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We investigate Fourier coefficients of automorphic forms on split simply-laced Lie
groups G. We show that for automorphic representations of small Gelfand-Kirillov
dimension the Fourier coefficients are completely determined by certain degenerate
Whittaker vectors on G. Although we expect our results to hold for arbitrary simply-
laced groups, we give complete proofs only for G = SL(3) and G = SL(4). This is
based on a method of Ginzburg that associates Fourier coefficients of automorphic
forms with nilpotent orbits of G. Our results complement and extend recent results of
Miller and Sahi. We also use our formalism to calculate various local (real and p-adic)
spherical vectors of minimal representations of the exceptional groups E6, E7, E8 using
global (adelic) degenerate Whittaker vectors, correctly reproducing existing results for
such spherical vectors obtained by very different methods.
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1 Introduction

This paper is concerned with Fourier coefficients of automorphic forms on split, simply-
laced Lie groups G, attached to certain special unipotent (in the sense of Arthur [1,2])
representations of unusually small functional (or Gelfand-Kirillov) dimension. In the
modern theory of automorphic forms one usually considers G to be the group of adelic
points G(Ak) of an algebraic group G(k) over some number field k. In this paper we
restrict to the case k = Q and write A for the adeles of Q.

The study of Fourier coefficients has been at the centre of attention in the theory of
automorphic forms for many years. A major application lies in Langlands’ theory of
automorphic L-functions and the transfer between automorphic representations of a
group G(A) to another G′(A). According to Langlands one can attach an L-function
L(π, s) to each automorphic representation π of G, depending on a complex variable
s. A basic conjecture is that this function admits a meromorphic continuation to all
of C and satisfies a functional equation relating L(π, s) with L(π, 1 − s). Roughly,
the principle of functoriality then asserts that if there is a functorial transfer from an
automorphic representation π of G(A) to π′ of G′(A) then the associated L-functions are
equal L(π, s) = L(π′, s). Langlands showed [3] that a rich source of L-functions arises
from the constant terms (i.e. zeroth Fourier coefficients) of Eisenstein series, and Shahidi
extended this method [4] and showed that also the non-constant Fourier coefficients give
rise to automorphic L-functions.

A complete Fourier expansion of an automorphic form ϕ on a group G(A) is in general
hard to come by. The idea is to choose a unipotent subgroup U ⊂ G and try to write
ϕ as a sum of terms

∑
ψU
FψU , where the sum is over unitary characters ψU on U(A)

trivial on U(Q) and each “Fourier coefficient” FψU is manifestly invariant with respect
to the discrete subgroup U(Q) ⊂ U(A). In effect, one wishes to diagonalise the action
of U(Q). This works well if U is abelian but whenever U is non-abelian the expansion
is considerably more complicated. However, it may happen that for special types of
automorphic representations the task of obtaining the Fourier expansion simplifies due to
the fact that many of the Fourier coefficients vanish because of representation-theoretic
constraints on the function space. A simple instance of this phenomenon occurs in the
classical case of holomorphic modular forms for SL(2,Z). These are SL(2,Z)-covariant
functions ϕ(τ) on the complex upper half plane SL(2,R)/SO(2) which admit a Fourier
expansion of the form ϕ(τ) =

∑
n≥0 a(n)e2πinτ , where the sum is restricted to n ≥ 0

in order for the function to be holomorphic in τ . Equivalently, one can view this
representation-theoretically and say that all coefficients a(n) must vanish whenever n < 0
due to the fact that ϕ is attached to the holomorphic discrete series of SL(2,R).

Similar phenomena may occur for higher-rank groups when restricting to automorphic
representations π with small Gelfand-Kirillov dimension. The typical example is the
minimal representation πmin which has the smallest non-trivial Gelfand-Kirillov dimension
among all representations [5–7]. For simply-laced groups G it was shown in the seminal
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paper by Ginzburg-Rallis-Soudry [8] that automorphic forms attached to πmin have “very
few” non-vanishing Fourier coefficients. Automorphic forms attached to the minimal
representation can be realised as special points in the parameter space of Langlands-
Eisenstein series and this fact has been used extensively to study liftings of automorphic
forms via the so called theta correspondence (see, e.g., [9]).

Fourier coefficients of automorphic forms also play an important role in string theory,
where they capture certain non-perturbative (instanton) effects in gravitational scattering
amplitudes and black hole partition functions. In recent years there has been a lot of
progress in understanding the relation to automorphic representations and it turns out
that special unipotent automorphic representations, like the minimal representation, show
up naturally in this context [10–17]. In [11] the results of Ginzburg-Rallis-Soudry were
extended to automorphic forms in the next-to-minimal representation πntm which were
also shown to have very few Fourier coefficients, a fact that has a direct interpretation in
string theory. Fourier coefficients attached to small automorphic representations have
also been proposed to capture microscopic degeneracies of certain black holes in string
theory; see for instance [18–23].

The discussion above was phrased in the global language of automorphic representations
π of adelic groups G(A). For so called admissible representations one has an Euler
product factorisation π = ⊗πp into local representations πp for each prime p ≤ ∞. For
finite primes p < ∞ these are p-adic (or non-Archimedean) representations of G(Qp)
while for p = ∞ these are real (or Archimedean) representations of G(R). There is a
corresponding notion of minimal representation πmin,p also for local representations and
the analogues of the global Fourier coefficients attached to πmin,p are so called p-adic
spherical vectors f◦p which are vectors in πmin,p invariant under the compact subgroup
G(Zp) ⊂ G(Qp). Representations for which such vectors exist are called unramified.
For minimal representations it is rather difficult to obtain explicit expressions for these
spherical vectors, but results are in particular known for various realisations of the minimal
representation of exceptional groups E6, E7, E8 [24–27].

The simplest type of Fourier coefficient FψU occurs when U is taken to be the maximal
unipotent radical N in the Levi decomposition B = AN of the standard Borel subgroup
B ⊂ G. This is known as a Whittaker coefficient, usually denoted byW , and it is a famous
result of Langlands that this factorises W = ⊗Wp into a product of local Whittaker
coefficients Wp for each local representation πp. In general, however, a global Fourier
coefficient FψU of an automorphic form ϕ ∈ π does not exhibit a similar Euler product
factorisation since it is typically given by a non-trivial sum of different Weyl orbits that
does not factorise. As we shall see, though, in the case when π is a minimal representation
it can happen that FψU factorises also for unipotent radicals U , other than the maximal
one N , and the local factors FψU ,p are then given by the spherical vectors f◦p discussed
above.

Given an automorphic representation π an important question is to determine whether
a certain Fourier coefficient vanishes or not. A powerful method for doing this has
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been developed by Ginzburg [28] and Miller-Sahi [29], following earlier local results of
Moeglin-Waldspurger [30] (for p <∞) and Matumoto [31] (for p =∞). The idea is to
parametrize the Fourier coefficients by nilpotent G-orbits, i.e. the adjoint action of G
on any nilpotent element in the Lie algebra g. Each automorphic representation π with
Gelfand-Kirillov dimension n can itself be associated with a nilpotent orbit O (sometimes
denoted Oπ) of dimension 2n via Kirillov’s “orbit method” [32]. Each Fourier coefficient
of π associated with nilpotent orbits which are outside of the closure O is then expected
to vanish. We refer to the set of nilpotent orbits with non-vanishing Fourier coefficients as
the wavefront set. For example, when π is the minimal representation πmin, it is known
that only those Fourier coefficients attached to the trivial orbit O0 and the minimal orbit
Omin are non-vanishing [8] and the wavefront set is given by the closure of the minimal
nilpotent orbit with Bala–Carter label A1.1

Miller and Sahi [29] use a related but slightly different perspective based on the Piatetski-
Shapiro-Shalika method [33, 34] to show that any Fourier coefficients of the minimal
representations of the exceptional groups E6, E7 are completely determined by certain
maximally degenerate Whittaker vectors.

In this paper we combine the results of Miller-Sahi with the method of Ginzburg to
establish various results concerning Fourier coefficients of certain Eisenstein series attached
to special automorphic representations. We will consider both the global and the local
perspective. Our main interest is eventually with the exceptional groups E6, E7, E8 but
many of our results concern the case of SL(n) for n = 3, 4. Let us now briefly summarise
the main results of the paper.

Let G(Q) be a split, simply-laced Lie group and G(A) its adelization. Let B = AN be the
Borel subgroup, and introduce a quasi-character χ : B(Q)\B(A)→ C∗. Let E(χ, g) be
the associated Langlands-Eisenstein series on G(A), attached to the non-unitary principal
series IndGBχ. The minimal representation πmin and next-to-minimal representation πntm
of G(A) can both be realised as submodules of IndGBχ for certain choices of χ [8, 11]. We
then have

Theorem I. Let ϕ be an automorphic form on the special linear group G(A) = SL(3,A)
or G(A) = SL(4,A) belonging to the principal series IndGB χ. Then, ϕ can be expanded as

ϕ(χ, g) =
∑
O
FO(χ, g) (1.1)

where the sum is over all nilpotent orbits O of G. Each FO is (linearly) determined by
Fourier coefficients FO (see section 2.4) attached to the nilpotent orbit O. If ϕ belongs to
an automorphic subrepresentation π of IndGB χ with associated nilpotent orbit Oπ, then all
FO where O /∈ Oπ vanish.

Note that there are a finite number of terms FO, but that each FO contains a infinite
number of Fourier coefficients with different characters. Furthermore, there is some

1See section 2.2 for a brief review of nilpotent orbits and their labelling.
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ambiguity in how each separate FO is defined for different representations. See the
discussion after the proof of theorem 4.1 for more details. We will prove this theorem using
the Eisenstein series E(χ, g) that is the spherical vector in the automorphic realisation of
the minimal representation but since we are not using sphericality there will be no loss of
generality in the proof.

