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—— Abstract

We consider a robust variant of the classical k-median problem, introduced by Anthony et al. [2].
In the Robust k-Median problem, we are given an n-vertex metric space (V,d) and m client sets
{8; C V};zl. The objective is to open a set F© C V of k facilities such that the worst case
connection cost over all client sets is minimized; in other words, minimize max; Zue s, d(F,v).
Anthony et al. showed an O(logm) approximation algorithm for any metric and APX-hardness
even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight
by providing Q(logm/loglogm) approximation hardness, unless NP C (. DTIME(2"5). This
hardness result holds even for uniform and line metrics. To our knowledge, this is one of the rare
cases in which a problem on a line metric is hard to approximate to within logarithmic factor.
We complement the hardness result by an experimental evaluation of different heuristics that
shows that very simple heuristics achieve good approximations for realistic classes of instances.
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1 Introduction

In the classical k-median problem, we are given a set of clients located on a metric space with
distance function d : V' x V' — R. The goal is to open a set of facilities FF C V, |F| =k, so
as to minimize the sum of the connection costs of the clients in V, i.e., their distances from
their nearest facilities in F'. This is a central problem in approximation algorithms, and quite
naturally, it has received a large amount of attention in the past two decades [6] B} [7, 13, [12].

At SODA 2008 Anthony et al. [T}, 2] introduced a generalization of the k-median problem.
In their setting, the set of clients that are to be connected to some facility is not known in
advance, and the goal is to perform well in spite of this uncertainty about the future. In
particular, they formulated the problem as follows.

» Definition 1 (Robust k-Median). An instance of this problem is a triple (V,S,d). This
defines a set of locations V', a collection of m sets of clients S = {S1,...,Sn}, where S; CV
for all i € {1,...,m}, and a metric distance function d : V" x V' — R. We have to open a set
of k facilities F C V, |F| = k, and the goal is to minimize the cost of the most expensive set
of clients, i.e. minimize max;"; > g d(v, F). Here, d(v, F') denotes the minimum distance
of the client v from any location in F, i.e. d(v, F') = min,ep d(u,v).

Note that the Robust k-Median problem is a natural generalization of the classical
k-median problem (where m = 1). In addition, we can think of this formulation as capturing
some notion of fairness. To see this, simply interpret each set S; as a community of clients

who would pay »_ g d(v, F') for getting connected to some facility. Now the objective
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ensures that no single community pays too much, while minimizing the cost. Anthony et
al. [2] gave an O(logm)-approximation algorithm for this problem, and a lower bound of
(2 — €) for the best possible approximation ratio by a reduction from Vertex Cover.

Our Results

We give nearly tight hardness of approximation results for the Robust k-Median prob-
lem. We show that unless NP C ﬂ5>0DTIME(2”6), the problem admits no poly-time
o(log m/ loglog m)-approximation, even on uniform and line metrics.

Our first hardness result is tight up to a constant factor, as a simple rounding scheme
gives a matching upper bound on uniform metrics (see Section . Our second, and rather
surprising, result shows that “Robust k-Median” is a rare problem with super-constant
hardness of approximation even on line metrics, in sharp contrast to most other geometric
optimization problems which admit polynomial time approximation schemes, e.g. [3} [I1].

In Section [p| we investigate the performance of some heuristics. Already a very simple
greedy strategy provides reasonably good performance on a realistic class of instances. We
use an LP relaxation of the problem as a lower bound.

Our Techniques

First, we note that the Robust k-Median problem on uniform metrics is equivalent to the
following variant of the set cover problem: Given a set U of ground elements, a collection of
sets X = {X C U}, and an integer ¢t < |X|, our goal is to select ¢ sets from X in order to
minimize the number of times an element from U is hit (see Lemma 7). We call this problem
Minimum Congestion Set Packing (MCSP). This characterization allows us to focus on
proving the hardness of MCSP, and to employ the tools developed for the set cover problem.

We now revisit the reduction used in proving the hardness of the set cover problem by
Feige [8], building on the framework of Lund and Yannakakis [I4], and discuss how our
approach differs from theirs. Intuitively, they compose the Label Cover instance with a set
system that has some desirable properties. Informally speaking, in the Label Cover problem,
we are given a graph where each vertex v can be assigned a label from a set L, and each
edge e is equipped with a constraint II, C L x L specifying the accepting pairs of labels for e.
Our goal is to find a labeling of vertices that maximizes the number of accepting edges. This
problem is known to be hard to approximate to within a factor of glog' = |B| [4, [15], where
|E| is the number of edges. Thus, if we manage to reduce Label Cover to MCSP, we would
hopefully obtain a large hardness of approximation factor for MCSP as well.

From the Label Cover instance, [14] creates an instance of Set Cover by having sets of
the form S(v,{) for each vertex v and each label ¢ € L. Intuitively the set S(v,¥) means
choosing label ¢ for vertex v in the label cover instance. Now, if we assume that the solution
is well behaved, in the sense that for each vertex v, only one set of the form S(v, ¢) is chosen
in the solution, we would be immediately done (because each set indeed corresponds to label
assignment). However, a solution need not have this form, e.g. choosing sets S(v,¢) and
S(v, ") would translate to having two labels ¢, ¢’ for the label cover instance. To prevent
an ill-behaved solution, “partition systems” were introduced and used in both [I4] and [g].
Feige considers the hypergraph version of Label Cover to obtain a sharper hardness result of
Inn — O(Inlnn) instead of § Inn in [14]; here n denotes the size of the universe.

Now we highlight how our reduction is different from theirs. The high level idea of our
reduction is the same, i.e. we have sets of the form S(v, ¢) that represent assigning label ¢
to vertex v. However, we need a different partition system and a totally different analysis.
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Moreover, while a reduction from standard Label Cover gives nearly tight O(logn) hardness
for Set Cover, it can (at best) only give the hardness of 2 — e for MCSP. To prove our results,
we do need a reduction from the Hypergraph Label Cover problem. This suggests another
natural distinction between MCSP and Set Cover.

Finally, to obtain the hardness of the Robust k-Median problem on the line metric, we
embed the instance created from the MCSP reduction onto the line such that the values of
optimal solutions are preserved. This way we get the same hardness gap for line metrics.

