magnetic moment (μeff) between 

temperature 2 K to 300 K was  nearly constant of 0.53 Bohr magneton (μB), which was 

much lower than the expected value of 2.45 μB for a magnetically uncorrelated biradical 

system,[33] suggesting very large antiferromagnetic exchange interactions in solid state 

(Figure 6.13a). This result was a little contrary to variable temperature EPR measurements 

where the increase in signal intensity was observed with temperature. The reason why 

only EPR can detect the increase was ascribed to the detection sensitivity of radicals 

between EPR and SQUID. EPR can detect very small amount of radicals whereas SQUID 

cannot. Moreover, the increase at higher temperature can be lower than the detection 

limit of SQUID due to very small increase of paramagnetic species. Furthermore the 

effective Bohr magneton of 0.5 means that the spin value is ca. 0.08 per molecule. As the 

strong antiferromagnetic interaction suppresses the magnetic moment below the Néel 

temperature (i.e. no significant population of triplet state), the origin of 0.08 spin per 

molecule should be imputed weakly coupled biradical and monoradical impurity. 

 

Figure 6.13: (a) Effective magnetic moment of 2,7-TMPNO as a function of temperature 

under magnetic field 0.1 T  (b) Magnetization as a function of magnetic field at 2 K.  
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Moreover, the magnetization curve, which demonstrated only a paramagnetic 

component below the Neel temperature, at 2 K also shows 0.09 spin per molecule 

estimated from the Brillouin function (S = 1/2) (Figure 6.13b). This is a quantitative 

agreement. Thus, the ground state of 2,7-TMPNO is spin-paired singlet due to partial 

quinoid structure. The singlet ground state of 2,7-TMPNO due to SQ structure was 

supported by DFT calculations with the broken symmetry solution providing the 

estimated singlet (S0)-triplet (T0)  energy gaps, ΔEST (= 2J/kB) = ‒1415 K or ‒2010 K 

applying B3LYP/6-31G* or BLYP/6-31G* level of theory, respectively (with the Heisenberg 

type Hamiltonian; H = ‒2JS1S2). The preference of the open-shell singlet was supported 

by the <S2> values which are closer to 1 than for a closed shell solution <S2> = 0 (Table 

6.1). While for weakly coupled biradicals the BLYP method usually provides better 

agreement with experiments than the B3LYP method (with its Hartree Fock 

contamination), this comparison seems to be reverted here for the strongly coupled 

biradical. This very strong magnetic exchange interaction can be attributed to the SQ 

structure and the co-planarity of the aminoxyl group and the pyrene spacer. Because of 

such large exchange interaction small thermal population of the triplet spin state occurs 

at room temperature, which explains the weak intensity EPR signals at room 

temperature. Upon increasing the temperature, the population of triplet state enhanced 

corroborating the increase in EPR signal intensity and decrease in λmax for quinoid 

structure observed at higher temperatures.     

Table 6.1: Energy of BS and triplet states of 2,7-TMPNO 

Method E, eV   (BS),(<S**2> ) 
E, eV   (triplet), 

(<S**2> ) 
J, eV J, K ΔEST, K 

B3LYP ‒44832.6550, (1.01) ‒44832.5941,     (2.10) ‒0.0609 ‒707.3 ‒1415 

BLYP ‒44813.72592, (0.82) ‒44813.62375, (2.00) ‒0.0866 ‒1004.8 ‒2010 
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6.7 TREPR spectroscopy 

 

Figure 6.14: Typical TREPR spectrum of 2,7-TMPNO at 30 K at 1.0 µs after photo-

excitation. (a) Observed spectrum of 2,7-TMPNO. The upper (down) direction is 

absorption (emission) of microwave. (b) Simulation of 2,7-TMPNO. In the inset, the 

phenomenological relative populations in the zero-field spin-sublevels are shown which 

gave the simulated spectrum.  

               To clarify what happens upon photo-excitation, the time-resolved EPR (TREPR) 

spectra were measured using nano-second (ns) pulsed YAG laser excitation. The TREPR 

measurement and analysis was performed by Prof. Yoshio Teki at Osaka City University 

Japan. Figure 6.14a shows a typical TREPR spectrum of 2,7-TMPNO observed at 1.0 µs 

after laser excitation of the pyrene absorption band (λ = 355 nm). The spin Hamiltonian 

parameters of 2,7-TMPNO were determined to be S = 1, g = 2.0065, D = ‒0.0112 cm‒1, 

(

b) 

(a) 

(b) 
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and E = ‒0.0014 cm‒1 by spectral simulation (Figure 6.14b), with the hybrid 

Eigenfield/exact diagonalization method taking dynamic electron spin polarization (DEP) 

into account.[11, 34-35] The minus sign of D was estimated from the point dipole calculation 

of biradical form depicted in Scheme 6.2 (breaking quinoid structure). The magnitude of D 

value was, however, much larger than that of the point dipole calculation obtained using 

the averaged distance (R = 0.986 nm) between two radical moieties. Applying the 

formulae (R = 0.138/ |D (cm‒1)|1/3) with the experimental D value of 0.0112 cm‒1  the 

averaged distance between two unpaired spins was estimated to be 0.62 nm. This 

distance was much smaller than the distance between both N-centers of the radical units 

indicating large delocalization of unpaired spin density into the tetramethoxypyrene. The 

delocalization of unpaired electrons through a quinoid structure was supported by DFT 

calculations, since their SOMOs (Figure 6.19a) and the spin densities of the biradical 

triplet state (Figure 6.19b) were delocalized into the pyrene core.  In the inset of Figure 

6.14b, the relative populations in the zero-field spin-sublevels are shown which gave the 

simulated spectrum. However, it should be noted that these populations were 

phenomenological ones which were assumed to give the spectral simulation at that time. 

As shown in Figure 6.15, at the earlier time at 0.2 µs the populations of X, Y and Z spin-

sublevels were 0, 0.7 and 0.3, respectively. They have changed to 0.45, 0 and 0.55 at 1.0 

µs, which indicated the Y spin-sublevels being more allowed to the S0 state. The 

simulation of the time dependence can be done by necessarily taking the spin-lattice 

relaxation between triplet spin-sublevels, the anisotropic relaxation (a kind of intersystem 

crossing between T0 and S0), the external magnetic field, and the stimulated transition 

induced by the resonance microwave into account. 
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Figure 6.15: (a) Time dependence of TREPR spectra of 2,7-TMPNO (b) observed and 

simulated TREPR spectra at 30 K on 0.2 µs after photo-excitation, (c) relative population 

change. The relative populations to give the spectral simulation have changed to 0.45, 0 

and 0.55 at 1.0 µs, which indicates the Y spin-sublevels being more allowed to the S0 

state.  
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The plausible mechanism of the dynamic electron spin polarization through photo-

excited multiplet state is shown in Figure 6.16. The low-lying triplet state (T0) above the 

singlet ground state (S0) can be populated through photo-excited (S1, T1, T2, Qu1) states 

that were generated by the exchange coupling between photo-excited triplet state of the 

pyrene moiety and two connecting NO radicals. The transition from T1 and T2 to T0 was 

allowed since the total spins were the same (S = 1). The similar phenomena, that the 

electron spin polarization of the low-lying triplet state (T0) was enhanced through photo-

excited multiplet states, was reported in an exchange coupled phthalocyanine-bis(radical) 

system.[34-35] 

 

Figure 6.16: Generation of electron spin polarization in the low-lying triplet state (T0) and 

spin dynamics through photo-excited multiplet states. According to the spin density 

distribution of the triplet state of pyrene, the ferromagnetic coupling between the pyrene 

and two radical moieties is expected on the photo-excited state due to the topological 

rule. Therefore, the energy ordering of S1 > T1, T2 > Qu1 is depicted in this figure. 

In order to confirm this mechanism we measured TREPR spectra of 2,7-TMPNN 

((4,5,9,10-tetramethoxypyrene-2,7-bis(nitronyl nitroxide)).[36] The polarized triplet state 

(T0) was also observed in 2,7-TMPNN (Figure 6.17). In this case, the fine-structure splitting 

was much smaller than that of 2,7-TMPNO, which was comparable with the line-width. 
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This small magnitude of the fine structure splitting was consistent with the long distance 

of 10.93 Å between two nitronyl nitroxide (NN) moieties and the localized spin-structure. 

The DFT calculation of the ground state supported this localized spin structure (Figure 

6.20). In addition, the T0 and S0 states were expected to be almost degenerate because 

the two radical moieties were connected to each other in disjoint configuration through 

the pyrene as spin coupler.[37] In contrast, two radical spins in 2,7-TMPNO were strongly 

exchange-coupled in the ground state through quinoid structure proven by the magnetic 

susceptibility measurement as mentioned above.  

 

Figure 6.17: Observed TREPR spectrum of 2,7-TMPNN at 0.8 s 

 

Figure 6.18: Spin density distribution of the triplet state of pyrene calculated by using DFT 

quantum mechanical calculations (UB3LYP/6-31G(d,p)). 
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Figure 6.19: (a) SOMO-1 and (b) spin density distribution of the biradical triplet state of 

2,7-TMPNO calculated by using DFT quantum mechanical calculations (UBLYP/6-31G(d)). 

 
 

 

Figure 6.20: (a) structure (b) SOMO orbital (c) spin density distribution of 2,7-TMPNN 

calculated by using DFT quantum mechanical calculations (UBLYP/6-31G(d)). 

 

(a) (b) 

(b) (a) 

(c) 
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6.8 Theoretical investigation of zfs parameters 

The obtained zero field splitting (zfs) parameters from TREPR measurements were 

verified by DFT calculations. zfs parameters (D and E) were determined using restricted 

open shell DFT calculations with the BLYP functional and 6-31g(d) basis set using ORCA-

software. The calculations using ORCA-software were done by Dr. Elena Gorelik. Good 

agreement of the calculated zero field splitting with experiment, ascertained for the 

biradicals 2,7-TMPNO and 2,7-TMPNN. This also reflects the large difference in spin 

density distribution. The calculated zfs parameters are, 

2,7-TMPNO: D = ‒0.00921 cm‒1; E = ‒0.00094 cm‒1 

2,7-TMPNN: D = ‒0.00155 cm‒1; E = ‒0.00004 cm‒1 

                                                                                                                 

Individual contributions to zfs (cm‒1) 

 2,7-TMPNO 2,7-TMPNN 

 D E D E 

SPIN-SPIN ‒0.00921 ‒0.00094 ‒0.00155 -0.00004 

Exchange vs Coulomb 

Coulomb 0.11183 0.07535 0.13046 0.04030 

Exchange ‒0.12104 ‒0.07629 ‒0.13201 -0.04034 

One through four center contributions 

1-center ‒0.000 0.000 ‒0.000 0.000 

2-center-Coulomb ‒0.013 ‒0.001 ‒0.003 -0.000 

2-center-Exchange 0.000 ‒0.000 ‒0.000 0.000 

2-center-Hybrid ‒0.000 ‒0.000 0.000 0.000 

3-center-Coulomb 0.005 0.000 0.002 0.000 

3-center-Exchange ‒0.001 ‒0.000 ‒0.000 ‒0.000 

4-center ‒0.000 ‒0.000 ‒0.000 ‒0.000 
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6.9 Excited state dynamics through transient absorption 

spectroscopy 

 
 

  

Figure 6.21: Picosecond transient absorption spectra and decay profile of 2,7-TMPNO in 
toluene at room temperature after excitation at 470 nm.   

To probe excited state dynamics, picosecond transient absorption (TA) spectra of 

2,7-TMPNO were measured. The TA measurements were performed by Mr. Dominik 

Gehrig, PhD student with Dr. Frédéric Laquai, at MPIP. We intended to observe the 

change absorption spectra when pyrene core is excited with a laser as in the case of 

TREPR measurements. Due to experimental limitations of TA set up measurement at 355 

nm laser excitement was not possible, as the optical element like corner tube, λ/2 plates, 

mirrors etc. absorbs significant amount of UV light. So TA measurements were done with 

470 nm laser excitation where the quinoid form of 2,7-TMPNO showed strong absorption. 

(a) 

(c) (d) 

(b) 
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It is known that the photo induced absorption (PIA) for pyrene can be seen at 520-530 

nm.[38] Here this dynamics was red shifted by 20 nm around 540-550 nm (Figure 6.21a).  

Notably the PIA of pyrene decay faster than the rest of PIA within the first 3 ps indicating 

ultrafast relaxation/quenching of excited pyrene moiety. As shown in Figure 6.21c ground 

state bleach of absorption at 600-650 nm was observed. This indicated the structural 

transformation on photo-excitation, as this signal is also associated with quinoid form of 

2,7-TMPNO. Additionally the decay behavior seems to be similar over the whole 

wavelength range except at 600-610 nm (Figure 6.21d).  

6.10 Summary 

In summary, the biradical 2,7-TMPNO exist in singlet semi-quinoid structure 

revealed by variable temperature EPR, UV-Vis and single crystal X-ray diffraction 

measurements and DFT calculations. This led to extremely strong intra-molecular 

exchange coupling 2J/kB = ‒1185 K. Upon photo-excitation, the breaking of semi-quinoid 

structure was observed due to dynamic electron spin polarization leading to a spin 

polarized triplet state. The observed relatively large zero field splitting can be attributed 

to delocalization of spin density of biradical triplet into the pyrene core. Dynamic 

molecules like 2,7-TMPNO are of special interest not only for the fundamental study but 

also for their applications in future spintronic devices.  