Remark 1.1. Theorem I is very reminiscent of the expansion of the character distribution
of a representation π when restricted to a sufficiently small neighbourhood of zero. More
precisely, according to Harish-Chandra [35] and Howe [36] the character χπ of a G-
representation π has an expansion

χπ =
∑
O
cO(π)µ̂O, (1.2)

where the sum runs over all nilpotent G-orbits, µ̂O denotes the Fourier transform of a
distribution on G (a certain “orbital integral”), and cO(π) are complex numbers. For the
trivial representation all the µ̂O vanish except the one associated with the trivial orbit O0.
For the p-adic minimal representation πmin,p one has the following fundamental result
(see [37]):

χπmin,p = µ̂Omin + c0 (1.3)

where Omin is the smallest non-trivial nilpotent orbit (minimal orbit).2 The structure of
χπ is closely related to Fourier coefficients of automorphic forms by the following results.
An admissible automorphic representation π has a Whittaker model only if there is a
regular nilpotent orbit O such that cO(π) is non-zero [38]. Moreover, it was shown by
Moeglin-Waldspurger [30] in the p-adic setting that for the maximal orbit O such that
cO(π) is non-zero, there exists a (possibly degenerate) Whittaker model whose dimension
is precisely cO. For example, for generic representations π (e.g. the full principal series)
the leading orbit is the regular orbit Oreg and thus in this case cO(π) gives the dimension
of the generic Whittaker model of π. In the real setting (i.e. for p =∞) similar results
were obtained by Matumoto [31]. Relations between degenerate Whittaker vectors and
small representations have also been explored in more recent work by Gourevitch and
Sahi [39,40]. In general, very little is known about the numbers cO and for intermediate
representations one can have situations with non-trivial multiplicities of Whittaker models,
i.e. when cO(π) > 1.3

The following theorem then shows that, in the minimal representation, ϕ is completely
determined by maximally degenerate Whittaker vectors (defined in section 2) and the
constant term attached to the trivial orbit.

Theorem II. Let ϕ be an automorphic form on the special linear group G(A) = SL(3,A)
or G(A) = SL(4,A) belonging to the minimal representation πmin. All Fourier coefficients
FO of ϕ attached to nilpotent orbits outside of the closure Omin of the minimal orbit

2This formula can in fact be taken as the definition of πmin,p.
3We thank Gordan Savin for very helpful correspondence on these issues.
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Omin then vanish, and those attached to Omin are completely determined by the maximally
degenerate Whittaker vectors

Wψα(g) =

∫
N(Q)\N(A)

ϕ(ng)ψα(n)dn, (1.4)

where ψα is non-trivial only on a one-parameter subgroup Nα ⊂ N corresponding to a
single simple root α of g.

The explicit expression for FOmin in the minimal representation in terms of such Whittaker
vectors can be found in the proof of the theorem in section 3 for SL(3) and section 4 for
SL(4).

We define the next-to-minimal representation to be that automorphic representation with
wavefront set given by the next-to-minimal orbit, i.e., the one given by Bala–Carter label
2A1. Then we have the following result for the next-to-minimal representation:

Theorem III. Let ϕ be an automorphic form on the special linear group G(A) = SL(4,A)
belonging to the next-to-minimal representation πntm. The closure Ontm of the next-to-
minimal nilpotent orbit contains Ontm, Omin and O0. All Fourier coefficients FO of
ϕ attached to nilpotent orbits outside Ontm vanish; coefficients attached to Ontm are
completely determined by the degenerate Whittaker vectors

Wψα,β (χ, g) =

∫
N(Q)\N(A)

ϕ(ng)ψα,β(n) dn, (1.5)

where ψα,β is non-trivial only on a two-parameter subgroup Nα,β corresponding to two
commuting simple roots α, β of g. Coefficients attached to Omin are completely determined
by degenerate Whittaker vectors of the form (1.4) and (1.5).

Note that SL(3,A) does not have a nilpotent orbit of type 2A1 which is why the above
theorem is only stated for SL(4,A). (The next largest orbit for SL(3,A) after the minimal
A1-type orbit is the regular A2-type orbit [41].)

The explicit expressions for FOmin and FOntm in the next-to-minimal representation in
terms of the Whittaker vectors above can be found in the proof of the theorem in section
4. As a result, in the next-to-minimal representation, ϕ is completely determined by
maximally degenerate Whittaker vectors and the degenerate Whittaker vectors of the
form (1.5) together with the constant term.

Remark 1.2. Theorem II can be viewed as a concretization of the main result in Miller-
Sahi [29] but for SL(3,A) and SL(4,A), while theorem III is the generalisation of this
result to the next-to-minimal representation. We expect that theorem III generalises to
any split, simply-laced Lie group G.

Although at the moment we cannot prove the above results for the exceptional Lie groups
E6, E7, E8 we can still use the same philosophy to rederive local results about spherical
vectors for minimal representations from the explicit knowledge of global degenerate
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Whittaker vectors obtained in our previous work [15]. The minimal representations πmin
factorises according to

πmin =
⊗
p≤∞

πmin,p (1.6)

and so for any vector f ∈ πmin we have f = ⊗pfp with fp ∈ πmin,p (including p = ∞).
This fact allows us to use very simple manipulations to deduce known results, which were
obtained by very different methods.

Let G be one of the Lie groups E6, E7, E8 and g one of the associated Lie algebras e6, e7, e8.
Let ϕ ∈ πmin be a vector in the minimal representation of G(A), obtained by restricting
the character χ in the Eisenstein series E(χ, g) to the special value χ = χ0. Let Wψα(χ, g)
be the associated maximally degenerate Whittaker vector for α a simple root of g. These
Whittaker vectors were calculated for all simple roots in Appendices A.1, A.2 and A.3
of [15]. In what follows we use the Bourbaki labelling of the simple roots of g.

Any global Whittaker vectors Wψ factorises into local components as Wψ =
∏
p≤∞Wψp

and one can compare the various local components to spherical vectors of the minimal
representation already computed in the literature. We have the results:

Proposition 1.1 (the case of G = E6).

(i) The Archimedean component of Wψα1
(χ, g) is equal to the real spherical vector f◦∞

in the minimal representation πmin,∞ of E6(R) computed by Dvorsky-Sahi [24];

(ii) the non-Archimedean (p-adic) component of Wψα1
(χ, g) is equal to the p-adic

spherical vector f◦p in the minimal representation πmin,p of E6(Qp) computed by
Savin-Woodbury [27];

(iii) the Archimedean component of Wψα2
(χ, g) is equal to the (abelian part of) the real

spherical vector in the Heisenberg realisation of the minimal representation πmin,p
of E6(R), as computed by Kazhdan-Pioline-Waldron [25];

(iv) the non-Archimedean component of Wψα2
(χ, g) is equal to the p-adic spherical

vector in the Heisenberg realisation of the minimal representation πmin,p of E6(Qp),
computed by Kazhdan-Polishchuk [26].

Proposition 1.2 (the case of G = E7).

(i) the Archimedean component of Wψα7
(χ, g) is equal to the real spherical vector f◦∞

in the minimal representation πmin,∞ of E7(R) computed by Dvorsky-Sahi [24];

(ii) the non-Archimedean component of Wψα7
(χ, g) is equal to the p-adic spherical

vector in the minimal representation πmin,p of E7(Qp), as computed by Savin-
Woodbury [27];

(iii) the Archimedean component of Wψα1
(χ, g) is equal to the (abelian part of) the real

spherical vector in the Heisenberg realisation of the minimal representation πmin,p
of E7(R), as computed by Kazhdan-Pioline-Waldron [25];

7



(iv) the non-Archimedean component of Wψα1
(χ, g) is equal to the p-adic spherical

vector in the Heisenberg realisation of the minimal representation πmin,p of E7(Qp),
computed by Kazhdan-Polishchuk [26].

Proposition 1.3 (the case of G = E8).

(i) the Archimedean component of Wψα8
(χ, g) is equal to (the abelian part of) the real

spherical vector in the Heisenberg realisation of the minimal representation πmin,∞
of E8(R), as computed by Kazhdan-Pioline-Waldron [25];

(ii) the non-Archimedean component of Wψα8
(χ, g) is equal to the p-adic spherical

vector in the Heisenberg realisation of the minimal representation πmin,p of E8(Qp),
computed by Kazhdan-Polishchuk [26].

These propositions are proven in section 5.3.

Our results also have applications to the study of instanton effects in gravitational
scattering amplitudes in string theory, and this will be studied in a follow-up
publication.

Acknowledgements. We are especially indebted to David Ginzburg for extensive
correspondence on his method of associating Fourier coefficients with nilpotent orbits.
Without his explanations this work would have been impossible. Special gratitude is owed
to Philipp Fleig who contributed to this work at the early stages. We are also grateful to
Ben Brubaker, Michael Green, Steve Miller, Manish Patnaik, Boris Pioline, Gordan Savin
and Pierre Vanhove for valuable discussions.

2 Degenerate Whittaker vectors and Fourier expansions

2.1 Fourier coefficients of Eisenstein series

Let G(Q) be an algebraic reductive group and G(A) its adelization. For definiteness we
restrict to the case when G is semi-simple, simply-laced and split. Let Q be a standard
parabolic subgroup with Levi decomposition Q = MR, where M is the Levi factor and R
is the unipotent radical. Fix a quasi-character χ : Q(A)→ C∗, trivial on Q(Q), and extend
it to all of G by χ(mrk) = χ(mr), with m ∈M, r ∈ R, and k an element of the maximal
compact subgroup K. Attached to such a character we have the Langlands-Eisenstein
series

E(χ, g) =
∑

γ∈Q(Q)\G(Q)

χ(γg), (2.1)

which converges absolutely on a subspace of the space of χ’s. Representation-theoretically
this Eisenstein series is attached to the (degenerate) principal series

IndGQχ = {f : G→ C | f(mrg) = χ(mr)f(g), ∀m ∈M, r ∈ R}. (2.2)
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The group G acts on this space by right-translation: [ρ(g) ·f ](h) = f(hg) and consequently
does not affect the automorphic invariance of E(χ, g) on the left. Functions in this space
are determined by their restriction to the parabolic cosetQ\G, and hence the functional (or
Gelfand-Kirillov) dimension of IndGQχ is generically given by the dimension of Q\G.

