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Interaction between an electron and an electromagnetic wave 

F. Leuterer, M. Kaufmann 

1. Introduction 
This report is intended as an addition to chapter 9.6 in the book of M. Kaufmann, “Plasmaphysik 
und Fusionsforschung”, 2nd edition 2013, Springer Spektrum Verlag. 
 
While the propagation of waves in plasmas can often be described in the fluid picture, this is not the 
case for the absorption of waves, which may lead to heating or current drive. For this a kinetic 
treatment is necessary describing not only the interaction between the particles and the wave fields, 
but also between the particles themselves, resulting in a change of their distribution function, [1,2]. 
 
Here in this report we consider only a single electron interacting with an electromagnetic wave in 
the presence of a dc-magnetic field. It is also valid for single ions with corresponding corrections 
for the sign of the charge, the mass and the direction of cyclotron motion. We use arbitrary 
parameters for the electromagnetic field, i.e. they do not satisfy any dispersion relation. However, 
they are not totally unrealistic: in a plasma waves with an elliptical polarisation in the direction of 
propagation can exist, or electrostatic waves with an electric field directed along the k-vector. And 
in a gyrotron cavity relativistic electrons interact with a rotating electric field through the cyclotron 
resonance. The intention of this report is only to indicate what kind of response can be expected, 
with different basic assumptions, when an electron is perpendicularly accelerated by an rf-field. 
 
In section 2 we discuss the equation of motion as appropriate to our problem. In section 3 we 
assume that the electric field is small and that changes in the electron velocity and the electron 
trajectory are negligible small. From this we conclude that perpendicular absorption can occur at the 
cyclotron frequency and its harmonics. In section 4 we treat the case of a field with infinite 
wavelength, k = 0, for which there is an analytical solution of the equation of motion. With k ≠ 0 
and long interaction time, such that changes in the electron velocity and orbit are no longer 
negligible, we rely on numerical calculations, which are presented in section 5. Finally, in section 6 
we include in the calculations a relativistic dependence of the electron mass on the energy.  
 
Definitions and initial conditions 
We introduce the following quantities 
- the electron charge and mass -e and me  
- the stationary magnetic field in z-direction 

  

€ 

 
B 0 = B0 ⋅ 0; 0;1{ } = B0 ⋅

ˆ b  
- the electron cyclotron frequency 

€ 

ωc = eB0 /me         
- the radius of gyration 

€ 

ρ(t) = v⊥ (t) /ωc         ( 1.1 )  
- the phase of the gyration 

€ 

ϕ(t) =ωct +ϕ0       ( 1.2 ) 
- the wave vector 

  

€ 

 
k = kx; 0; kz{ } =

 
k ⊥;
 
k ||{ }    

- the electric field of the wave  

  

€ 

 
E ( r ,t) = E0x cos(ωt −

 
k  r −ψx ); E0y cos(ωt −

 
k  r −ψy ); E0z cos(ωt −

 
k  r −ψz){ } =

 
E ⊥;
 
E ||{ }  

            ( 1.3 ) 
- the electron velocity 

  

€ 

 v (t) = vx (t); vy (t); vz (t){ } = v⊥ (t)cosϕ(t); v⊥ (t)sinϕ(t);v|| (t){ } =
 v ⊥;
 v ||{ }   

 with initial values 
  

€ 

 v (t = 0) = v0⊥ cosϕ0; v0⊥ sinϕ0; v0||{ }     ( 1.4 ) 
- the electron trajectory 

  

€ 

 r (t) = ρ(t)sinϕ(t);− ρ(t)cosϕ(t);v|| (t)t{ }   
with initial values 

  

€ 

 r (t = 0) = ρ0 sinϕ0;− ρ0 cosϕ0; 0{ } .    (1.5 ) 
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2. The equation of motion and the effect of the wave magnetic field 
 
The equation of motion for the electron is 

 
  

€ 

˙ 
 
v = − e

me

 
E +  v ×

 
B +  v ×

 
B 0[ ]         ( 2.1 ) 

where   

€ 

 
E  and   

€ 

 
B  are the wave electric and magnetic fields. 

From Maxwell’s equations we can express the wave magnetic field as   

€ 

 
B =
 
k ×
 
E /ω . The 

acceleration then reads 

 
  

€ 

˙ 
 
v = − e

me

 
E +  v × (

 
k ×
 
E ) /ω +

 v ×
 
B 0[ ]  .      ( 2.2 ) 

Multiplying this equation with   

€ 

 v ||  we obtain the energy gain in parallel direction 
 

  

€ 

P|| = me ˙ 
 
v ||
 v || = −e v ||

 
E || − e

 
k ||
 v || ⋅
 v ⊥
 
E ⊥ −

 
k ⊥
 v ⊥ ⋅
 v ||
 
E ||( ) /ω  .    ( 2.3 ) 

Multiplying the acceleration with   

€ 

 v ⊥  we obtain the perpendicular energy gain 
 

  

€ 

P⊥ = me ˙ 
 
v ⊥
 v ⊥ = −e v ⊥

 
E ⊥ + e

 
k ||
 v || ⋅
 v ⊥
 
E ⊥ −

 
k ⊥
 v ⊥ ⋅
 v ||
 
E ||( ) /ω  .    ( 2.4 ) 

The first terms in both equations describe the energy gain through the wave electric field, while the 
terms in brackets describe the energy gain through the wave magnetic field. The latter are only 
nonzero if 

€ 

v⊥ ≠ 0; v|| ≠ 0; k ≠ 0; They are equal in magnitude, but of opposite sign in 
perpendicular and parallel direction. Hence the total energy gain is unaffected by the wave magnetic 
field. Its effect is to redistribute part of the parallel energy gain into perpendicular energy gain and 
vice versa. In cases where the phase velocity of the wave 

€ 

ω /k ≈ c0 is comparable to the velocity of 
light and when 

€ 

v << c0  then the effect of the wave magnetic field is small compared to that of the 
wave electric field. 
 