 

 

 

 

 

 

 



Photo-excited High-Spin State of 2,7-TMPNO Chapter 6 

 

 

158 

6.11 Synthetic details 

2,7-Diiodo-4,5,9,10-tetramethoxypyrene and t-BuNO were synthesized according to 

literature procedures.
[24, 39-40]      

 

N,N'-(4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(N-oxy-tert-butylamine)   

To a solution of 2,7-diiodo-4,5,9,10-tetramethoxypyrene (8) (100 mg, 0.17 mmol) 

in 10 ml THF, 0.5 ml (5 equivalents) of 1.6 M n-BuLi hexane solution was added drop wise 

at ‒78 °C and stirred for 1 hour at the same temperature. The mixture was gradually 

warmed to 0 °C and further stirred for 2 hour. To the resulting mixture, solution of t-

BuNO dimer (5 equivalents) in 2 ml THF was added drop wise  at ‒78 °C the, stirred for 1 

hour at the same temperature and warmed to room temperature. The mixture was 

hydrolyzed with saturated aqueous ammonium chloride solution. The white precipitate, 

which was almost insoluble in DCM, filtered and used for next step without further 

purification. To the slurry of crude product in 15 ml chloroform 100 mg of Ag2O was 

added and stirred for 4 hour. The mixture was filtered through celite and the solvent was 

evaporated. The residue was purified by silica gel chromatography using 

hexane:ethylacetate  (100:15) as eluant. 40 mg (46% yield in two steps) of biradical (2,7-

TMPNO) was obtained along with 4 mg (5%) of monoradical (2-TMPNO) which were 

separated on silica gel column. 2,7-TMPNO: (MS-FD = 494.2(100%)) HRMS (ESI): 494.2409 

(calc. 494.2417), MP; 176 °C, UV-Vis (Toluene) λmax (ε, cm‒1 M‒1) : 472 nm (1.6 × 104) 608 
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nm (1280). 2-TMPNO: (MS-FD = 408.0 (100%)), UV-Vis (Toluene) λmax (ε, cm‒1 M‒1): λmax = 

415 nm and 438 nm (862 and 838), MP; 106 °C.   
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Our findings in this chapter provides a better understanding of the discrepancies 

related to the discussion in the literature on the ground state of Tschitschibabin's 

hydrocarbon. The simple theoretical and experimental methodologies have been 

developed and utilized to understand the singlet biradicaloids which exist in semi-quinoid 

form and exhibits characteristics of biradicaloid and quinoid form simultaneously.  

Note: Large part of this chapter has been submitted to PCCP, 2014. 

CHAPTER 7 
"TSCHITSCHIBABIN TYPE BIRADICALS": 

BENZENOID OR QUINOID? 
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7.1 Introduction 

Shortly after the discovery of the first stable organic radical, namely 

triphenylmethyl by Gomberg,[1] Tschitschibabin reported the synthesis of the first 

biradical linked through biphenyl bridge in 1907, now more commonly known as 

Tschitschibabin's hydrocarbon (HC) or biradical.[2] Recently there is a considerable 

amount of interest of various research groups in synthesizing Kekulé open shell 

polyaromatic hydrocarbons owing to their application in designing spintronic and energy 

storage devices.[3-6] In most of the cases the molecular structural design of Kekulé open 

shell polyaromatic hydrocarbons relied on the bases of Tschitschibabin's HC, and the 

biradicaloid nature of HC appeared as a consequence of loss of quinoidal form upon 

extending conjugation thereby gaining the aromaticity.[7-10] As the Tschitschibabin's HC is 

a fundamental building block in designing the majority of Kekulé open shell polyaromatic 

HCs, it has been studied most extensively by various EPR spectroscopic techniques and 

theoretical calculations.[11] While Thiele’s HC was well accepted as quinoid singlet, there 

are different opinions on the ground state of Tschitschibabin's HC, whether it is open shell 

or closed shell (Figure 7.1).[12] In principle the EPR spectroscopy should be able to resolve 

this problem simply but the analysis of this molecule is severely affected by paradox, 

disputation and repugnancies.[12-16] Firstly Reitz and Weissman investigated 

Tschitschibabin's HC, labeled at exocyclic carbon atom with 13C.[11] They obtained EPR 

spectra corresponding to two non interacting triphenyl methyl moieties with J < 108 Hz.[16] 

This result showed the divergence with the initial theoretical study which predicted the J 

> 1013 Hz.[17-18]  This discrepancy often alluded as "biradical paradox".[13, 19-20]  Later 

several theories have been proposed relating to the biradical paradox of this molecule. In 

subsequent years the studies by Brauer et al.,[19, 21] van der Hart, and Oosterhoff[22] 

suggested that the biradical paradox is not real and the observed EPR spectra, alike the 

doublet species, is due to impurities owing to high reactivity of Tschitschibabin's HC. 

Brauer et al. did extensive ENDOR studies and suggested that the spectrum originated 

from a monoradical impurity with structural formula shown in Figure 7.2a.[19, 21] Along 
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with this van der Hart and Oosterhoff suggested dimers of the biradicals as shown in 

Figure 7.2b, responsible for the observed EPR spectrum.[22] Thus, the reported EPR 

spectrum with vanishing exchange interactions (J < 108 Hz) could be imputed to impurities 

thereby solving the biradical paradox. This problem seemed to be completely resolved 

when Brauer et al. reported the triplet resonance signal for the polycrystalline sample of 

Tschitschibabin's HC.[14-15] But the discrepancies were triggered back when Montgomery 

et al. successfully obtained the single crystal of Tschitschibabin's HC, which provided 

doublet EPR spectrum alike all previous studies of the same.[12] Since then no clear 

explanation has been given to such conflicting observations which were supposedly 

caused by the possibility of the paramagnetic impurities. 

 

Figure 7.1: Thiele's and Tschitschibabin's hydrocarbon and calculated singlet-triplet 

energy gap.   

 

Figure 7.2: (a) Structural formula of monoradical impurity proposed by Brauer et al. (b) 

structural formula of dimer impurity proposed by van der Hart and Oosterhoff. 

Serendipitously during the course of our study on the tuning of intra- and inter-

molecular exchange interactions in antiferromagnetically coupled biradicals, described in 

previous chapters, we found the molecule BPNO which exist in semi-quinoid form (Figure 

7.3).[23-26] At room temperature BPNO showed doublet EPR spectrum. Even after several 
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purifications by column followed by repetitive crystallization no improvement in EPR 

spectrum was observed. Thus, this molecule was studied in depth by variable 

temperature EPR, UV-Vis spectroscopy and DFT calculation. All the analysis led to 

inference that the molecule BPNO exist in semi-quinoid form with very large singlet-

triplet energy gap of ‒5.1 kcal/mol. A similar semi-quinoid structure was also found for 

the 2,7-disubstituted tetramethoxypyrene based biradical system described in chapter 

6.[27] The initially observed monoradical like spectrum at room temperature was caused 

by the trace amount of monoradical impurity and the very weak intensity biradical 

spectrum due to low population of triplet state at given temperature was suppressed 

under the monoradical impurity spectrum. At the elevated temperature clear five line EPR 

spectrum for biradical was observed. These observations reminded us the very well 

known Tschitschibabin's HC which also suffered from the absence of triplet EPR spectrum 

in solution as discussed above. So we planned to revisit the discrepancy of ground state of 

Tschitschibabin's HC. Alike in Tschitschibabin's HC, the two spin centers in BPNO are 

separated by the same spacer molecule.  The BPNO can serve as a stable heteroatom 

analogue of Tschitschibabin's HC.  

I reanalyzed the crystal structures of Thiele's and Tschitschibabin's HC reported by 

Montgomery et al.  with DFT calculations.[12] While the Thiele's HC showed bond 

alterations in phenylene ring indicating quinoid form, the Tschitschibabin's HC did not 

show significant difference in alternating bonds of the biphenyl. Most importantly the 

C−C′ bond  (1.448 Å) between the phenylene rings was 0.1 Å longer than the typical 

double bond average, but still shorter than the typical aryl-aryl single bond distance 

(1.493 Å) in biphenyls.  The crystal structure data for Tschitschibabin's HC recorded at 

three different temperatures did not show systematic change in bond lengths and 

dihedral angles.  The DFT calculations were performed with the geometry of single crystal 

structure to obtain the singlet-triplet energy gap and to compare the spin density 

distribution. The estimated antiferromagnetic singlet-triplet energy gap for Thiele's and 

Tschitschibabin's HC were ‒27.7 and ‒8.1 kcal/mol, respectively, using unrestricted 
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broken symmetry B3LYP/6-31g(d) level of theory.  Interestingly, while the Eigen function 

(S2) for broken symmetry state of Thiele's HC converged to zero, it was close to 1 for 

Tschitschibabin's HC (S2 = 0.77). This clearly indicated the ground state of Thiele’s and 

Tschitschibabin's HC are closed shell singlet and open shell singlet, respectively. The 

singlet-triplet energy gap for Tschitschibabin’s HC was nearly double than that of BPNO, 

which suggested alike BPNO, Tschitschibabin's HC may also exist in semi-quinoid form. 

Therefore considering the very strong antiferromagnetic exchange interactions no 

significant population of triplet state occurs at room temperature or lower temperatures. 

So the triplet EPR spectrum of Tschitschibabin's HC was masked under the monoradical 

impurities. If this hypothesis is true then all the historical discrepancies related to EPR 

spectra of Tschitschibabin's HC can be well accounted for.      

 

Figure 7.3: The structures of molecules under investigation and the energy gap between 

singlet and triplet states.  

Thus to confirm our hypothesis, we designed and studied a series of phenylene 

bridged bisnitroxide molecules (Figure 7.3) experimentally as well as theoretically. The 

structure of PHNO was comparable to Thiele's HC, both of which exist in a complete 

quinoid form. On further extending the π-bridge from monophenylene to biphenylene 
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and terphenylene, the molecules showed the transition from complete quinoid to 

complete biradicaloid form via semi-quinoid structure. Unlike Tschitschibabin's HC, the 

excellent stability of BPNO allowed its analysis under very harsh condition. In BPTMP the 

spacer molecule biphenyl tetramethoxypyrene can be considered as a tetraphenylene in 

which two central phenyl rings are locked from the rotation.  

7.2 Synthesis 

Scheme 7.1: Synthesis of (a) BPNO and TPNO, and (b) BPTMP. 

In 1998 Iwamura et al. reported the synthesis and characterization of p-

phenylenebis(N-tert-butylaminoxyl)  (PHNO).[28] The PHNO was analyzed by NMR, EPR, 

UV-Vis and single crystal X-ray analysis. Single crystal structure analysis revealed that 

PHNO exist in quinoid form which was supported by its EPR silence and clear NMR 

spectrum with two sharp singlets at 7.40 and 1.68 ppm. The UV-Vis spectrum of PHNO in 

DCM showed the broad absorption at 403 nm due to quinoid form. The BPNO and TPNO 

were synthesized in two steps from corresponding 4,4’-dibromobiphenyl and 4,4'-
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dibromoterphenyl, respectively. As shown in Scheme 1a in the first step the dibromo 

derivatives were lithiated with n-BuLi at –78 °C followed by addition of 2-methyl-2-

nitrosopropane (t-BuNO) dimer, which gave bishydroxylamine (1 or 2). In second step 

oxidation of bishydroxylamine with Ag2O in DCM afforded the desired product BPNO or 

TPNO. The Suzuki coupling reaction of 2,7-diiodo-4,5,9,10-tetramethoxypyrene (3) and 4-

(tert-butyl(tert-butyldimethylsilyloxy)-amino)phenyl-boronicacid (4PBA) gave the tert-

butyldimethylsilyl protected bis(N-(tert-butyl)-N-phenylhydroxylamine) (4). The 

deprotection of the silyl group and subsequent oxidation of the obtained 

bishydroxylamine yielded BPTMP.[29-31] 

7.3 Optical Properties 

  

 

Figure 7.4: UV-Vis spectra of (a) BPNO (b) TPNO, and (c) BPTMP at room temperature in 

toluene. 
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The UV-Vis spectra of BPNO and TPNO recorded in toluene at room temperature 

were completely different (Figure 7.4). While the TPNO showed typical polyphenylene  

absorption at 349 nm with shoulder at 430 nm due to n−π* transition of tert-

butylaminoxyl radical moiety, the BPNO displayed biphenyl absorption at 322 nm along 

with additional very strong absorption at 476 nm and weak absorption at 649 nm. As it 

has been found in previous studies[27] the two additional absorption peaks in BPNO at 476 

nm and 649 nm which were completely absent in TPNO can be assigned to the presence 

of partial quinoid form. The BPTMP exhibited the pyrene absorption peak at 357 nm and 

low intensity broad absorption shoulder due to n−π* transition of radical moiety 

between 450 nm to 650 nm. To probe into structural change with temperature, the BPNO 

in toluene was subjected to variable temperature (VT) UV-Vis measurements. 

Interestingly upon increasing the temperature the absorption peaks at 476 nm and 649 

nm due to quinoid form were decreased and the absorption peak at 322 nm 

corresponding to benzenoid biphenyl core increased (Figure 7.5).  

 

Figure 7.5: (a) Variable temperature UV-Vis spectra of BPNO in toluene, (b) change in 

absorption maxima (black dot) at 476 nm and Arrhenius fit (red line).  