2 Preliminaries

We will show that the Robust k-Median problem is Q(logm/loglogm) hard to approximate,
even for the special cases of uniform metrics (see Section [3) and line metrics (see Section [4)).
Recall that d is a uniform metric iff we have d(u,v) € {0,1} for all locations u,v € V.
Further, d is a line metric iff the locations in V' can be embedded into a line in such a way
that d(u,v) equals the Euclidean distance between u and v, for all u,v € V. Throughout
this paper, we will denote any set of the form {1,2,...,4} by [¢]. Our hardness results will
rely on a reduction from the r-Hypergraph Label Cover problem, which is defined as follows.

» Definition 2 (r-Hypergraph Label Cover). An instance of this problem is a triple (G, 7, r),
where G = (V,€) is a r-partite hypergraph with vertex set V = U;zl V; and edge set £.
Each edge h € £ contains one vertex from each part of V, i.e. |hNV;| =1 for all j € [r].
Every set V; has an associated set of labels L;. Further, for all h € £ and j € [r], there is a
mapping 71'{; : L; = C that projects the labels from L; to a common set of colors C.

The problem is to assign to every vertex v € V; some label o(v) € L;. We say that an
edge h = (v1,...,v,), where v; € V; for all j € [r], is strongly satisfied under o iff the labels
of all its vertices are mapped to the same element in C, i.e. 71'2 (o(vy)) = W{;l (o(vjr)) for all
J,7" € [r]. In contrast, we say that the edge is weakly satisfied iff there exists some pair of
vertices in h whose labels are mapped to the same element in C, i.e. Wi(o(vj)) = wil (o(vj))
for some j,j' € [r], 5 £ 7.

For ease of exposition, we will often abuse the notation and denote by j(v) the part of V
to which a vertex v belongs, i.e. if v € V; for some j € [r], then we set j(v) <— j. The next
theorem will be crucial in deriving our hardness result. The proof of this theorem follows
from Feige’s r-Prover system [8] (see Appendix [A)).

» Theorem 3. Let r € N be a parameter. There is a polynomial time reduction from
n-variable 3-SAT to r-Hypergraph Label Cover with the following properties:
(Yes-Instance) If the formula is satisfiable, then there is a labeling that strongly satisfies
every edge in G.
(No-Instance) If the formula is not satisfiable, then every labeling weakly satisfies at most
a 277" fraction of the edges in G, for some universal constant -y.
The number of vertices in the graph is |V| = n°") and the number of edges is |E| = n
The sizes of the label sets are |L;| = 2°0) for all j € [r], and |C| = 2°0). Further, we
have |V;| = |Vy| for all §,j" € [r], and each vertex v € V has the same degree r|E|/|V|.

O(T).

We use a partition system that is motivated by the hardness proof of the Set Cover
problem [8]. However, we deal with a different problem, and our construction is also different.

» Definition 4 (Partition System). Let € N and let C be any finite set. An (r, C')-partition
system is a pair (Z, {pc}.cc), where Z is an arbitrary (ground) set, and for each ¢ € C, p, is
a partition of Z into r subsets, such that the following properties hold.
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(Partition) For all ¢ € C, p. = (AL,..., A) is a partition of Z, that is U;:1 Al = Z, and
AT NAI =0 forall 4,5 €lr], #J"

(r-intersecting) For any r distinct indices cy,...,¢, € C and not-necessarily distinct
indices ji,..., jr € [r], we have that ()_; A% # 0. In particular, A # 0 for all ¢ and j.

In order to achieve a good lower bound on the approximation factor, we need partition
systems with small ground sets. The most obvious way to build a partition system is to
form an r-hypercube: Let Z = [r]I!, and for each ¢ € C and j € [r], let AJ be the set
of all elements in Z whose c-th component is j. It can easily be verified that this is an
(r, C)-partition system with |Z| = r/l. With this construction, however, we would only get
a hardness of Q(loglogm) for our problem. The following lemma shows that it is possible to
construct an (r, C')-partition system probabilistically with |Z| = r°(") log |C].

» Lemma 5. There is an (r, C)-partition system with |Z| = r°) log |C| elements. Further,
such a partition system can be constructed efficiently with high probability.

Proof. Let Z be any set of 7°(") log |C| elements. We build a partition system (Z, {pe}ecc)
as described in Algorithm [I]

Algorithm 1: A randomized algorithm for constructing an (r, C')-partition system.

input : A ground set Z, a parameters r € N, and a set C.
foreach c € C' do
/* Construct the partition p.

Initialize A7 to the empty set for all j € [r]
foreach ground element e € Z do

| Pick an index j € [r] independently and uniformly at random and add e to AJ

In Algorithm [T} by construction each p. is a partition of Z, i.e. the first property stated
in Definition [f] is satisfied. We bound the probability that the second property is violated.

Fix any choice of r distinct indices cy,...,c, € C' and not necessarily distinct indices
J1y.--,Jr € [r]. We say that a bad event occurs when the intersection of the corresponding sets
is empty, i.e. ﬂ:zl Ag = (). To upper bound the probability of a bad event, we focus on events
of the form FE. ; — this occurs when an element e € Z is included in a set Ag Since the indices
c1 ... ¢ are distinct, it follows that the events {E. ;} are mutually independent. Furthermore,
note that we have Pr[E, ;] = 1/r for all e € Z,i € [r]. Hence, the probability that an element
e € Z does not belong to the intersection (;_; A% is given by 1 — Pr[(,_; Ee;] =1—1/r".
Accordingly, the probability that no element e € Z belongs to the intersection, which defines
the bad event, is equal to (1 — 1/77)4],

Now, the total number of choices for r distinct indices c1, ..., ¢, and r not-necessarily
distinct indices ji,...,J, is equal to (|f|) -r". Hence, taking a union-bound over all possible
bad events, we see that the second property stated in Definition [ is violated with probability
at most (‘fl) T (L=r)IZL < (|C]r)" - exp(—|Z|/77). 1f we set |Z| = d - r4" log |C| with
sufficiently large constant d, then it is easy to see that the second constraint in Definition [4]
is satisfied with high probability. <

3 Hardness of Robust k-Median on Uniform Metrics

First, we define a problem called Minimum Congestion Set Packing (MCSP), and then show
a reduction from MCSP to Robust k-Median on uniform metrics. In Section [3.2} we will then
show that MCSP is hard to approximate by reducing Hypergraph Label Cover to MCSP.
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» Definition 6. [Minimum Congestion Set Packing (MCSP)] An instance of this problem
is a triple (U, X, t), where U is a universe of m elements, i.e. |[U| = m, X is a collection of
sets X = {X C U} such that [Jy., X = U, and t € N and ¢t < |X|. The objective is to
find a collection X’ C X of size ¢t that minimizes CONG(X’) = max.cy CONG(e, X'). Here,
CONG(X') refers to the congestion of the solution X, and CONG(e, X') = {X € X' : e € X }|
is the congestion of the element e € U under the solution X”.