In the following we therefore neglect the wave magnetic field and consider only the remaining 
equation of motion 

 
  

€ 

˙ 
 
v = − e

me

(
 
E +  v ×

 
B 0) = −

e
me

 
E −ωc ( v × ˆ b )  .      ( 2.5 ) 

The electric field along the electron trajectory is 
 

€ 

Ex,y,z(t) = E0x,y,z cos[ωt − k⊥ρ(t)sinϕ(t) − k||v|| (t)t −ψx,y,z] .    ( 2.6 ) 
 
Using the identity 

 

€ 

cos(α ± ξ sinϕ) = Jm
m=−∞

+∞

∑ (ξ)cos(α ± mϕ)  

we get 

€ 

Ex,y,z(t) = E0x,y,z Jm (k⊥ρ(t))
m=−∞

+∞

∑ cos[ωt −mϕ(t) − k||v|| (t)t −ψx,y,z].   ( 2.7 ) 

Inserted into the equation of motion we obtain 

€ 

˙ v x (t) = −
e

me

E0x Jm (k⊥ρ(t))cos ωt −mϕ(t) − k||v|| (t)t −ψx[ ] −ωcv⊥ sinϕ(t)
m=−∞

+∞

∑

˙ v y (t) = −
e

me

E0y Jm (k⊥ρ(t))cos ωt −mϕ(t) − k||v|| (t)t −ψy[ ] +ωcv⊥ cosϕ(t)
m=−∞

+∞

∑

˙ v z(t) = −
e

me

E0z Jm (k⊥ρ(t))cos ωt −mϕ(t) − k||v|| (t)t −ψz[ ]
m=−∞

+∞

∑

. ( 2.8 ) 

This equation is still generally valid as long as ρ(t) and v(t) are functions of time.. 
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3. Small electric field and unperturbed orbit 
 
In the following we assume that the electric field is small enough so that the time dependence of ρ 
and v can be neglected for some gyro cycles and that we can set 

€ 

ρ(t) = ρ0  and

€ 

vx,y,z(t) = v0x,y,z , [3, 4]. 
Because the z-component does not contain a Lorentz term we have to discuss perpendicular and 
parallel acceleration separately. 
 
3.1 acceleration perpendicular to   

€ 

 
B 0   

Persistent perpendicular acceleration requires that all terms have the same time dependence 

€ 

ωct  as 
given by the Lorentz force term, hence 

€ 

(ω −mωc − k||v||0 )t =ωct , leading to the familiar wave 
particle resonance condition 
 
 

€ 

ω − (m +1)ωc − k||v|| = 0  .        ( 3.1 ) 
 
In this case the electron moving along the orbit experiences an electric field oscillating at a 
frequency ωc rather than ω. Such a resonant interaction can take place at all cyclotron harmonics 
with a Doppler shift according to the parallel velocity. 
The perpendicular power absorption is obtained from 
 
 

  

€ 

P⊥ = me ˙ 
 
v ⊥
 v ⊥ = me ( ˙ v xvx + ˙ v yvy )         ( 3.2 ) 

 
Inserting the above results and averaging over an integer number of gyro cycles we obtain the time 
averaged perpendicular power absorption 

 

€ 

P⊥ = −
e
me

v0⊥Jm (k⊥ρ0) ⋅ E0x cos[(m +1)ϕ0 +ψx ]+ E0y cos[(m +1)ϕ0 +ψy ]{ }  . ( 3.3 ) 

From this we see that only the electric field component parallel to the velocity vector contributes to 
the energy gain. 
For an elliptic polarisation we take 

€ 

ψx = 0 and 

€ 

ψy = ±π /2  and we obtain 

 

€ 

P⊥ ell.pol . = −
e
me

v0⊥Jm (k⊥ρ0) ⋅ (E0x ± E0y )cos(m +1)ϕ0 .    ( 3.4 ) 

The perpendicular absorption is maximum for a co-rotating circularly polarised electric field with

€ 

E0x = E0y  and 

€ 

ψy = +π /2 , and is zero for a counter-rotating field with 

€ 

E0x = E0y  and 

€ 

ψy = −π /2. 
The power absorption scales with 

€ 

Jm (k⊥ρ0). For very small argument 

€ 

k⊥ρ0 ≈ 0  only the Bessel 
function 

€ 

Jm= 0  is nonzero, corresponding to interaction at 

€ 

ω ≈ωc . Interaction at harmonics 

€ 

nωc  
requires 

€ 

k⊥ρ0 ≠ 0. 
 
While the term m in the sum has a time dependence 

€ 

ωct  and leads to resonant acceleration, the term 
(m+1) has no time dependence. In this case the electron moving along the orbit experiences a dc-
electric field which leads to a particle drift at a velocity 
 
 

  

€ 

 v drift =
 
E 0⊥Jm +1(k⊥ρ0)e

i(m +1)ϕ 0 ×
 
B 0( ) /B0

2        ( 3.5 ) 
 
in   

€ 

 
E ⊥0 ×

 
B 0 direction. There is no power absorption associated with the drift motion. Heating and 

drift occur simultaneously. For example: with m = 0 we have cyclotron absorption near the 
fundamental frequency ω ≈ ωc with a scaling factor 

€ 

J0(k⊥ρ0) while the term with m =1 produces a 
drift with a scaling factor of 

€ 

J1(k⊥ρ0) . So the drift requires 

€ 

k⊥ρ0 ≠ 0. The drift is usually small and 
can be neglected. 
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3.2 acceleration parallel to   

€ 

 
B 0   

Since there is no Lorentz force term in the equation for 

€ 

˙ v z we get persistent acceleration if there are 
no oscillating terms in the equation. Only the term of the sum contributes for which 
 
 

€ 

(ω −mωc − k||v0|| ) = 0  .        ( 3.6 ) 
 
With this condition satisfied the parallel power absorption is 
 
 

€ 

P|| = me ˙ v zvz = −ev0||E0zJm (k⊥ρ0)cos(mϕ0 +ψz)  .     ( 3.7 ) 
 
In particular, for 

€ 

k⊥ρ0 = 0 only the term with m = 0 leads to acceleration since J0(0) = 1 while all 
other terms Jm≠0(0) = 0. This concerns particles satisfying 

€ 

ω − k||v0|| = 0  and corresponds standard 
Landau damping of plasma waves. 
 
