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Abstract

Given two bounded convex sets X ⊆ Rm and Y ⊆ Rn, specified by membership oracles,
and a continuous convex-concave function F : X × Y → R, we consider the problem of
computing an ε-approximate saddle point, that is, a pair (x∗, y∗) ∈ X × Y such that
supy∈Y F (x∗, y) ≤ infx∈X F (x, y∗) + ε. Grigoriadis and Khachiyan (1995) gave a simple
randomized variant of fictitious play for computing an ε-approximate saddle point for
matrix games, that is, when F is bilinear and the sets X and Y are simplices. In this paper,
we extend their method to the general case. In particular, we show that, for functions of

constant “width”, an ε-approximate saddle point can be computed using O∗( (n+m)
ε2 lnR)

random samples from log-concave distributions over the convex sets X and Y . It is assumed
that X and Y have inscribed balls of radius 1/R and circumscribing balls of radius R. As
a consequence, we obtain a simple randomized polynomial-time algorithm that computes
such an approximation faster than known methods for problems with bounded width and
when ε ∈ (0, 1) is a fixed, but arbitrarily small constant. Our main tool for achieving
this result is the combination of the randomized fictitious play with the recently developed
results on sampling from convex sets.

1 Introduction

Let X ⊆ Rm and Y ⊆ Rn be two bounded convex sets. We assume that each set is given by a
membership oracle, that is an algorithm which given x ∈ Rm (respectively, y ∈ Rn) determines,
in polynomial time in m (respectively, n), whether or not x ∈ X (respectively, y ∈ Y ). Let
F : X×Y → R be a continuous convex-concave function, that is, F (·, y) : X → R is convex for
all y ∈ Y and F (x, ·) : Y → R is concave for all x ∈ X. The well-known saddle-point theorem
(see e.g. [Roc70]) states that

v∗ = inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y). (1)

This can be interpreted as a 2-player zero-sum game, with one player, the minimizer, choosing
her/his strategy from a convex domain X, while the other player, the maximizer, choosing
her/his strategy from a convex domain Y . For a pair of strategies x ∈ X and y ∈ Y , F (x, y)
denotes the corresponding payoff, which is the amount that the minimizer pays to the maxi-
mizer. An equilibrium, when both X and Y are closed, corresponds to a saddle point, which
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is guaranteed to exist by (1), and the value of the game is the common value v∗. When an
approximate solution suffices or at least one of the sets X or Y is open, the appropriate notion
is that of ε-optimal strategies, that a pair of strategies (x∗, y∗) ∈ X × Y such that for a given
desired accuracy ε > 0,

sup
y∈Y

F (x∗, y) ≤ inf
x∈X

F (x, y∗) + ε. (2)

There is an extensive literature on the existence of saddle points in this class of games and
their applications, see e.g. [Dan63, Gro67, tKP90, McL84, Vor84, Roc70, Sha58, Ter72, Wal45,
Seb90, Bel97, DKR91, Was03]. A particularly important case is when the sets X and Y are
polytopes with an exponential number of facets arising as the convex hulls of combinatorial
objects (see section 3 for some applications).

One can easily see that (1) can be reformulated as a convex minimization problem over
a convex set given by a membership oracle1, and hence any algorithm for solving this class
of problems, e.g., the Ellipsoid method, can be used to compute a solution to (2), in time
polynomial in the input size and polylog(1

ε ) (see, e.g., [GLS93]). However, there has recently
been an increasing interest in finding simpler and faster approximation algorithms for this
type of problems, sacrificing the dependence on ε from polylog(1

ε ) to poly(1
ε ), in exchange of

efficiency in terms of other input parameters; see e.g. [AHK05, AK07, BBR04, GK92, GK95,
GK96, GKPV01, GK98, GK04, Kha04, Kal07, LN93, KY07, You01, DJ07, PST91].

In this paper, we show that it is possible to get such an algorithm for computing an ε-saddle
point (2). Our algorithm is based on combining a technique developed by Grigoriadis and
Khachiyan [GK95], based on a randomized variant of Brown’s fictitious play [Bro51], with the
recent results on random sampling from convex sets (see, e.g., [LV06a, Vem05]). Our algorithm
is superior to known methods when the width parameter ρ (to be defined later) is small and
ε ∈ (0, 1) is a fixed but arbitrarily small constant; see the comparison with sampling-based
algorithms in Section 4.

2 Our Result

We need to make the following technical assumptions:

(A1) We know ξ0 ∈ X, and η0 ∈ Y , and strictly positive numbers rX , RX , rY , and RY
such that Bm(ξ0, rX) ⊆ X ⊆ Bm(0, RX) and Bn(η0, rY ) ⊆ Y ⊆ Bn(0, RY ), where Bk(x0, r) =
{x ∈ Rk : ‖x − x0‖2 ≤ r} is the k-dimensional ball for radius r centered at x0 ∈ Rk. In
particular, both X and Y are full-dimensional in their respective spaces (but maybe open). In
what follows we will denote by R the maximum of {RX , RY , 1

rX
, 1
rY
}.