We will be particularly interested in a special class of such Eisenstein series attached
to certain G-representations of unusually small Gelfand-Kirillov dimension. To this
end we let Q be a maximal parabolic subgroup of G. In this case the character χ can
be parametrised by a single complex number s and we denote it by χs. For certain
special values of s the Gelfand-Kirillov dimension of IndGQχs reduces, and in particular for
some s = s0 it contains the minimal representation πmin as a submodule. The minimal
representation is distinguished by having the smallest possible non-trivial Gelfand-Kirillov
dimension among all representations. For the exceptional groups E6, E7, E8 this occurs
for s = 3/2 if we choose Q to be the maximal parabolic subgroup parametrised by the
first simple root α1 (in Bourbaki labelling) [8,11,12]. This implies that for the exceptional
groups E(3/2, g) belongs to πmin. Similarly, one has that E(5/2, g) is an element of the
next-to-minimal representation [11].

Returning for a moment to the general case of an arbitrary character χ we shall now
introduce a class of Fourier coefficients of E(χ, g). To this end let B = NA be the Borel
subgroup of G with A the Cartan torus and N the unipotent radical. Let

ψ : N(Q)\N(A)→ U(1) (2.3)

be a unitary character of N(A), trivial on N(Q). This character decomposes according
to

ψ = ψ∞
∏
p<∞

ψp, (2.4)

where ψp is a character on N(Qp) (trivial on N(Zp)), while ψ∞ is a character on N(R)
(trivial on N(Z)). Denote by Nα the restriction of N to its one-parameter subgroup
generated by xα(u) = euEα , u ∈ A, where Eα is the Chevalley generator associated
with the positive root α ∈ ∆+. The restriction of ψ to Nα then yields a character
ψα : Q\A → U(1), with a similar factorisation as in (2.4). Any character ψ on N is
determined by its values when restricted to the various Nα with α a simple root. We
label the set of simple roots by Π ⊂ ∆+ ⊂ ∆. Hence, representing an arbitrary element
n ∈ N/[N,N ] as

∏
α∈Π xα(uα) with uα ∈ A, we can write an arbitrary character ψ on N

as

ψ(n) = e

(∑
α∈Π

mαuα

)
(2.5)

with ψ being completely determined by the choice of mα ∈ Q for α ∈ Π a simple root.
When all mα 6= 0 we say that ψ is generic; otherwise it is degenerate. The rationals mα

are sometimes called charges because of their physical interpretation; a name we will
adopt here for convenience.
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In the above equation we have used the notation

e(x) = exp(2πix), (2.6)

with the understanding that this is to be understood as an Euler product and for p <∞
the local expression is given by exp(2πi[x]p) with [x]p denoting the fractional part of x
(the class of x in Qp/Zp).

For a character ψ we define the Whittaker vector of E(χ, g) along N :

Wψ(χ, g) =

∫
N(Q)\N(A)

E(χ, ng)ψ(n)dn. (2.7)

By construction this satisfies

Wψ(χ, nak) = ψ(n)Wψ(a), (2.8)

and so is determined by its restriction to the torus A. The K-invariance is inherited
from that of E(χ, g). Smooth functions on G with this property are associated with the
induced representation

IndGNψ = {f : G→ C | f(ng) = ψ(n)f(g),∀n ∈ N}. (2.9)

The image of the map Wh : IndGQχ→ IndGNψ is known as a Whittaker model. Much is
known about how to compute the Whittaker vector Wψ(χ, g); in particular it can be
shown that for generic ψ it reduces to the following expression

Wψ(χ, a) =

∫
N(A)

χ(w0na)ψ(n)dn, (2.10)

where w0 is the longest element in the Weyl group of g [42] (see also [43] for a discussion).
This implies that W is Eulerian, i.e. factories into an Euler product

Wψ(χ, g) =
∏
p≤∞

Wψp(χ, g), (2.11)

where each local factor can be computed separately. In fact, for all finite primes p <∞ a
complete formula exists, known as the Casselman-Shalika formula [44].

More generally, one can consider Fourier coefficients of E(χ, g) associated with parabolic
subgroups other than the Borel. To this end pick another standard parabolic subgroup P
with B ⊂ P ⊂ G and consider its Levi decomposition P = LU with unipotent radical
U and Levi factor L. Let ψU : U(A)→ U(1) be a unitary character on U(A), trivial on
U(Q). We can now consider the following Fourier coefficient of E(χ, g):

FψU (χ, g) =

∫
U(Q)\U(A)

E(χ, ug)ψU (u)du. (2.12)
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This coefficient is determined by its values on l ∈ L and satisfies

FψU (χ, ulk) = ψU (u)FψU (χ, l), (2.13)

where the K-invariance is inherited from E(χ, g). In contrast to the case of Whittaker
vectors, discussed above, much less is known about explicit formulas for FψU (χ, g). In
particular, in general one does not expect FψU (χ, g) to be Eulerian since it is generically
given by a non-trivial sum over Weyl orbits; hence there is no direct analogue of the
Casselman-Shalika formula. One of the main purposes of this article is to show that in
certain situations, in particular for special choices of χ corresponding to small automorphic
representations, one can in fact evaluate FψU explicitly. To pave the way for this, let us
first make the following well-known, but crucial, observation that can for instance be
found in [29].

Under the action of an element γ ∈ L(Q) = L(A) ∩G(Q) we have

FψU (χ, γl) =

∫
U(Q)\U(A)

E(χ, uγl)ψU (u)du

=

∫
U(Q)\U(A)

E(χ, γul)ψU (γuγ−1)du

= Fγ·ψU (χ, l), (2.14)

where we have used the invariance of du under the L(Q) action and defined the transformed
character by (

γ · ψU
)
(u) := ψU (γuγ−1). (2.15)

This implies that the Fourier coefficients come in L(Q)-orbits acting on the space of
characters ψU . This space can be identified with a subspace of u∗, the dual of the nilpotent
Lie algebra u of U .

Using this identification, we may relate the different L-orbits to G-orbits of nilpotent
elements. To this end we shall now recall some basic facts about nilpotent orbits that
will play an important role in what follows.

2.2 Basics of nilpotent orbits

In this section, we review some standard facts about nilpotent orbits of a complex
semisimple Lie algebra. Two standard references on the subject are the books by
Collingwood-McGovern [41] and Carter [45].

Let G be a complex semisimple Lie group and g its associated Lie algebra. A nilpotent
orbit of G is the orbit of any nilpotent element X ∈ g under the adjoint action of G:

OX = {gXg−1
∣∣∀g ∈ G}. (2.16)
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If one is interested in orbits under the action of a real or discrete subgroup of the complex
Lie group, these orbits typically will have to be further subdivided into finer orbits.

According to the Jacobson-Morozov theorem, one can associate to each orbit OX a triple
(X,Y,H) satisfying the standard sl(2)-relations

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y. (2.17)

The classification of nilpotent orbits is therefore equivalent to the classification of
embeddings sl(2)→ g. We shall often omit the subscript X indicating the base point and
simply write O for a nilpotent orbit.

A convenient way of characterising an orbit is through its weighted Dynkin diagram.
This is simply the Dynkin diagram of g with nodes labelled by the eigenvalues of the
corresponding simple roots with respect to the Cartan generator H; a famous result
asserts that these numbers can only be in the set {0, 1, 2} (see [41]). Another way of
classifying the orbits is via their Bala-Carter labels, which is the Dynkin-type of the
unique minimal Levi subgroup Lmin ⊂ G which contains X as a distinguished nilpotent
element [46, 47]. Here, ‘distinguished’ refers to a grading of l = Lie(L) = ⊕il(i) by H
such that dim l(0) = dim l(2).

Each Jacobson-Morozov triple (X,Y,H) gives rise to a grading of the Lie algebra:

g = g(0)⊕
m⊕
i=1

(g(i)⊕ g(−i)) (2.18)

where m is a number that depends on OX through its weighted Dynkin diagram, and the
graded pieces are defined as

g(i) = {x ∈ g | [H,x] = ix}. (2.19)

The non-negative part gives rise to a parabolic subgroup PO with unipotent radical UO
corresponding to the positive H-eigenvalues: UO =

∏m
i=1 Ui. The parabolic PO can be

read off from the weighted Dynkin diagram as follows. The Levi part LO is generated
by the maximal torus of G and all copies of SL(2) corresponding to those nodes in the
weighted Dynkin diagram which are labelled by zeroes. The dimension of a given orbit is
then determined by the formula dimO = dim g− dim g(0)− dim g(1).

Example 2.1. As an example we consider the minimal orbit of G = E7. In Bourbaki
labelling the weighted Dynkin diagram is [1, 0, 0, 0, 0, 0, 0] and the semi-simple part of the
Levi subgroup LO is D6. The graded pieces (of non-negative degree) are

g(0) = so(6, 6)⊕ gl(1),

g(1) = 32,

g(2) = 1, (2.20)

where we have labelled positive degree pieces by their so(6, 6) representations. The
dimension of the associated nilpotent orbit is dimOmin = 133 − 67 − 32 = 34. The
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nilpotent element of the Jacobson–Morozov triple can be chosen to be X = Eα1 , the
step operator of the first simple root. The Bala–Carter label of this orbit is A1 (as for
all minimal orbits of simply-laced groups) and the minimal Levi subgroup Lmin with
semi-simple part SL(2) is just the one associated with the first simple root. Clearly,
X = Eα1 is a distinguished element in this group.

Associated with (PO, LO, UO) we also have the corresponding Lie algebras (pO, lO, uO)
that can be read off from the grading of g:

pO =
∑
i≥0

g(i), uO =
∑
i>0

g(i), lO = g(0). (2.21)

The parabolic subgroup PO is uniquely determined by the nilpotent element X which
defines the orbit O.

To each orbit we also associate a stabilizer type in the following manner. Let X be an
element of a nilpotent orbit O and part of a Jacobson-Morozov triple (X,Y,H) associated
to that orbit such that H ∈ h. Let CG(X) = {g ∈ G : gXg−1 = X} be its centralizer.
Then the connected component CG(X)0 can be factorised into CG(X)0 = RC where R
is the unipotent radical of CG(X)0 and C = CG(X)0 ∩ CG(H) is a connected reductive
group [45]. While the reductive group C depends on the representative X in O, the type
of C does not and it is this type that we associate to the orbit O.

Finally, there exists a partial order on the space of all orbits defined by O ≤ O′ if and
only if O ⊂ O′ where the closure is defined using the Zariski topology. The partial order
allows to arrange the nilpotent orbits on a Hasse diagram [41].