» Lemma 7. Given any MCSP instance (U, X,t), we can construct a Robust k-Median
instance (V,S,d) with the same objective value in poly(|U|, |X|) time, such that |U| = |S|,
|X| = |V, d is a uniform metric, and k = |V| —t.

Proof. We construct the Robust k-Median instance (V, S, d) as follows. For every e € U we
create a set of clients S(e), and for each X € X we create a location v(X). Thus, we get
V={v(X): XeX},and S ={S(e) : e € U}. We place the clients in S(e) at the locations
of the sets that contain e, i.e. S(e) = {v(X) : X € X,e € X} for all e € U. The distance is
defined as d(u,v) =1 for all u,v € V,u # v, and d(v,v) = 0. Finally, we set k < |V| —t.
Now, it is easy to verify that the Robust k-Median instance (V,S,d) has a solution with
objective p iff the corresponding MCSP instance (U, X, t) has a solution with objective p.
The intuition is that a location v(X) € V is not included in the solution F' to the Robust
k-Median instance iff the corresponding set X is included in the solution X’ to the MCSP
instance. Indeed, let F' be any subset of X of size k (= the set of open facilities) and let
X’ =X — F. Further, let [X € X’] be an indicator variable that is set to 1 iff X € &’. Then

Cona(X') = max CoNG(e, X') = max (X € X']
ecU ecU
XieeX
= d(X,Y) = dv(X), F
max min d(X,Y) = max > dw(X),F)
je€X (X)eS(e)

<

We devote the rest of Section[3]to the MCSP problem and show that it is Q(log |U|/ loglog |U|)
hard to approximate. This, in turn, will imply a Q(log|S|/loglog|S|) hardness of approx-
imation for Robust k-Median on uniform metrics. We will prove the hardness result via a
reduction from Hypergraph Label Cover.

3.1 Integrality Gap

Before proceeding to the hardness result, we show that a natural LP relaxation for the MCSP
problem [2] has an integrality gap of Q(logm/loglogm), where m = |U] is the size of the
universe of elements. In the LP, we have a variable y(X) indicating that the set X € X is
chosen, and a variable z which represents the maximum congestion among the elements.

min =z
s.t. Zy(X) <zforalleeU
XeX:eeX
D y(X) =t
Xex

The Instance: Now, we construct a bad integrality gap instance (U, X,t). Let d be the
intended integrality gap, let n = d?, and let U = {I : I C [n], |I| = d} be all subsets of [n]
of size d. The collection X consists of n sets X1,...,X,, where X; ={I : T €U and i € I}.
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Note that the universe U consists of |[U| =m = (Z) elements, and each element [ is contained
in exactly d sets, namely I € X, if and only if ¢ € I. Finally, we set ¢t < n/d.

Analysis: The fractional solution simply assigns a value of 1/d to each variable y(X;); this
ensures that the total (fractional) number of sets selected is 7/d = ¢t. Furthermore, each
element is contained (fractionally) in exactly one set, so the fractional solution has cost one.
Any integral solution must choose n/d = d sets, say X;, ... X;,. Then I = {i1,...,iq} € X;,
for all A € [d] and hence the congestion of I is d, and this also means that any integral solution
has cost at least d. Finally, since |U| = m < n? < (d?)¢, we have d = Q(logm/ loglogm).
Tightness of the result: The bound on the hardness and integrality gap is tight for the
uniform metric case, as there is a simple O(log m/loglog m)-approximation algorithm. Pick
each set X with probability equal to min(1,2y(X)). The expected congestion is 2z for each ele-
ment. By Chernoff’s bound [I0], an element is covered by no more than z-O(log m/loglog m)
sets with high probability. A similar algorithm gives the same approximation guarantee for
the Robust k-Median problem on uniform metrics.

3.2 Reduction from r-Hypergraph Label Cover to Minimum Congestion
Set Packing

The input is an instance (G, w,7) of the r-Hypergraph Label Cover problem (see Deﬁnition.

From this we construct the following instance (U, X, t) of the MCSP problem (see Definition|6).
First, we define the universe U as a union of disjoint sets. For each edge h € £ in the
hypergraph we have a set Uj,. All these sets have the same size m* and are pairwise disjoint,
iie. U, NUp =0 for all h,h' € £, b’ # h. The universe U is then the union of these sets
U = Upee Un- Since the Uy, are mutually disjoint, we have m = |U| = |£|-m*. Recall that
C' is the target set of w. Each set Uy, is the ground set of an (r, C')-partition system (see
Definition 4)) as given by Lemma [5| In particular we have m* = 7°(") log |C|. We denote
the r-partitions associated with Uy, by {pc(h)}ecc, where po(h) = (AL(h), ..., AL(h)).
Second, we construct the collection of sets X’ as follows. For each j € [r], v € V; and

¢ € L;, X contains the set X (v,£), where X (v,{) = Uh:vehAJj(Z) (h). In other words,

X (v,€) N Uy, is empty if v ¢ h and is equal to A7 (Z)(h) if v € h. Intuitively, choosing the
Th

set X (v, £) corresponds to assigning label ¢ to the vertex v.

Third, we define ¢ < |V|. Intuitively, this means that each vertex in V gets one label.

We assume for the sequel that the r-Hypergraph Label Cover instance is chosen according
to Theorem |3l We assume that the parameter r satisfies 77277" < 1. In the proof of the
main theorem, we will fix r to a specific value.

3.3 Analysis

We show that the reduction from Hypergraph Label Cover to MCSP satisfies two properties.
In Lemma [§ we show that for a Yes-Instance (see Theorem [3)), the corresponding MCSP
instance admits a solution with congestion one. Second, in case of a No-Instance, we show in
Lemma [I0] that every solution to the corresponding MCSP instance has congestion at least r.

» Lemma 8 (Yes-Instance). If the Hypergraph Label Cover instance (G, m,r) admits a labeling
that strongly satisfies every edge, then the MCSP instance (U, X, t) constructed in Section
admits a solution where the congestion of every element in U is exactly one.