(A2) |F (x, y)| ≤ 1 for all x ∈ X and y ∈ Y.
Assumption (A1) is standard for algorithms that deal with convex sets defined by member-

ship oracles (see, e.g., [GLS93]), and will be required by the sampling algorithms. Assumption
(A2) can be made without loss of generality, since the original game can be converted to an
equivalent one satisfying (A2) by scaling the function F by 1

ρ , where the “width” parame-
ter is defined as ρ = maxx∈X,y∈Y |F (x, y)|. (For instance, in case of bilinear function, i.e,
F (x, y) = xTAy, where A is given m× n matrix and xT is the transpose of vector x, we have
ρ = maxx∈X,y∈Y |xTAy| ≤

√
mnRXRY max{|aij | : i ∈ [m], j ∈ [n]}.) Replacing ε by ε

ρ , we
get an algorithm that works without assumption (A2) but whose running time is proportional
to ρ2. We note that such dependence on the width is unavoidable in most known algorithms
that obtain ε-approximate solutions and whose running time is proportional to poly(1

ε ) (see
e.g. [AHK12, PST91]).

1Minimize F (x), where F (x) = maxy F (x, y).
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We assume throughout that ε is a positive constant less than 1.
The main contribution of this paper is to extend the randomized fictitious play result in

[GK95] to the more general setting given by (2).

Theorem 1 Assume X and Y satisfy assumption (A1). Then there is a randomized algorithm

that finds a pair of ε-optimal strategies in an expected number of O(ρ
2(n+m)
ε2

ln R
ε ) iterations,

each computing two samples from log-concave distributions. In particular,23 the algorithm

requires O∗(ρ
2(n+m)6

ε2
lnR) oracle calls.

When the width is bounded and ε is a fixed constant, our algorithm needs O∗((n+m)6 lnR)
oracle calls. This is superior to known methods that compute the ε-saddle point in time polyno-
mial in log 1

ε ; see the comparison with the Ellipsoid algorithm and sampling-based algorithms
in Section 4.

3 Applications in combinatorial optimization

In this section we give some examples for which the width parameter ρ is small.

3.1 Mixed popular matchings

Let S, T be two families (say, of combinatorial objects), and A ∈ [−1, 1]S×T be a given matrix.
We assume that these families have exponential size (in some input parameter) and hence, the
matrix is given by an oracle that specifies for each S ∈ S and T ∈ T the value of A(S, T ).
The objective is to find a saddle point for the matrix game defined by A on the set of mixed
strategies ∆S = {p ∈ RS+ :

∑
S∈S pS = 1} and ∆T = {q ∈ RT+ :

∑
T∈T qT = 1}.

In general, the optimal strategies might have exponential support (i.e., an exponential
number of non-zero entries). However, if the families arise from combinatorial objects in a
natural way, then the supports of optimal strategies may be polynomially bounded. More
precisely, let E and F be two sets of sizes m and n respectively, such that each element S ∈ S
(respectively, T ∈ T ), is characterized by a vector x(S) ∈ {0, 1}m indexed by the elements
of E (respectively, y(T ) ∈ {0, 1}n indexed by the elements of F ). We assume further that
X = conv{x(S) : S ∈ S} and Y = conv{y(T ) : T ∈ T } have explicit linear descriptions,
and furthermore that there exists an m×n matrix A such that A(S, T ) = x(S)TAy(T ), for all
S ∈ S and T ∈ T . Then it follows from Von Neumann’s Saddle point theorem [Dan63] (which
is a special case of (1)) that

min
p∈∆S

max
q∈∆T

pTAq = min
x∈X

max
y∈Y

xTAy. (3)

Indeed,

min
p∈∆S

max
q∈∆T

pTAq = min
p∈∆S

max
q∈∆T

∑
S∈S,T∈T

pSqTA(S, T ) = min
p∈∆S

max
q∈∆T

∑
S∈S,T∈T

pSqTx(S)TAy(T )

= min
p∈∆S

max
q∈∆T

∑
S∈S

pSx(S)TA
∑
T∈T

qT y(T ) = min
p∈∆S

max
y∈Y

∑
S∈S

pSx(S)TAy

= max
y∈Y

min
p∈∆S

∑
S∈S

pSx(S)TAy = max
y∈Y

min
x∈X

xTAy = min
x∈X

max
y∈Y

xTAy,

2Here, we apply random sampling as a black-box for each iteration independently; it might be possible to
improve the running time if we utilize the fact that the distributions are slightly modified from an iteration to
the next.

3O∗(·) suppresses polylogarithmic factors that depend on n, m and ε.
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see, e.g., [KMN09]. Thus the original matrix game corresponds to a problem of the form (1).