2.3 Degenerate Whittaker vectors and Fourier coefficients

We shall now apply the formalism of nilpotent orbits to Fourier coefficients of Eisenstein
series and relate it to degenerate Whittaker vectors.

Let P be a parabolic subgroup with unipotent radical U and Levi subgroup L. As was
recalled in (2.14) the Fourier coefficients FψU of an automorphic form ϕ form orbits under
L(Q), as do the characters ψU on U(A) trivial on U(Q). Similar to (2.5), we can describe
the characters ψU in terms of elements ω ∈ u∗ such that for u = exp(X) for some X ∈ u
one has

ψU (u) = e(ω(X)). (2.22)

The element ω labels the charges dual to the coordinates on U . Using the Killing form
one can equally regard it as an element of the Lie algebra u and it is a nilpotent element.
The Fourier coefficients FψU are therefore related along L(Q)-orbits of nilpotent elements
in the radical. It is at this stage convenient to use a slightly coarser description and
complexify all groups and Lie algebras.
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Since L ⊂ G, the L-orbit of a character ψU is contained in some nilpotent G-orbit. In order
to determine whether a certain Fourier coefficient FψU is supported by the wavefront set
of an automorphic function ϕ, it is therefore important to know which L-orbits on u exist
and which nilpotent G-orbits they are contained in. This information has been computed
recently by Miller and Sahi for all simple groups in the complexified setting [29].

Example 2.2. In anticipation of our analysis below, we illustrate this for G = SL(4).
If we choose the maximal parabolic P associated to the middle node of the A3 Dynkin
diagram, we have that P = LU with l = sl(2) ⊕ sl(2) ⊕ gl(1) and four-dimensional
u = (2,2) that can be thought of as the upper right (2 × 2)-block of a fundamental
SL(4)-matrix. There are two non-trivial L-orbits on u that can be represented by the
(2× 2) matrices (

0 0
1 0

)
and

(
0 1
1 0

)
. (2.23)

The first one lies in the (minimal) nilpotent G-orbit with Bala–Carter label A1 (since its
embedding in g is the simple Chevalley generator of the middle node) and the second
matrix lies in the (next-to-minimal) nilpotent G-orbit with label 2A1.

We will be particularly interested in the case of maximal parabolic subgroups P of G,
that is, parabolic subgroups such that the associated nilpotent subalgebra u ⊂ g only
contains a single simple root α. As we know that u contains a single simple root α, we
can consider the character ψU which has support only on this root. As explained in [29],
such a representative is readily obtained by restricting a generic character ψ of N to
the unipotent U . Since ψ is determined by its values on the simple roots α ∈ Π, and U
only contains a single simple root α, we can view ψU as the restriction of a (maximally)
degenerate character ψα : N → U(1) to U ⊂ N , according to

ψU = ψα
∣∣
U

(2.24)

and is therefore effectively a periodic function Q\A→ U(1) that only depends on a single
variable. From the point of view of (2.5) this corresponds to a ψ = ψα such that when
evaluated on an arbitrary n ∈ N all coefficients mα′ = 0 except when α′ = α, the simple
root defining the maximal parabolic.

To such a degenerate character ψα one associates naturally the degenerate Whittaker
vector (cf. (2.7))

Wψα(χ, g) =

∫
N(Q)\N(A)

E(χ, ng)ψα(n) dn (2.25)

which, as all Whittaker vectors, is determined by its values on A ⊂ L, cf. (2.8).

It is now natural to wonder whether in this situation there is any relation between the
coefficient

FψU (χ, g) =

∫
U(Q)\U(A)

E(χ, ug)ψU (u) du (2.26)
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and the degenerate Whittaker vector Wψα in (2.25). Clearly, the transformation law
is quite different in general for the two functions; in particular, FψU is determined by
a function on L(A) while Wψα is determined by a function only on the Cartan torus
A(A) ⊂ L(A). When E(χ, g) is in the minimal representation the support of FψU is
reduced and, remarkably, it turns out that under certain circumstances the two functions
FψU and Wψα agree. An example for SL(3) can be seen in (3.29).

The first piece of information we need comes from the main theorem of Miller-Sahi [29].
The theorem states that for G(A) being the adelization of either the exceptional group
E6 or E7, an automorphic form ϕ in the minimal representation πmin is completely
determined by the maximally degenerate Whittaker vectors on N . A version of this
theorem for G(A) = SL(3,A) and G(A) = SL(4,A) has already been mentioned in the
introduction and will be proven in sections 3 and 4.

In the proof of this theorem, Miller-Sahi start with a certain maximal parabolic subgroup
P of G with abelian radical U and express ϕ as a sum of Fourier coefficients FψU . Using
arguments from Matumoto and Mœglin-Waldspurger they conclude that in the minimal
representation, only Fourier coefficients with ψ being either trivial or L(Q)-equivalent
to ψ|U in (2.24) are non-vanishing. By iteratively doing further expansions along the
stabilizer of ψU and applying Matumoto and Mœglin-Waldspurger they conclude that
FψU is an L-translate of the degenerate Whittaker vector with character ψα as defined in
(2.24).

Our purpose is to generalise this process of expressing Fourier coefficients in terms of
L-translates of Whittaker vectors that are easier to evaluate. At the same time we obtain
a powerful method for determining whether certain Fourier coefficients of ϕ vanish and
when the two functions FψU defined in (2.12) and Wψα from (2.25) are actually equal.
Our strategy is to combine the results of Miller-Sahi with the techniques developed by
Ginzburg [28] for attaching Fourier coefficient to nilpotent orbits. We shall also give
evidence for a generalisation of Miller-Sahi’s theorem to next-to-minimal automorphic
representations where we consider characters ψ supported on two orthogonal simple roots
(type 2A1).

2.4 Fourier coefficients, nilpotent orbits and small representations

Ginzburg has developed a method for canonically associating Fourier coefficients of
automorphic forms with nilpotent orbits [28] (see also [48,49]). This gives a practical way
of structuring the Fourier expansion, which is particularly useful for determining which
coefficients vanish because of representation theoretic constraints. In this section we shall
first outline this procedure, and then we shall apply it to the specific questions of interest
in this paper.

Following [28] we denote by Ui≥n the subspace corresponding to all H-eigenvalues i ≥ n.
Denote by V the subspace Ui≥2 which contains the Jacobson-Morozov representative X
of the nilpotent orbit OX , and let ψV be a non-trivial character on V/[V, V ], trivial on
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V/[V, V ](Q) and fixed by a stabiliser C(ψV ) in LO(Q) of the same type as that of the
stabilizer associated to the orbit O. This last condition is quite important and limits the
choice of character ψV strongly.

For example, when O is the regular orbit, then PO = B, the Borel subgroup, and the
Levi decomposition PO = LOUO is nothing but the Iwasawa decomposition B = AN ,
where A is the Cartan torus and N is the maximal unipotent radical generated by all the
positive roots. In this case V = N and hence ψV is a character on all of N . Moreover, the
stabiliser C of the regular orbit is trivial, and therefore the character ψV must be a generic
character on N , since these are the only characters with at most a trivial stabiliser.

We shall now attach yet another object to each nilpotent orbit, namely a Fourier coefficient
of an automorphic form. Let ϕ be a vector in an automorphic representation π of a
reductive group G(A). We then have:

Definition 2.1. To each choice of data (π, ϕ,O, ψOV ) we can associate a Fourier coefficient
as follows:

FO(ϕ,ψOV ; g) :=

∫
V (Q)\V (A)

ϕ(vg)ψOV (v)dv. (2.27)

Remark 2.1. Note that (2.27) defines a function on G(A) which is left-invariant under
C(Q). Hence, by restriction one can view it as a function on C(Q)\C(A). This does
not, however, define an automorphic form on C(A) since in general (2.27) fails to be
Z(c)-finite [48].4

We say that a Fourier coefficient defined by (2.27) is attached to the orbit O and will for
short call it an orbit coefficient. As a special case we have for the trivial orbit that

FO0(ϕ; g) =

∫
N(Q)\N(A)

ϕ(ng)dn (2.28)

yields the constant term of ϕ. For Eisenstein series E(χ, g), we will also denote the
constant term by E0(χ, g).

The virtue of the above definition of an orbit coefficient is that it allows to use
representation theory to assert whether certain Fourier coefficients vanish or not. For
example, in the case of a minimal representation πmin it is known by theorems of
Matumoto [31] (at the real place p = ∞) and Moeglin-Waldspurger [30] (at the finite
places p <∞) that the only coefficients which are non-zero are those attached to the trivial
orbit O0 and the smallest non-trivial orbit Omin. See the Remark in the introduction for
a discussion of these results. As we shall see momentarily, the formalism above allows to
immediately write down these non-vanishing coefficients.

4Z(c) denotes the centre of the universal enveloping algebra U(c) of the Lie algebra c of C.
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3 SL(3) Eisenstein series

We shall now illustrate the formalism in the special case of Eisenstein series on SL(3,A).
To this end let χ : B(Q)\B(A)→ C? be a quasi-character defined by χ(b) = χ(na) = χ(a),
and extended to all of G by right-invariance under K. The function on G so obtained is
the unique (up to scaling) spherical vector of the non-unitary principal series IndG(A)

B(A)χ.
With a slight abuse of notation we shall denote the spherical vector by the same letter χ
as for the inducing character. Let πχ be an automorphic realisation of this representation.
The image of the spherical vector χ inside πχ is given by the Eisenstein series

E(χ, g) =
∑

γ∈B(Q)\G(Q)

χ(γg). (3.1)

On general grounds the total Fourier expansion of E(χ, g) takes the form

E(χ, g) = E0(χ, g) +
∑
ψN 6=1

WψN (χ, g) +
∑
ψZ 6=1

WψZ (χ, g), (3.2)

where ψN is a unitary character on N(A), trivial on N(Q), and ψZ is a generic character
on the centre Z(A) = [N(A), N(A)], trivial on Z(Q).5 Note that ψN is necessarily also
trivial on Z and so restricts to a character on the abelianization Z\N . The (non-constant)
coefficients are defined by the integrals

WψN (χ, g) =

∫
N(Q)\N(A)

E(χ, ng)ψ(n)dn,

WψZ (χ, g) =

∫
Z(Q)\Z(A)

E(χ, zg)ψZ(z)dz. (3.3)

We note that the first two terms in (3.2) sum to the remaining Whittaker vector on Z
with trivial character ψZ = 1. We call WψN an abelian coefficient and WψZ a non-abelian
coefficient. Explicit formulas for the coefficients when g = (gR; 1, 1, . . . , 1), gR ∈ SL(3,R),
can be extracted from Bump’s thesis [50] or Vinogradov-Takhtajan’s paper [51].