The hyperchromic shift of absorption band at 476 nm with temperature was analyzed 

applying the Arrhenius equation.    
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𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝑘𝑒𝑞 = A exp (−

Δ𝐸𝑎

𝑘𝐵𝑇
) 7-1 

Where keq is the equilibrium constant, ΔEa is the energy gap between quinoid structure 

and benzenoid structure, and kB is the Boltzmann constant. The best Arrhenius fit gave 

the activation energy of 2.5 kcal/mol for the structural transformation from benzenoid to 

semi-quinoid form (and vice-versa, Scheme 7.2).     

 

Scheme 7.2: Structural transformation with temperature.  

7.4 EPR spectroscopy  

The TPNO and BPTMP in toluene at room temperature gave typical five line EPR 

spectra for the biradical possessing two aminoxyl radical moieties (Figure 7.6a & 7.6b). 

The EPR spectra can be reproduced by spectral simulation considering two equivalent 

nitrogen hyperfine coupling constants aN/2 = 6.225 G at g = 2.0065 for TPNO and aN/2 = 

5.948 G at g = 2.0058 for BPTMP. This demonstrates the exchange interaction between 

radical moieties are much larger than the hyperfine coupling J >> aN.[32] In contradiction 

to this, the room temperature (293 K) EPR spectrum of BPNO in toluene appeared more 

alike mono radical species consisting of low intensity three lines with tiny shoulders in 
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between as shown in Figure 7.6c. When this toluene solution of BPNO was subjected to 

VT EPR measurement these tiny shoulders became more predominant with increasing the 

temperature. Notably at 333 K clear five line spectrum for biradical was observed which 

became more prominent at 353 K.  The detected spectrum at 353 K was recreated with 

spectral simulation taking two equivalent nitrogen hyperfine coupling constant aN/2 = 

6.250 G at g = 2.0067 (Figure 7.6d). The temperature dependent process was reversible as 

upon cooling the sample to 293 K the spectrum reached back to its previous position. The 

initially observed three line low intensity spectrum at room temperature may arise from 

the trace amount of mono radical impurity.  

332 334 336 338
magnetic field (mT)

 TPNO_EXP

 TPNO_Simu

(a)

 

 

  

Figure 7.6: Experimental and simulated EPR spectra of (a) TPNO and (b) BPTMP in toluene 

at room temperature. (c) Variable temperature EPR spectra of BPNO in toluene. (d) 

Experimental and simulated EPR spectra of BPNO at 353 K in toluene.  
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Figure 7.7: (a) Integrated EPR spectra of single crystalline BPNO at different temperature 

and (b) change in integrated signal intensity with temperature (black dot) and Bleaney 

and Bowers fit (red line). 

Furthermore a single crystal of BPNO was EPR active indicating that the sample is 

not in complete quinoid form in solid state (Figure 7.7a). Notably with raising the 

temperature the signal intensity increased significantly showing inverse Curie like 

behavior thereby enhancing the paramagnetic content. The increased signal intensity 

with temperature can be imputed to enhanced population of the triplet state. This is in 

accordance with the VT EPR and UV-Vis measurements in toluene which showed the 

increase in biradical nature of BPNO with raising the temperature. The temperature 

dependence of EPR signal intensity was analyzed using the Bleaney and Bowers equation 

7-2,[33] 

 
𝐼 = 3(𝐶/𝑇)𝑒𝑥𝑝(−

 ∆𝐸𝑆𝑇

𝑘𝐵𝑇
)/(1 + 3𝑒𝑥𝑝 (−

∆𝐸𝑆𝑇

𝑘𝐵𝑇
)) 7-2 

The estimated singlet-triplet energy gap was as large as ‒5.1 kcal/mol. Therefore very 

strong antiferromagnetic exchange interactions are operating between two radical 

moieties in BPNO. Because of the large singlet-triplet energy gap very small population of 

triplet state occurs at room temperature which is in concomitance with the low intensity 

EPR spectrum in toluene at room temperature. All these experimental results led to the 
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inference that BPNO exist in semi-quinoid form and exhibits structural transformation 

with temperature.  While at low temperature it shows more quinoid character at higher 

temperature it stabilizes in biradicaloid form (Scheme 7.2). To collect more information 

about the structure of these molecules the single crystals were obtained and their 

structures compared.  

7.5 Crystal structure analysis 

 

 

 

Figure 7.8: Single crystal structure of (a) BPNO (b) TPNO, and (c) BPTMP. 
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The crystal structure analysis is a vital requirement to get an insight into structure 

of molecules under study. Good quality crystals were grown by slow diffusion of hexane 

to the solution of samples in DCM. Single crystals were analyzed using single crystal X-ray 

diffraction method. For comparison purpose the single crystal structure for PHNO was 

obtained from CCDC on request. Crystal structure analysis of PHNO indicated the 

presence of two independent molecules (PHNO1 and PHNO2) in an asymmetric unit. 

Although the bond lengths and dihedral angles differ slightly, both the molecules showed 

alternating C−C bond lengths where the aminoxyl group was in plane with the benzene 

ring. The N−O bond was slightly elongated and C−N bond was shortened (Table 7.1) in 

comparison with typical C−N (1.41 Å) and N−O (1.27 Å) bond lengths in phenyl 

aminoxyls. Thus, the structure of PHNO was concluded as the one of the quinoid form. So 

far the UV-Vis and EPR analysis indicated that while TPNO and BPTMP are in complete 

biradicaloid form, the BPNO exist in semi-quinoid form. Thus, it was intriguing to compare 

the crystal structure of BPNO with completely quinoid form PHNO and wholly biradicaloid 

form TPNO (or BPTMP). Crystal structure analysis of TPNO and BPTMP revealed that the 

C−N bond length was larger (distinctive of C−N single bond) in comparison to PHNO. The 

C−C bond lengths were of the order of typical C−C bond of phenylenes. The aminoxyl 

radical moiety formed dihedral angle of 28° and 20° with respect to the phenyl ring in 

TPNO and BPTMP, respectively (Figure 7.8). The dihedral angle between central and 

terminal phenyl rings of TPNO was 15°. Crystal structure analysis of BPNO indicated that 

the two phenyl rings were nearly co-planar with each other (dihedral angle 0.2°) and the 

aminoxyl group was slightly deviated from the plane of phenyl ring with dihedral angle of 

7°. The C−N bond length in BPNO was larger than the PHNO but comparable to TPNO and 

BPTMP. The C−C bond length (1.458 Å) between two phenyl ring of BPNO was 

comparable to Tschitschibabin's HC (1.448 Å) but slightly shorter in comparison with 

TPNO (1.481 Å). Further the major difference in the structure of BPNO and TPNO came 

from the planarity of phenyl ring with respect to each other and the planarity of aminoxyl 

group with respect to the phenyl ring. The planarity of phenyl rings and aminoxyl group in 

BPNO gives better overlap of π-orbitals in comparison to TPNO. Thus even though the 
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bond lengths are comparable in BPNO and TPNO, the BPNO exist in semi-quinoid form 

owing to the exceptional planarity.   

Table 7.1: Selected bond lengths and bond angles. 

  PHNO1 PHNO2 BPNO TPNO BPTMP 

bond lengths (Å) 

N1−O1  1.291 1.287 1.284 1.290 1.272 

N1−C1 1.354 1.362 1.411 1.413 1.422 

C1−C2 1.423 1.417 1.406 1.401 1.399 

C2−C3 1.362 1.358 1.380 1.387 1.399 

dihedral angle (°) 

O1−N1−C1−C2  1.2 3.4 7.0 28.0 20.3 

7.6 DFT Calculations 

To examine the biradical character of ground state (S0) of molecules HF and DFT 

calculations were performed using the crystal structure geometries.[34] Initially the degree 

of biradical character (𝑦) was predicted by simple two-electron two-orbital model using 

the occupation numbers of the unrestricted non-bonding orbitals (UNOs) of UHF/6-31g(d, 

p) as proposed by Kamada et al.[35-36] The biradical character 𝑦 obtained from these 

calculations has value between 0 and 1, which corresponds to closed shell and pure 

biradical system, respectively.     

 
𝑦 = 1 − 

4 (𝜎𝐻𝑂𝑀𝑂 −  𝜎𝐿𝑈𝑀𝑂)

4 +  (𝜎𝐻𝑂𝑀𝑂 −  𝜎𝐿𝑈𝑀𝑂)2 7-2 

The theoretical value of 𝑦 can be calculated from the occupation numbers of 

frontier orbitals, σHOMO and σLUMO, using the equation shown above. The estimated values 

of  degree of biradical character, 𝑦, for Thiele's and Tschitschibabin's HC are 0.31 and 

0.72, respectively, which clearly indicates that while the former has closed shell structure 

the latter has more biradicaloid structure but relatively lower than the ideal biradical 
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system. In a similar way the degree of biradical character increases on moving from PHNO 

to TPNO (Table 7.2). TPNO which showed the clear biradical EPR spectrum at room 

temperature has biradical character (0.99) close to the theoretical value (1.00) of pure 

biradical system. This also shows the precision of this method for calculating the biradical 

character.  Notably, although having a similar axial spin distance, the Tschitschibabin's HC 

possesses the lower degree of biradical character compared to BPNO.  

The broken symmetry DFT approach proposed by Noodleman et al. was employed 

to evaluate the energy difference between ground state (S0) and triplet state (T1).[37] The 

singlet-triplet energy gap was calculated with the generalized spin projection method 

suggested by Yamaguchi et al.[38-40],  

 
∆𝐸𝑆𝑇 =

(𝐸(𝐵𝑆) −  𝐸(𝑇))

(𝑆2(𝑇) − 𝑆2(𝐵𝑆))
∗ 2 7-3 

where E(BS) and E(T) are the energies of the broken symmetry singlet and triplet state, 

respectively, and S2 are the Eigenvalues of the spin operator for these states.  As shown in 

Table 2 the triplet T1 state is always higher in energy than the singlet S0 state. The S2- 

values of BS calculation converge to zero for the closed shell structures Thiele's HC and 

PHNO. Interestingly, the S2-values of BS-solution for pure biradicals TPNO and BPTMP are 

0.98 and 1.00, respectively, as anticipated for singlet ground state biradicals, and do not 

converge to zero but close to one for Tschitschibabin's HC (S2 = 0.81) and BPNO (S2 = 

0.76). This designates the S0 state of Tschitschibabin's HC and BPNO as open shell singlet. 

The singlet-triplet energy difference decreases rapidly with increasing the length of the π-

spacer. The calculated singlet-triplet energy gap for BPNO using BS-DFT calculations (–4.9 

kcal/mol) is well in accordance with the estimated value (–5.1 kcal/mol) from the VT EPR 

measurement. The T1 state population obtained using Boltzmann distribution and the 

energy gaps are 0.06% and 0.0004% for BPNO and Tschitschibabin's HC, respectively.    
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Table 7.2: Summary of DFT calculations. 

Molecule E, eV    
(Triplet) 

S2   

(triplet) 
E, eV               

(BS-Singlet) 
S2  

(BS) 
ΔEST,  

kcal/mol 

Biradical 
character 

(y)c 

Thiele's HC ‒3566.36324 2.023 ‒33567.5810 0.00 ‒27.75a 0.31 

Tschitschibabin's 
HC  

‒39836.20305 2.039 ‒39836.41784 0.81 ‒8.11a 
0.72 

PHNO1 ‒21927.01325 2.003 ‒21927.67049 0.00 ‒15.16b 0.60 

PHNO2 ‒21928.54546 2.000    ‒21929.24631 0.00 ‒16.16b 0.57 

BPNO ‒28209.51581 2.006 ‒28209.6485 0.76 ‒4.91b 0.85 

TPNO ‒34494.35992 2.008 ‒34494.37674 0.98 ‒0.75b 0.99 

BPTMP ‒57379.63065 2.008 ‒57379.63317 1.00 ‒0.12b - 

acalculated at UB3LYP/6-31g(d) level, bcalculated at UBLYP/6-31g(d) level, ccalculated at 
UHF/6-31g(d, p) level.  

To get an additional insight into the nature of open shell compounds, the frontier 

molecular orbitals were investigated. As shown in Figure 7.9 the singly occupied 

molecular orbitals calculated at BS-UB3LYP/6-31g(d) level for Tschitschibabin's HC and BS-

UBLYP/6-31g(d) level for BPNO, TPNO, and BPTMP.[41-42] For the pure biradical system 

TPNO and BPTMP the SOMOs are confined on either half of the molecule with nearly no 

overlap between them. As the two unpaired electrons in two SOMOs reside on different 

part of the molecule, TPNO and BPTMP can be classified as singlet disjoint biradicals.[43-44] 

In contrast, the SOMOs of Tschitschibabin's HC and BPNO are no longer confined 

separately but overlap at the center of the molecules which takes them little away from 

the class of the disjoint singlet biradicals. Interestingly while the spin density of triplet 

state is highly delocalized in Tschitschibabin's HC and BPNO, it is more located on the 

radical moiety than the phenyl rings in TPNO. In case of BPTMP the triplet spin density is 

more localized on terminal phenyl ring and radical moiety, with only minor contribution 

at the pyrene core. 
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Figure 7.9: Calculated SOMOs of BS singlet and spin density distribution of triplet state.  