Proof. Suppose that there is a labeling o that strongly satisfies every edge h € £. We will
show how to pick ¢ = |V] sets from X such that each element in U is contained in exactly
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one set. This implies that the maximum congestion is one. For each j € [r] and each vertex
v € Vj, we choose the set X (v,0(v)). Thus, the total number of sets chosen is exactly |V|.
To see that the congestion is indeed one, we concentrate on the elements in Uy, where
h = (v1,...,v), v; €V, for all j € [r], is one of the edges in £. The picked sets that
intersect U, are X(vj,o(v;)), where j € [r]. Since h is strongly satisfied, 7, maps all
labels of the vertices in h to a common ¢ € C, that is ﬂ'i(O'(Uj)) = ¢ for all j € [r]. Thus
Up N X (vj,0(v;)) = AL(h). By the definition of a partition system (see Definition , the
sets AL(h)... A%(h) partition the elements in Uj,. This completes the proof. <

Now, we turn to the proof of Lemma Towards this end, we fix a collection X’ C X of
size t and show that some element in U has congestion at least » under X”’. The intuition
being that many edges in G = (V,€) are not even weakly satisfied, and the elements in
U corresponding to those edges incur large congestion. Recall that for a v € V, we define
J(v) € N to be such that v € V().

» Claim 1. For v € V, let £, = {EELJ-(U) : X(UJ)EX’}. For h € &, let A}, =
{X(v,0) € X' : veh} and A(h) = |Ay|. If the solution X’ has congestion less than r
then |£,| < r? and |Ap| < r3.

Proof. Since Ay, = UJ,¢;, Lo, it suffices to prove [£,] < r? for all v. Assume otherwise, i.e.,
|L,| > r? for some v € V;, j € [r]. Let h be any hyper-edge with v € h. Consider the images
of the labels in £, under the projection W{L. Either we have at least r distinct images or at
least r elements in L, are mapped to the same element of C.

In the former case, we have r pairwise distinct labels ¢1 to ¢, in £, and r pairwise distinct
labels ¢; to ¢, in C such that 7 (¢;) = ¢; for i € [r]. The set X (v,/;) contains Al (h) and
Niep Al (h) # 0 by property (2) of partition systems (see Definition . Thus some element
has congestion at least r.

In the latter case, we have r pairwise distinct labels /1 to ¢, in £, and a label ¢ in C' such
that 77{%(&) = c for i € [r]. The set X (v,¢;) contains A7(h) and hence every element in this
non-empty set (property (2) of partition systems) has congestion at least r. <

» Definition 9 (Colliding Edge). We say that an edge h € £ is colliding iff there are sets
X(v,0), X' 0 € X with v,v" € h, v # v, and ﬂ'fl(v)(ﬁ) = ﬂ'fl(v )(6’).

» Claim 2. Suppose that the solution X’ has congestion less than r, and more than a 427"
fraction of the edges in £ are colliding. Then there is a labeling o for G that weakly satisfies
at least a 277" fraction of the edges in .

Proof. For each v € V, we define the label set £, = {¢ € L) : X(v,£) € &’}. Then
|£,| < 72 by Claim |1l We construct a labeling function o using Algorithm

Algorithm 2: An algorithm for constructing a labeling function.

foreach vertex v € V do
if £, # 0 then
‘ Pick a color o(v) uniformly and independently at random from £,
else
‘ Pick an arbitrary color o(v) from L;(,,)

Now we bound the expected fraction of weakly satisfied edges under o from below. Take
any colliding edge h € £. This means that there are vertices v € V;, v € V;» with j # j, and
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colors £ € L,, ' € L, such that v,v" € h and wf;(é) = 7TJ,; (). By Claim |L,| and |L,/| are
both at most 72. Since the colors o(v) and o(v’) are chosen uniformly and independently at
random from their respective palettes £, and £,, we have Pr[o(v) = £ and o(v') = /] > 1/r*.
In other words, every colliding edge is weakly satisfied with probability at least 1/r*. Since
more than a 74277 fraction of the edges in £ are colliding, from linearity of expectation we
infer that the expected fraction of edges weakly satisfied by o is at least 2777, |

» Claim 3. Let Ap, = {X(v,¢) € X' : v € h}, and A(h) = |Ax|. We have >, - A(h) = 7|&].

Proof. This is a simple counting argument. Consider a bipartite graph H with vertex set
AUB, where each vertex in A represents a set X (v,£), and each vertex in B represents an
edge h € £. There is an edge between two vertices iff the set X (v, £) contains some element in
Up. The quantity », .o A(h) counts the number of edges in H where one endpoint is included
in the solution X’. Since X’ picks ¢ = |V| sets and each set has degree r|€]/|V| in the H (see
Theorem [3)), the total number of edges that are chosen is exactly V| x (r|E|/|V]) =r[E|. <

Let £ C & denote the set of colliding edges, and define £” = £ — £’. Suppose that we are
dealing with a No-Instance (see Theorem, i.e. the solution X’ has congestion less than r and
every labeling weakly satisfies at most a 277" fraction of the edges in £. Then \(h) < r3 for
all h € € by Claim and no more than r42777|&| edges are colliding, i.e. |£'| < r*277" |€|, by
Claim Using these facts we conclude that >, .o A(h) < r72777[E| < |€], as by assumption
772777 < 1. Now, applying Claim we get Y pcen A(h) =7 =D e AMh) > (r = 1)[E].
In particular, there is an edge h € £” with A\(h) > r.

Recall that A, = {X(v,¢) € X’ : v € h} are the sets in X’ that intersect U, and note that
|[An| = A(h) > r. Let X* C Ap, be a mazimal collection of sets with the following property:
For every two distinct sets X (v, £), X (v',¢') € X* we have ﬂi(v)(f) # wi(v/)(é’). Hence, from
the definition of a partition system (see Definition [4)), it follows that the intersection of the
sets in X* and the set Uj, is nonempty.

Now, consider any set X (v,£) € A, — X'*. Since the collection X* is maximal, there must
be at least one set X (v/,¢') in X* with WZ(”)(E) = Wi(vl)(f’). Since h is not colliding, we
must have j(v) = j(v'). Consequently we get X (v,£) N U, = X (v',£') N Up,. In other words,
for every set X € Ap — X*, there is some set X’ € X* where X N U, = X' NU,. Thus,
Un N (Nxea, X) =UnN (Nxex- X) # 0. Every element in the intersection of the sets in
Ay and Uy, will have congestion |Ap| > r. This leads to the following lemma.