For the generic principal series with Gelfand-Kirillov dimension

GKdim(πχ) =
dimG− rankG

2
= dimN = 3, (3.4)

all these abelian and non-abelian Fourier coefficients are non-vanishing.

Using the duality between characters χ and complex weights λ ∈ h?⊗C ∼= C2 (h = LieA)
we can parametrize πχ by two complex numbers (s1, s2) ∈ C2 (in a suitable basis of
fundamental weights). For certain special loci in the parameter space the Gelfand-Kirillov
dimension of πχ = πs1,s2 reduces. In particular, we can consider the sub-representation

5This is the Heisenberg grading of SL(3).
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πmin = πs,0 which is the minimal representation (or degenerate principal series) of
Gelfand-Kirillov dimension

GKdim(πmin) = 2. (3.5)

In this situation it turns out that the Fourier coefficients simplify [20].

Generally, we can parametrize the character ψN explicitly by:

ψN (n) = ψN
(
exEα1+yEα2

)
= e(px+ qy) ≡ e2πi(px+qy), (p, q) ∈ Q2, (x, y) ∈ A2,

(3.6)
where Eα1 and Eα2 are the standard Chevalley generators of the Lie algebra sl(3)
associated with the simple roots α1, α2. The character does not depend on the one-
parameter subgroup associated with the third (non-simple) positive root α1 + α2 since
xα1+α2(u) ∈ [N,N ] and ψN is therefore trivial on such elements. To emphasize the
dependence on p, q we sometimes denote the character ψN by ψp,q. When both p and q
are non-zero we call the character ψp,q generic and when either p = 0, q 6= 0 or p 6= 0, q = 0
we call ψ0,q (or ψp,0) degenerate.

For the minimal representation πmin = πs,0 one then finds that all the abelian coefficients
associated with generic characters vanish:

Wψp,q(s, 0; g) = 0, ψp,q generic (p 6= 0 and q 6= 0). (3.7)

In other words, the abelian Fourier coefficients are completely determined by the degenerate
coefficients Wψ0,q(s, 0; g) and Wψp,0(s, 0; g). For the non-abelian coefficients there are no
vanishing properties but the explicit form of WψZ simplifies at each local place. See for
instance sec. 3.4 and App. B of [20] for an analysis of this.

3.1 Fourier coefficients attached to nilpotent orbits

We would now like to analyse the same Fourier expansion from the point of view of
nilpotent orbits as outlined in the previous section. For SL(3) there are three orbits: the
principal (or regular) nilpotent orbit Oreg of dimension 6 and Bala–Carter label A2, the
minimal orbit (or sub-regular orbit) Omin of dimension 4 and Bala–Carter label A1, and
the trivial orbit O0 of dimension 0 and label 0.

For the regular orbit Oreg we have V = Ui≥1 = Ui≥2 ≡ N , the unipotent radical
of the Borel B, and hence the character ψOreg

V coincides with the generic character
ψN : N(Q)\N(A)→ U(1) introduced in the previous section. Therefore, in this case the
coefficient (2.27) becomes

FOreg(χ, ψ
Oreg
V ; g) =

∫
N(Q)\N(A)

E(χ, ng)ψN (n)dn, (3.8)

and is identified with the generic part (i.e. pq 6= 0) of the abelian Fourier coefficient Wψ

in (3.2) since the stabilizer is trivial.
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For the minimal orbit Omin we have instead V = Ui≥2 = Z (and Ui≥1 6= Ui≥2), the center
[N,N ] of the Heisenberg group N , and therefore the character ψOmin

V is simply the generic
character ψZ : Z(Q)\Z(A) → U(1), and the Fourier coefficient (2.27) attached to the
minimal orbit becomes

FOmin(χ, ψOmin
V ; g) =

∫
Z(Q)\Z(A)

E(χ, zg)ψZ(z)dz. (3.9)

Hence, this is nothing but the non-abelian coefficient WψZ in (3.2).

We are however still missing the degenerate abelian Fourier coefficients associated with
characters ψp,0 and ψ0,q on N . As we shall see below in (3.12), these are in fact also
connected to the minimal orbit Omin. This is due to the fact that Ui≥1 6= Ui≥2 for the
minimal orbit and we must therefore take into account that one can have non-trivial
characters along Ui≥1/Ui≥2.

We will parametrize the element z ∈ Z with a parameter x ∈ A as shown below and
instead of considering a character ψV on V (Q)\V (A) we will work with the (non-trivial)
character e : Q\A→ U(1) with e(x) = e2πix defined in (2.6).

In this notation the Fourier coefficient attached to the minimal orbit (that is, the non-
abelian coefficient) can be expressed as

FOmin(χ,m′; g) =

∫
Q\A

E
(
χ,
(

1 x
1

1

)
g
)
e(m′x) dx (3.10)

where the charge m′ ∈ Q∗ characterizes the non-trivial ψOmin
V

6.

We note that, using the automorphic invariance of E(χ, g)

FOmin

(
χ,m′;

(−1
−1

−1

)
g
)

=

∫
Q\A

E
(
χ,
(

1 x
1

1

)(−1
−1

−1

)
g
)
e(m′x) dx

=

∫
Q\A

E
(
χ,
(−1

−1
−1

)−1( 1 x
1

1

)(−1
−1

−1

)
g
)
e(m′x) dx

=

∫
Q\A

E
(
χ,
(

1 x
1

1

)
g
)
e(m′x) dx

(3.11)

This means that we can connect the minimal orbit coefficient with the degenerate
6Henceforth, charges decorated with a prime will be assumed to be non-zero.
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Whittaker vector Wψm′,0 by∫
(Q\A)2

FOmin

(
χ,m′;

(−1
−1

−1

)(
1 u2

1 u3
1

)
g
)
d2u =

=

∫
(Q\A)3

E
(
χ,

(
1 x u′2

1 u3
1

)
g
)
e(m′x) dx d2u = Wψm′,0(χ, g) (3.12)

where we have made the substitution u2 + u3x→ u′2.

We note that the vanishing of FOmin implies the vanishing of the degenerate Whittaker
vectorWψm′,0 . When proving theorem II for SL(3) we will, for the minimal representation,
be able to prove the converse by expressing FOmin as a sum of Whittaker vectors
Wψm′,0 .

3.2 Expansion in nilpotent orbits and Theorem I for SL(3)

Similar to the way the Whittaker vector Wψm′,0 was related to FOmin above, one can
express all the Whittaker vectors in (3.2) in terms of orbit coefficients.

Wψm′,n′ (χ, g) = FOreg(χ,m′, n′; g)

Wψm′,0(χ, g) =

∫
(Q\A)2

FOmin

(
χ,m′;

(−1
−1

−1

)(
1 u2

1 u3
1

)
g
)
d2u

Wψ0,n′ (χ, g) =

∫
(Q\A)2

FOmin

(
χ, n′;

( −1
−1

−1

)(
1 u1 u2

1
1

)
g
)
d2u

Wψk′ (χ, g) = FOmin(χ, k′; g)

(3.13)

where the last Whittaker vector is over Z and k′ ∈ Q∗ characterizes ψZ . The constant
term E0(χ, g) is attached to the trivial orbit. Recall that primed charges are assumed to
be non-zero. From now on we will suppress the integration domain for brevity.

Proof of Theorem I for SL(3).

Together with (3.2), the rewriting of the Whittaker vectors in (3.13) proves Theorem I
for SL(3); we can expand E(χ, g) in terms of orbit coefficients.

By regrouping the summations in (3.2) we get that

E(χ, g) = FO0(χ, g) + FOmin(χ, g) + FOreg(χ, g) (3.14)
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with

FO0(χ, g) = E0(χ, g)

FOmin(χ, g) =
∑
m′ 6=0

(
Wψm′,0(χ, g) +Wψ0,m′ (χ, g)

)
+
∑
k′ 6=0

Wψk′ (χ, g)

FOreg(χ, g) =
∑

m′,n′ 6=0

Wψm′,n′ (χ, g)

(3.15)

where each FO is linearly determined by FO coefficients as seen in (3.13).

3.3 Example for Fourier coefficient on maximal parabolic subgroup

Other Fourier coefficients on general parabolic subgroups can be connected to the orbit
coefficients in a similar way. Let us consider, for example, the (maximal) parabolic
subgroup P with unipotent subgroup

U =
{(

1 u1 u2
1

1

)
: ui ∈ A

}
(3.16)

and the Fourier coefficient

FU (χ,m1,m2; g) =

∫
E
(
χ,
(

1 u1 u2
1

1

)
g
)
e(m1u1 +m2u2) d2u (3.17)

where we assume that m1,m2 ∈ Q not both zero.

As discussed at the end of section 2.1 we can use conjugation by elements in L(Q) to
transform the character into a simpler form

FU (χ,m1,m2; g) = FU (χ, 0,m′; lUg) =

∫
E
(
χ,
(

1 u1 u2
1

1

)
lUg
)
e(m′u2) d2u (3.18)

where 
lU =

(
1

1 −m1
m2
1

)
m′ = m2 if m2 6= 0

lU =
(−1

−1
−1

)
m′ = m1 if m2 = 0

(3.19)

The first case is seen by conjugating the prefactor of g with lU and making the variable
change u2 + m1

m2
u1 → u2 while the second case simply switches u1 and u2.7

Now we can connect this Fourier coefficient to the minimal orbit coefficient by

FU (χ, 0,m′; lUg) =

∫
FOmin

(
χ,m′;

(
1 u1

1
1

)
lUg
)
du1 . (3.20)

In the next section we will see how we can relate this Fourier coefficient with Whittaker
vectors on N .