A special case of this framework was considered in [KMN09] under the name of mixed
popular matchings. Let G = (U ∪ V,E) be a bipartite graph, and r : E ⊂ U × V → Z
be a rank function that captures preferences of any vertex of U over the vertices in V (i.e
for every (u, v1), (u, v2) ∈ E, r(u, v1) < r(u, v2) if and only if u prefers v1 to v2). A U -
matching M : U → V is an injective mapping such that {(u,M(u)) : u ∈ U} ⊆ E. Let
S = T = {{(u,M(u)) : u ∈ U} : M is a U -matching of G} ⊆ 2E . Given S, T ∈ S, define
φ(S, T ) = |{u ∈ U : r(u, S(u)) < r(u, T (u))}|/|U | to be the fraction of the vertices of U that
“prefer” S to T , and A(S, T ) = φ(S, T )− φ(T, S).

It is well-known (see e.g. [GLS93]) that the convex hull of U -matchings has the linear
description X = Y = {x ∈ RE+ :

∑
(u,v)∈E xu,v = 1 ∀u ∈ U,

∑
(u,v)∈E xu,v ≤ 1 ∀v ∈ V }.

Furthermore, if we define A ∈ RE×E to be the matrix with entries

a(u,v),(u′,v′) =


1
|U | if u = u′ and r(u, v) < r(u′, v′),

− 1
|U | if u = u′ and r(u, v) > r(u′, v′),

0 otherwise,

then for any S, T ∈ S, we can write A(S, T ) = x(S)TAy(T ), where x(S), y(T ) ∈ {0, 1}E are
the characteristic vectors of S and T , respectively. Note that in this case ρ ≤ 1.

Note that in the above example, the problem can be written as a linear program of polyno-
mially bounded size [KMN09]. However, this is not the case when the known linear descriptions
of X and Y are not polynomially bounded, e.g., when in the above example G is a general
nonbipartite graph. In this case finding a saddle-point may require the use of the Ellipsoid
method, the sampling techniques of [BV04, KV06], or the use of our algorithm.

3.2 Linear relaxation for submodular set cover

Let f : 2[n] → [0, 1] be a monotone submodular set-function. Consider the problem of mini-
mizing f(X) subject to the constraint that the characteristic vector e(X) ∈ {0, 1}n belongs
to a polytope P ⊆ Rn. For instance, in the submodular set covering problem, the polytope
P = {x ∈ [0, 1]n :

∑
i:Si3e xi ≥ 1 for all e ∈ E}, where S1, . . . , Sn ⊆ E are given subsets of

a finite set E. Let Pf = {y ∈ Rn+ :
∑

i∈X yi ≤ f(X) for all X ⊆ [n]} be the polymatroid
associated with f . Then it is known that f(X) = maxy∈Pf e(X)T y. Thus we arrive at the
following saddle point computation which provides a lower bound on the optimum submodular
set cover: minx∈P maxy∈Pf x

T y, where ρ ≤ 1.
For other applications of polyhedral games, we refer the reader to [Was03].

4 Relation to Previous Work

Matrix and polyhedral games. The special case when each of the sets X and Y is a
polytope (or more generally, a polyhedron) and payoff is a bilinear function, is known as
polyhedral games (see e.g. [Was03]). When each of these polytopes is just a simplex we obtain
the well-known class of matrix games. Even though each polyhedral game can be reduced
to a matrix game by using the vertex representation of each polytope (see e.g. [Sch86]), this
transformation may be (and is typically) not algorithmically efficient since the number of
vertices may be exponential in the number of facets by which each polytope is given.
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Fictitious play. We assume for the purposes of this subsection that both sets X and Y
are closed, and hence the infimum and supremum in (1) are replaced by the minimum and
maximum, respectively.

In fictitious play, originally proposed by Brown [Bro51] for matrix games, each player
updates his/her strategy by applying the best response, given the opponent’s current strategy.
More precisely, the minimizer and the maximizer initialize, respectively, x(0) = 0 and y(0) = 0,
and for t = 1, 2, . . . , update x(t) and y(t) by

x(t+ 1) =
t

t+ 1
x(t) +

1

t+ 1
ξ(t), where ξ(t) = argminξ∈X F (ξ, y(t)), (4)

y(t+ 1) =
t

t+ 1
y(t) +

1

t+ 1
η(t), where η(t) = argmaxη∈Y F (x(t), η). (5)

The convergence of such pair of strategies x∗ = limt→∞ x(t), y∗ = limt→∞ y(t), for matrix
games (i.e., when X and Y are, respectively, m and n-dimensional simplices, and F (x, y) is
a bilinear form, that is F (x, y) = xTAy, where A is given m × n matrix) was established
by Robinson [Rob51]: v∗ = F (x∗, y∗). Note that in this case, the best response of each
player, at each step, can be chosen from the vertices of the corresponding simplex. A bound

of
(

2m+n

ε

)m+n−2
on the time needed for convergence to an ε-saddle point was obtained by

Shapiro [Sha58]. In a more recent paper, Hofbauer and Sorin [HS06] showed the convergence
of fictitious play for general convex-concave functions over compact convex sets.