7.7 Summary 

In summary the serendipitous synthesis of BPNO, the open shell singlet semi-

quinoid molecule, led us to dig the discrepancies related to Tschitschibabin's HC. For the 

better understanding of the transition from the purely quinoid to pure biradicaloid 

structure via the semi-quinoid form a series of molecules with extended π-bridge are 

compared and analyzed. While the longer extended molecules TPNO (rN-N = 1.43 nm) and 

BPTMP (rN-N = 1.84 nm) showed clear biradical features at room temperature with 5 line 

EPR spectra where J >> aN, the BPNO (rN-N = 1.0 nm) is a borderline case best described as 

semi-quinoid. Combining all the theoretical and experimental results led to the inference 

that like BPNO the Tschitschibabin's HC also possess the semi-quinoid structure with very 
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strong antiferromagnetic exchange interactions. Because of this very small population of 

triplet state (< 0.1%)  occurs leading to weak intensity triplet EPR spectrum which can be 

masked under even ~ 0.1% impurity of monoradical species thereby giving doublet like 

spectrum at room temperature. Furthermore the poor stability of Tschitschibabin's HC 

under ambient conditions may not allow its unquestionable spectroscopic analysis at 

elevated temperature as there is possibility of thermal decomposition. The exceptional 

stability of BPNO permitted its analysis by UV-Vis and EPR at higher temperatures. The VT 

EPR measurements clearly showed that the small population of triplet state becomes 

significant at higher temperature.  Therefore, in conclusion alike BPNO the 

Tschitschibabin's HC can also be classified as the new class of molecules which exist in 

semi-quinoid form and exhibit the property of biradical and quinoid form simultaneously. 

Moreover these analyses can help in the better understanding of the biradical character 

of recently pushed search for singlet open shell polyaromatic HCs. 
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7.8 Synthetic Details 

N-(4-Bromophenyl)-N-(tert-butyl)-O-(tert-butyldimethylsilyl)hydroxylamine 

 

To a solution of 1,4-dibromobenzene (500 mg) in 5 ml diethyl ether, 1.3 ml 1.6 M 

n-BuLi hexane solution was added drop wise at ‒78 °C and stirred for 2 hour at same 

temperature. The mixture was gradually warmed to ‒30 °C and further stirred for 1.5 

hour. To the resulting mixture was added the solution of 277 mg tert-BuNO dimer in 3 ml 

diethyl ether drop wise at ‒78 °C, stirred for 2 hour and warmed to room temperature. 

The mixture was hydrolyzed with aqueous ammonium chloride. Organic layer was 

separated washed with water and brine and dried over MgSO4. Solvent was removed 

under vacuum and residue used as it is for next step without any purification. To the dried 

round bottom flask containing tert-butyldimethylchlorosilane and imidazole, solution of 

hydroxyl amine in 2.5 ml dry DMF added and mixture heated at 50 °C for 24 hour under 

argon atmosphere. After completion of reaction the resulting product was poured into 

water and extracted with hexane. The crude product was purified on silica gel column 

using hexane as eluent. Yield 73% in two steps. MS-FD= 479.9 (100%).1H NMR (250 MHz, 

CDCl3) δ 7.36, 7.32, 7.26, 7.14, 7.11, 1.05, 0.88, 0.01.   

(4-(Tert-butyl((2,3,3-trimethylbutan-2-yl)oxy)amino)phenyl)boronic acid 

(4PBA) 

0.9 ml (1.1 equivalent) 1.6 M solution of n-BuLi in hexane was added drop wise to 

the solution of N-(4-bromophenyl)-N-(tert-butyl)-O-(tert-butyldimethylsilyl)hydroxyl-

amine (450 mg)  in 8 ml THF under argon at ‒78 °C. Reaction mixture was stirred for 3 
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hour at same temperature and then 0.36 ml triisopropyl borate was added, stirring 

continued overnight and allowed to warm to room temperature. To the resulting product 

aqueous ammonium chloride solution was added and stirred further for 1 hour. Organic 

layer was  separated and aqueous portion extracted with diethyl ether. Combined organic 

layer was washed with brine dried over MgSO4. Crude product was purified by column 

chromatography over silica gel using hexane: ethyl acetate (100:20) as eluent. Product 

slowly converts to its trimer as shown in scheme below. The mixture of trimer and 

monomer used for Suzuki coupling reaction. Yield 76%. MS-FD= 915.6 (100%) (Trimer).  

 

 

N,N'-([1,1'-Biphenyl]-4,4'-diyl)bis(N-oxy-tert-butylamine) (BPNO) 

 

To a solution of 4,4'-dibromo-1,1'-biphenyl (200 mg, 0.64 mmol) in 5 ml THF, 2.2 

equivalent 1.6 M n-BuLi hexane solution was added drop wise at ‒78 °C and stirred for 1 

hour at the same temperature. The mixture was gradually warmed to room temperature 

over the period of 2 hour and further stirred for 30 min. To the resulting mixture, the 
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solution of  2-methyl-2-nitrosopropane (t-BuNO) dimer (3 equivalents) in 2 ml THF was 

added drop wise at ‒78 °C, continued stirring for 2 hour and warmed to room 

temperature. The reaction mixture was hydrolyzed with aqueous ammonium chloride. 

Organic layer was separated washed with water and brine and dried over MgSO4. Solvent 

was removed under vacuum and residue was used as it is for the next step without any 

purification. To the slurry of crude product in 20 ml DCM, 300 mg of Ag2O was added and 

stirred for 3 hour under argon. The reaction mixture was filtered through celite and the 

solvent was evaporated, the residue was purified by alumina column using 

hexane:ethylacetate  (100:10) as eluent. Yield 60 mg of BPNO (29% in two steps). MS-FD= 

325.9 (100%), λmax (ε, M‒1 cm‒1) 322 (1.04 X 104), 476 (4.2 X 104), 649 (1171). EPR (353 K, 

10‒4 M in toluene): five lines, giso = 2.0067, aN/2 = 6.250 G.  

N,N'-([1,1':4',1''-Terphenyl]-4,4''-diyl)bis(N-oxy-tert-butylamine) (TPNO) 

 

To a solution of 4,4''-dibromo-1,1':4',1''-terphenyl (100 mg, 0.26 mmol) in 40 ml 

THF, 2.2 equivalent 1.6 M n-BuLi hexane solution was added drop wise at ‒78 °C and 

stirred for 1 hour at same temperature. The mixture was gradually warmed to room 

temperature over the period of 2 hour and further stirred for 30 min. To the resulting 

mixture the solution of 2-methyl-2-nitrosopropane (t-BuNO) dimer (3 equivalent) in 2 ml 

THF was added drop wise at ‒78 °C, continued stirring for 2 hour and warmed to room 

temperature. The reaction mixture was hydrolyzed with aqueous ammonium chloride. 

Organic layer was separated, washed with water and brine and dried over MgSO4. Solvent 

was removed under vacuum and residue used as it is for next step without any 

purification. To the slurry of crude product in 40 ml DCM, 200 mg of Ag2O was added and 

stirred for 3 hour under argon. The mixture was filtered through celite and solvent 
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evaporated, the residue was purified by alumina column using hexane:ethylacetate  

(100:25) as eluent. Yield 25 mg of TPNO (24% in two steps). MS-FD= 402.4 (100%). λmax (ε, 

M‒1 cm‒1) 349 (3.4 X 104). EPR (298 K, 10‒4 M in toluene): five lines, giso = 2.0065, aN/2 = 

6.225 G.  

N,N'-((4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,1-phenylene))bis(N-oxy-

tert-butylamine) (BPTMP) 

 

To the oven dried Schlenk flask 2,7-diiodo-4,5,9,10-tetramethoxypyrene (100 mg, 

0.17 mmol) and 4-(tert-butyl(tert-butyldimethylsilyloxy)-amino)phenylboronic acid (140 

mg, 2.5 equivalent) were dissolved in 16 ml toluene. To the resulting mixture aqueous 

solution of Na2CO3 (83 mg in 6 ml H2O) added and mixture was bubbled with argon for 30 

min, then 5 mol% Pd(PPh3)4 was added and the resulting solution heated at 83 °C for 20 

hour. The reaction mixture was cooled to room temperature and washed with water. The 

organic layer was separated, and solvent was removed under vacuum. The crude 

intermediate product 4 was obtained in quantitative yield characterized by FD mass and 

used as it is for next step. MS-FD (8 kV, CH2Cl2) m/z: found 877.3 (100%). 
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The crude product 4 was dissolved in 15 ml THF. The conc. HCl (1.2 ml) was added 

and the reaction mixture stirred at room temperature for overnight under argon. The 

reaction mixture was poured into 10 ml H20 and the precipitate formed were filtered, 

dried and used immediately for next step. The precipitate and excess of Ag2O (200 mg) 

were dispersed in 30 ml DCM and stirred at room temperature for 3 hour under argon. 

The solution passed through celite, and the solvent was removed under vacuum. The 

crude product was purified by column chromatography using 1:1 (hexane:DCM) as eluent. 

Yield 40 mg (39% in three steps). MS-FD (8 kV, CH2Cl2) m/z: found 646.6 (100%).  λmax (ε, 

M‒1 cm‒1)  357 (8.6 X 104). EPR (298 K, 10‒4 M in toluene): five lines, giso = 2.0058, aN/2 = 

5.948 G.   

7.9 References 

[1] M. Gomberg, J. Am. Chem. Soc. 1900, 22, 757. 

[2] A. E. Tschitschibabin, Chem. Ber. 1907, 40, 1810. 

[3] T. Sugawara, M. M. Matsushita, J. Mater. Chem. 2009, 19, 1738. 

[4] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. 
Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 2001, 294, 1488. 

[5] Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 2011, 3, 197. 

[6] Z. Sun, Z. Zeng, J. Wu, Chem. Asian J. 2013, 8, 2894. 

[7] A. Shimizu, T. Kubo, M. Uruichi, K. Yakushi, M. Nakano, D. Shiomi, K. Sato, T. Takui, 
Y. Hirao, K. Matsumoto, H. Kurata, Y. Morita, K. Nakasuji, J. Am. Chem. Soc. 2010, 
132, 14421. 

[8] Z. Zeng, Y. M. Sung, N. Bao, D. Tan, R. Lee, J. L. Zafra, B. S. Lee, M. Ishida, J. Ding, J. 
T. López Navarrete, Y. Li, W. Zeng, D. Kim, K.-W. Huang, R. D. Webster, J. Casado, J. 
Wu, J. Am. Chem. Soc. 2012, 134, 14513. 

[9] X. Zheng, X. Wang, Y. Qiu, Y. Li, C. Zhou, Y. Sui, Y. Li, J. Ma, X. Wang, J. Am. Chem. 
Soc. 2013. 

[10] A. Konishi, Y. Hirao, M. Nakano, A. Shimizu, E. Botek, B. Champagne, D. Shiomi, K. 
Sato, T. Takui, K. Matsumoto, H. Kurata, T. Kubo, J. Am. Chem. Soc. 2010, 132, 



"Tschitschibabin type Biradicals": Benzenoid or Quinoid? Chapter 7 

 

 

 

186 

11021. 

[11] D. C. Reitz, S. I. Weissman, J. Chem. Phys. 1960, 33, 700. 

[12] L. K. Montgomery, J. C. Huffman, E. A. Jurczak, M. P. Grendze, J. Am. Chem. Soc. 
1986, 108, 6004. 

[13] H. M. McConnell, J. Chem. Phys. 1960, 33, 1868. 

[14] H. Hartmann, H. D. Brauer, H. Schafer, Zeitschrift Fur Physikalische Chemie-
Frankfurt 1968, 61, 119. 

[15] H. D. Brauer, H. Stieger, H. Hartmann, Zeitschrift Fur Physikalische Chemie-
Frankfurt 1969, 63, 50. 

[16] F. Popp, F. Bickelhaupt, C. Maclean, Chem. Phys. Lett. 1978, 55, 327. 

[17] H. M. McConnell, J. Chem. Phys. 1960, 33, 115. 

[18] C. A. Hutchison, A. Kowalsky, R. C. Pastor, G. W. Wheland, J. Chem. Phys. 1952, 20, 
1485. 

[19] H. Stieger, H. D. Brauer, Chem. Ber. Recl. 1970, 103, 3799. 

[20] Y. Kanzaki, D. Shiomi, K. Sato, T. Takui, J. Phys. Chem. B 2012, 116, 1053. 

[21] H. D. Brauer, H. Stieger, J. S. Hyde, L. D. Kispert, Luckhurs.Gr, Mol. Phys. 1969, 17, 
457. 

[22] W. J. van der Hart, L. J. Oosterhoff, Mol. Phys. 1970, 18, 281. 

[23] P. Ravat, Y. Ito, E. Gorelik, V. Enkelmann, M. Baumgarten, Org. Lett. 2013, 15, 
4280. 

[24] E. A. Mostovich, Y. Borozdina, V. Enkelmann, K. Remović-Langer, B. Wolf, M. Lang, 
M. Baumgarten, Cryst. Growth Des. 2012, 12, 54. 

[25] B. Wolf, P. T. Cong, K. Remović-Langer, Y. D. Borozdina, E. Mostovich, M. 
Baumgarten, M. Lang, J. Phys.: Conf. Ser. 2010, 200, 012225. 

[26] Y. B. Borozdina, E. Mostovich, V. Enkelmann, B. Wolf, P. T. Cong, U. Tutsch, M. 
Lang, M. Baumgarten, J. Mater. Chem. C 2014, 2, 6618. 

[27] P. Ravat, Y. Teki, Y. Ito, E. Gorelik, M. Baumgarten, Chem. Eur. J 2014, DOI: 
10.1002/chem.201403338. 