» Lemma 10 (No-Instance). Suppose that every labeling weakly satisfies at most a 277"
fraction of the edges in the hypergragph label cover instance (G,m,r), for some universal
constant v and that r'277" < 1. Then the congestion incurred by every solution to the MCSP
instance (U, X,t) constructed in Section is at least 7.

We are now ready to prove the main theorem of this section.

» Theorem 11. The Robust k-Median problem (V,S,d) is Q(logm/loglogm) hard to ap-
prozimate on uniform metrics, where m = |S|, unless NP C (5, DTI/\/IE(?”&),

Proof. Assume that there is a polynomial time algorithm for the Robust k-Median problem
that guarantees an approximation ratio in o(log|S| /loglog|S|). Then, by Lemma m there
is an approximation algorithm for the Minimum Congestion Set Packing problem with
approximation guarantee o(log |U| /loglog |U]).

Let § > 0 be arbitrary and set 7 = |n? |, where n is the number of variables in the 3-SAT
instance (see Theorem [3)). Then r"277" < 1 for all sufficiently large n. We first bound the
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size of the MCSP instance (U, X,t) constructed in Section By Lemma [5] the size of
an (r, C)-partition system is |Z| = 7 log |C|. By Theore we have |C| = 29", So
each set Uj, has cardinality at most 79(") . = (") Also recall that the number of sets in
the MCSP instance is [X| = 3., Vil - |L;| = n©() and that the number of elements is
|U| =m = |&]-r90) < (nr)P) = nO) = nO®") = 20(rlog™)  Thygy > Q(log m/loglogm).
The gap in the optimal congestion between the Yes-Instance and the No-Instance is at
least 7 (see Theorem [3|and Lemmas . More precisely, for Yes-instances the congestion
is at most one and for No-instances the congestion is at least r. Since the approximation
ratio of the alleged algorithm is o(log m/loglogm), it is better than r for all sufficiently large
n and hence the approximation algorithm can be used to decide the satisfiability problem.
The running time of the algorithm is polynomial in the size of the MCSP instance, i.e., is
poly(n®™")) = pO’) = 20(™) Gince § > 0 is arbitrary, the theorem follows. <

4 Hardness of Robust k-Median on Line Metrics

We will show that the reduction from r-Hypergraph Label Cover to Minimum Congestion Set
Packing (MCSP) can be modified to give a 2(logm/ loglogm) hardness of approximation
for the Robust k-Median problem on line metrics as well, where m = |S| is the number of
client-sets. For this section, it is convenient to assume that the label-sets are the initial
segments of the natural numbers, i.e., L; = {1,...,|L;|} and C = {1,...,|C|}.

Given a Hypergraph Label Cover instance (G, 7, r), we first construct a MCSP instance
(U, X,t) in accordance with the procedure outlined in Section Next, from this MCSP
instance, we construct a Robust k-Median instance (V, S, d) as described below.

We create a location in V' for every set X (v,£) € X. To simplify the notation, the symbol

X (v, £) will represent both a set in the instance (U, X, t), and a location in the instance

(V,S,d). Thus, we have V = {X(v,¢) € X'}. Furthermore, we create a set of clients S(e)

for every element e € U, which consists of all the locations whose corresponding sets in

the MCSP instance contain the element e. Thus, we have S = {S(e) : e € U}, where

S(e) ={X(v,0) € X : e € X(v,0)} for all e € U. This step is same as in Lemma 7]

We now describe how to embed the locations in V on a given line. For every vertex

v € V;,j € [r], the locations X (v,1),...,X(v,|L;|) are placed next to one another in

sequence, in such a way that the distance between any two consecutive locations is exactly

one. Formally, this gives d(X (v,¢), X (v,{¢')) = |¢/ — ¢| for all £,¢' € L;. Furthermore, we
ensure that any two locations corresponding to two different vertices in V are not close to

each other. To be more specific, we have the following guarantee: d(X (v,¢), X (v',¢')) > 2

whenever v # v/, It is easy to verify that d is a line metric.

We define k + |X] —t.

Note that as k = |X| — ¢, there is a one to one correspondence between the solutions to
the MCSP instance and the solutions to the Robust k-Median instance. Specifically, a set in
X is picked by a solution to the MCSP instance iff the corresponding location is not picked
in the Robust k-Median instance.

» Lemma 12 (Yes-Instance). Suppose that there is a labeling strategy o that strongly satisfies
every edge in the Hypergraph Label Cover instance (G, m,r). Then there is a solution to the
Robust k-Median instance (V,S,d) with objective one.

Proof. Recall the proof of Lemmal8] We construct a solution X’ C X, |X’| = t, to the MCSP
instance (U, X, t) as follows. For every vertex v € V;,j € [r], the solution X’ contains the
set X (v,0(v)). Now, focus on the corresponding solution Fys C V to the Robust k-Median
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instance, which picks a location X iff X ¢ X’. Hence, for every vertex v € V;, j € [r], all but
one of the locations X (v,1),...,X(v,|L;|) are included in Fy-. Since any two consecutive
locations in such a sequence are unit distance away from each other, the cost of connecting any
location in V' to the set Fa- is either zero or one, i.e., d(X, Fx/) € {0,1} for all X e V = X.

For the rest of the proof, fix any set of clients S(e) € S, e € U. The proof of Lemma
implies that the element e incurs congestion one under X’. Hence, the element belongs to
exactly one set in X/, say X*. Again, comparing the solution X’ with the corresponding
solution Fy, we infer that S(e) — Fxr = {X*}. In other words, every location in S(e), except
X*, is present in the set Fy/. The clients in such locations require zero cost for getting
connected to Fys. Thus, the total cost of connecting the clients in S(e) to the set Fy- is at
most: ZXGS(@) d(X, FX/) = d(X*,FX/) S 1.

Thus, we see that every set of clients in S requires at most unit cost for getting connected
to Fly,. So the solution Fly: to the Robust k-Median instance indeed has objective one. <«

» Lemma 13 (No-Instance). Suppose that every labeling weakly satisfies at most a 277"
fraction of the edges in the Hypergraph Label Cover instance (G,m,r), for some constant .
Then every solution to the Robust k-Median instance (V,S,d) has objective at least r.