This discussion with the assumption of a small amplitude is meaningful only in the initial phase of 
the electron wave interaction as long as the electron orbit does not change much. For this time 
period we can conclude 
- energy exchange is only possible when the wave particle resonance condition is satisfied 
- energy exchange requires an electric field component in the direction of the velocity vector 
- energy exchange at harmonics of the cyclotron frequency is possible only when

€ 

k⊥ρ0 ≠ 0. 
- the interaction leads to a small drift motion. 
 
 
4. Interaction with a perpendicular homogenous circularly polarised electric 
field with k = 0  
 
For the case k = 0 there is an analytical solution to the equation of motion and we do not need the 
assumption of an unperturbed orbit, [5]. Here we present the solution for an elliptically polarised 
field with components E0x and E0y , and we take 

€ 

ψx = 0 and 

€ 

ψy = π /2  for a co-rotating field. This 
solution describes also a linearly polarised field if either Ex0 or Ey0 are set to zero, and also a 
counter-rotating field if Ey0 is negative. 
 

 

€ 

vx = v0⊥ cos(ωct +ϕ0) −
e
me

(ωE0x +ωcE0y )sinωt − (ωcE0x +ωE0y )sinωct
ω 2 −ωc

2      and 

 

€ 

vy = v0⊥ sin(ωct +ϕ0) −
e
me

(ωcE0x +ωE0y )cosωt − (ωcE0x +ωE0y )cosωct
ω 2 −ωc

2  . ( 4.1 ) 

 
4.1 general case ω  ≠ ωc , circularly polarised field co-rotating 
In the following we consider a circularly co-rotating polarised field with E0x = E0y = E0 . Then equ. 
4.1 can be reformulated as 
 

 

€ 

vx = v0⊥ cos(ωct +ϕ0) −
e
me

E0
2

ω −ωc

cos (ω +ωc )t
2

sin (ω −ωc )t
2

    and 

 

€ 

vy = v0⊥ sin(ωct +ϕ0) −
e
me

E0
2

ω −ωc

sin (ω +ωc )t
2

sin (ω −ωc )t
2

 .   ( 4.2 ) 

The first terms describe the unperturbed gyro motion of the electron with frequency ωc. The 
second terms describe the change due to the electric field with a frequency ω ≠ ωc . They 
represent an oscillation at a high frequency (ω + ωc)/2 modulated with a low beat frequency (ω - 
ωc)/2. An example is shown in fig. 4.1. Calculated orbits are shown in fig. 4.2. 
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Fig. 4.1 vx/v0 and |v/v0| as function of time  
  Parameters:   

€ 

ω =1.05ωc;
 
E = [0.1;0.1;0];

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = π; 

   
 
 
 
 
 
 
 
 
 
 
   a) ω = 1.0 ωc          b) ω = 0.985 ωc   c) ω = 0.975 ωc         d) ω = 0.95 ωc  
 
Fig. 4.2 Calculated orbits   

€ 

 r (t) , 50 cycles, variation of frequency 
  Parameters:   

€ 

ω = var .;
 
E = [0.1;0.1;0];

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = π; 

 
A frequency matching exactly the gyro frequency leads to continuous heating. However, when 
the frequency deviates from the gyro frequency the phase between the gyromotion and the 
electric field changes continuously and therefore the electron experiences a periodic heating and 
cooling with the beat frequency ω - ωc . 
 
The energy of the electron is  
 

€ 

v 2

v0⊥
2 =

vx
2 + vy

2

v0⊥
2 =1+ A2 sin2 (ω −ωc )t

2
− 2Asin (ω −ωc )t

2
cos[(ω −ωc )t

2
−ϕ0]  ( 4.3 ) 

 

with 

€ 

A =
e
m
E0

v0⊥
2

ω −ωc

. 

 
Fig. 4.3 shows v2/v0

2 as function of time at different phases ϕ0. Although the electron energy 
increases and decreases periodically, there remains a limited time averaged net energy gain 
which  depends on the initial phase. This energy gain is higher the closer the frequency is to the 
exact cyclotron frequency as shown in Fig. 4.4. Finally, at ω/ωc = 1 the periodic character is lost 
and the energy grows about quadratic with time, due to the sin(ω-ωc)t /(ω-ωc) term. 
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a) 

€ 

ϕ0 = −π /2    b) 

€ 

ϕ0 = 0    c) 

€ 

ϕ0 = +π /2 
 
Fig. 4.3  v⊥2/v0

2 as function of time at different phases.  
 Parameters:   

€ 

ω =1.05ωc;
 
E = [0.1;0.1;0];

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = var; 

     
Fig. 4.4 Variation of v⊥2/v0

2 with frequency, ω/ωc=1.05; 1.025, 1.0125; 1.00625; 
 Parameters:   

€ 

ω = var;
 
E = [0.1;0.1;0];

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = −π /2; 

 
Time averaged energy gain is in this model thus not only possible when the wave particle 
resonance condition ω = ωc is fulfilled exactly, but also close to this frequency. 
 
We can perform similar calculations for a frequency slightly different from the second harmonic, 
ω ≈ 2ωc. As function of frequency there is only a much weaker dependence of v2/v0

2 since near the 
second harmonic the term 1/(ω-ωc) does not go to infinity. The results of a phase variation are 
shown in fig. 4.5. In case a) the amplitude is periodically varying around v0. In cases b) and c) the 
amplitude is also periodically varying, but remains lower resp. higher than v0, i.e. the electron 
looses resp. gains time averaged energy. Still there remains a phase and time averaged energy 
gain. 
 