7See (3.23) for a similar, more detailed derivation.
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3.4 The minimal representation and Theorem II for SL(3)

From section 2.4 we know that when E(χ, g) is in the minimal representation, the only
orbit coefficients that do not vanish are those attached to Omin or O0 (the trivial orbit).
This motivates us to take a closer look at FOmin , which also simplifies when in the minimal
representation. We illustrate this by expanding FOmin itself into different, conjugated,
orbit coefficients.

We Fourier expand the integrand in (3.10) as

E
(
χ,
(

1 x1
1

1

)
g
)
e(m′1x1) =

=
∑
m2∈Q

∫
E
(
χ,
(

1 x2
1

1

)(
1 x1

1
1

)
g
)
e(m′1x1) e(m2x2) dx2

=
∑
m2∈Q

∫
E
(
χ,
(

1 x2 x1
1

1

)
g
)
e(m′1x1 +m2x2) dx2

(3.21)

Similar to the parabolic Fourier coefficient example above in (3.17) we can conjugate the
prefactor of g with

l(m′1,m2) =

(
−1

−1
−1 m2/m′1

)
(3.22)

and use the automorphic invariance of E to get from (3.21) inserted into (3.10) that

FOmin(χ,m′1, g) =

=
∑
m2

∫
E
(
χ,
(

1 x2 x1
1

1

)
g
)
e(m′1x1 +m2x2) dx1dx2

=
∑
m2

∫
E
(
χ, l(m′1,m2)

(
1 x2 x1

1
1

)
l(m′1,m2)−1l(m′1,m2)g

)
e(m′1x1 +m2x2) d2x

=
∑
m2

∫
E

(
χ,

(
1 x1+m2x2/m′1 x2

1
1

)
l(m′1,m2)g

)
e(m′1x1 +m2x2) d2x

=
∑
m2

∫
E
(
χ,
(

1 x1 x2
1

1

)
l(m′1,m2)g

)
e(m′1x1) d2x

(3.23)

where, in the last step, the substitution x1 +m2x2/m
′
1 → x1 has been made.

We make a further Fourier expansion to obtain

FOmin(χ,m′1; g) =
∑
m2,m3

∫
E
(
χ,
(

1 x1 x2
1 x3

1

)
l(m′1,m2)g

)
e(m′1x1 +m3x3)d3x (3.24)

22



We note that for the terms with m3 6= 0 we can identify e(m′1x1 +m3x3) with a generic
character on N . Thus, these terms are attached to Oreg.

FOmin(χ,m′1; g) =

=
∑
m′3 6=0

∑
m2

FOreg(χ,m′1,m
′
3; l(m′1,m2)g) +

+
∑
m2

∫
E
(
χ,
(

1 x1 x2
1 x3

1

)
l(m′1,m2)g

)
e(m′1x1)d3x

=
∑
m2,m′3

FOreg(χ,m′1,m
′
3; l(m′1,m2)g) +

∑
m2

Wψm′1,0
(χ; l(m′1,m2)g)

(3.25)

We note that when summing l(m′1,m2) over m2 (keeping m′1 fixed) we might as well take
the sum of l(n) = l(1, n) over n ∈ Q.

Proof of Theorem II for SL(3).

If E(χ, g) is in the minimal representation (i.e. χ = χmin), all orbit coefficients attached
to nilpotent orbits outside the closure Omin (that is, those attached to Oreg) vanish using
the arguments of section 2.4.

The first sum in the expansion of FOmin in (3.25) then vanishes leaving only the maximally
degenerate Whittaker vectors.

FOmin(χmin,m
′
1, g) =

∑
n∈Q

Wψm′1,0
(χmin; l(n)g) l(n) =

(−1
−1

−1 n

)
(3.26)

These manipulations of the minimal orbit coefficient for SL(3) are inspired by Ginzburg
[52].

Thus, both the non-abelian Whittaker vector WψZ and the parabolic Fourier coefficient
FU in (3.17) depend only on these degenerate Whittaker vectors on N in the minimal
representation since they are directly given by FOmin .

Remark 3.1. The fact that all Fourier coefficients of the minimal Eisenstein series on
SL(3) are captured by maximally degenerate Whittaker vectors is compatible with the
earlier results in [20] (see section 3.4 there).

For the minimal representation, the full expansion of E(χ, g) in (3.2) can be expressed in
terms of FOmin (and FO0) and thus in maximally degenerate Whittaker vectors (and the
constant term). The Whittaker vectors that are not connected to FOmin vanish.

In this way we can understand an SL(3) variant of Miller and Sahi’s theorem explained in
section 2.3: in the minimal representation, Fourier coefficients that cannot be connected
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to FOmin vanish and those that are connected to FOmin are expressed by maximally
degenerate Whittaker vectors.

As discussed in the beginning of section 2.3, we will now show that, in the minimal
representation, the Fourier coefficient FU (χ,m1,m2; g) is an L(Q)-translate of a Whittaker
vector with character supported only on the root α1 corresponding to the parameter u1

and that in some cases they completely agree.

From (3.18)–(3.20) and (3.26)

FU (χmin,m1,m2; g) = FU (χmin, 0,m
′; lUg)

=

∫
FOmin

(
χmin,m

′;
(

1 u1
1

1

)
lUg
)
du1

=
∑
n

∫
Wψ(m′,0)

(
χmin;

(−1
−1

−1 n

)(
1 u1

1
1

)
lUg
)
du1

=
∑
n

∫
E
(
χmin,

(
1 x1+nu1 x2+u1

1 x3
1

)(−1
−1

−1 n

)
lUg
)
e(m′x1) d3x du1

=
∑
n

∫
E
(
χmin,

(
1 x1 x2

1 x3
1

)(−1
−1

−1 n

)
lUg
)
e(m′x1 −m′nu1) d3x du1

(3.27)

where we have made the substitutions x1 + nu1 → x1 and x2 + u1 → u1. Since the only
u1 dependence is in the character, the integral over u1 picks up only the constant term
n = 0.

Thus,

FU (χmin,m1,m2; g) = FU (χmin, 0,m
′; lUg)

=

∫
E
(
χmin,

(
1 x1 x2

1 x3
1

)(−1
−1

−1

)
lUg
)
e(m′x1) d3x

= Wψm′,0

(
χmin,

(−1
−1

−1

)
lU︸ ︷︷ ︸

l′U

g
) (3.28)

Hence, the extra integral over u1 picks up a single Whittaker vector from the sum in
FOmin and for the case m1 = m′1 6= 0 and m2 = 0 we have from (3.19) that

FU (χmin,m
′
1, 0; g) = Wψm′1,0

(χmin, g) . (3.29)

To summarize, in the case where only m1 is charged the Fourier coefficient completely
agrees with the Whittaker vector charged under the same simple root, while the more
general Fourier coefficient with m2 6= 0 is the same Whittaker vector but where the
argument is translated with the Levi element l′U .

Alternatively, one could obtain (3.28) by directly expanding FU (χ,m1,m2; g) in the same
way we expanded FOmin , but since we have expressed the full expansion (3.2) of E(χ, g)
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in terms of orbit coefficients (3.13) and since only the minimal orbit is non-vanishing for
the minimal repesentation, it is more efficient, in the long run, to expand only FOmin

once.

We will also see how this workflow of connecting Fourier coefficients to orbit coefficients and
then expanding the latter is easily used to obtain a generalization for the next-to-minimal
representation in the next section where we will treat SL(4).

4 SL(4) Eisenstein series

A general Eisenstein series E(χ, g) on G(A) = SL(4,A) can be expanded as

E(χ, g) =
∑
ψN

WN (χ, ψN ; g) +
∑
ψN′ 6=1

WN ′(χ, ψN ′ ; g) (4.1)

where N ′ = [N,N ]. Note that we have included the constant term E0(χ, g) = WN (χ, 1; g)
in the first sum, corresponding to the term ψN = 1.

For convenience we will specify the Whittaker vectors on N and N ′ with a list of charges
as follows

WN (χ,m1,m4,m6; g) =

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m1x1 +m4x4 +m6x6) d6x

WN ′(χ,m1,m2,m3; g) =

∫
E(χ,

(
1 x1 x2

1 x3
1

1

)
g)e(m1x1 +m2x2 +m3x3) d3x .

(4.2)

4.1 Fourier coefficients attached to nilpotent orbits

The nilpotent orbits of SL(n) can be identified with partitions of n written with
multiplicities in superscript, that is, (nk11 . . . nkmm ) where k1n1 + · · ·+ kmnm = n [41]. The
orbits for SL(4) are shown in table 1.

Recall that for a Fourier coefficient on V = N to be attached to the regular orbit (4), the
character ψN needs to be non-degenerate (generic) to be stabilized only by the trivial
C = 1.

We will now introduce a convenient, concrete description of the characters based on the
identification with u∗ discussed at the end of section 2.1.

A character ψU on a general unipotent group U of SL(n) can be described by a matrix
M in U(Q)/[U,U ](Q) with elements Mij by

ψU (u) = e(trMTu) = e
(∑

ij

Mijuij

)
(4.3)
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Table 1: Nilpotent SL(4) orbits with weighted Dynkin diagrams, dimensions, stabilizer type C and
V = Ui≥2 [41, 45]. The labelling of the orbit is done by both the partition and the corresponding
Bala–Carter label.

Orbit O Weighted Dynkin diagram dim(O) C V

(4) = A3
2 2 2 12 1

(
1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

)

(31) = A2
2 0 2 10 T1

(
1 ∗ ∗ ∗

1 ∗
1 ∗

1

)

(22) = 2A1
0 2 0 8 A1

(
1 ∗ ∗

1 ∗ ∗
1

1

)

(212) = A1
1 0 1 6 A1 × T1

(
1 ∗

1
1

1

)

(14) = 0 0 0 0 0 A3

(
1

1
1

1

)

We will call such a matrix M a character matrix and denote the corresponding Fourier
coefficient on U by FU (M ; g).

The L(Q)-conjugation of a character in (2.14) can then expressed as

FU (M ; g) = FU (M ′; lg) M ′ = (lT )−1MlT (4.4)

for l ∈ L(Q).

Since also lT ∈ L(Q) for SL(n) the character variety orbits discussed in section 2.1 can be
described as L(Q)-orbits of the character matrices M . We will also discuss G(Q)-orbits
of the character matrices in section 4.5.