Proof. Fix any solution F C V to the Robust k-Median instance (V,S,d), and let X, C X
denote the corresponding solution to the MCSP instance (U, X, t). Lemma [10| states that
there is some element e € U with congestion at least r under X7.. In other words, there are
at least r sets X1,..., X, € X} that contain the element e. The locations corresponding to
these sets are not picked by the solution F'. Furthermore, the way the locations have been
embedded on a line ensures that the distance between any location and its nearest neighbor
is at least one. Hence, we have d(X;, F) > 1 for all ¢ € [r]. Summing over these distances, we
infer that the total cost of connecting the clients in S(e) to F is at least 3,4 d(X;, F') = 7.
Thus, the solution F' to the Robust k-Median instance has objective at least 7. <

Finally, applying Lemmas and an argument similar to the proof of Theorem
we get the following result.

» Theorem 14. The Robust k-Median problem (V,S,d) is Q(logm/loglogm) hard to ap-
proximate even on line metrics, where m = |S|, unless NP C 05>ODTIME(2"0).

5 Heuristics

The Robust k-Median problem is a hard to approximate real-world problem and as such
heuristic solutions are interesting. In this section, we complement our negative theoretical
results with an evaluation of simple heuristics for the Robust k-Median problem. In particular
we look at two greedy strategies and two variants of a local search approach. We consider
a slight generalization of the problem where clients and facilities are at separate locations.
This is more realistic and no easier than the original problem, as one can simply place a
facility at every client position to solve an instance of the problem as defined in Definition
Due to space constraints, the full version of this section is deferred to Appendix [B]

We implementedﬂ and compared the following heuristics to the LP relaxation (see .

Greedy Upwards. Initialize all facilities as closed. Open the facility that reduces the cost
maximally. Repeat until k facilities are open.

! Code and data are available at http://resources.mpi-inf.mpg.de/robust-k-median/code-data.7z
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Heuristic Uniform Gauss-Const  Gauss-Exp
Greedy Up 1.65 (1.49)  5.18 (5.24)  6.63 (5.94)
Greedy Down 1.45 (1.42) 292 (2.92)  2.12 (2.05)
Local Search 1.13 (1.12)  1.63 (1.62) 1.41 (1.39)
Randomized Local Search  1.53 (1.48)  2.15 (2.29)  2.37 (2.36)

Table 1 Mean Performance as a multiple of the LP relaxation value, rounded to three digits. In
parentheses we provide the median. 1654 uniform instances, 1009 Gauss-Const instances, and 2029
Gauss-Exp instances of varying sizes were solved. The reported performance is over the instances
where the heuristics perform worse that the LP relaxation.

Greedy Downwards. Initialize all facilities as open. Close the facility that increases the
cost minimally. Repeat until k£ facilities are open.

Local Search. Open k random facilities. Compare all solutions that can be obtained
from the current solution by closing ¢ facilities and opening ¢ facilities. Replace the current
solution by the best solution found. Repeat until the current solution is a local optimum. In
the experiments we use £ = 2.

Randomized Local Search. Same as Local Search, but instead of considering all solutions
in the neighborhood, sample only a random subset. The size of the subset is an additional
parameter to the heuristic. In the experiments we use ¢ = 3 and 200 random neighbors.

We generate three kinds of 2D-instances. In the first, uniform, the clients are uniformly
distributed and all groups have the same size. The other kinds of instances cluster the client
groups according to gaussian distributions. The intuition is that in real world instances client
groups have something in common, e.g. all come from the same city. They two kinds differ
in the number of clients per group. We have gauss-const instances where all groups have the
same size and gauss-exp instances where group sizes follow an exponential distribution.

Table [1] summarizes the results. The performance differences in Table [2] are statistically
significant with a very small two-sided p-value, according to a Wilcoxon signed-rank test,
except for the difference between Greedy Downward and Randomized Local Search on
Uniform and Gauss-Const instances. In these cases the p-value is 0.66, respectively 0.08.

Since we use an LP relaxation as a comparison point, we do not know whether the
instances where the heuristics find a worse solution are actually hard for the heuristics or
whether the LP relaxation provides a much too low bound. To investigate this we had a
closer look at instances where both Greedy down and Local Search perform badly. For three
instances we solved the integer linear program. In these instances at least it was indeed the
case that the LP relaxation yielded a bad bound. This suggests that the heuristics work even
better than the numbers in Table 2] indicate.

As expected instances where the robust nature of the Robust k-Median problem are not
as important because groups are distributed uniformly are easier than the more realistic
instances where groups form clusters. For the two better heuristics, Greedy Downwards
and Local Search, also perform better on instances with uneven group sizes. Here too, one
can speculate that few groups dominate the problem, and finding a solution that minimizes
maximum costs becomes easier.

The good performance of these simple heuristics indicate that although the Robust
k-Median problem is hard to approximate in the worst case, a heuristic treatment can
effectively find a very good approximation.

11
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6 Conclusion and Future Work

We show a logarithmic lower bound for the Robust k-median problem on the uniform and line
metrics, implying that there is no good approximation algorithm for the problem. However,
the empirical results suggest that real-world instances are much easier, so it is interesting to
see whether incorporating real-world assumptions helps reducing the problem’s complexity.

For instance, if we assume that the diameter of each set S; is at most an € fraction of the
diameter A = max,, , d(u,v) of the input instance, can we obtain a constant approximation
factor? This case captures the notion of “locality” of the communities. We note that in our
hardness instances the diameter of each set S; is A for uniform metric and at least A/2 in
the line metric, so these hard instances would not arise if we have the locality assumption.
Another interesting case is a random instance where the sets 5; are randomly generated by
an unknown distribution.

One can also approach this problem from the parameterized complexity angle. In
particular, can we obtain an O(1) approximation algorithm in time g(k) poly(n)?
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A Hypergraph Label Cover

An instance of r-Hypergraph Label Cover is equivalent to the r-Prover system as used by
Feige [8] in proving the hardness of approximation for Set Cover. We discuss the equivalence
in this section.

In the r-prover system, there are r provers P, ..., P. and a verifier V. Each prover is
associated with a codeword of length 7 in such a way that the hamming distance between any
pair P;, P; is at least ham(P;, P;) = r/2; this is possible if r is a power of two because we can
use Hadamard code. Given an input 3-SAT formula ¢, the verifier selects r clauses uniformly
and independently at random. Call these clauses C,...,C,. From each such clause, the
verifier selects a variable uniformly and independently at random. These variables are called
Z1,...,%,. Prover P; receives a clause Cj; if the jth bit of its codeword is 0; otherwise, it
receives variable x;. The property of Hadamard code guarantees that each prover would
receive r/2 clauses and r/2 variables.

