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Abstract. Verification of complex algorithms with current verification tools in
reasonable time is challenging. Certifying algorithms compute not only an output
but also a witness certifying that the output is correct. A checker for a certify-
ing algorithm is a simple program that decides whether the witness is correct
for a particular input and output. Verification of checkers is feasible and leads
to trustworthy computations. In previous work, we verified checkers from the al-
gorithmic library LEDA using the interactive theorem prover Isabelle/HOL as a
backend to the automatic code verifier VCC. More recently, we showed that ver-
ification can be carried out completely within Isabelle/HOL and compared this
to the previous approach. We concluded that the more recent approach is more
trustworthy with comparable efforts. Here we implement a shortest path checker
algorithm for graphs with nonnegative edge weights in the imperative pseudo-
code language Simpl. Moreover, we use the more recent framework and formally
verify the checker using Isabelle/HOL.

1 Introduction

A user of an algorithm has in general no means to know whether a result computed by
this algorithm is correct or has been compromised by a bug. A certifying algorithm [3,
21, 11] produces with each output a certificate or witness that the particular output is
correct. The accompanying checker inspects the witness and accepts it if the witness
proves that y is a correct output for input x. Otherwise, the checker rejects the output
or witness as buggy. Certifying algorithms are a key design principle of the algorith-
mic library LEDA [12]: Checkers are an integral part of the library and are optionally
invoked after every execution of a LEDA algorithm. Adoption of the principle greatly
improved the reliability of the library. Formal verification of checkers is feasible [1, 16]
and further improves the reliability of certifying algorithms. Verification of checkers
implies instance correctness for accepted computations of the corresponding certify-
ing algorithm. Verifying instance correctness is orthogonal to verifying that a particular
algorithm is correct.

Formal verification of a certifying computation requires establishing two theorems
along the following lines: First, if the witness has a certain property, then it proves
that y is a correct output for x. Second, the checker program accepts the witness if
and only if it has the desired property. We provide more details in Section 2. In recent
work [1] we provided a framework for verifying certifying computations. It does so by
combining the concept of certifying algorithms with methods for code verification and
theorem proving. More precisely, it uses the interactive theorem prover Isabelle/HOL
as a backend to the automatic code verifier VCC. The first type of theorem is proved in



Isabelle/HOL and the second type of theorem is proved in VCC. The two theorems are
linked by transferring statements from VCC to Isabelle/HOL. The framework is illus-
trated on several examples in the domain of graphs from the algorithmic library LEDA.
Namely, on the connected components checker, the shortest path (with nonnegative
edge weights) checker, and the maximum cardinality matching checker.

More recently we suggested establishing both theorems and hence the complete ver-
ification of checker algorithms and their implementations within Isabelle/HOL [16]. We
demonstrated the approach on the connected components checker and the non-planarity
checker.

Here we re-verify the shortest path checker algorithm with nonnegative edge weights
solely within Isabelle/HOL. We implement the checker in Simpl, a generic imperative
programming language whose semantics is formulated in Isabelle and for which a verifi-
cation environment exists in Isabelle/HOL [19]. Then we verify the checker correctness
within Isabelle/HOL. The complete implementation and verification is online:
http://www.mpi-inf.mpg.de/∼crizkall/Publications/VerificationSimplShortestPath.zip.
This folder also contains the Simpl formalization [20], the Isabelle graph library [15]
and a formal proof of the witness property of the shortest path checker [18] which are all
used in the verification and are also available from Isabelle’s archive of formal proofs.

The verification of the shortest path (with general edge weights) checker algorithm
is currently still work in progress. We implemented the more general checker in Simpl
and we are about half way through with the verification.

2 Preliminaries

As described in [1], we consider algorithms taking an input from a setX and producing
an output in a set Y and a witness in a set W . The input x ∈ X is supposed to satisfy a
precondition ϕ(x) and the input together with the output y ∈ Y is supposed to satisfy a
postcondition ψ(x, y). A witness predicate for a specification with precondition ϕ and
postcondition ψ is a predicateW ⊆ X × Y ×W with the following witness property:

ϕ(x) ∧W(x, y, w) −→ ψ(x, y) (1)

