English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Correlation between the OmpG Secondary Structure and Its pH-Dependent Alterations Monitored by FTIR

MPS-Authors
/persons/resource/persons137754

Köster,  Stefan
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137764

Kühlbrandt,  Werner       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137955

Yildiz,  Özkan       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Korkmaz-Özkan, F., Köster, S., Kühlbrandt, W., Mäntele, W., & Yildiz, Ö. (2010). Correlation between the OmpG Secondary Structure and Its pH-Dependent Alterations Monitored by FTIR. Journal of Molecular Biology, 401(1), 56-67. doi:10.1016/j.jmb.2010.06.015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D703-1
Abstract
The channel activity of the outer-membrane protein G (OmpG) from Escherichia coli is pH-dependent. To investigate the role of the histidine pair His231/His261 in triggering channel opening and closing, we mutated both histidines to alanines and cysteines. Fourier transform infrared spectra revealed that the OmpG mutants stay-independent of pH-in an open conformation. Temperature ramp experiments indicate that the mutants are as stable as the open state of wild-type OmpG. The X-ray structure of the alanine-substituted OmpG mutant obtained at pH 6.5 confirms the constitutively open conformation. Compared to previous structures of the wild-type protein in the open and closed conformation, the mutant structure shows a difference in the extracellular loop L6 connecting beta-strands S12 and S13. A deletion of amino acids 220-228, which are thought to block the channel at low pH in wild-type OmpG, indicates conformational changes, which might be triggered by His231/His261.