Then each prover P; is expected to give an assignment to all involved variables it receives
and sends this assignment to the verifier. The verifier then looks at the answers from r
provers and has two types of acceptance predicates.

(Weak acceptance) At least one pair of answers is consistent.

(Strong acceptance) All pairs of answers are consistent.

Applying parallel repetition theorem [15], Feige argues the following.

» Theorem 15. ([8, Lemma 2.5.1]) If ® is a satisfiable 3-SAT(5) formula, then there is
provers’ strateqy that always causes the verifier to accept. Otherwise, the verifier weakly
accepts with probability at most r?2=7" for some universal constant ~ > 0.

Now we show how Theorem [3] follows by constructing the instance of Hypergraph Label
Cover (V, E) based on the r-prover system. For each prover j, we create a set V; consisting of

vertices v that correspond to possible query sent to prover j, so we have |V;| = (5n/3)7/2n"/2,

For each possible random string x, we have an edge h, that contains r vertices, corresponding
to queries sent to the provers. It can be checked that the total number of possible random
strings is (5n)", and the degree of each vertex is 37/257/2 = 157/2; notice that this is equal
to r|E|/|V|. A prover strategy corresponds to the label of vertices, and the acceptance
probability is exactly the fraction of satisfied edges. Moreover, for each possible query, the

number of possible answers is at most 7" (for each clause, there are 7 ways to satisfy it).

This implies that |L;| < 7",

B Heuristics

The Robust k-Median problem is a real-world problem and as such needs to be solved as
well as possible despite its hardness of approximation. In this section, we complement our
negative theoretical results with an experimental evaluation of different simple heuristics for
the Robust k-Median problem. In particular we look at two variants of a greedy strategy and
two variants of a local search approach. We consider a slight generalization of the problem
where clients and facilities are at separate locations. This is more realistic and no easier than
the original problem, as one can simply place a facility at every client position to solve an
instance of the problem as defined in Definition

This is by no means an exhaustive exploration of the possible solution space. However,
the results we obtain indicate that a heuristic treatment of the Robust k-Median problem
can yield surprisingly good solutions, even if the heuristics are very naive.

13
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For our experiments we consider instances in the plane, as these are closest to the real-
world motivation for the problem. We wanted to check how the structure of the instance
influences the performance of the heuristics. We suspected that instances where the clients
are distributed uniformly are easy, as intuitively a solution that is good for one group of
clients is good for all groups.

The robust version of the k-median problem is considered because often the exact set of
clients is not known before choosing facility locations and one wants to perform well even
if the worst set of possible clients turns out to be realized. It is reasonable to assume that
every group of clients has something in common, for example that they come from a similar
region, like a city. Therefore more realistic instances for the Robust k-Median problem have
the groups form clusters in space. We also generate such instances for testing our heuristics.

B.1 Methods

Since solving Robust k-Median instances to optimality is infeasible for the instances we
considerﬂ we compare the performance of the various heuristics to the value of a LP-
relaxation. We have a variable z; for each possible median location and variables y;; that
indicate whether client 7 is served by facility j. The LP is then as follows.

min T
s.t. Yij — Tj <0 VZ,]
Zyij 21 Vi
J
Zd(iaj) iy <T V groups of clients g
€9
ijgk and 0<z; <1 Wi
J
0<w; <1 Vi, j

To solve the LP we use the Gurobi solver [9], version 5.5.0, on a 64-bit Linux system.

Note that the assignment of the y;; variables is immediately clear from the assignment of
the x;. For location i, let ji, jo, ... jn be the locations ordered by increasing distance. Then
Yij, = min(xj,, 1 — (yij, + ...+ ¥ij,_,)). The constraint y;;, < min(, ) is already expressed
by the first two constraints. It could however be put into the objective via the big M-method.
Consider a minimization problem min 7" subject to x = min(b,c). Let M be large integer
and consider minT + Mt subject to x < b, x < ¢, t <b—x, and t < ¢ — x. Observe that
t = min(b, ¢) — x in an optimal solution. One needs to choose M big enough so that ¢ must
be zero in an optimal vertex solution. It is however unclear whether this will speed up the
solution. We have not tried this method.

We implemented and compared the following heuristics:

Greedy Upwards. Initialize all facilities as closed. Open the facility that reduces the cost
maximally. Repeat until k facilities are open.

Greedy Downwards. Initialize all facilities as open. Close the facility that increases the
cost minimally. Repeat until k£ facilities are open.

2 We attempted solving three instances optimally, see Figure [2] but gave up on the third after nearly half
a year of CPU time was consumed.
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(a) Uniform (b) Gauss-Const (c) Gauss-Exp

Figure 1 Examples for the kind of instances we generate. Circles are clients, squares are facilities,
colors indicate group membership.

Local Search. Open k£ random facilities. Compare all solutions that can be obtained
from the current solution by closing ¢ facilities and opening ¢ facilities. Replace the current
solution by the best solution found. Repeat until the current solution is a local optimum. In
the experiments we use ¢ = 2.

Randomized Local Search. Same as Local Search, but instead of considering all solutions
in the neighborhood, sample only a random subset. The size of the subset is an additional
parameter to the heuristic. In the experiments we use ¢ = 3 and 200 random neighbors.

Note that taking the solution of one of the greedy algorithms as starting point for a local
search is an obvious improvement, but this would prevent us from comparing the local search
algorithm with the greedy heuristic.

The local search heuristic is closely related to Lloyd’s algorithm for the k-means problem.

In Lloyd’s algorithm, a random set of centers is chosen and iteratively updated by moving
the centers to the centroids of the clients that fall in their voronoi cell. This improves the
total distance from the centers to all clients in every iteration.

In our setting, we want to reduce the cost of the group of clients that currently incurs the
maximal cost. This can be done by moving a facility closer to this group of clients, that is,
closing one facility and opening another that reduces the objective function. The local search

algorithm, by closing and opening more than one facility at a time, does this at least as well.

We create instances in the plane and use the euclidean distance. We create two types of
instances. In the first type the clients and facilities are uniformly distributed in a 100 x 100
square. We call these instances the uniform instances. In these instances all groups of clients
contain the same number of clients. The k we use for the experiments is 7.