Randomized fictitious play. In [GK95], Grigoriadis and Khachiyan introduced a random-
ized variant of fictitious play for matrix games. Their algorithm replaces the minimum and
maximum selections (4)-(5) by a smoothed version, in which, at each time step t, the min-
imizing player selects a strategy i ∈ [m] with probability proportional to exp

{
− ε

2eiAy(t)
}

,
where ei denotes the ith unit vector of dimension m. Similarly, the maximizing player chooses
strategy j ∈ [n] with probability proportional to exp

{
ε
2x(t)Aej

}
. Grigoriadis and Khachiyan

proved that, if A ∈ [−1, 1]m×n, then this algorithm converges, with high probability, to an

ε-saddle point in O( log(m+n)
ε2

) iterations. Each iteration takes O(n+m) time.

The multiplicative weights update method. In a similar line of work, Freund and
Schapire [FS99] used a method, originally developed by Littlestone and Warmuth [LW94], to
give a procedure for computing ε-saddle points for matrix games. Their procedure can be
thought of as a derandomization of the randomized fictitious play described above. A number
of similar algorithms have also been developed for approximately solving special optimization
problems, such as general linear programs [PST91], multicommodity flow problems [GK98],
packing and covering linear programs [PST91, GK98, GK04, KY07, You01], some class of
convex programs [Kha04], and semidefinite programs [AHK05, AK07]. Arora, Hazan and
Kale [AHK12] gave a meta algorithm that puts many of these results under one umbrella. In
particular, they consider the following scenario: given a set X of decisions and a finite set Y of
outputs, and a payoff matrix M ∈ RX×Y such that M(x, y) is the penalty that would be paid if
decision x ∈ X was made and output y ∈ Y was the result, the objective is to develop a decision
making strategy that tends to minimize the total payoff over many rounds of such decision
making. Arora et al. [AHK12, Kal07] show how to apply this framework to approximately
computing maxy∈Y mini∈[m] fi(y), given an oracle for finding maxy∈Y

∑
i∈[m] λifi(y) for any

non-negative λ ∈ Rm such that
∑m

i=1 λi = 1, where Y ⊆ Rn is a given convex set and
f1, . . . , fm : Y → R are given concave functions (see also [Kha04] for similar results).

There are two reasons why this method cannot be (directly) used to solve our problem
(2). First, the number of decisions m is infinite in our case, and second, we do not assume
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to have access to an oracle of the type described above; we assume only a (weakest possible)
membership oracle on Y . Our algorithm extends the multiplicative update method to the
computation of approximate saddle points.

Hazan’s Work. In his Ph.D. Thesis [Haz06, Chapters 4 and 5], Hazan gave an algorithm,
based on multiplicative weights updates method, for approximating the minimum of a convex
function within an absolute error of ε. This algorithm is somewhat similar to our Algorithm
1 below, except that it chooses the point ξ(t) ∈ X, at each time step t = 1, . . . , T , as the

(approximate) centroid of set X with respect to density pξ(t) = e
∑t−1
τ=1 ln(e−F (ξ,η(τ))), where e is

the base of the natural logarithm, and outputs 1
T

∑T
t=1 x(t) at the end. Theorem 4.14 in [Haz06]

suggests that a similar procedure can be used to approximate a saddle point for convex-concave
functions4 . However, no claim was given regarding the running time or even the convergence
for such an extension, and in fact, the proof technique used in Theorem 4.14 does not seem to
extend to this case since the function ln(e−F (ξ, η(τ))) (respectively, ln(e+F (ξ(τ), η))) is not
concave in η(τ) (respectively, not convex in ξ(τ)).

Sampling algorithms. Our algorithm makes use of known algorithms for sampling from
a given log-concave distribution5 f(·) over a convex set X ⊆ Rm. The currently best known
result achieving this is due to Lovász and Vempala (see, e.g., [LV07, Theorem 2.1]): a random

walk on X converges in O∗(m
5

ε4
) steps to a distribution within a total variation distance of ε

from the desired exponential distribution with high probability.
Several algorithms for convex optimization based on sampling have been recently proposed.

Bertsimas and Vempala [BV04] showed how to minimize a convex function over a convex set
X ⊆ Rm, given by a membership oracle, in time O∗((m5T + m7) logR), where T is the time
required by a single oracle call. When the function is linear this has been improved by Kalai
and Vempala [KV06] to O∗(m4.5T logR).

Note that we can write (1) as the convex minimization problem infx∈X F (x), where F (x) =
supy∈Y F (x, y) is a convex function. Thus, it is worth comparing the bounds we obtain
in Theorem 1 with the bounds that one could obtain by applying the random sampling
techniques of [BV04, KV06] (see Table 1 in [BV04] for a comparison between these tech-
niques and the Ellipsoid method). Since the above program is equivalent to inf{v : x ∈
X, and F (x, y) ≤ v for all y ∈ Y }, the solution can be obtained by applying the technique
of [BV04, KV06], where each membership call involves another application of these tech-
niques (to check if supy∈Y F (x, y) ≤ v). The running time of the algorithm is bounded by

O∗(n4.5(m5T +m7) logO(1)R), which is significantly greater 6 than the bound stated in Theo-
rem 1. Note, however, that these algorithms, unlike our algorithm, depend only polylogarith-
mically on 1

ε .