 

   
Fig.4.5 v2 as function of time; a) ϕ0 = 0, b) ϕ0 = +π/2, c) ϕ0 = -π/2.  
 Constant: ω = 2.05 ωc; k = 0; E = [0.1; 0.1; 0]; v0 = [1; 0; 0]; Circ. pol. field co-rotating. 
  
 
 
4.2 special case ω  = ωc , co-rotating circularly polarised electric field 
Now we analyse the special case of ω = ωc . For the velocity we get 
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€ 

vx = v0⊥ cos(ωct +ϕ0) −
e
me

E0 ⋅ t ⋅ cosωct     and 

 

€ 

vy = v0⊥ sin(ωct +ϕ0) −
e
me

E0 ⋅ t ⋅ sinωct  .      ( 4.4 ) 

Calculated orbits are shown in fig.4.6 for different initial phases. 
 
 
 
 
 
 
 
 
 
 
       a) 

€ 

ϕ0 = π      b) 

€ 

ϕ0 = 3π /2       c) 

€ 

ϕ0 = 0             d) 

€ 

ϕ0 = π /2         
 
Fig. 4.6 Calculated orbits for different initial phases 

 Parameters: 
  

€ 

ω =ωc;
 
E 0 = [0.1;+0.1;0];ψy = +π /2;

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = var . 

 
In fig. 4.6a the electric field vector is initially parallel to the velocity vector, but of opposite sign 
and therefore the electron gains immediately energy. In fig. 4.6c the electric field is initially in 
the same direction as the velocity, and therefore the electron first looses energy until it comes to 
rest, and then gains energy like in case a.  
In figs. 4.6b and 4.6d the electric field vector is initially perpendicular to the electron velocity, 
and therefore there is no immediate energy exchange. Nevertheless, in both cases the electron 
finally gains energy at about the same rate as in case a.  
 
The total velocity is 
 
 

€ 

v(t) = v0⊥ 1+ (t /τ ph )
2 − 2(t /τ ph )cosϕ0        ( 4.5 ) 

 
where we have introduced a characteristic time  

€ 

τ ph =
mev0⊥
eE0

 .           ( 4.6 ) 

This is plotted in fig. 4.7. 
 

 
Fig.4.7 Total velocity as a function of time for different initial phases, [6] 
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Depending on the phase between electric field and gyro motion the electron can initially be 
accelerated (ϕ0 = π) or decelerated (ϕ0 = 0). For ϕ0 = π/2 there is no initial acceleration. 
However, after about one characteristic time τph all electrons are accelerated, and after two 
characteristic times all electrons have a velocity greater than the initial one increasing further at 
the same rate independent of the initial phase. Obviously the phases must have been shifted and 
synchronised such that ϕ = π is reached. In the cases ϕ0 = π/2 and ϕ0 = 3π/2 the electric field, 
being initially perpendicular to the velocity vector, drives the electron to a smaller, respectively 
larger, radius, while the absolute value of the velocity does not change. Hence the angular 
frequency of the electron gyration is no longer equal to the cyclotron frequency with which the 
electric field is rotating, leading to a phase shift until finally the electric field is opposite to the 
velocity vector and thus accelerating. 
 
Such phase synchronisation can occur only as long as the electron motion is correlated with the 
perpendicular electric field. There are a number of ways how this correlation can be destroyed: 
 
- de-correlation due to finite transit time through an electric field of finite spatial extent 

In practice the electric field is limited in space, like in a gyrotron cavity of finite length, 
or in plasma heating experiments, where the wave electric field is given by a microwave beam. 
Here we assume a homogenous microwave beam with a diameter db and power P propagating 
perpendicular to the stationary magnetic field. We then get for the electric field 
 

€ 

E0 =1/db ⋅ 8PZF /π          ( 4.7 ) 
with the wave impedance 

€ 

ZF = µ0 /ε0  . Assuming further equal parallel and perpendicular initial 
velocities 

€ 

v0⊥ = v0|| = v0 we get for the transit time through the beam 
 
  

€ 

τ tr = db /v0 = db / 2eU /me          ( 4.8 ) 
where the electron velocity is expressed in terms of its energy 

€ 

eU =1/2 ⋅mev0
2  . Inserting this into 

€ 

τ ph  we get 

 

€ 

τ ph
τ tr

=
U

2PZF /π
          ( 4.9 ) 

which depends only on the initial electron energy and the power in the microwave beam. From 
fig. 4.7 we see that it takes two characteristic times τph until also the electrons with the most 
unfavourable initial phase reach a velocity above their initial velocity.  
Taking as example B0 = 2.5 T, fce = 70 GHz and a microwave beam focused db = 5 cm we get the 
result shown in fig. 4.8. Phase synchronisation at ω = ωc may be important as long as τph/τtr <1, 
i.e. at electron energies below a few keV, depending on power, as is shown in fig. 4.8. 
 

   
Fig. 4.8 τph/τtr , τrel/τtr , and τcoll/τtr  as a function of the electron energy, assuming v|| = v0. 
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- de-correlation by collisions 
In a plasma there is another limitation due to collisions. Electrons must not collide during a 

transit through the beam. With the collision time 

€ 

τ coll =10.4me
1/ 2U 3 / 2ε0

2 /(e5 / 2 lnΛne ) , ne is the plasma 
density, we get the ratio 

 

€ 

τ coll
τ tr

=10.4 ε0
2U 2

e2 lnΛnedb
 .        ( 4.10 ) 

This is also plotted in fig. 4.8 assuming a 5 cm diameter beam, a density of ne = 1020 m-3, and lnΛ = 
10 for a low temperature plasma. For a possible phase de-correlation τcoll must be smaller than τtr 
which in this example is the case for electron energies lower than ≈ 50 eV. 
 