An orbit coefficient of section 2.4 may be similarly described by a matrix M in
V (Q)/[V, V ](Q) and we are now interested in which such matrices give non-zero orbit
coefficients. According to section 2.4 the stabiliser C(ψOV ) ⊂ LO of ψOV must be of the
same type as that of O as listed in table 1.

IfM ∈ V (Q)/[V, V ](Q) is in the G-orbit O then CG(H) = LO and the type of CG(M)∩LO
is trivially the same as the stabilizer type associated to the orbit O as defined in section
2.2 and the Fourier coefficient with character ψOV described by M is attached to O.

The condition forM to be in the orbit O can be found by requiring that the corresponding
Lie algebra element X, where M = exp(X) can form a Jacobson-Morozov triple with H
given by the weighted Dynkin diagram.
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Example 4.1 (Conditions for F(22)).
From the conjugacy class of Jacobson-Morozov triples associated to our nilpotent orbit it
is possible to choose a representative of the neutral element H such that it belongs to our
Cartan subalgebra h [41].

As seen from the weighted Dynkin diagram in table 1 the Cartan element associated to
the nilpotent orbit (22) satisfies [H,Eα1 ] = 0, [H,Eα2 ] = 2Eα2 and [H,Eα3 ] = 0, which,
together with tracelessness gives H = diag(1, 1,−1,−1).

The conditions [H,X] = 2X and [H,Y ] = −2Y requires X and Y to be of the forms

X =

(
0 0 x1 x2
0 0 x3 x4
0 0 0 0
0 0 0 0

)
Y =

( 0 0 0 0
0 0 0 0
y1 y3 0 0
y2 y4 0 0

)
(4.5)

Then, one can show that the condition that there should exist a Y on this form such that
[X,Y ] = H, is equivalent to that the elements of X satisfy x1x4 − x2x3 6= 0. We can now
relate this condition to the elements of M by

M = exp(X) =

(
1 0 x1 x2
0 1 x3 x4
0 0 1 0
0 0 0 1

)
∈ V (Q)/[V, V ](Q) (4.6)

The remaining orbits can be treated similarly. The Fourier coefficients attached to the
different SL(4) orbits together with the conditions on the charges are shown in table
2.
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Table 2: SL(4) orbit coefficients with character matrix and conditions on the charges.

Fourier coefficient Character matrix

F(4)(χ,m1,m4,m6; g)

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m1x1 +m4x4 +m6x6) d6x

( 1 m1
1 m4

1 m6
1

)
m1m4m6 6= 0

F(31)(χ,m1,m2,m5,m6; g)

=

∫
E(χ,

( 1 x1 x2 x3
1 x5

1 x6
1

)
g)e(m1x1 +m2x2 +m5x5 +m6x6) d5x

( 1 m1 m2
1 m5

1 m6
1

)
m1m5 +m2m6 6= 0

F(22)(χ,m1,m2,m3,m4; g)

=

∫
E(χ,

(
1 x1 x2

1 x3 x4
1

1

)
g)e(m1x1 +m2x2 +m3x3 +m4x4) d4x

(
1 m1 m2

1 m3 m4
1

1

)
m1m4 −m2m3 6= 0

F(212)(χ,m1; g)

=

∫
E(χ,

(
1 x1

1
1

1

)
g)e(m1x1) dx1

(
1 m1

1
1

1

)
m1 6= 0

F(14)(χ; g)

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g) d6x = E0(χ, g)
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4.2 Expansion in nilpotent orbits and Theorem I for SL(4)

Similar to how the Whittaker vectors were related to orbit coefficients in section 3.2 for
SL(3), the Whittaker vectors for SL(4) can be expressed in terms of orbit coefficients as
shown in table 3. See appendix A for further details.

Table 3: SL(4) Whittaker vectors in terms of orbit coefficients. Primed charges are non-zero and the
undecorated charges are arbitrary.

Whittaker vector Orbit coefficient

WN (χ, 0, 0, 0; g) = F(14)(χ, g)

WN (χ,m′1, 0, 0; g) =

∫
F(212)(χ,m

′
1;

(
1

−1
1

1

)( 1 u2 u3
1 u4 u5

1 u6
1

)
g) d5u

WN (χ, 0,m′4, 0; g) =

∫
F(212)(χ,m

′
4;

(
1

1
1

1

)( 1 u1 u2 u3
1 u5

1 u6
1

)
g) d5u

WN (χ, 0, 0,m′6; g) =

∫
F(212)(χ,m

′
6;

(
1

1
−1

1

)(
1 u1 u2 u3

1 u4 u5
1

1

)
g) d5u

WN (χ,m′1,m
′
4, 0; g) =

∑
m

∫
F(31)(χ,m

′
1, 0,m

′
4,m;

(
1

1
−1

1

)(
1

1 u5
1 u6

1

)
g) d2u

WN (χ, 0,m′4,m
′
6; g) =

∑
m

∫
F(31)(χ,m,m

′
4, 0,m

′
6;

(
1

−1
1

1

)(
1 u1 u2

1
1

1

)
g) d2u

WN (χ,m′1, 0,m
′
6; g) =

∑
m

∫
F(22)(χ,−m′1, 0,m,m′6;

(−1
1

1
1

)(
1 u2

1 u4 u5
1

1

)
g) d3u

WN (χ,m′1,m
′
4,m

′
6; g) = F(4)(χ,m

′
1,m

′
4,m

′
6; g)

WN ′(χ,m
′
1, 0, 0; g) =

∫
F(212)(χ,m

′
1;

(
1

1
−1

1

)(
1 u2

1 u3
1

1

)
g) d2u

WN ′(χ, 0, 0,m
′
3; g) =

∫
F(212)(χ,m

′
3;

(
1

−1
1

1

)(
1 u1 u2

1
1

1

)
g) d2u

WN ′(χ,m
′
1, 0,m

′
3; g) =

∑
m

F(22)(χ,m
′
1, 0,m,m

′
3; g)

WN ′(χ,m1,m
′
2,m3; g) =

∫
F(212)(χ,m

′
2;

(
1 u1

1 u3
1

1

)( 1 m3/m′2
1

1 −m1/m′2
1

)
g) d2u
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Proof of Theorem I for SL(4).

Table 3 together with the expansion in (4.1) proves that we can expand E(χ, g) in terms
of orbit coefficients.

That is, regrouping (4.1), we have that

E(χ, g) = F(14)(χ, g) + F(212)(χ, g) + F(22)(χ, g) + F(31)(χ, g) + F(4)(χ, g) (4.7)

with

F(14)(χ, g) = E0(χ, g)

F(212)(χ, g) =
∑
m′ 6=0

(
WN (χ,m′, 0, 0, 0; g) +WN (χ, 0,m′, 0; g) +WN (χ, 0, 0,m′; g) +

+WN ′(χ,m
′, 0, 0; g) +WN ′(χ, 0, 0,m

′; g) +
∑
n,k

WN ′(χ, n,m
′, k; g)

)
F(22)(χ, g) =

∑
m′,n′ 6=0

(
WN (χ,m′, 0, n′; g) +WN ′(χ,m

′, 0, n′; g)
)

F(31)(χ, g) =
∑

m′,n′ 6=0

(
WN (χ,m′, n′, 0; g) +WN (χ, 0,m′, n′; g)

)
F(4)(χ, g) =

∑
m′,n′,k′ 6=0

WN (χ,m′, n′, k′; g)

(4.8)

where each FO is linearly determined by FO coefficients as seen in table 3.

4.3 The minimal representation and Theorem II for SL(4)

We are now ready to prove Theorem II for SL(4), but first let us rephrase it using the
language introduced in this section.

Theorem 4.1 (Reformulated Theorem II for SL(4)). Assume E(χ, g) is in the
minimal representation. Then the Fourier coefficients attached to the orbits O /∈ Omin,
that is, the orbits (4), (31) and (22), vanish and the Fourier coefficients attached to
Omin = (212) can then be expressed as a sum of maximally degenerate Whittaker vectors
on N .

For the proof we will need the following lemma. This step can be done in several ways
resulting in different sums of maximally degenerate Whittaker vectors on N . Below we
show a version resulting in Whittaker vectors supported only on α2. In appendix B
versions for α1 and α3 are shown as well.
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Lemma 4.1. For any representation, the F(212) coefficient can be expressed as

F(212)(χ,m
′
4; g)

=
∑

l∈L∗
(22)

∑
m′3 6=0

F(22)(χ, 0,m
′
3,m

′
4, 0; lg) +

∑
l∈L∗

(22)

∑
m1,m6

WN (χ,m1,m
′
4,m6; lg) (4.9)

where L∗(22) is a certain subset of L(22)(Q) defined below.

Proof. The integrand of the Fourier coefficient F(212) can be expanded further as

F(212)(χ,m
′
4; g)

=

∫
E(χ,

(
1 x4

1
1

1

)
g)e(m′4x4) dx4

=
∑

m2,m3,m5

∫
E(χ,

(
1 x5 x4

1 x3 x2
1

1

)
g)e(m2x2 +m3x3 +m′4x4 +m5x5) d4x

(4.10)

Conjugating and redefining the parameters in the prefactor of g (see (4.4)) we obtain∑
m2,m3,m5

∫
E(χ,

(
1 x2 x3

1 x4 x5
1

1

)( 1
1 m2/m′4

1
1 −m5/m′4

)
g)e(m′4x4 + (m3 − m2m5

m′4
)x3) d4x

(4.11)

When m′3 = m3 − m2m5
m′4
6= 0 the coefficient is attached to the orbit (22) as seen in table 2.

Let us rewrite the sum over m2 and m5 as a sum over elements in L(22) by defining the
subset

L∗(22) =

{(
1

1 a
1

1 b

)
: a, b ∈ Q

}
(4.12)

where we have noted that we can scale away the m′4 dependence.