"Tschitschibabin type Biradicals": Benzenoid or Quinoid? Chapter 7 

 

 

 

187 

[28] S. Nakazono, S. Karasawa, N. Koga, H. Iwamura, Angew. Chem. Int. Ed. 1998, 37, 
1550. 

[29] S.-i. Kawano, M. Baumgarten, D. Chercka, V. Enkelmann, K. Müllen, Chem. 
Commun. 2013, 49, 5058. 

[30] J. C. Stowell, J. Org. Chem. 1971, 36, 3055. 

[31] R. J. Smith, R. M. Pagni, J. Org. Chem. 1981, 46, 4307. 

[32] M. Shinomiya, K. Higashiguchi, K. Matsuda, J. Org. Chem. 2013, 78, 9282. 

[33] B. Bleaney, K. D. Bowers, Proc. R. Soc. London A 1952, 214, 451. 

[34] G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. 
Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, 
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. H A. F. 
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,M. Ehara, K. Toyota, R. 
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. 
Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. 
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, 
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. 
Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. 
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. 
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, 
S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and 
D. J. Fox., in Gaussian 09, Gaussian, Inc, Wallingford CT, 2009. 

[35] K. Kamada, K. Ohta, A. Shimizu, T. Kubo, R. Kishi, H. Takahashi, E. Botek, B. 
Champagne, M. Nakano, J.Phys.Chem.Lett. 2010, 1, 937. 

[36] P. O. Dral, T. Clark, J. Phys. Chem. A 2011, 115, 11303. 

[37] L. Noodleman, J. Chem. Phys. 1981, 74, 5737. 

[38] K. Yamaguchi, F. Jensen, A. Dorigo, K. N. Houk, Chem. Phys. Lett. 1988, 149, 537. 

[39] T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. 
Yamaguchi, Chem. Phys. Lett. 2000, 319, 223. 

[40] M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, K. 
Yamaguchi, Chem. Phys. Lett. 2006, 432, 343. 

[41] A. D. Becke, J. Chem. Phys. 1993, 98, 1372. 



"Tschitschibabin type Biradicals": Benzenoid or Quinoid? Chapter 7 

 

 

 

188 

[42] E. R. Davidson, D. Feller, Chem. Rev. 1986, 86, 681. 

[43] W. T. Borden, H. Iwamura, J. A. Berson, Acc. Chem. Res. 1994, 27, 109. 

[44] W. T. Borden, E. R. Davidson, J. Am. Chem. Soc. 1977, 99, 4587. 

 

 

 



 

  

 

      

 

  

 

The first neutral paramagnetic HBC derivative was synthesized and characterized. 

The phenyl nitroxide substituted HBC derivative with five alkyl chains was found to exhibit 

a positive magneto-LC effect in columnar hexagonal liquid crystalline phase, probed with 

EPR spectroscopy. At 140 K the ΔMS = 2 transition could be observed indicating the 

thermally accessible triplet state between the neighboring molecules in the columnar 

arrangements. 

 

Note: Large part of this chapter has been published in J. Am. Chem. Soc. 2014, 136, 12860-

12863. 

CHAPTER 8 
POSITIVE MAGNETO-LC EFFECT IN 

CONJUGATED SPIN-BEARING 

HEXABENZOCORONENE  
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8.1 Introduction 

Among the various discotics bearing large aromatic cores, hexa-peri-

hexabenzocoronenes (HBCs), are extensively studied because of their assembly into 

stable columnar structures and promising electronic properties.[1] HBCs have been 

functionalized with various substituents in order to steer their electronic properties and 

device applications.[2-5] Earlier studies have shown that HBCs or arylamine substituted 

HBCs can be reduced or oxidized to their corresponding radical anions and cations 

respectively.[6-7] These radicals, however, could not be isolated as material in pure form 

owing to their limited stability and were only characterized by in-situ analysis with EPR 

and/or UV-Vis spectroscopy. The peculiar ability of HBCs to arrange into columnar 

superstructures may allow one-dimensional magnetic ordering. Therefore, it was 

intriguing to design a spin-bearing HBC derivative and study its magnetic behavior in 

different crystalline phases. Moreover higher conductivity through the columns could be 

expected in spin-bearing HBCs in comparison to their closed shell analogue because of 

the relatively high lying SOMO (singly occupied molecular orbital) and its delocalization 

into the aromatic core.[8-9] The recent study by Cammidge et al. showed that spin bearing 

discotic liquid crystalline materials can be used as the spin probe in the analysis of 

different phases of comparable discotics by EPR spectroscopy.[10]  

 

Figure 8.1: Structure of HBCNO (left) and schematic (right) representation of supposed 

arrangement of HBCNO molecule in columnar phase. 
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To synthesize the neutral paramagnetic HBC, the monoradical HBCNO (Figure 8.1) 

was designed. The tert-butyl nitroxide radical moiety was chosen as spin source because 

of its high stability and ability to delocalize SOMO over the poly aromatic core.  

8.2 Synthesis of HBCNO 

Scheme 8.1: Synthesis of HBCNO. 

The starting material HBC-Br (2-bromo-5,8,11,14,17-pentadodecylhexabenzo-

coronene) was synthesized according to literature procedures.[11-12]  The tert-

butyldimethylsilyl protected N-(tert-butyl)-N-phenylhydroxylamine was attached to HBC 

by Suzuki coupling reaction of HBC-Br with 4PBA (4-(tert-butyl(tert-

butyldimethylsilyloxy)amino)phenylboronic acid) giving HBCSINO in 70% yield. The 

deprotection of tert-butyldimethylsillyl with aqueous HCl gave hydroxyl amine in 

quantitative yield. Upon oxidation of hydroxyl amine with silver oxide the desired 

molecule HBCNO was obtained in 20% yield in two steps. HBCNO was purified using silica 

gel flash column chromatography using DCM:Hexane (1:1) as eluent. Slight decomposition 

of HBCNO was observed on silica gel so column should be performed quickly. The 

synthesized paramagnetic HBCNO was analyzed by mass, DSC, CV and UV-Vis 

absorption/emission spectroscopy. The magnetic behavior was monitored by EPR 

spectroscopy.   
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8.3 Thermotropic properties 

 

Figure 8.2: DSC plot of HBCNO (cooling and heating from 250 K to 390 K) at a rate of 5 K 

min–1. 

The phase transitions were identified by using differential scanning calorimetry 

(DSC) which exhibited three endothermic peaks during heating (Figure 8.2). The main 

peak (3) at 368 K is related to the transition from a well-ordered helical columnar to the 

liquid crystalline phase. The detailed phase assignment is based on the structural analysis 

below. The minor peak (2) at 352 K prior the phase transition could stem from a cold 

crystallization. The small and broad transition (1) at 314 K is due to the reorganization of 

the side chains during heating. Upon cooling, the phase transition back to the ordered 

helical phase was expressed as a broad double peak at 312 K. The broad peak during 

heating and cooling process indicates the extensive molecular rearrangement taking 

place during the conversion from one phase to another.    

To precisely assign the phases of HBCNO obtained during the DSC scans, the 

organization in bulk was studied by two-dimensional wide-angle X-ray scattering 

(2DWAXS) (Figure 8.3a). The 2DWAXS measurements were performed by Dr. Tomasz 

Marszalek at MPIP. The structural investigation of the bulk supramolecular organization 

was performed on macroscopically aligned fibers prepared by mechanical extrusion. For 
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the measurements, the fibers were mounted vertically toward the two-dimensional 

detector which collected the scattered reflections. In our previous studies on discotic 

liquid crystals, this technique provided valuable information about the molecular 

arrangement and order within such superstructures.[13] The pattern of HBCNO recorded 

for the liquid crystalline phase at elevated temperatures exhibited a typical hexagonal 

columnar organization with non-tilted discs (Figure 8.3). In the small-angle region, three 

sharp equatorial reflections were observed which correspond to the Miller indices of 100, 

110, and 200 for a hexagonal unit cell.  The positions of the reflections are in the ratio of 

1:√3:2 confirmed the hexagonal lattice with an inter-columnar parameter of ahex = 2.95 

nm (Figure 8.3b). Wide-angle reflections in the meridional plane were attributed to the 

non-tilted intra-columnar packing of the molecules from which a π-stacking distance of 

0.35 nm for HBCNO was determined.  

 

Figure 8.3: (a) 2DWAXS pattern of HBCNO (at 393 K) recorded in the liquid crystalline 

phase and (b) equatorial integration for HBCNO (reflections are assigned by Miller 

indices).  

Upon cooling the compound back to the low temperature phase (255 K), the 

supramolecular ordering significantly changed as evident from a high number of new and 

distinct reflections indicating a highly ordered phase (Figure 8.4a). In this phase the 

hexagonal lattice was maintained, but the unit cell parameter decreased to ahex = 2.55 

nm. At the same time, the π-stacking distance of the discs increased to 0.37 nm as 
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determined from the most intensive wide-angle meridional reflection. Interestingly, 

additional meridional reflections in the wide–angle domain corresponding to d-spacings 

of 0.34 nm and 0.41 nm could be an evidence for a helical organization. From the even 

distribution of these meridional four reflections, a helical structure of 8 molecules was 

concluded, whereby the HBCNO molecules should be rotated by 45° towards each other 

(Figure 8.4c). Further reflections within the middle-range region related to the helical 

packing were missing. Cerius2 simulations[14] in which a HBC core was applied, confirm the 

described model yielding an X-ray pattern with the three characteristic reflections on the 

wide-angle meridional plane (Figure 8.4b). The disordered alkyl chains and the phenyl 

nitroxide are neglected in this model for simplicity. The simulated pattern also verified 

that off-meridional reflections in the middle-range region were missing, which otherwise 

would be typical for helical columnar structures. Most probably the phenyl nitroxide 

group was tilted with respect to the plane of the HBC core inducing a rotation of 

neighbouring HBCNO discs and finally a helical arrangement within the columnar stack.  

 

Figure 8.4: (a) 2DWAXS pattern of HBCNO recorded at 255 K in the low temperature state 

after annealing in the LC phase. The scattering lines are assigned by Miller indices (hkl for 

l = 7, 8, 9) and indicate a characteristic helical intra-columnar organization. The hkl is a 

periodic reflection (P) assigned to π-stacking interaction indicated by dashed circle. (b) 

Cerius2 simulation for a model based on helically packed non-tilted HBC discs rotated by 

45° towards each other leading to a helical repetition of 8 molecules, (c) schematic 

illustration in top view of non-tilted and 45° rotated HBCNO molecules. 
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Thus, the 2DWAXS measurements gave important information about the 

molecular arrangement in the low and higher temperature phases. While at higher 

temperature the typical columnar hexagonal liquid crystalline (Colh) phase was observed, 

in the lower temperature range the HBCNO molecules preferred to arrange in helical 

hexagonal crystalline (Helh) phase. 

8.4 EPR spectroscopic analysis  

  

Figure 8.5: EPR spectra of HBCNO (a) at room temperature in toluene at different 

concentrations and the simulated spectrum, and (b) in solid state, ΔMS = 1 and ΔMS = 2 

transitions at 140 K. 

The solution EPR spectra of HBCNO were measured at room temperature in 

toluene at different concentrations. The diluted solution of HBCNO in toluene (c ~ 10‒5 M) 

yielded an EPR spectrum consisting of equally spaced 3 lines. The observed spectrum can 

be reproduced by spectral simulation considering hfc for one nitrogen aN = 12.1 G and 

two equivalent protons aH = 2 G at g-value 2.0068. Notably, at slightly higher 

concentration (c ~ 10‒4 M) the EPR spectrum was quite different and little alike a biradical 

species (Figure 8.5a). This spectral change was due to the dimerization/aggregation of 

HBCNO molecules even at concentrations as low as 10‒4 M. When the EPR spectrum of a 

powder sample was measured at 140 K, a broad resonance band was observed for ΔMS = 

332 333 334 335 336 337 338
magnetic field (mT) 

 (1.3 x 10
-4

 M)

  (6.5 x 10
-5

 M)

 Simulated
(a) (b) 
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1 transition with no fine structure splitting. Interestingly, along with a ΔMS = 1 transition, 

at half field a forbidden ΔMS = 2 transition was also observed at a g-value 4.013 indicating 

the thermally accessible triplet state (Figure 8.5b).  

 

Figure 8.6: (a) Relative signal intensities and line widths, and (b)  g-factor during the 

cooling process as a function of temperature between 270 K  and 380 K.  

Moreover EPR spectroscopy was found to be an excellent tool for probing the 

phase transition in spin bearing liquid crystals.[15-17] To obtain an insight into the change in 

magnetic interaction during phase transition, variable temperature (VT) EPR spectra of a 

powder sample were measured during the cooling process in the temperature range 380 

K (Colh phase) to 270 K (Helh phase) and the variation of g-value, line intensity and line 

width  were plotted as a function of temperature. Very small changes in g-values from 

2.0067 to 2.0070 were observed, indicating a minor variation in the orientation of the 

molecules during the transition from Colh to Helh phase (Figure 8.6b). While the relative 

intensity and line width (ΔB1/2) remained nearly constant in the temperature range 380 K 

to 330 K, a sudden significant change of both parameters was observed at 320 K, i.e. at 

the onset of the phase transition (Figure 8.6a). A higher EPR signal intensity was detected 

in the Colh phase as compared to the Helh phase indicating a positive magneto-LC effect (J 

> 0) in the Colh phase.  This was supported by 2DWAXS measurements which showed an 

enhanced π-stacking distance of the discs and the rotation of the HBCNO molecules 
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during the phase transition from Colh to Helh. In the temperature range from 310 K to 270 

K (Helh phase) the Curie law was obeyed, following the increase in intensity with 

decreasing temperature. The line width increased upon the phase transition from Colh to 

Helh owing to the decrease in spin relaxation time. The increase of the line width in the 

Helh phase is attributed to a loss of the intra-columnar spin-spin exchange interaction 

during the transition from Colh to Helh and can be corroborated with the positive 

magneto-LC effect in the Colh phase. Such positive magneto-LC effect was also observed 

by Uchida et al. in chiral rod-like liquid crystalline nitroxide radical compounds.[16-17] To 

the best of our knowledge this is the first example of spin bearing discotics exhibiting a 

positive magneto-LC effect.  