- de-correlation by the relativistic velocity dependence of mass  

The phase relation between the constant frequency electric field oscillating at the non-
relativistic cyclotron frequency 

€ 

ωc0 = eB0 /me0 and the gyro motion of the electron varies due to 
the relativistic change of the cyclotron frequency with electron energy (see section 6).  
The relativistic cyclotron frequency is  

€ 

ωc =ωc0 1− v
2 /c 2 ≈ωc0(1− v

2 /2c 2)       ( 4.11 ) 
Assuming a constant velocity v the variation of this phase difference is 

€ 

Δ(dφ /dt) =ωc0 −ωc =1/2 ⋅ωc0 ⋅ v
2 /c 2       ( 4.12 ) 

To arrive at a phase difference of π/2, which means that the angle between the electric field 
vector and the electron velocity vector changes by π/2, this needs a time  

€ 

τ rel =1/(2 ⋅ v 2 /c 2 ⋅ fc0)         ( 4.13 ) 
This relates to the transit time through a microwave beam as 
 

€ 

τ rel /τ tr = v|| /(2 ⋅ v
2 /c 2 ⋅ fc0 ⋅ db ) .       ( 4.14 )  

Note that the time τ rel is only an estimate based on a constant velocity. This condition is also 
indicated in fig. 4.8.  
Relativistic de-phasing during one transit can occur if τ rel /τtr < 1 . In our example for a 5 cm 
diameter beam this occurs for electron energies higher than ≈ 400 eV. 
Thus in our example of fig. 4.8, classical phase synchronisation during one transit may occur for 
electron energies up to ≈ 5 keV. Taking relativistic effects into account phase synchronisation is 
limited to energies up to ≈ 400 eV. Collisions require an energy larger than ≈ 50 eV. So there is 
only a small gap in electron energy where phase synchronisation may be possible. The data 
shown in the figure are, however, for equal parallel and perpendicular velocities. Higher or lower 
parallel velocity leads to a shorter or longer transit time. Furthermore τph was estimated assuming 
k = 0. 
 
- there are further ways how the phase relation between electron gyration and electric field can 
be changed: an inhomogeneous magnetic field (like in toroidal plasma confinement), a dc or low 
frequency electric field, or scattering of the incident microwave beam due to density fluctuations 
in a plasma.  
 
4.3 special case ω  = ωc , circularly polarised field counter-rotating 
We obtain a counter-rotating field by setting 

€ 

ψy = −π /2 and 

€ 

E0y = −E0x = −E0 . The solution is 
 

€ 

vx = v0⊥ cos(ωct +ϕ0)        and 

 

€ 

vy = v0⊥ sin(ωct +ϕ0) −
e
me

E0
1
ωc

cosωct  .      ( 4.15 ) 

The velocity is purely periodic and does not grow in time. Hence there is no time averaged 
absorption. This is true for all initial phases 

€ 

ϕ0 . The orbits are closed orbits consisting of the 
unperturbed orbit with a superimposed perturbation due to the electric field, as shown in fig. 4.9. 
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a) ϕ0 = π        b) ϕ0 = 3π/2   c) ϕ0 = 0      d) ϕ0 = π/2 
 
Fig. 4.9 Calculated orbits in the x-y-plane for circularly polarised field rotating opposite to the 
electron gyration with different initial phases 
Parameters: 

  

€ 

ω =ωc;
 
E 0 = [0.1;−0.1;0];ψy = −π /2;

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = var . 

 
4.4 special case ω  = nωc , circularly polarised field co-rotating  
For harmonic frequencies we have 

 

€ 

vx = v0⊥ cos(ωct +ϕ0) −
e
me

E0
2

(n −1)ωc

cos (n +1)ωct
2

sin (n −1)ωct
2

     and 

 

€ 

vy = v0⊥ sin(ωct +ϕ0) −
e
me

E0
2

(n −1)ωc

sin (n +1)ωct
2

sin (n −1)ωct
2

 .  ( 4.16 ) 

We see that for n ≠ 1 the perturbation to the initial gyration is purely periodic without any time 
averaged energy exchange between electron and wave. The orbits remain closed orbits as shown 
in fig. 4.10 for the case ω = 2ωc. 
 
 
 
 
 
 
 
 
a) ϕ0 = π        b) ϕ0 = 3π/2   c) ϕ0 = 0      d) ϕ0 = π/2 
 
Fig. 4.10 Calculated orbits in the x-y-plane for different initial phases 
Parameters: 

  

€ 

ω = 2ωc;
 
E 0 = [0.1;+0.1;0];ψy = +π /2;

 
k = [0;0;0];  v 0 = [1;0;0];ϕ0 = var .  

 
4.5 summary for perpendicular electric field with k = 0 
- time averaged power absorption occurs not only at the wave particle resonance frequency, but 
in a limited way also at frequencies close to it.  
- at ω = ωc the power absorption increases continuously with time.  
- there is no continuously increasing absorption at harmonics ω = nωc, in agreement with the 
findings of section 2 for k = 0. 
- there is no drift motion, in agreement with the findings of section 2 for k = 0. 
- due to phase synchronisation at ω = ωc all electrons, independent of their initial phases, finally 
may absorb energy from the co-rotating electric field. However, this is strongly restricted by loss 
of correlation due to finite transit time, collisions, or relativistic change of  cyclotron frequency. 
- counter-rotating electric fields cannot transfer energy from the field to the particle. Their orbits 
remain closed, although perturbed.  
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5. Numerical non-relativistic calculations of particle orbits with circularly 
polarised field and k ≠ 0,  
 
To calculate time varying orbits due to electric fields with nonzero wave number we have to 
solve the equation of motion numerically. This was done with a Runge – Kutta procedure.  
In the following figures we give some examples of calculated orbits where we have followed 
mostly M=10 cycles of the oscillating electric field. In some cases we calculated more cycles as 
mentioned in the figure caption. As in the previous chapter we will use dimensionless numbers 
for all quantities.  
 