4 This algorithm can be written in the same form as our Algorithm 1 below, except that it chooses respectively
the points ξ(t) ∈ X and η(t) ∈ Y , at each time step t = 1, . . . , T , as the (approximate) centroids of the

corresponding sets with respect to densities pξ(t) = e
∑t−1
τ=1 ln(e−F (ξ,η(τ))) and qη(t) = e

∑t−1
τ=1 ln(e+F (ξ(τ),η)) (both

of which are log-concave distributions), and outputs ( 1
T

∑T
t=1 x(t), 1

T

∑T
t=1 y(t)) at the end.

5that is, log f(·) is concave
6It is also worth comparing the bound in Theorem 1 with the running time of the Ellipsoid method. Under

Assumption (A1), the Ellipsoid method can be used to minimize a linear function over a convex set X ⊆ Rm
given by a membership oracle in time O(m10T logR +m12 logR) (see [GLS93] and Table 1 in [BV04]). In the
special case when F (x, y) is linear in y, this implies (by a similar argument as the one given above) a total
running time of O∗((n10(m10T +m12) + n12) logO(1)R) which is significantly greater than the bound stated in
Theorem 1.
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Algorithm 1 Randomized fictitious play

Input: Two convex bounded sets X,Y and a function F (x, y) such that F (·, y) : X → R is
convex for all y ∈ Y and F (x, ·) : Y → R is concave for all x ∈ X, satisfying assumptions
(A1) and (A2)

Output: A pair of ε-optimal strategies
1: t := 0; choose x(0) ∈ X; y(0) ∈ Y , arbitrarily
2: while t ≤ T do
3: Pick ξ ∈ X and η ∈ Y , independently, from X and Y with densities

pξ(t)
‖p(t)‖1 and

qη(t)
‖q(t)‖1 ,

respectively
4: x(t+ 1) := t

t+1x(t) + 1
t+1ξ; y(t+ 1) := t

t+1y(t) + 1
t+1η; t := t+ 1;

5: end while
6: return (x(t), y(t))

5 The Algorithm

Our algorithm 1 is an adaptation of the algorithms in [GK95] and [FS99]. It proceeds in steps
t = 0, 1, . . ., updating the pair of accumulative strategies x(t) and y(t). Given the current pair
(x(t), y(t)), define

pξ(t) = e−
εtF (ξ,y(t))

2 for ξ ∈ X, (6)

qη(t) = e
εtF (x(t),η)

2 for η ∈ Y , (7)

and let

‖p(t)‖1 =

∫
ξ∈X

pξ(t)dξ and ‖q(t)‖1 =

∫
η∈Y

qη(t)dη

be the respective normalization factors. The parameter T will be specified later (see Lemma
4).

6 Analysis

Following [GK95], we use a potential function Φ(t) = ‖p(t)‖1‖q(t)‖1 to bound the number of
iterations required by the algorithm to reach an ε-saddle point. The analysis is composed of
three parts. The first part of the analysis is a generalization of the arguments in [GK95] (and
[KY07]): we show that the potential function increases, on the average, only by a factor of
eO(ε2), implying that after t iterations the potential is at most a factor of eO(ε2)t of the initial
potential. While this was enough to bound the number of iterations by O(ε−2 log(n + m))
when both X and Y are simplices and the potential is a sum over all vertices of the simplices
[GK95], this cannot be directly applied in our case. This is because of the fact that a definite
integral of a non-negative function over a given region Q is bounded by some τ does not imply
that the function at any point in Q is also bounded by τ . In the second part of the analysis,
we overcome this difficulty by showing that, due to concavity of the exponents in (6) and (7),
the change in the function around a given point cannot be too large, and hence, the value at
a given point cannot be large unless there is a sufficiently large fraction of the volume of the
sets X and Y over which the integral is also too large.

In the last part of the analysis, we show that the same bound on the running time holds
when the sampling distributions in line 3 of the algorithm are replaced by sufficiently close
approximate distributions.

7



6.1 Bounding the potential increase

Lemma 1 For t = 0, 1, 2, . . . ,

E[Φ(t+ 1)] ≤ E[Φ(t)](1 +
ε

6

2
)2.

Proof Conditional on the values of x(t) and y(t), we have

‖p(t+ 1)‖1 =

∫
ξ∈X

e−
ε(t+1)F (ξ,y(t+1))

2 dξ =

∫
ξ∈X

e−
ε(t+1)F (ξ, t

t+1 y(t)+
1
t+1 η)

2 dξ

≤
∫
ξ∈X

e−
εtF (ξ,y(t))

2 e−
εF (ξ,η)

2 dξ =

∫
ξ∈X

pξ(t)e
− εF (ξ,η)

2 dξ

≤
∫
ξ∈X

pξ(t)

[
1 +

ε2

6
− ε

2
F (ξ, η)

]
dξ = ‖p(t)‖1(1 +

ε2

6
− ε

2

∫
ξ∈X pξ(t)F (ξ, η)dξ

‖p(t)‖1
),

using assumption (A2), concavity of F (ξ, ·) : Y → R and the inequality eδ ≤ 1 + δ+ 2
3δ