8.5 Optical and electrochemical properties of HBCNO 

The optical measurements of HBCNO and precursor HBCSINO were performed in 

toluene (C ~ 10-5 M) at room temperature. Interestingly few notable changes were 

observed in UV-Vis spectra of HBCNO in comparison with precursor HBCSINO. The β and 

p-band of HBC were 1.5 times lower in intensity without any shift of λmax (Figure 8.7a).  

Additionally the weak intensity characteristic absorption due to n—π* transition of 

 

Figure 8.7: UV-Vis spectrum of HBCSINO and HBCNO at room teperature in toluene (a) 

absorption (b) emission with excitation at 366 nm (inset: disappearance of fluroscence on 

conversion from HBCSINO (left fluorescent) to HBCNO(right non-fluorescent)). 
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radical moiety appeared as a shoulder of p-band at 425 nm As anticipated for radical 

substituted aromatic compounds a dramatic quenching of the fluorescence was observed 

in HBCNO.[18] This suggests the effective energy or electron transfer on excitation of 

HBCNO.[19]   

Electrochemical properties of HBCNO were investigated by CV measurements. The 

CV measurements were carried out using a three-electrode cell in DCM solution of 

Bu4NPF6 (0.1 M) with a scan rate of 100 mV/s at room temperature. A Pt wire, a silver 

wire, and a glassy carbon electrode were used as the counter electrode, the reference 

electrode, and the working electrode, respectively. Ferrocene was used as an internal 

standard. CV spectra of HBCNO displayed a reversible oxidation and a non-reversible 

reduction wave (Figure 8.8). The reversible oxidation at 0.269 V vs Fc/Fc+ can be assigned 

to oxidation of the nitroxide moiety which is in accordance with the literature value for 

nitroxides.[20]  
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Figure 8.8: Cyclic Voltammetry curve of HBCNO measured in DCM vs FC/FC+ (Bu4NPF6 (0.1 

M), scan rate of 100 mV/s). 

The DFT calculations were performed to visualize the distribution of SOMO orbital, 

where the unpaired electron usually resides. The geometry was optimized with UB3LYP/ 

6-31Gd level of theory.  Interestingly as shown in Figure 8.9 the SOMO orbital does not 

reside only on tert-butyl nitroxide radical moiety, but is highly delocalized over the HBC 
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core. The calculated ESOMO, ELUMO and energy gap between SOMO and LUMO, are well in 

accordance with estimates from the optical and electrochemical measurements (Table 

8.1).  The dipole moment of HBCNO was found to be 2.99 D. 

Table 8.1: Optical and electrochemical properties of HBCNO. 

λmax 

(nm) 

ε 

(cm‒1M‒1) 

Eg
OP 

(eV)a 

EOx
(1/2)

(V)b 

ESOMO 

(eV)c 

ELUMO 

(eV)d 

ESOMO
cal 

(eV)e 

ELUMO
cal

(eV)e 

Eg
cal 

(eV)e 

D 

Debyee 

366 9.95X 104 2.75 0.27 ‒5.069 2.319 ‒4.925 ‒2.122 2.80 2.999 

aOptical energy gap calculated according to the absorption edge. b0.1 M of n-Bu4NPF6, in 

DCM, Pt electrode vs Fc/Fc+, scan rate 100 mV s‒1. c,dCalculated based on formula ESOMO =  

‒(Eox
(1/2) + 4.8) eV and ELUMO = ‒(Eg

OP ‒ ESOMO) eV. eObtained using DFT quantum 

mechanical calculations UB3LYP/ 6  ̶̶ 31G. 

  

Figure 8.9: SOMO orbital and spin density distribution of HBCNO calculated using 

quantum mechanical calculation DFT-UB3LYP/6-31g. 
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8.6 Summary 

In summary, we have successfully synthesized the first neutral paramagnetic HBC 

derivative possessing a tert-butyl nitroxide radical moiety. The adequate stability of 

HBCNO allowed us to investigate its thermal, optical, electrochemical, and magnetic 

properties. HBCNO was found to exist in a helical hexagonal phase at low temperature 

and a columnar hexagonal phase at higher temperatures. Notably, closer π-stacking of 

discs in the Colh phase allowed stronger intra-columnar magnetic interactions. HBCNO 

exhibited a positive magneto-LC effect in columnar hexagonal liquid crystalline phase as 

probed by DSC and EPR spectroscopy. The paramagnetic HBCNO retains the absorption 

features of its diamagnetic precursor HBCSINO, but a significant quenching of 

fluorescence indicated extensive energy or electron transfer on excitation of HBCNO. All 

these properties make HBCNO an ideal candidate for designing spintronic devices.[21-22]  
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8.7 Synthetic details 

The HBC-Br was synthesized according to literature procedures as shown in 

scheme below.[11-12] 
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HBCSINO:  

 

2-Bromo-5,8,11,14,17-pentadodecylhexabenzocoronene (200 mg) and (4-(tert-

butyl(tert-butyldimethylsilyloxy)amino)phenylboronic acid were dissolved in 40 ml 

toluene in a Schlenk flask. To this mixture an aqueous solution of Na2CO3 (144 mg in 10 ml 

H2O) was added and combined solution bubbled with argon for 30 min, then 5 mol% 

Pd(PPh3)4 were added and the reaction mixture heated at 80 °C for 20 hour. The reaction 

mixture was cooled to room temperature and washed with water. The organic layer was 

separated and the solvent removed under vacuum. The crude product was purified by 

silica gel column chromatography using 4:1 (hexane:DCM) as eluent. Yield 160 mg (70%). 

MS-FD (8 kV, CH2Cl2) m/z: found 1640.5 (100%). ESI-MS: found 1641.67 calculated 

1641.66 (M). 1H NMR (300 MHz, CD2Cl2) δ 8.54 (s, 2H), 8.20-8.09 (m, 10H), 7.94-7.91 (d, 

2H), 7.68-7.65 (d, 2H), 3.00 (bs, 9H), 2.00 (bs, 9H), 1.59-0.89 (s, 125H), 0.21 (s, 6H) (Figure 

8.10).  
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Figure 8.10: NMR spectrum of HBCSINO (C ~ 10-4 M). 

HBCNO:  
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HBCSINO (100 mg) was dissolved in THF. Then conc. HCl was added and reaction 

mixture stirred at room temperature for overnight under argon. The reaction mixture was 

poured into H2O and the formed precipitate was filtered, dried and used immediately for 

next step. The precipitate and excess of Ag2O (200 mg) were dispersed in 40 ml dry DCM 

and stirred at room temperature for 3 hour under argon. The resulting solution passed 

through celite and the solvent was removed under vacuum. The crude product was 

purified by silica gel column chromatography using 1:1 (hexane:DCM) as eluent ( Yield 22 

mg , 20%). MS-FD (8 kV, CH2Cl2) m/z: found 1524.8 (90%), 1510.9 (100%).  ESI-MS: found 

1525.15 calculated 1525.17 (M), 1526.16 calculated 1526.17 (M+1). UV-Vis (Toluene) λmax 

(ε, M‒1 cm‒1): 366 nm (9.95 X 104). EPR (298 K, ~ 10‒5 M in toluene): three lines, giso = 

2.0068, aN = 12.1 G aH = 2 G.  
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Appendix-I 

Analytical Techniques 

CW-EPR spectroscopy 

ESR spectra were recorded in diluted and oxygen-free solution of toluene with the 

concentration of 10‒4 molar unless otherwise stated by using a using a Bruker X-band 

spectrometer ESP300 E, equipped with an NMR gauss meter (Bruker ER035), a frequency 

counter (Bruker ER041XK) and a variable temperature control continuous flow N2 cryostat 

(Bruker B-VT 2000). The g-factor corrections were obtained by using DPPH (g = 2.0037) as 

standard. The spectral simulations were carried out using WINEPR SimFonia software. 

Time-Resolved EPR spectroscopy 

The TREPR measurements were performed at Division of Molecular Material 

Science, Graduate School of Science, Osaka City University, Japan by Prof Yoshio Teki. In 

the TREPR experiments, an X-band EPR spectrometer (JEOL TE300) equipped with a 

variable temperature control continuous flow liq. He cryostat (Oxford EPR910) was used. 

The measurements were recorded typically at 30 K. Excitations at 532 nm and at 355 nm 

were carried out by 2nd and 3rd harmonics of the ns pulsed YAG laser (Continuum Surelite 

II), respectively. Sample was diluted in BuCN (glass matrix) degassed by repeated freeze–

pump–thaw cycles. 

Magnetic measurement 

The SQUID measurements were carried out by colleague Dr. Yoshikazu Ito. 

Magnetic susceptibility and magnetization were measured using Quantum Design MPMS-

XL SQUID magnetometer up to a field of 5 T in the temperature range between 2 to 300 

K, at Physics Department, Johannes-Gutenberg-University of Mainz. Background signals of 

sample holder and diamagnetic correction were subtracted as explained in Appendix-V. 
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NMR spectroscopy 

Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear 

magnetic resonance (13C NMR) spectra were recorded on a Bruker AMX 300 NMR 

instrument (300 and 75 MHz, respectively) or on a Bruker AMX 250 NMR instrument (250 

and 62.5 MHz, respectively). The deuterated solvent was used as an internal standard. 

Single crystal X-ray measurements 

The single crystal X-ray data collection and structure solution was performed by 

Dr. Volker Enkelmann at MPIP, Mainz. The single crystal X-ray crystallographic data were 

collected on Nonius Kappa CCD (Mo-Kα) diffractometer equipped with graphite 

monochromator. The structures were solved by direct method (SHELXS) and refined by a 

full-matrix least-squares procedure. 

Melting point 

Melting points were measured on Büchi B-545 apparatus (uncorrected) by using 

open ended capillaries. 

Mass spectrometry 

The field desorption mass spectra were obtained on FD-MS, VG Instruments ZAB 

2-SE-FDP using 8 kV accelerating voltage. The high-resolution electron spray ionization 

mass spectrometry (HR-ESI-MS) was performed at the Institute for Organic Chemistry, 

Johannes-Gutenberg-University of Mainz, on an ESI-Q-TOF system (maXis, Bruker 

Daltonics, Germany). 

UV–Vis absorption spectroscopy 

UV-Vis spectra were recorded in toluene with Perkin Elmer Spectrometer 

(UV/Vis/NIR Lambda 900) by using 1 cm optical-path quartz cell at room temperature. 

The baseline was corrected by subtracting a measurement of the cuvette filled with pure 
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solvent used for the measurement. The optical energy gap was calculated based on the 

onset absorption band. 

Cyclic voltammetry  

CV measurements were carried out on a computer-controlled GSTAT12 in a three-

electrode cell in a DCM or acetonitrile solution of Bu4NPF6 (0.1 M) with a scan rate of 100 

mV/s at room temperature. A Pt wire, silver wire, and glassy carbon electrode were used 

as the counter electrode, the reference electrode, and the working electrode, respectively.  

Photoluminescence spectroscopy  

PL measurements on performed on a SPEX-FluorologII (F212) steady-state 

fluorometer in toluene at room temperature. 

Column chromatography 

The column chromatography was performed using either silica gel (60–120, 100–

200 and 230–400 mesh) or neutral aluminium oxide. For thin layer chromatography, 

aluminium sheets pre-coated with silica gel (Merck, Kieselgel 60, F254) were employed.  

Chemical structure & graphics 

The chemical structure and reaction scheme were drawn using ChemBioDraw 

Ultra 12.0. Molecular packing was analyzed by Mercury 3.1 software. The crystal packing 

diagram and high quality graphics were generated from Diamond and Pov-ray software 

using cif files.  
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DFT calculations 

The DFT calculations were performed using either Gaussian 09[1] or ORCA[2] 

software.  

Calculating exchange interactions (J) 

The broken-symmetry approach proposed by Noodleman et al. was employed to 

elucidate the magnetic properties of the biradical species under study.[3] The exchange 

coupling constant (J) was calculated by the generalized spin projection method suggested 

by Yamaguchi et al.[4-6] For the molecule with two exchange coupled unpaired electrons, 

the Heisenberg-Dirac-van Vleck (HDVV) Hamiltonian,  

 𝐻 =  −2𝐽12𝑆1𝑆2, 1 

S1 and S2 are the spin angular momentum operators.     

 
𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝐽 =

(𝐸(𝐵𝑆)  −  𝐸(𝑇))

(𝑆2(𝑇)  − 𝑆2(𝐵𝑆))
 2 

where, E(BS) is the energy of the broken-symmetry (BS) solution, a mixture of singlet and 

triplet states with SZ = 0 and S2(BS) close to 1,  E(T) is the energy of the triplet  state with 

S2(T) close to 2, and S2 are the eigen values of the spin operator for these states.  