In contrast to algorithms which work on abstract sets X , Y , and W , programs as their
implementations operate on concrete representations of abstract objects. We use X ,
Y , and W for the set of representations of objects in X , Y , and W , respectively and
assume mappings iX : X → X , iY : Y → Y , and iW : W → W . The checker
program C receives a triple (x, y, w) and is supposed to check whether it fulfils the
witness property. More precisely, let x = iX(x), y = iY (y), and w = iW (w). If
¬ϕ(x), C may do anything (run forever or halt with an arbitrary output). If ϕ(x), C
must halt and either accept or reject. It is supposed to accept if W(x, y, w) holds and
supposed to reject otherwise. The following proof obligations arise:

Checker Correctness: A proof that C checks the witness predicate assuming that the
precondition1 holds, i.e., on input (x, y, w) and with x = iX(x), y = iY (y), and
w = iW (w):

1 We stress that the checker has the same precondition as the algorithm.



1. If ϕ(x), C halts.
2. If ϕ(x) andW(x, y, w), C accepts, and if ϕ(x) and ¬W(x, y, w), C rejects. In

other words, if ϕ(x), C accepts if and only ifW(x, y, w), and C rejects if and
only if ¬W(x, y, w).

Witness Property: A proof for the implication (1).

Theorem 1. Assume that the proof obligations are fulfilled. Let (x, y, w) ∈ X×Y ×W
and let x = iX(x), y = iY (y), and w = iW (w).

If C accepts a triple (x, y, w), ϕ(x) −→ ψ(x, y) by a formal proof. If C rejects a
triple (x, y, w), ¬ϕ(x) ∨ ¬W(x, y, w) by a formal proof.

2.1 Tools

Isabelle/HOL [13] is an interactive theorem prover for classical higher-order logic based
on Church’s simply-typed lambda calculus. Internally, the system is built on top of an
inference kernel which provides only a small number of rules to construct theorems;
complex deductions (especially by automatic proof methods) ultimately rely on these
rules only. This approach, called LCF due to its pioneering system [6], guarantees cor-
rectness as long as the inference kernel is correct. Isabelle/HOL comes with a rich set
of already formalized theories, among which are natural numbers and integers as well
as sets, finite sets and as a recent addition graphs [15].

Proofs in Isabelle/HOL can be written in a style close to that of mathematical text-
books called Isabelle/Isar. The user structures the proof and the system fills in the gaps
by its automatic proof methods. Moreover, one can use locales which provide a method
for defining local scopes in which constants are defined and assumptions about them
are made. Theorems can be proven in the context of a locale and can use the constants
and depend on the assumptions of this locale. A locale can be instantiated to concrete
entities if the user is able to show that those entities fulfill the locale assumptions.

Simpl [19] is a generic imperative language designed to allow a deep embedding of
real programming languages, for example C, in Isabelle/HOL for the purpose of pro-
gram verification. Simpl provides the usual language constructs like functions, variable
assignments, sequential compositions, conditional statements, while loops, and excep-
tions. Simpl does not provide the common return statement for abrupt termination, it
can however be emulated by exceptions. Programs may be annotated by invariants.
Simpl does not have its own expression language, expressions in Simpl programs are
arbitrary Isabelle expressions. It is therefore convenient for writing pseudo-code. Spec-
ifications for Simpl programs are given as Hoare triples, where pre- and post-condition
are arbitrary Isabelle expressions. In such specifications, we need to distinguish be-
tween Isabelle’s logical variables and program variables (i.e., variables referring to the
program state). A logical variable named x is written as x, a program variable referring
to the current state as x.

3 Shortest Path Checker

The single-source shortest-paths problem (with nonnegative edge weights) for directed
graphs can be solved for instance by Dijkstra’s algorithm [12, Sections 6.6 and 7.5].



Instead of verifying this algorithm, we request that it returns, along with the computed
shortest distances from s to every vertex of a graph, the corresponding shortest path tree
as witness. That is, we instantiate our general framework as follows:

input x = a directed graph G = (V,E), a function c : E → N for edge
weights, a vertex s

output y = a mapping dist : V → (N ∪∞)
witness w = a tree rooted at s

ϕ(x) = G is wellformed and s ∈ V
W(x, y, w) = w is a shortest-path tree, i.e., for each v reachable from s, the

tree path from s to v has length dist(v)
ψ(x, y) = for each v ∈ V , dist(v) is the cost of a shortest path from s to v

(∞, if there is no path from s to v).
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(b) A shortest-path tree of G

vertex s t u v w

parent-edge ⊥ 0 1 3 ⊥
num 0 1 1 2 ∞
dist 0 1 1 1 ∞

(c) Tree representation

Fig. 1: A directed graph G = (V,E) with the edges labeled i/k, where i is a unique
edge index and k is the cost of that edge is presented in (a). In (b) we give a shortest-
path tree of G that is rooted at start vertex s ∈ V . The tree is encoded by parent-edge ,
num , and dist according to the table in (c). Observe that vertex w is not reachable from
s and that the cycle t→ v → t has cost zero.