2, valid
for all δ ∈ [−1

2 ,
1
2 ]. Taking the expectation with respect to η (with density proportional to

qη(t)), we get

Eq[‖p(t+ 1)‖1] ≤ ‖p(t)‖1

[
1 +

ε2

6
− ε

2

∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1

]
. (8)

Similarly, by taking the expectation with respect to ξ (with density proportional to pξ(t)), we
can derive

Ep[‖q(t+ 1)‖1] ≤ ‖q(t)‖1

[
1 +

ε2

6
+
ε

2

∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1

]
. (9)

Now, using independence of ξ and η, we have

E[Φ(t+ 1)|x(t), y(t)] ≤ Φ(t)

[(
1 +

ε2

6

)2

+
ε

2

(
1 +

ε2

6

)(∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
−
∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1

)

−ε
2

4

∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
.

∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1

]
.

By interchanging the order of integration, we get that the second part of the sum on the
right-hand side is zero, and third part is non-positive. Hence,

E[Φ(t+ 1)|x(t), y(t)] ≤ Φ(t)

(
1 +

ε2

6

)2

. (10)

The lemma follows by taking the expectation of (10) with respect to x(t) and y(t). �

By Markov’s inequality we have the following statement.

Corollary 1 With probability at least 1
2 , after t iterations,

Φ(t) ≤ 2e
ε2

3
tΦ(0). (11)
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At this point one might be tempted to conclude the proof, as in [GK95, KY07], by implying
from Corollary 1 and the non-negativity of the function under the integral

Φ(t) =

∫
ξ∈X,η∈Y

e
ε
2
t(F (x(t),η)−F (ξ,y(t)))dξdη, (12)

that this function is bounded at every point also by 2e
ε2

3
tΦ(0) (with high probability). This

would then imply that the current strategies are ε-optimal. However, this is not necessarily
true in general and we have to modify the argument to show that, even though the value of

the function at some points can be larger than the bound 2e
ε2

3
tΦ(0), the increase in this value

cannot be more than an exponential (in the input description), which is still enough for the
bound on the number of iterations to go through.

6.2 Bounding the number of iterations

For convenience, define Z = X × Y , and concave function gt : Z → R given at any point
z = (ξ, η) ∈ Z by gt(ξ, η) := ε

2 t (F (x(t), η)− F (ξ, y(t))). Note that, by our assumptions, Z is a
full-dimensional bounded convex set in RN of volume Φ(0) = vol(X)·vol(Y ), where N = n+m.
Furthermore, assumption (A2) implies that for all z ∈ Z,

|gt(z)| = |
ε

2
t (F (x(t), η)− F (ξ, y(t))) | ≤ εt. (13)

A sufficient condition for the convergence of the algorithm to an ε-approximate equilibrium
is provided by the following lemma.

Lemma 2 Suppose that (11) holds and there exists an α such that

0 < α < 4εt, (14)

e
1
2
α
( α

4εt

)N
vol(Z) > 1. (15)

Then

egt(z) ≤ 2e
ε2

3
t+αΦ(0) for all z ∈ Z. (16)

Proof Figure 1 illustrates the definitions used in the proof of Lemma 2. Assume otherwise,
i.e., there is z∗ ∈ Z with gt(z

∗) > ε2

3 t+ α+ ln(2Φ(0)). Let λ∗ = α/(4εt) < 1,

Z+ = {z ∈ Z|gt(z) ≥ gt(z∗)− α/2}, and Z++ = {z∗ +
1

λ∗
(z − z∗)|z ∈ Z+}.

Concavity of gt implies convexity of Z+. Thus, for every z ∈ Z+ and every λ′, 0 ≤ λ′ ≤ 1/λ∗,
we have λ∗λ′z + (1− λ∗λ′)z∗ ∈ Z+, and hence

z∗ +
1

λ∗
(λ∗λ′z + (1− λ∗λ′)z∗ − z∗) = z∗ + λ′(z − z∗) ∈ Z++.

Thus, for every z ∈ Z+, the entire ray {z∗ + λ′(z − z∗)|0 ≤ λ′ ≤ 1/λ∗} belongs to Z++. In
particular, Z+ ⊆ Z++.

We next show Z ⊆ Z++. Toward a contradiction assume that x ∈ Z \ Z++ (and hence
x ∈ Z \ Z+). Let us define

λ+ = sup{λ | z∗ + λ(x− z∗) ∈ Z+} and z+ = z∗ + λ+(x− z∗).

9



x

Z Z++

Z+

z+ z⇤

z⇤ z+ x

Figure 1: The drawing on the left illustrates the notation used in the proof of Lemma 2. We
assume for the sake of a contradiction that there is a points x ∈ Z \ Z++. Observe that Z++

is a scaled version of Z+. The drawing on the right illustrates the contradiction. A function
that drops by α/2 from z∗ to z+ and by at most 2εt from z∗ to x cannot be concave.