5.1 ω  = ωc , co-rotating field 
With k ≠ 0 the electron experiences already during its gyro motion a phase shift relative to the 
electric field.  
 
Fig. 5.1 ω = ωc, circularly polarised field rotating in the direction of electron gyration; 

 Parameters: 
  

€ 

ω =ωc;
 
E 0 = [0.1;+0.1;0];ψy = +π /2;

 
k = [0.5;0;0];  v 0 = [1;0;0];ϕ0 = var . 

 
 
 
 
 
 
 
 
 
 
    a) ϕ0 = π          b) ϕ0 = 3π/2   c) ϕ0 = 0     d) ϕ0 = π/2 
 
In all cases the electrons finally gain energy. The orbits differ only initially depending on phase 
similar to the case k = 0. Since here k ≠ 0 there is also a drift superimposed. 
 
5.2 ω  = 2ωc , co-rotating field 
 
Fig. 5.2 ω = 2ωc; circularly polarised field rotating in the  direction of electron gyration.  

Parameters: 
  

€ 

ω =ωc;
 
E 0 = [0.1;+0.1;0];ψy = +π /2;

 
k = [0.5;0;0];  v 0 = [1;0;0];ϕ0 = var .  

 
 
 
 
 
 
 
 
 
 
 
    a) ϕ0 = π/2    b) ϕ0 = π    c) ϕ0 = 3π/2           d) ϕ0 = 0  
    a), b), and c) 10 orbits, d) 30 orbits 
 
In case b) continuous heating occurs from the very beginning. In the other cases continuous 
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heating occurs only after phase synchronisation, even if at first a deceleration happens. In case d) 
with initial deceleration the velocity does not decrease to zero before rising again. 
A drift is superimposed since k ≠ 0. The drift is weak since according to section 2 for ω = 2ωc it 
is associated with the Bessel function 

€ 

J2(k⊥ρ) . 
 
6. Numerical relativistic calculations of particle orbits 
 
In the preceding sections we have seen that a changing phase relation between the gyro motion 
and the constant frequency electric field affects the power absorption. The relativistic 
dependence of the electron mass on velocity makes such phase changes unavoidable. 
 
6.1 numerical relativistic calculations of orbits and velocity 
For these calculations we use in the equation of motion an electron mass depending on the 
electron energy 

€ 

me = me0 / 1− v
2 /c 2 , affecting the cyclotron frequency and the electric field 

force. A changing relativistic cyclotron frequency leads to a changing phase relative to the 
constant frequency electric field. Here we can no longer use normalised dimensionless 
quantities. 
In the following calculations we use B0 = 2.5 T, k = {0;0;0},U0 = 10 keV, v||0 = 0 and a circularly 
polarized electric field with E0 = 10 105 V/m rotating in the direction of the electron gyration 
with the non-relativistic cyclotron frequency ωc0. We use high values for U0 and E0 so that the 
interaction shows up within a small number of orbits. We follow the orbit for 60 cyclotron 
periods. 
In fig. 6.1 we vary the initial phase. (Our estimate for τ rel, where we assume a constant velocity, 
gives for this case τ rel = 12.5 cyclotron orbits). 
 

 
 

        
 
a) ϕ = {π;π/2;0}   b) ϕ = {3π/2;π;0}        c) ϕ = {2π;3π/2;0}      d) ϕ = {π/2;0;0} 
 
Fig. 6.1 top: orbits in x-y-plane; bottom: velocity as function of time (number of orbits) 
 
In all cases there is never a situation where the electron energy increases continuously as in the 
non-relativistic case with  k = 0 and ω = ωc0. As expected we find instead a periodic behaviour of 
the velocity. In case a) the electron is initially accelerated, in case c) it is initially decelerated, 
while in cases b) and d) the electric field vector is initially perpendicular to the velocity vector. 
In cases a) and c) the velocity oscillates around v0. In case b) the velocity is always smaller than 
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v0, and in case d) the velocity is always greater v0. The periodicity changes with the phase.  
 
6.2 numerical relativistic calculations of the electron energy gain for ω  ≈ ωc. 
 
Here we present calculations of the time evolution of the energy v⊥2/v0

2 of an electron including 
the relativistic mass dependence. In a toroidal plasma, like in fusion research, such a situation 
would only be possible for launching the microwave beam from the high field side. However in a 
gyrotron cavity the electrons may experience a comparable situation. 
 
For all examples the following parameters are taken as constant  
B0 = 2.5 T; kx = 0.5 k0; ky = kz = 0; v||0 = 0; fc0 = 69,9804 GHz; e/me = 1,7588 1011 Cb/kg;  
Here we show only one example where we vary the frequency, and with E0 = 5 105 V/m and U0 
= 2 keV, which corresponds to a 5 cm diameter microwave beam of 1 MW power. In further 
calculations we varied ϕ0, U0, E0. 
 

      
67,00 GHz    68,00 GHz   68,50 GHz 

     
68,595 GHz              68,595876 GHz              68,595876255 GHz    

     
 68,595876260 GHz         68,596 GHz   68,620 GHz
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     69,000 GHz         70,000 GHz   71,000 GHz 
   
 
Fig. 6.2 time traces of of v2/v0

2 . Constant: U0 = 2 keV, E0 = 5 105 V/m; ϕ0 = (π; π/2; 0); 
 
 
There is never a continuous energy gain as results from the non-relativistic calculation for ω = ωc 
with k = 0. The energy gain or loss is always limited and periodic in time. This is due to the 
varying frequency difference between the gyromotion and the constant frequency electric field.  
The associated phase difference is continuously changing with time, therefore the electron will 
experience periodically an acceleration and a deceleration.  
 