 Thus the direct exchange yields,   𝐽 ≈  𝐸(𝐵𝑆)  −  𝐸(𝑇)  3 

Calculating biradical character (y) 

The degree of biradical character (𝑦) can be calculated by simple two-electron 

two-orbital model using the occupation numbers of the unrestricted non-bonding orbitals 

(UNOs) of UHF/6-31g(d, p) as proposed by Kamada et al.[7-8] The biradical character 𝑦 

obtained from these calculations has value between 0 and 1, which corresponds to closed 
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shell and pure biradical system, respectively.     

 
𝑦 = 1 −  

4 (𝜎𝐻𝑂𝑀𝑂 −  𝜎𝐿𝑈𝑀𝑂)

4 +  (𝜎𝐻𝑂𝑀𝑂 −  𝜎𝐿𝑈𝑀𝑂)2 4 

The theoretical value of 𝑦 can be obtained from the occupation numbers of frontier 

orbitals, σHOMO and σLUMO, using the equation shown above.  
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Appendix-II 

Conversion Tables 

Fundamental Physical Constants from NIST. Most of these numbers have been taken from an old book by Karplus and Porter. 

http://physics.nist.gov/cuu/Constants/index.html

Energy Conversion Table 

 
hartree eV cm-1 kcal/mol kJ/mol K J Hz 

hartree 1  27.2107  219 474.63  627.503  2 625.5  315 777.  43.60 x 10-19 6.57966 x 10+15 

eV  0.0367502  1  8 065.73  23.060 9  96.486 9  11 604.9  1.602 10 x 
10-19 

2.418 04 x 10+14 

cm-1 4.556 33 x 10-6 1.239 81 x 
10-4 

1  0.002 859 
11  

0.011962 
7  

1.428 79  1.986 30 x 
10-23 

2.997 93 x 10+10 

kcal/mol 0.001 593 62  0.043 363 
4  

349.757  1  4.18400  503.228  6.95 x 10-21 1.048 54 x 10+13 

kJ/mol 0.000 380 88  0.010 364 
10  

83.593  0.239001  1  120.274  1.66 x 10-21 2.506 07 x 10+12 

K 0.000 003 166 78  0.000 086 
170 5  

0.695 028  0.001 987 
17  

0.008314 
35  

1  1.380 54 x 
10-23 

2.083 64 x 10+10 

J  2.294 x 10+17 6.241 81 x 
10+18 

5.034 45 x 
10+22 

1.44 x 10+20 6.02 x 
10+20 

7.243 54 x 
10+22 

1  1.509 30 x 10+33 

Hz  1.519 83 x 10-16 4.135 58 x 
10-15 

3.335 65 x 
10-11 

9.537 02 x 
10-14 

 4.799 30 x 
10-11 

6.625 61 x 
10-34 

1  

http://physics.nist.gov/cuu/Constants/index.html
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Conversion Table (EPR) 
 

dB μWatt √ μWatt dB μWatt √ μWatt 

40 20.1 4.4833 23 1010 31.7805 

39 25.3 5.02991 22 1270 35.63706 

38 31.9 5.64801 21 1600 40 

37 40 6.32456 20 2000 44.72136 

36 50.4 7.0993 19 2530 50.29911 

35 63.6 7.97496 18 3180 56.39149 

34 80 8.94427 17 4000 63.24555 

33 101 10.04988 16 5040 70.99296 

32 127 11.26943 15 6350 79.68689 

31 160 12.64911 14 8010 89.4986 

30 201 14.17745 13 10100 100.49876 

29 250 15.81139 12 1270 35.63706 

28 320 17.88854 11 16000 126.49111 

27 400 20 10 20100 141.77447 

26 510 22.58318 9 25300 159.05974 

25 640 25.29822 8 31800 178.32555 

24 800 28.28427 7 40100 200.24984 

  -- 6 50400 224.49944 

dB μWatt √ μWatt dB μWatt √ μWatt 

 

1 hartree (h) = 27.2114 eV 

1cm-1 = 1.07 x 103 mT = 1.07 x 104 Gauss 

1 Gauss ~ 2.8 MHz = 1.39967 x g 

To convert D, E from Gauss to cm-1 multiply by 4.6686·10-5· 2.0023 cm-1 

1cm-1 = 29979.25 MHz = 10697.5 G for g=2.0023 

Free electron g value: ge = 2.0023193 

Boltzmann Constant: kB = 0.69504 cm-1 

Calculating the g value from the frequency and magnetic field: 

g = (h/µB) γ / B = 714.4775 γ[GHz] / B[G] 
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Appendix-III 

Crystallographic table 

 

Radical DBrNN MAMNN OMeBrNN 

CCDC Number 972701 972702 972703 

Formula C14 H15 Br1 N2 O2 C29 H33 N5 O5 C29 H33 Br1 N4 O5 

Formula Weight 323.19 531.61 597.51 

Crystal System Monoclinic Monoclinic Tetragonal 

Space group P21 (No.  4) Pc (No.  7) I 41/a 

a,b,c [Å] 
10.931 (2), 11.353 

(3), 11.195 (2) 

10.120 (3), 9.714 

(2), 14.629 (5) 

28.762(10), 

28.762(10), 

13.444(5) 

α,β,γ [°] 90, 105.20(13), 90 90 105.34(12), 90 90 

V [Å3] 1340.88(5) 1387.00(7) 11121.6(7) 

Z 4 2 2 

D(calc) [g/cm3] 1.601 1.273 1.427 

Mu(MoKa)[ mm-1 ] 3.065 0.089 1.524 

F(000) 656 564 4960 

Crystal Size [mm] 0.11 x  0.16 x  0.40 0.13 x  0.16 x  0.41 0.11 x0.15 x0.41 

Temp. (K) 120 120 120 

Radiation [Å,MoKa] 0.71073 0.71073 0.71073 

Theta Min-Max [°] 1.9, 30.2 2.1, 30.5 2.969, 27.522 

Dataset 
-15: 15 ; -15: 14 ; -15: 

15 

-14: 13 ;   0: 13 ;   0: 

20 
 

Tot., Uniq. Data,  

R(int) 
17180, 7134, 0.089 21433, 4184 0.059 34330, 6296 

Observed data [I > 

2.0 sigma(I)] 
6065 3740 4454 

Nref, Npar 6065, 344 3740 352 4454, 352 

R, wR2, S 0.0443, 0.0536, 1.09 0.0617, 0.0103, 0.75 
0.0587, 0.0666, 

0.9840 

Min. and Max. Resd. 

Dens. [eAng-3] 
-0.92, 0.72 -0.46, 0.46 -0.60, 0.44 
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Radical TMPNN TMPIN TMPMIX 

CCDC No. 915927 915929 915928 

Formula C34 H40 N4 O8 C34 H40 N4 O6 C34 H40 N4 O7 

Formula Weight 632.71 600.71 616.71 

Crystal System Monoclinic Monoclinic Monoclinic 

Space group P21/n  (No. 14) P21/n  (No. 14) P21/n  (No. 14) 

a,b,c [Å] 
6.288(2), 11.494 (6),  

21.064 (9) 

6.352 (2), 11.265 

(3),   21.231 (5) 

6.3490(1),   

11.321(2),   

21.3030(5) 

α,β,γ [°] 90, 90.135(3),90 90, 90.2971(17), 90 90, 90.0050(12), 90 

V [Å3] 1522.50(11) 1519.30(7) 1531.20(5) 

Z 2 2 2 

D(calc) [g/cm3] 1.380 1.313 1.338 

Mu(MoKα) [ mm-1 ] 0.099 0.091 0.094 

F(000) 672 640 656 

Crystal Size [mm] 0.13 x  0.19 x  0.41 0.14 x  0.19 x  0.44 0.00 x  0.00 x  0.00 

Temperature (K) 120 120 293 

Radiation [Å,MoKα] 0.71073 0.71073 0.71073 

Theta Min-Max [°] 1.9  30.1 3.3  30.0 1.9 31.0 

Dataset 
-8:  8 ; -14: 16 ; -29: 

29 

-8:  8 ; -15: 15 ; -27: 

29 

-9:  9 ; -16: 16 ; -30: 

30 

Tot., Uniq. Data,  

R(int) 
16332,4167,0.000 15742   4401 0.074 

21866    4880   

0.000 

Observed data [I > 

2.0 sigma(I)] 
2783 2960 3954 

Nref, Npar 2783, 209 2960, 199 3954, 209 

R, wR2, S 0.0578, 0.0789, 1.05 0.0428, 0.0535, 1.08 
0.0499, 0.0646, 

1.08 

Min. and Max. Resd. 

Dens. [e Å-3] 
-0.36, 0.26 -0.22, 0.41 -0.20, 0.22 
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Radical 2,7-TMPNO(125K) 2,7-TMPNO(320K) 2-TMPNO 

CCDC No. 950752   

Formula C14 H17 N1 O3 C14 H17 N1 O3 C24 H26 N1 O5 

Formula Weight 247.29 247.29 408.47 

Crystal System Monoclinic Monoclinic Monoclinic 

Space group C2/c,   (No. 15) C2/c, (No. 15) P21/c, (No. 14) 

a,b,c [Å] 

23.1335(9), 

10.9524(5),   

10.8030(7) 

23.4318(8),   

11.1815(4),   

10.8961(3) 

8.1986(2),   

21.6402(9,)   

11.6933(5) 

α,β,γ [°] 90, 106.950(3), 90 90, 108.856(2), 90 90,   100.589(2), 90 

V [Å3] 2618.2(2) 2701.60(16) 2039.29(13) 

Z 8 8 4 

D(calc) [g/cm3] 1.255 1.216 1.330 

Mu(MoKα) [ mm-1 ] 0.088 0.085 0.093 

F(000) 1056 1056 868 

Crystal Size [mm] 0.13 x  0.17 x  0.44 0.13 x  0.17 x  0.44 0.13 x  0.17 x  0.41 

Temperature (K) 120 320 120 

Radiation 

[Å,MoKα] 
0.71073 0.71073 0.71073 

Theta Min-Max [°] 2.1, 29.5 3.6, 28.6 3.0,  29.6 

Dataset 
-31: 30 ; -14: 15 ; -13: 

14 

-31: 31 ; -14: 15 ; -

12: 14 

-11: 11 ; -29: 30 ; -

15: 16 

Tot., Uniq. Data,  

R(int) 
9725, 3637, 0.087 9034, 3454, 0.047 

23348,   5658,  

0.075 

Observed data [I > 

2.0 sigma(I)] 
2211 1797 4319 

Nref, Npar 2211, 163 1797, 163 3952,  271 

R, wR2, S 0.0497, 0.0640, 1.09 0.0492, 0.0684, 1.07 
0.0671, 0.0808, 

1.03 

Min. and Max. 

Resd. Dens. [e Å-3] 
-0.25, 0.35 -0.13, 0.21    -0.36, 0.40 
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Radical 1-TMPNO 1,3,6,8-TMPNO NN+Ag 

CCDC No.   867206 

Formula C24 H26 N1 O5 C32 H50 N4 O8 
C35 H33 AG3.50 

F10.50 N4 O11.50 

Formula Weight 408.47 618.77 1270.68 

Crystal System Triclinic Monoclinic Triclinic 

Space group P-1 (No.  2) P21/n (No. 14) P-1 (No.  2) 

a,b,c [Å] 
9.6761(3),      
10.5020(4),   
10.8995(4) 

12.9998(3),   
12.8094(2),   
21.2617(4) 

14.0250(5),   

17.7490(5),   

20.1285(6) 

α,β,γ [°] 
76.6(19), 80.44(18)    
76.7(2) 

90,  90.60(11),           
90 

111.40(16), 

105.03(16),  

96.52(17) 

V [Å3] 1041.37(6) 3540.29(12) 4382.7(3) 

Z 2 4 4 

D(calc) [g/cm3] 1.303 1.251 1.926 

Mu(MoKα) [ mm-1 ] 0.091 0.080 1.650 

F(000) 434 1432 2488 

Crystal Size [mm] 0.12 x  0.19 x  0.43 - 0.13 x  0.17 x  0.34 

Temperature (K) 120 298 120 

Radiation [Å,MoKα] 0.71073 0.71073 0.71073 

Theta Min-Max [°] 2.5,  29.5 0.0,  30.0 1.3,  30.1 

Dataset 
-13: 13 ; -14: 14 ; -
12: 15 

-18: 18 ; -18: 18 ; -29: 
29 

-19: 19 ; -24: 24 ; -

27: 28 

Tot., Uniq. Data,  

R(int) 
12101,   5777,  0.061 32489,  11214,  0.107 

52266,  25276,  

0.060 

Observed data [I > 

2.0 sigma(I)] 
4746 7163 14993 

Nref, Npar 4463,  271 7117,  433 14993, 1180 

R, wR2, S 0.0539, 0.0808, 1.06 0.0650, 0.2060, 1.87 0.0829, 0.0622, 1.26 

Min. and Max. 