By continuity of gt, z
+ ∈ Z+ and gt(z

∗) − α/2 = gt(z
+). By definition of z+, we have

x− z∗ = 1
λ+

(z+ − z∗) and hence

1

λ+
>

1

λ∗
. (17)

But z+ = λ+x+ (1− λ+)z∗ and hence

gt(z
∗)− α/2 = gt(z

+) = gt(λ
+x+ (1− λ+)z∗) ≥ λ+gt(x) + (1− λ+)gt(z

∗).

Thus
α

2
≤ λ+(gt(z

∗)− gt(x)) ≤ λ+(|gt(z∗)|+ |gt(x)|) ≤ 2εtλ+

where the last inequality comes from (13) because z∗, x ∈ Z. Therefore we have λ+ ≥ α
4εt = λ∗

which contradicts (17).
We have now established Z ⊆ Z++. By definition, we have Z++ = 1

λ∗Z
+ + (1 − 1

λ∗ )z
∗.

Since the volume of a body is invariant under translation, we have

vol(Z) ≤ vol(Z++) = vol

(
1

λ∗
Z+

)
=

(
1

λ∗

)N
vol(Z+)

and further

Φ(t) =

∫
z∈Z

egt(z)dz ≥
∫
z∈Z+

egt(z)dz

≥ 2Φ(0)e
ε2

3
t+ 1

2
α vol(Z+) ≥ 2Φ(0)e

ε2

3
t+ 1

2
α
( α

4εt

)N
vol(Z) > 2Φ(0)e

ε2

3
t,

a contradiction to (11). �

We can now derive an upper-bound on the number of iterations needed to converge to
ε-optimal strategies.

10



Lemma 3 If (16) holds, ε ∈ (0, 1), α > 0, and

t ≥ 6

ε2
(α+ max{0, ln(2 vol(Z))}), (18)

then (x(t), y(t)) is an ε-optimal pair and (14) holds.

Proof By (16) we have gt(z) ≤ ε2

3 t+ α+ ln(2Φ(0)) = ε2

3 t+ α+ ln(2 vol(Z)) for all z ∈ Z, or
equivalently,

ε

2
t(F (x(t), η)− F (ξ, y(t))) ≤ ε2

3
t+ α+ ln(2 vol(Z)) for all ξ ∈ X and η ∈ Y.

Hence,

F (x(t), η) ≤ F (ξ, y(t)) +
2ε

3
+

2

εt
(α+ ln(2 vol(Z)) for all ξ ∈ X and η ∈ Y,

which implies by (18) that

F (x(t), η) ≤ F (ξ, y(t)) + ε for all ξ ∈ X and η ∈ Y.

Finally, (14) holds since 4εt ≥ 24α/ε > α. �

Lemma 4 For any ε ∈ (0, 1), there exist α and

t = O

(
N

ε2
ln
R

ε

)
satisfying (14), (15) and (18).

Proof If vol(Z) ≤ 1
2 . Let us choose t = 6α

ε2
. Then (15) becomes (after taking logarithms)

α

2
+N ln

( α

4εt

)
+ ln(vol(Z)) > 0.

So choosing α
2 = N ln(25

ε )− ln(vol(Z))) would satisfy this inequality. Then

t = O

(
N

ε2
ln

1

ε
+

1

ε2
ln

1

vol(Z)

)
.

Since 1/ vol Z ≤ RN , the claim follows.
If vol(Z) > 1

2 then

e
α
2

( α

4εt

)N
vol(Z) >

1

2
e
α
2

( α

4εt

)N
,

Thus, in order to satisfy (15), it is enough to find α and t satisfying

1

2
e
α
2

( α

4εt

)N
> 1.

To satisfy (18), let us simply choose t = 6α
ε2

+ 6
ε2

ln(2 vol(Z)) and demand that

1

2
e
α
2

( α

4εt

)N
=

1

2
e
α
2

(
α

24α
ε + 24

ε ln(2 vol(Z))

)N
> 1,
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or equivalently,

2

(
24

ε

)N (
1 +

ln(2 vol(Z))

α

)N
< e

α
2 .

Thus, it is enough to select α = max
{

4(ln 2 +N ln(24
ε )), 2

√
N ln(2 vol(Z))

}
which satisfies

2

(
24

ε

)N
≤ e

α
4 and

(
1 +

ln(2 vol(Z))

α

)N
< e

ln(2 vol(Z))
α

N ≤ e
α
4 .

It follows that

t = max

{
24

ε2
(ln 2 +N ln(

24

ε
)),

12

ε2

√
N ln(2 vol(Z))

}
+

6

ε2
ln(2 vol(Z)).

Since vol(Z) ≤ RN , the claim follows.
In both cases (14) holds by the preceding lemma. �

Corollary 2 Assume X and Y satisfy assumptions (A1) and (A2). Then Algorithm 1, when
run with T satisfying the bound in Lemma 4, computes a pair of ε-optimal strategies in expected
O(n+m

ε2
ln R

ε ) iterations.