Figure 1 shows a directed graph G and a shortest-path tree of G rooted at s. We encode
a shortest-path tree by the functions parent-edge , dist , and num . For each v reachable
from s, dist(v) is the shortest-path distance from s to v and num(v) is the depth of v in
the shortest-path tree. For vertices v that are not reachable from s, dist(v) = num(v) =
∞. For reachable vertices v different from s the edge parent-edge(v) is the last edge
on a shortest path from s to v. The precondition ϕ(x) and witness predicateW(x, y, w)
could be summarized by the following properties:

is wellformed: The graph G is wellformed with finite sets of vertices and edges.
non neg cost: For all edges e in G, c(e) ≥ 0 where c is the cost function.
s in G: The source vertex s is in G.
start val: For the source vertex s, dist(s) = 0.
no path: For a vertex v in G, dist(v) =∞ if and only if there is no path to v.



trian: For all edges (u, v) in G, dist(u) + c(u, v) ≥ dist(v).
just: If (u, v) is the parent edge of v, dist(u) + c(u, v) = dist(v).

We start by presenting the witness property of the checker. We have an Isabelle
locale which is equivalent to (ϕ(x) ∧ W(x, y, w)) and a theorem stating that under
the locale assumptions ψ(x, y) holds. Then we present an excerpt of the Simpl checker
implementation. The checker is supposed to accept if and only if the locale assumptions
hold. Finally, we present part of the correctness proof of the checker. We prove that the
checker terminates and that the result of the checker is equivalent to the Isabelle locales,
and thus the checker accepts if and only if ψ(x, y) holds. The complete implementation
and proofs can be found online:
http://www.mpi-inf.mpg.de/∼crizkall/Publications/VerificationSimplShortestPath.zip.

Witness Property This formalization builds on the Isabelle graph library [15] and can
be found in Isabelle’s archive of formal proofs [18]. The shortest-path-non-neg-cost
locale contains exactly the properties summarizing the precondition and the witness
property that we stated earlier in the section. The theorem correct-shortest-path (see
Listing 1) states that under the shortest-path-non-neg-cost locale assumptions, for
any vertex v in G, dist(v) is equal to the correct shortest path distance µ c s v from s
to v using the cost function c.

Implementation We begin by fixing the types we use for the Simpl implementation
(see Listing 1) and represent a graph the same way as in [1]. The type IGraph represents
a graph G by the number of vertices ivertex -cnt G, number of edges iedge-cnt G, and
a function iedge-cnt Gmapping from edge ids to edges. Vertices ofG range over the set
{0, . . . , (ivertex -cnt G)−1}. Edges ids range over the set {0, . . . , (iedge-cnt G)−1},
and edges are pairs of vertices and are obtained using the function iedge-cnt G. If the
two vertices of each edge belong to the graph we call the graph wellformed.

For each of the properties in the locales, we have a procedure checking this prop-
erty and returning True if and only if it holds. For example the annotated procedure
is-wellformed in Listing 1 checks wether a graph is wellformed. The procedure loops
over edge ids in the graph and checks whether the endpoints of the corresponding edges
are within the range of vertices in the graph. We add a loop invariant is-wellformed -inv
to help with the verification. It states that the result R of the procedure is True if and
only if up to step i in the loop all edges with edge ids less than i have their endpoints in
the graph. The keyword VAR MEASURE in the implementation (see Listing 1) guides
the automated tools in Isabelle to prove termination automatically.