Resd. Dens. [e Å-3] 
-0.38, 0.46 0.00, 0.00 -0.96, 0.88 
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Radical BPNO TPNO BPTMP 

CCDC No. 1001620 1001622 1001621 

Formula C10 H13 N1 O1 C26 H30 N2 O2 C40 H42 N2 O6 

Formula Weight 163.22 402.54 646.78 

Crystal System Monoclinic Monoclinic Monoclinic 

Space group P21/a, (No. 14) P21/a, (No. 14) C2/c, (No. 15) 

a,b,c [Å] 8.614(5),9.107(7), 

11.338(9) 

8.840(2), 8.988(3), 

13.346(4) 

18.130(8), 11.229(3), 

17.613(8) 

α,β,γ [°] 90, 101.9 (4), 90 90, 94.8(2), 90 90, 113.4(1), 90 

V [Å3] 870.21(11) 1056.79(5) 3290.6(2) 

Z 4 2 4 

D(calc) [g/cm3] 1.246 1.265 1.306 

Mu(MoKa) [ mm-1 ] 0.081 0.080 0.088 

F(000) 352 432 1376 

Crystal Size [mm] 0.09 x  0.16 x  0.41 0.09 x  0.29 x  0.42 0.13 x  0.20 x  0.39 

Temperature (K) 120 120 120 

Radiation [Å,MoKa] 0.71073 0.71073 0.71073 

Theta Min-Max [°] 3.5,  27.6 3.5,  30.0 2.7,  28.7 

Dataset -11: 10 ;  0: 11 ;   0: 

14 

-12: 11 ; -12: 12 ; -18: 

18 

-24: 24 ; -15: 14 ; -

19: 23 

Tot., Uniq. Data,  
R(int) 

6606, 1987, 0.056 13179, 3090, 0.055 13979, 4234, 0.088 

Observed data [I > 
2.0 sigma(I)] 

1764 2464 3411 

Nref, Npar 1764, 109 2304, 136 3137, 218 

R, wR2, S 0.0577, 0.4001, 

0.84 
0.0505, 0.0643, 1.07 0.0664, 0.1024, 0.91 

Min. and Max. Resd. 
Dens. [eAng-3] 

-0.42, 0.49 -0.33, 0.31 -0.50, 0.54 
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Appendix-IV 

ORTEP diagrams, 50 % probability temperature ellipsoid plot 
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Appendix-V 

Diamagnetic corrections 

 The total measured magnetic susceptibility, χT, is sum of these contributions from 

diamagnetic and paramagnetic species, 

𝛘𝑇 =  𝛘𝑃 + 𝛘𝐷𝑖  

Thus diamagnetic correction can be performed as,  

𝛘𝑃 =  𝛘𝑇 − 𝛘𝐷𝑖  

The diamagnetic susceptibility, χDi is temperature independent and calculated using the 

Pascal's formula, 

𝛘𝐷𝑖 =  ∑ 𝛘𝐷𝑖

𝑖

+ ∑ 𝛌𝑖

𝑖

 

Where, χDi and λi are known as “Pascal’s constants”. 

The details of diamagnetic corrections can be found in following paper[1] 

[1] G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532. 
 

 

Table 1. Values of χDi for Atoms in Covalent Species 

Atom χDi/(1 x 
10–6 emu 

mol–1) 

Atom χDi/(1 x 
10–6 emu 

mol–1) 

Atom χDi/(1 x 
10–6 emu 

mol–1) 

Atom χDi/(1 x 
10–6 emu 

mol–1) 

Ag –31.0  C (ring) –6.24  Li –4.2  S –15.0  

Al –13.0  Ca –15.9  Mg –10.0  Sb(III) –74.0  

As(III) –20.9  Cl – 20.1  N (ring) –4.61  Se –23.0  

As(V) –43.0  F –6.3  N(open 
chain) 

–5.57  Si –13  

B –7.0  H –2.93  Na –9.2  Sn(IV) –30  

Bi –192.0  Hg(II) –33.0  O  –4.6  Te –37.3  

Br – 30.6  I –44.6  P  –26.3  Tl(I) –40.0  

C – 6.00  K –18.5  Pb(II) –46.0  Zn –13.5 
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Table 2. Values of λi for Specific Bond Types  

Bonda 
λi/(1 x 10–6 
emu mol–1) 

Bond 
λi/(1 x 10–6 
emu mol–1) 

Bond 
λi/(1 x 10–6 
emu mol–1) 

Bond 
λi/(1 x 10–6 
emu mol–1) 

C=C +5.5 Cl–CR2CR2–Cl +4.3 Ar–Br –3.5 Imidazole +8.0 

C≡C +0.8 R2CCl2 +1.44 Ar–Cl –2.5 Isoxazole +1.0 

C=C–C=C +10.6 RCHCl2 +6.43 Ar–I –3.5 Morpholine +5.5 

Ar–C≡C–Arb +3.85 C–Br +4.1 Ar–COOH –1.5 Piperazine +7.0 

CH2=CH–
CH2–(allyl) 

+4.5 Br–CR2CR2–Br +6.24 Ar–C(=O)NH2 –1.5 Piperidine +3.0 

C=O +6.3 C–I +4.1 R2C=N–N=CR2 +10.2 Pyrazine +9.0 

COOH –5.0 Ar–OH –1 RC≡C–C(=O)R +0.8 Pyridine +0.5 

COOR –5.0 Ar–NR2 +1 Benzene –1.4c Pyrimidine +6.5 

C(=O)NH2 –3.5 Ar–C(=O)R –1.5 Cyclobutane +7.2 α- or γ-Pyrone –1.4 

N=N +1.85 Ar–COOR –1.5 Cyclohexadiene +10.56 Pyrrole –3.5 

C=N– +8.15 Ar–C=C –1.00 Cyclohexane +3.0 Pyrrolidine +0.0 

–C≡N +0.8 Ar–C≡C –1.5 Cyclohexene +6.9 Tetrahydrofuran +0.0 

–N≡C +0.0 Ar–OR –1 Cyclopentane +0.0 Thiazole –3.0 

N=O +1.7 Ar–CHO –1.5 Cyclopropane +7.2 Thiophene –7.0 

–NO2 –2.0 Ar–Ar –0.5 Dioxane +5.5 Triazine –1.4 

C–Cl +3.1 Ar–NO2 –0.5 Furan –2.5   

aOrdinary C–H and C–C single bonds are assumed to have a λ value of 0.0 emu mol–1. bThe symbol Ar represents an aryl ring. cSome 
sources list the λ value for a benzene ring as –18.00 to which three times λ(C=C) must then be added. To minimize the calculations 
involved, this convention was not followed such that λ values given for aromatic rings are assumed to automatically take into 
account the corresponding double bonds in the ring. 
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Calculation of Diamagnetic susceptibility (X 10-6) 

DBrNN 

     Pascal's constants  
    C ring -6.24 Num C ring 12 Diamagnetism of C ring -74.88 

C -6 Num C 16 Diamagnetism of C -96 
H -2.43 Num H 30 Diamagnetism of H -72.9 
Br -30.6 Num Br 2 Diamagnetism of Br -61.2 
N  -5.57 Num N  4 Diamagnetism of N  -22.28 
O -4.61 Num O 4 Diamagnetism of O -18.44 

    
∑nAχA -345.7 

Constitutive Corrections  
   Benzene ring -1.4 Num of benzene ring 2 Diamagnetism of Benzene ring -2.8 

Ar-C≡C-Ar 3.85 Num of Ar-C≡C-Ar 1 Diamagnetism of Ar-C≡C-Ar 3.85 

C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 
Ar-Br -3.45 Num of Ar-Br 2 Diamagnetism of Ar-Br -6.9 

    
∑ λ 10.45 

  
∑nAχA + ∑ λ= -335.25 

  
      MAMNN 

     Pascal's constants  
    C ring -6.24 Num C ring 12 Diamagnetism of C ring -74.88 

C -6 Num C 17 Diamagnetism of C -102 
H -2.43 Num H 33 Diamagnetism of H -80.19 
N  -5.57 Num N  5 Diamagnetism of N  -27.85 
O -4.61 Num O 5 Diamagnetism of O -23.05 

    
∑nAχA -307.97 
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Constitutive Corrections  
   Benzene ring -1.4 Num of benzene ring 2 Diamagnetism of Benzene ring -2.8 

Ar-C≡C-Ar 3.85 Num of Ar-C≡C-Ar 1 Diamagnetism of Ar-C≡C-Ar 3.85 
C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 
Ar-C(=O)NH2 -1.5 Num of Ar-C(=O)NH2 1 Diamagnetism of C(=O)NH2 -1.5 
C(=O)NH2 bond -3.5 Num of C(=O)NH2 bond 1 Diamagnetism of C(=O)NH2 bond -3.5 

    
∑ λ 12.35 

  
∑nAχA + ∑ λ= -295.6 

  
      MNO2NN 

     Pascal's constants  
    C ring -6.24 Num C ring 12 Diamagnetism of C ring -74.88 

C -6 Num C 16 Diamagnetism of C -96 
H -2.43 Num H 31 Diamagnetism of H -75.33 

N  -5.57 Num N  5 Diamagnetism of N  -27.85 
O -4.61 Num O 6 Diamagnetism of O -27.66 

    
∑nAχA -301.72 

Constitutive Corrections  
   Benzene ring -1.4 Num of benzene ring 2 Diamagnetism of Benzene ring -2.8 

Ar-C≡C-Ar 3.85 Num of Ar-C≡C-Ar 1 Diamagnetism of Ar-C≡C-Ar 3.85 
C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 
Ar-NO2 -0.5 Num of Ar-NO2 1 Diamagnetism of Ar-NO2 -0.5 

NO2 bond -2 Num of NO2 bond 1 Diamagnetism of NO2 bond -2 

    
∑ λ 14.85 

  
∑nAχA + ∑ λ= -286.9 
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OMeBrNN 

     Pascal's constants  
    C ring -6.24 Num C ring 12 Diamagnetism of C ring -74.88 

C -6 Num C 17 Diamagnetism of C -102 
H -2.43 Num H 33 Diamagnetism of H -80.19 
Br -30.6 Num Br 1 Diamagnetism of Br -30.6 
N  -5.57 Num N  4 Diamagnetism of N  -22.28 
O -4.61 Num O 5 Diamagnetism of O -23.05 

    
∑nAχA -333 

Constitutive Corrections  
   Benzene ring -1.4 Num of benzene ring 2 Diamagnetism of Benzene ring -2.8 

Ar-C≡C-Ar 3.85 Num of Ar-C≡C-Ar 1 Diamagnetism of Ar-C≡C-Ar 3.85 

C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 
Ar-Br -3.45 Num of Ar-Br 1 Diamagnetism of Ar-Br -3.45 
Ar-OMe -1 Num of Ar-Ome 1 Diamagnetism of Ar-Ome -1 

    
∑ λ 12.9 

  
∑nAχA + ∑ λ= -320.1 

  
      TMPNN 

     Pascal's constants  
    C ring -6.24 Num C ring 16 Diamagnetism of C ring -99.84 

C -6 Num C 18 Diamagnetism of C -108 
H -2.43 Num H 40 Diamagnetism of H -97.2 
N  -5.57 Num N  4 Diamagnetism of N  -22.28 
O -4.61 Num O 8 Diamagnetism of O -36.88 
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∑nAχA -364.2 

Constitutive Corrections  
   C share by 2 rings -3.07 Num binuclear C 6 Diamagnetism of binuclear C -18.42 

Ar-OR -1 Num of Ar-OR 4 Diamagnetism of Ar-OR -4 
C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 

    
∑ λ -6.12 

  
∑nAχA + ∑ λ= -370.32 

  
      TMPMIX 

     Pascal's constants  
    C ring -6.24 Num C ring 16 Diamagnetism of C ring -99.84 

C -6 Num C 18 Diamagnetism of C -108 
H -2.43 Num H 40 Diamagnetism of H -97.2 
N  -5.57 Num N  4 Diamagnetism of N  -22.28 

O -4.61 Num O 7 Diamagnetism of O -32.27 

    
∑nAχA -359.59 

Constitutive Corrections  
   C share by 2 rings -3.07 Num binuclear C 6 Diamagnetism of binuclear C -18.42 

Ar-OR -1 Num of Ar-OR 4 Diamagnetism of Ar-OR -4 
C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 

    
∑ λ -6.12 

  
∑nAχA + ∑ λ= -365.71 

  
      TMPIN 

     Pascal's constants  
    C ring -6.24 Num C ring 16 Diamagnetism of C ring -99.84 

C -6 Num C 18 Diamagnetism of C -108 
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H -2.43 Num H 40 Diamagnetism of H -97.2 
N  -5.57 Num N  4 Diamagnetism of N  -22.28 
O -4.61 Num O 6 Diamagnetism of O -27.66 

    
∑nAχA -354.98 

Constitutive Corrections  
   C share by 2 rings -3.07 Num binuclear C 6 Diamagnetism of binuclear C -18.42 

Ar-OR -1 Num of Ar-OR 4 Diamagnetism of Ar-OR -4 
C=N 8.15 Num of C=N 2 Diamagnetism of C=N 16.3 

    
∑ λ -6.12 

  
∑nAχA + ∑ λ= -361.1 

  
      TMPNO 

     Pascal's constants  
    C ring -6.24 Num C ring 16 Diamagnetism of C ring -99.84 

C -6 Num C 12 Diamagnetism of C -72 
H -2.43 Num H 34 Diamagnetism of H -82.62 
N  -5.57 Num N  2 Diamagnetism of N  -11.14 
O -4.61 Num O 6 Diamagnetism of O -27.66 

    
∑nAχA -293.26 

Constitutive Corrections  
   C share by 2 rings -3.07 Num binuclear C 6 Diamagnetism of binuclear C -18.42 

Ar-OR -1 Num of Ar-OR 4 Diamagnetism of Ar-OR -4 

    
∑ λ -22.42 

  
∑nAχA + ∑ λ= -315.68 
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