There is a frequency fres at which a sudden transition in the v2/v0

2 – plots occurs, like in fig. 6.2 
near 68.595876 GHz: the structure of the time traces is different for frequencies below and above 
this transition frequency. In all these cases v⊥2 assumes a long lasting flat portion preceeding the 
transition. This means that during this time the E-vector is nearly perpendicular to the velocity 
vector and rotates at very closely the same speed. Under these conditions the gyration frequency 
of the electron is determined by the combined action of the Lorentz force and the radial electric 
field force as  

 

€ 

ωgyr =ωc (1−
eE0

meωcv0
)  .        ( 6.1 ) 

As an example we take plots f) and g) of fig. 6.2. The electron energy in the flat region before the 
transition is ≈ 8.2 keV, resulting in a relativistic cyclotron frequency of fc = 68,85 GHz. Inserting 
this in the above equation with E0 = 5 105 V/m we get fgyr = 68,59 GHz which is close to the 
transition frequency found in the numerically calculated patterns. Reducing the electric field 
amplitude E0 shifts this resonant transition to a higher frequency. 
 
There also occur minima in the electron energy where the electron has lost nearly all of its initial 
energy.  
 
Summaries of such calculations where different parameters were varied are shown in figs. 6.3 to 
6.5 displaying the maximum and minimum energy of plots like above. 
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Fig. 6.3 Maxima and minima of v⊥2/v0

2 as a function of frequency for different initial phases ϕ0. 
 Constant: B0 = 2.5 T; U0 = 2 kV; E0 = 5 105 V/m; co-rotating field. 
 
 

 

    
  a)      b) 
 
Fig. 6.4 a) Maxima and minima of v⊥2/v0

2 and b) Maximum and minimum energy in keV as  
  function of frequency for different initial energies U0.  
  Constant: B0 = 2.5 T; E0 = 5 105 V/m, ϕ0 = (π; π/2; 0); co-rotating field. 

 
An increasing initial energy shifts the relativistic resonance to a lower frequency. Although the 
relative energy gain, v⊥2/v0

2, is highest for low initial energy, the maximum possible final energy 
increases with the initial energy. The difference between the possible maximum and the initial 
energy is comparable in all cases. 
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Fig. 6.5 Maxima and minima of v⊥2/v0
2 as function of initial phase at different frequencies.  

a) f = 68,0 GHz;     b)  f = 68.5 GHz;    c) f = 69.0 GHz;    d) f = 69.5 GHz;  
  Constant: B0 = 2.5 T; E0 = 5 105 V/m, U0 = 2 kV; ϕ0 = (ϕx; ϕx −π/2; 0); 

 
Heating can occur for all initial phases, but not always at the same frequency. In a situation with 
an inhomogenous magnetic field, like in a tokamak plasma, this corresponds to absorption at a 
different radius. A high energy gain is possible only when a transition to the relativistic cyclotron 
resonance can occur. In this case there are two regions in phase space where either no or little 
heating occurs, and where very high heating can occur. The frequency where a maximum energy 
gain occurs depends on initial phase, initial velocity and wave amplitude. The frequency range 
with high energy gain is on  the low frequency side of the non-relativistic cyclotron frequency, 
and also lower than the relativistic cyclotron frequency related to the initial electron energy. 
Energy loss may also occur but is less propable.  
 
The non-relativistic continuous energy gain at the classical cyclotron resonance does not exist 
relativistically.  
 
The actual energy gain or loss of the electron depends not only on the electric field strength, on 
the initial energy and on the initial phase, but also on the time for one transit through the 
microwave beam, i.e. the parallel velocity. And the possible maxima or minima in the electron 
energy as shown in figs. 6.3 to 6.5 may not be reached if the electron stays not long enough in the 
beam. 
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In the above examples the parallel velocity was zero. In practice the electron will however have a 
non-zero parallel velocity. This will not only change the wave particle resonance due to the 
Doppler shift, but determines also the transit time through a finite size beam. An electron for 
which the interaction starts with a high initial acceleration may eventually leave the finite size 
beam at a lower than initial velocity, and an electron, which is initially decelerated, may finally 
end up with an appreciable energy gain. This is shown in fig. 6.6. The transit time through the 
beam, normalized to the classical cyclotron period, is  
 

 

€ 

τ tr
Tc

=
dbB0 e
π 8U||me

 

 
For a 5cm diameter beam and a magnetic field of B0 = 2.5 T, τtr/Tc = 50, 100, 200 and 300 
correspond to a parallel electron energy of 14 keV, 3.5 keV, 0.9 keV and 0.4 keV. Note, however, 
that in calculating the relativistic mass we did not include the parallel energy U||. 

             
 
Fig. 6.6 Maxima and minima of v⊥2/v0

2 , and v⊥2/v0
2 at different transit times ttr/Tc = 25, 50, 75, 

 100, 200 and 300, normalized to the classical time for one gyro orbit,  
 Constant: f = 69.0 GHz, B0 = 2.5 T; E0 = 5 105 V/m, U0 = 2 kV; ϕ0 = (ϕx; ϕx −π/2; 0);  
 kx = 0.5 k0; 

 
Another example, with parameters more close to the situation in a gyrotron cavity, is shown in 
fig. 6.7. 
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Fig. 6.7 Maxima and minima of v2/v0
2  

and v2/v0
2 at different transit times  

ttr/Tc = 75, 100,  
 
Constant: f = 140.0 GHz, B0 = 5.777 T; 
E0 = 1 107 V/m, U0⊥ = 40 kV; U0tot = 80 
kV; v0

2/c2 = 0.25; ϕ0 = (ϕx; ϕx −π/2; 0); 
kx = 0.9 k0; 
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6.3 numerical relativistic calculations of the electron energy gain for ω  ≈ 2ωc. 
 