Checker Correctness We prove the checker implementation terminates. The termina-
tion arguments are all trivial (loops counting upwards to some constant). The function
abs-Graph takes a concrete graph and converts it to an abstract graph. The lemma
is-wellformed -spec (see Listing 1) states that the procedure is-wellformed accepts if
and only if the invariant is-wellformed -inv (G, (iedge-cnt G)) evaluates to true. We
then show that the invariant holds if and only if the abstract graph abs-Graph(G) is



theorem (in shortest-path-non-neg-cost) correct-shortest-path:
assumes v ∈ verts G shows dist v = µ c s v

type synonym IVertex = nat
type synonym Edge-Id = nat
type synonym IEdge = IVertex × IVertex
type synonym IGraph = nat × nat × (Edge-Id ⇒ IEdge)

definition is-wellformed -inv :: IGraph ⇒ nat ⇒ bool where
is-wellformed -inv G i ≡
∀ k < i. ivertex -cnt G > fst (iedges G k) ∧ ivertex -cnt G > snd (iedges G k)

procedures is-wellformed (G :: IGraph | R :: bool )
where i :: nat , e :: IEdge
in ANNO G. {| G = G |}

R := True ;
i := 0 ;
TRY

WHILE i < iedge-cnt G
INV {| R = is-wellformed -inv G i ∧ i ≤ iedge-cnt G ∧ G = G |}
VAR MEASURE (iedge-cnt G − i)
DO
e := iedges G i ;
IF ivertex -cnt G ≤ fst e ∨ ivertex -cnt G ≤ snd e THEN
R := False ;
THROW

FI ;
i := i + 1

OD
CATCH SKIP END
{| G = G ∧ R = is-wellformed -inv G (iedge-cnt G) |}

lemma (in is-wellformed -inv -step) is-wellformed -spec:
∀G. Γ `t {|G = G|} R := PROC is-wellformed (G) {|R = is-wellformed -inv G (iedge-cnt G
)|}

Listing 1: Excerpts from witness property, implementation, and verification of shortest
paths in Isabelle/HOL. The ANNO command binds the logical variable G so it can be
used in the invariant.



wellformed (which is one of the assumptions in the shortest-path-non-neg-cost lo-
cale). For all other procedures we show that their results are equivalent to some locale
assumption (applied to the abstracted graph). Eventually we show that the checker pro-
cedure is equivalent to the locale. By this we conclude our proof.

4 Related Work, Conclusion and Future Work

Verifying imperative code within interactive theorem provers is a an active field of re-
search. A semantics of C was formalized in HOL [14], and a semantics of a subset of
C, called C0, was formalized in Isabelle/HOL [9]. A verification environment for the
imperative language Simpl was developed within Isabelle and C0 was embedded into
it [19]. This work has been applied to verify a compiler for C0 [17] and extended to ver-
ify the seL4 microkernel which is written in low-level C [8]. Simpl was also used in the
Verisoft project [22]. Coq [2] was used both for programming the CompCert compiler
and for proving its correctness [10]. CFML is a verification tool, embedded in Coq,
that targets imperative Caml programs [5]. It has been applied to verify imperative data
structures such as mutable lists, sparse arrays and union-find.

Shortest-path algorithms, especially imperative implementations thereof, are pop-
ular as case studies for demonstrating code verification [5, 4]. They target full func-
tional correctness as opposed to instance correctness. Verifying checkers and hence
instance correctness is orthogonal to verifying that a particular shortest path algorithm
is correct. It can be combined with any shortest-path algorithm that is instrumented to
provide the necessary witness expected by our checker. We recently proposed a frame-
work for verification of certifying computations through formally verifying checkers
using Isabelle/HOL(and its graph library [15]) as a backend to VCC [1]. We applied
this framework to verify several checkers from the domain of graph theory including
a shortest path checker. We later proposed a new framework for verifying checkers
solely within Isabelle/HOL [16]. This provides higher trust guarantees and could be
done with comparable (if not less) effort. In this paper, we re-verify the shortest path
checker algorithm with nonnegative edge weights using the new framework. We imple-
ment a checker in Simpl and verify the checker correctness within Isabelle/HOL. The
implementation along with the verification is about 450 lines.

For future work, we plan to use the verification of the shortest path checker algo-
rithm presented here and AutoCorres [7] to verify the C implementation. Moreover, we
are currently verifying a more involved checker algorithm for the shortest path problem
with general edge weights. We implemented the checker algorithm in Simpl and are
about half way through with the verification.

Acknowledgement Special thanks to Kurt Mehlhorn and Fatemeh Shirazi for their feed-
back on the paper.
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