6.3 Using approximate distributions

We now consider the (realistic) situation when we can only sample approximately from the
convex sets. In this case we assume the existence of approximate sampling routines that, upon
the call in step 3 of the algorithm, return vectors ξ ∈ X, and (independently) η ∈ Y , with
densities p̂ξ(t) and q̂η(t), such that

sup
X′⊆X

∣∣∣∣ p̂X′(t)p̂X(t)
− pX′(t)

pX(t)

∣∣∣∣ ≤ δ and sup
Y ′⊆Y

∣∣∣∣ q̂Y ′(t)q̂Y (t)
− qY ′(t)

qY (t)

∣∣∣∣ ≤ δ, (19)

where p̂X′(t) =
∫
ξ∈X′ p̂ξdξ (similarly, define pX′(t), q̂Y ′(t), qY ′(t)), and δ is a given desired

accuracy. We next prove an approximate version of Lemma 1.

Lemma 5 Suppose that we use approximate sampling routines with δ = ε/4 in step 3 of
Algorithm 1. Then, for t = 0, 1, 2, . . . , we have

E[Φ(t+ 1)] ≤ E[Φ(t)](1 +
43

36
ε2).

Proof The argument up to Equation (8) remains the same. Taking the expectation with
respect to η (with density proportional to q̂η(t)), we get

Eq̂[‖p(t+ 1)‖1] ≤ ‖p(t)‖1

[
1 +

ε2

6
− ε

2

∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

]
. (20)

Similarly,

Ep̂[‖q(t+ 1)‖1] ≤ ‖q(t)‖1

[
1 +

ε2

6
+
ε

2

∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p̂(t)‖1‖q(t)‖1

]
. (21)
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Thus, by independence of ξ and η, we have

E[Φ(t+ 1)|x(t), y(t)] ≤ Φ(t)

[(
1 +

ε2

6

)2

+
ε

2

(
1 +

ε2

6

)(∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

|p̂(t)|‖q(t)‖1
−
∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

)

− ε2

4

∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p̂(t)‖1‖q(t)‖1
.

∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

]
.

We will make use of the following proposition.

Proposition 1 If we set δ = ε/4 in (19), then∣∣∣∣∣
∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

|p̂(t)|‖q(t)‖1
−
∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

|q̂(t)‖1‖p(t)‖1

∣∣∣∣∣ ≤ ε. (22)

Proof Since∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
=

∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1
,

we can bound the L.H.S. of (22) by∣∣∣∣∣
∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
−
∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

|p̂(t)|‖q(t)‖1

∣∣∣∣∣+∣∣∣∣∣
∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1
−
∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

∣∣∣∣∣ . (23)

Thus it is enough to show that each term in (23) is at most ε
2 . Since the two terms are

similar, we only consider the first term. Define X ′ = {ξ ∈ X :
pξ(t)
pX(t) ≥

p̂ξ(t)
p̂X(t)} and X ′′ = X\X ′.

1

‖q(t)‖1

∣∣∣∣∫
ξ∈X

∫
η∈Y

qη(t)F (ξ, η)

(
pξ(t)

‖p(t)‖1
−
p̂ξ(t)

|p̂(t)|

)
dηdξ

∣∣∣∣
≤ 1

qY (t)

∫
ξ∈X

∫
η∈Y

qη(t)|F (ξ, η)|
∣∣∣∣ pξ(t)pX(t)

−
p̂ξ(t)

p̂X(t)

∣∣∣∣ dηdξ
≤ 1

qY (t)

∫
ξ∈X

∫
η∈Y

qη(t)

∣∣∣∣ pξ(t)pX(t)
−
p̂ξ(t)

p̂X(t)

∣∣∣∣ dηdξ (by (A2))

=

∫
ξ∈X

∣∣∣∣ pξ(t)pX(t)
−
p̂ξ(t)

p̂X(t)

∣∣∣∣ dξ
=

∫
ξ∈X′

(
pξ(t)

pX(t)
−
p̂ξ(t)

p̂X(t)

)
dξ +

∫
ξ∈X′′

(
p̂ξ(t)

p̂X(t)
−
pξ(t)

pX(t)

)
dξ

=

(
pX′(t)

pX(t)
− p̂X′(t)

p̂X(t)

)
+

(
p̂X′′(t)

p̂X(t)
− pX′′(t)

pX(t)

)
≤ ε

2
(by(19)).

�
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Proposition 1 implies that

E[Φ(t+ 1)|x(t), y(t)] ≤ Φ(t)

[(
1 +

ε2

6

)2

+
ε2

2

(
1 +

ε2

6

)
+
ε4

4

]
≤ Φ(t)

(
1 +

43

36
ε2

)
.

The rest of the proof is as in Lemma 1. �

Combining the currently known bound on the mixing time for sampling (see [LV06b, LV06a,
LV07] and also Section 4) with the bounds on the number of iterations from Corollary 2 gives
Theorem 1.

7 Conclusion

We showed that randomized fictitious play can be applied for computing ε-saddle points of
convex-concave functions over the product of two convex bounded sets. Even though our
bounds were stated for general convex sets, one should note that these bounds may be improved
for classes of convex sets for which faster sampling procedures could be developed. We believe
that the method used in this paper could be useful for developing algorithms for computing
approximate equilibria for other classes of games.
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