Here we show the energy gain of electrons subject to a co-rotating electric field oscillating at a 
frequency close to the second harmonic of the cyclotron frequency. This is a situation 
comparable to second harmonic heating in fusion plasmas. Like in the previous case we take the 
following parameters as constant: kx = 0.5 k0; B0 = 2.5 T; fc0 = 69,9804 GHz; e/me = 1,7588 1011 
Cb/kg; v||0 = 0;  
 
In fig.6.8 we show one example where we vary the frequency, and with E0 = 5 105 V/m, which 
corresponds to a 5 cm diameter microwave beam of 1 MW power.  
 
 

     
   f = 138.000 GHz         f = 139.000 GHz             f = 139.140 GHz 

    
   f = 139.140941 GHz        f = 139.140942 GHz            f = 139.140945 GHz 

     
   f = 139.160 GHz         f = 139.500 GHz             f = 139.550 GHz 
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   f= 139.588 GHz         f = 139.5898 GHz            f = 139.5899 GHz 
 

       
     f = 139.595 GHz            f = 139.800 GHz               f = 140.500 GHz          
 
Fig. 6.8 time traces of of v⊥2/v0

2  at frequencies near the second harmonic. Circular polarized field  
 co-rotating. Constant: U0 = 2 kV, E0 = 5 105 V/m; ϕ0 = (π; π/2; 0); kx = 0.5 k0; 

 
An expanded view of  the case 139.0 GHz is shown in fig. 6.9 where we see that the energy gain 
shows a 2ωc oscillation superimposed on a slower variation as seen in fig. 6.8. 

 

      
 
The energy gain is considerably less than in the case of fundamental cyclotron interaction like in 
fig. 6.2. This is because the force which the electron experiences at the second harmonic scales 
with J1(k⊥ρ) rather than with J0(k⊥ρ). 
 
Similar to a resonant maximum possible energy gain at 139.140942 GHz there is also a resonant 
maximum energy loss at 139.5898 GHz. The result of calculations at different initial phases is 
shown in fig. 6.10. 

Fig. 6.9 Expanded time scale of case 
139.0 GHz of fig. 6.8 shows 2ωc 
oscillation. 
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Fig. 6.10 maxima and minima of the energy gain as function of frequency near the second  

    harmonic at different initial phases. Circular polarized field co-rotating. 
    Constant: U0 = 2 kV, E0 = 5 105 V/m; kx = 0.5 k0; 

 
At the second harmonic the resonant maximum or resonant minimum energy can be reached 
only after a long enough transit time through a microwave beam (longer than at the fundamental 
frequency) and is hence accessible only for lower parallel velocity. And a microwave beam at a 
given total power designed with a larger diameter will, however, have a corresponding lower 
electric field amplitude. 
 
In fig. 6.11 we show v⊥2/v0

2 at different transit times ttr/Tc = 50, 100, 200 and 300, normalized to 
the classical time for one gyro orbit, corresponding to parallel electron energies of  14 keV, 3.5 
keV, 0.9 keV and 0.4 keV. There are initial phase regions where energy loss or energy gain 
occurs. Averaged over phase there is an energy gain. Here too, there is a transit time for which 
the phase averaged energy gain is a maximum. 
 

 
Fig. 6.11 v2/v0

2 at different transit times ttr/Tc = 25, 50, 75, 100, 200 and 300, normalized to the  
                classical time for one gyro orbit, as function of the initial phase. Circular polarized 

    field co-rotating. 
    Const.: f = 139.300 GHz, E0 = 5 105 V/m, U0 = 2 kV; ϕ0 = (ϕx; ϕx −π/2; 0); kx = 0.5 k0; 

 
An interesting example for interaction at ω = 2ωc is the case of breakdown experiments, [7]. If 
k⊥ρ = 0 there is no energy gain as explained in section 3. However, even for very small 
k⊥ρ there can be a considerable energy gain if the electron remains long enough within the 
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microwave beam. In fig. 6.12 we show the result of a relativistic calculation of the electron 
energy assuming an initial energy of only 0.03 eV, corresponding to room temperature. It can 
easily reach an energy of more than 100 eV during one transit through a microwave beam, 
sufficient for ionization. For a 5 cm diameter beam and B0 = 2.5 T the normalized transit time 
ttr/Tc = 6 103 and 3.5 104 for a parallel energy of 1 eV resp. 0.03 eV. 
 

     
 
Fig. 6.12 v⊥2/v0

2 as function of ttr/Tc with an initial energy of 0.03 eV. Linear polarized field. 
 a) Ex0 = 1 105 V/m; b) Ex0 = 2 105 V/m; Ex0 = 5 105 V/m; 

Const.: f = 139.962 GHz = 2 fc, B0 = 2.5 T; U0 = 0.03 eV; ϕ0 = (0; 0; 0); k = (k0; 0; 0) 
      
 
6.4 summary of numerical relativistic calculations of energy gain 
 
- the relativistic cyclotron frequency change with velocity leads to a changing phase shift  
  between the rotating constant frequency electric field and the gyro motion of the electron 
- there is never a continuous energy gain as results from the non-relativistic calculation for  
  ω = ωc with k = 0.  
- the energy gain or loss is always limited and periodic in time in an infinitely extended field.  
- a positive energy gain can occur for all initial phases, but not always at the same frequency.  
- the frequency where a maximum energy gain occurs depends on initial phase, initial velocity  
  and wave amplitude.  
- energy loss may also occur but is less propable. 
- in case of an electric field with limited spacial extent, like in a mirowave beam or in a  
  microwave cavity, the energy gain or loss depends also essentially on the transit time through  
  the beam 
- due to the finite Larmor radius effect even an electron at room temperature subject to a second  
  harmonic field can gain sufficient energy for ionisation. 
- treating a single electron only we cannot describe phase bunching effects as in [8]. 
- in a plasma the heating of the electron ensemble is the result of averaging over all initial 
  phases and velocities, both in parallel and perpendicular direction with respect to the magnetic  
  field, taking the finite size of the injected microwave beam into account. 
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