The second kind uses random gaussian distributions to sample client positions. To
generate the gaussian distributions we sample a matrix M with vy, v, on the diagonal, where
the two values are chosen uniformly at random from [0, 50], the matrix is then rotated by a

uniformly random angle. The result is the covariance matrix of the gaussian distribution.

The mean is a random point in a 100 x 100 square. These instances we call gauss. We
generate two subgroups of instances, in the first subgroup, gauss-const, all groups of clients
have the same number of clients, in the second subgroup, gauss-exp, the number of clients
in a group is sampled from an exponential distribution. Figure [T] shows examples for the
different kind of instances we generate.

15
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Heuristic Uniform Gauss-Const  Gauss-Exp
Greedy Up 1.65 (1.49)  5.18 (5.24)  6.63 (5.94)
Greedy Down 1.45 (1.42) 292 (2.92)  2.12 (2.05)
Local Search 1.13 (1.12)  1.63 (1.62) 1.41 (1.39)
Randomized Local Search  1.53 (1.48)  2.15 (2.29)  2.37 (2.36)

Table 2 Mean Performance as a multiple of the LP relaxation value, rounded to three digits. In
parentheses we provide the median. 1654 uniform instances, 1009 Gauss-Const instances, and 2029
Gauss-Exp instances of varying sizes were solved. The reported performance is over the instances
where the heuristics perform worse that the LP relaxation.

As we didn’t put much effort into optimizing our heuristics for speed (for example we
don’t use spatial search structures to find nearest neighbors), we don’t report execution time
and focus solely on solution quality. Nevertheless it is clear that the greedy strategies are
much simpler to implement and much faster than the local search heuristics.

We report average performance on instances where the solution is worse than the LP
value, as small, easy instances otherwise skew the results. To conclude relative performance
advantages between heuristics we use a Wilcoxon signed-rank test as implemented in SciPy
0.12.0.

All computer code we wrote to run the experiments and analyze the results, as well
as the instances we solved, is available online at http://resources.mpi-inf .mpg.de/
robust-k-median/code-data.7z.

B.2 Results

Table [2] summarizes the results of the experiments, Table [3] shows the performance for
the different instance sizes for the Greedy Upwards and the Local Search heuristic. The
performance differences in Table [2] are statistically significant with a very small two-sided
p-value, except for the difference between Greedy Downward and Randomized Local Search
on Uniform and Gauss-Const instances. In these cases the p-value is 0.66, respectively 0.08.

Since we use an LP relaxation as a comparison point, we do not know whether the
instances where the heuristics find a worse solution are actually hard for the heuristics or
whether the LP relaxation provides a much too low bound. To investigate this we had a
closer look at instances where both Greedy down and Local Search perform badly. For three
instances we attempted to solve the integer linear program and succeeded for two of them.
In Figure [2] we see different solutions. For these instances at least it was indeed the case that
the LP relaxation yielded a bad bound. This suggests that the heuristics work even better
than the numbers in Table 2] indicate.

B.3 Conclusion

Note that all heuristics perform very well on the instances we tried. In accordance with our
theoretical results, increasing the number of groups makes the instances harder, more so that
increasing the number of facilities or the number of clients.

As expected instances where the robust nature of the Robust k-Median problem are not
as important because groups are distributed uniformly are easier than the more realistic
instances where groups form clusters. For the two better heuristics, Greedy Downwards
and Local Search, also perform better on instances with uneven group sizes. Here too, one
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(a) Uniform

Clients Facilities
10 110 210 310 410
Greedy Search GD LS GD LS GD LS GD LS
10 1.00 1.00 1.12 1.00 1.31 1.01 139 1.02 140 1.01
160 1.01 1.01 1.6 1.17 163 1.17 168 1.15 1.63 1.15
310 1.01 1.01 1.64 121 169 1.19 1.70 1.19 1.75 1.18
460 1.01 1.01 1.68 122 1.73 121 1.71 121 1.73 1.21
110 1.00 1.00 1.17 1.01 122 1.01 125 1.01 1.24 1.01
1760 1.0 1.0 1.28 1.06 1.33 1.06 134 1.06 1.34 1.06
3410 1.0 1.0 1.3 1.07 1.33 1.07
(b) Gauss-Const
Clients Facilities
10 110 210 310 410
Greedy Search GD LS GD LS GD LS GD LS
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
160 1.0 1.0 2.74 1.64 3.05 1.6 3.33 1.62 3.33 1.57
310 1.0 1.0 2.76  1.70 3.07 1.66 3.32 1.64
110 1.0 1.0 1.0 1.0 1.0* 1.0"
3410 1.01 1.0 2.74 1.65 3.02* 1.63"
(c) Gauss-Exp
Clients Facilities
10 110 210 310 410
Greedy Search GD LS GD LS GD LS GD LS
10 1.0* 1.0* 1.0 1.0 1.0 1.0
110 1.0 1.0 1.34 116 166 128 165 1.26 191 1.34
210 1.0 1.0 1.9 1.41 214 145 231 146 246 1.49
310 1.0 1.0 2.23 1.48 2.6 1.48 269 1.51 278 1.50
110 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.01 1.0
1210 1.0 1.0 1.38 1.21 156 1.23 1.73 129 1.77 1.29
2310 1.0 1.0 1.94 138 2,09 144 248 1.41 229 1.44
3410 1.0 1.0 217 151 248 148 2.8 1.55

Table 3 Performance depending on instance size for the Greedy Downwards and Local Search
heuristics. All values are averages over 50 instances, except for those marked by *. For Gauss-Exp
instances the number of clients is the mean of the exponential distribution times the number of
groups. Values above the horizontal line come from instances with 10 clients per group, below the

line instances have 110 clients per group.
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(c) Gauss-Exp: LP value 2362.06, Greedy value 10624.4, Local Search value 4354.54, 4192.31 < OPT <
4354.54

Figure 2 Solutions of the different algorithms on particularly hard instances. From left to right,
the LP solution, the Greedy downwards solution, the Local Search solution and the ILP solution.
Darkness of facilities indicates "how open" they are in the LP relaxation. In[2d the ILP solver was
still running at the time of submission, after having consumed 177 days of CPU time and 46GB of
memory.
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can speculate that few groups dominate the problem, and finding a solution that minimizes
maximum costs becomes easier.

The good performance of these simple heuristics indicate that although the Robust
k-Median problem is hard to approximate in the worst case, a heuristic treatment can
effectively find a very good approximation.
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