We thus have

F(212)(χ,m
′
4; g)

=
∑

l∈L∗
(22)

∑
m′3 6=0

F(22)(χ, 0,m
′
3,m

′
4, 0; lg) +

∑
l∈L∗

(22)

∫
E(χ,

(
1 x2 x3

1 x4 x5
1

1

)
lg)e(m′4x4) d4x

(4.13)

The last term we expand further as∑
l∈L∗

(22)

∑
m1,m6

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
lg)e(m1x1 +m′4x4 +m6x6) d4x

=
∑

l∈L∗
(22)

∑
m1,m6

WN (χ,m1,m
′
4,m6; lg)

(4.14)

where we have made the substitutions x2 + x1x4 → x2 and x3 + x1x5 → x3.
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We note that, the last term can be connected to different orbit coefficients using table
3. That is, m1,m6 6= 0 is connected to the regular orbit (4), m1 6= 0,m6 = 0 and
m1 = 0,m6 6= 0 to the orbit (31), and m1 = m6 = 0 to the minimal orbit (212). In this
way we see how F(212) changes for different representations.

Proof of Theorem 4.1.

Using the arguments of our section 2.4 in the spirit of Matumoto and Mœglin-Waldspurger
we know that in the minimal representation the only non-vanishing orbit coefficients are
those attached to (212) and (14).

The (212) coefficient was further expanded into Fourier coefficients attached to orbits
outside the closure of (212) together with Whittaker vectors on N in (4.9) from lemma 4.1.

From table 3 we know which orbit coefficients the different Whittaker vectors are connected
with and using the arguments of section 2.4 we know that the only surviving part of
F(212) in the minimal representation is

F(212)(χmin,m
′; g) =

∑
l∈L∗

(22)

WN (χmin, 0,m
′, 0; lg) (4.15)

Thus, we have now proved that, in the minimal representation, E(χ, g) can be expressed
as a sum of maximally degenerate Whittaker vectors on N generalizing the results of
Miller-Sahi [29] for SL(4) (SL(3) was shown above).

We note that, in the minimal representation, we may express E(χ, g) in terms of F(212)

coefficients or maximally degenerate Whittaker vectors; the difference between them, as
seen in lemma 4.1, is higher orbit coefficients. We choose the latter since maximally
degenerate Whittaker vectors are easier to compute.

This is also the source of the ambiguity of the FO terms discussed in the introduction; we
may add higher orbit terms to FO which do not contribute when in the representation
associated to O.

4.4 The next-to-minimal representation and Theorem III for SL(4)

Before discussing the next-to-minimal representation, we note that it is only the sum∑
m F(22)(m

′
1, 0,m,m

′
4; g) that occurs in a full expansion according to table 3 and never

F(22) alone. It turns out that we need to consider this sum instead of separate coefficients
to be able to expand it in a similar way as for the (212) coefficient. Therefore we will

32



make the following definition

F[22](χ,m
′
1,m

′
4; g)

:=
∑
m

F(22)(m
′
1, 0,m,m

′
4; g) =

∫
E(χ,

(
1 x1 x2

1 x4
1

1

)
g)e(m′1x1 +m′4x4) d3x

(4.16)

which we will call a partially summed (22) coefficient or a Fourier coefficient attached to
(22) in a partially summed form. We will now show that an ordinary (22) coefficient can
be expressed in terms of a partially summed coefficient.

Lemma 4.2. All coefficients attached to the orbit (22) can be expressed on the form∑
m

∫
F(22)(m

′
1, 0,m,m

′
4;

(
1

1 u
1

1

)
lg) du (4.17)

for some l ∈ L(22)(Q).

Proof. For F(22)(m1,m2,m3,m4; g) it is required that m1m4 −m2m3 6= 0. This implies
that at least one of m1 and m3 is non-zero. Since m1 and m3 can be interchanged with
a Weyl reflection which is in L(22)(Q) we can assume, without loss of generality that
m1 = m′1 6= 0.

Using conjugation we then have that

F(22)(m
′
1,m2,m3,m4; g) = F(22)(m

′
1, 0, 0,m

′
4; lg) (4.18)

m′4 = m4 −
m2m3

m′1
6= 0 l =

(
1 m3/m′1

1
1

−m2/m′1 1

)
∈ L(22)(Q) (4.19)

This coefficient can be expressed as

F(22)(m
′
1, 0, 0,m

′
4; lg)

=
∑
m3

∫
F(22)(m

′
1, 0,m3,m

′
4;

(
1

1 u3
1

1

)
lg) du3

(4.20)

since the integral over u3 picks up only the m3 = 0 term.
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Remark 4.1. The sum of F(22) over l in (4.9) can be put in a partially summed form by

∑
m,n

F(22)(χ, 0,m
′
3,m

′
4, 0;

(
1

1 m/m′4
1

1 n/m′4

)
g)

=
∑
m,n

F(22)(χ, 0,m
′
3,m

′
4, 0;

( 1
−1 m/m′4

1
1

)(−1
1

1
1 n/m′4

)
g)

=
∑
m,n

F(22)(χ,−m′4, 0,m,m′3;

(
−1

1
1

1 n/m′4

)
g)

=
∑
n

F[22](χ,−m′4,m′3;

(
−1

1
1

1 n/m′4

)
g)

(4.21)

which will be useful later.

We are now ready to prove Theorem III which we will now rephrase using the language
introduced in this section.

Theorem 4.2 (Reformulated Theorem III). Assume E(χ, g) is in the next-to-
minimal representation. Then the Fourier coefficients attached to the orbits O /∈ Ontm,
that is, (4) and (31) vanish. The Fourier coefficients attached to Ontm = (22) can then be
expressed in terms of Whittaker vectors WN (χ,m, 0, n; g) with m,n 6= 0; more specifically,
the partially summed (22) coefficients defined in (4.16) can be expressed as a sum of such
Whittaker vectors at different translates of g.

The coefficients attached to (212) can, in the next-to-minimal representation, be expressed
as a sum of maximally degenerate Whittaker vectors together with a sum of degenerate
Whittaker vectors on the same form as for the partially summed (22) coefficients.

For the proof we will need the following lemma.

Lemma 4.3. For any representation, the partially summed (22) orbit coefficient can be
expressed as

F[22](χ,m
′
1,m

′
6; g)

=
∑

l∈L∗
(31)

∑
m′5 6=0

F(31)(−m′1, 0,m′5,m′6; lg) +
∑

l∈L∗
(31)

∑
m4

WN (χ,−m′1,m4,m
′
6; lg)

(4.22)

where L∗(31) is a certain subset of L(31)(Q) defined below.
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Proof. The partially summed (22) coefficient can be further expanded as

F[22](χ,m
′
1,m

′
6; g)

=

∫
E(χ,

(
1 x1 x3

1 x6
1

1

)
g)e(m′1x1 +m′6x6) d3x

=
∑
m2,m5

∫
E(χ,

( 1 x2 x1 x3
1 x6

1 x5
1

)
g)e(m′1x1 +m2x2 +m5x5 +m′6x6) d5x

=
∑
m2,m5

∫
E(χ,

( 1 x1 x2 x3
1 x5

1 x6
1

)(−1
1

1 −m2
m′1

1

)
g)e(−m′1x1 + (m5 +

m2m′6
m′1

)x5 +m′6x6) d5x

(4.23)

When m′5 = m5 +
m2m′6
m′1
6= 0 the coefficient is attached to the orbit (31).

We rewrite the sum over m2 as a sum over elements in L(31) by defining the subset

L∗(31) =

{(−1
1

1 a
1

)
: a ∈ Q

}
(4.24)

Expand the remaining term to obtain

F[22](χ,m
′
1,m

′
6; g)

=
∑

l∈L∗
(31)

∑
m′5 6=0

F(31)(−m′1, 0,m′5,m′6; lg) +

+
∑

l∈L∗
(31)

∫
E(χ,

( 1 x1 x2 x3
1 x5

1 x6
1

)
lg)e(−m′1x1 +m′6x6) d5x

=
∑

l∈L∗
(31)

∑
m′5 6=0

F(31)(−m′1, 0,m′5,m′6; lg) +
∑

l∈L∗
(31)

∑
m4

WN (χ,−m′1,m4,m
′
6; lg)

(4.25)

Again, using table 3 we see that the different Whittaker vectors in the last sum above
can be connected to different orbits. The terms with m4 6= 0 are connected to the regular
orbit (4), while m4 = 0 is connected to the next-to-minimal orbit (22).

Proof of Theorem 4.2.

From the arguments of section 2.4 we know that, in the next-to-minimal representation,
the only non-vanishing orbit coefficients are those attached to (22), (212) and (14).

Lemma 4.2 relates a general (22) coefficients to its partially summed form which, in turn,
can be expanded as in (4.22) using lemma 4.3.
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We know that if E(χ, g) is in the next-to-minimal representation the F(31) coefficient
vanishes as well as the generic Whittaker vectors with m4 6= 0 according to table 3.

The remaining part of F[22] is then

F[22](χntm,m
′
1,m

′
6; g) =

∑
l∈L∗

(31)

WN (χntm,−m′1, 0,m′6; lg) (4.26)

Similarly from lemma 4.1 and the remark after lemma 4.2 we have that

F(212)(χntm,m
′
4; g)

=
∑
m′3 6=0

∑
b

F[22](χntm,−m′4,m′3;

(−1
1

1
1 b

)
g) +

∑
a,b

WN (χntm, 0,m
′
4, 0;

(
1

1 a
1

1 b

)
g)

=
∑
m′3 6=0

∑
a,b

WN (χntm,m
′
4, 0,m

′
3;

(
1

1
1 a

1 b

)
g) +

∑
a,b

WN (χntm, 0,m
′
4, 0;

(
1

1 a
1

1 b

)
g)

(4.27)

4.5 Fourier coefficients on maximal parabolic subgroups

Now that we know how the orbit coefficients can be determined for the minimal and next-
to-minimal representations, let us see how we can use this for other Fourier coefficients as
well.

Theorem 4.3. Let Pα(A) = Lα(A)Uα(A) be the maximal parabolic subgroup of SL(4,A)
specified by the single simple root α in the Lie algebra of Uα. Let FψUα (g) be a Fourier
coefficient on Uα of some automorphic form ϕ on SL(4,A) with a non-trivial character
ψU described by a character matrix M in Uα(Q)/[Uα, Uα](Q). Then, M is either in the
orbit G(Q) ·MOmin and FψUα is completely determined by FOmin or M is in G(Q) ·MOntm

and FψUα is completely determined by FOntm where the latter is only possible for α = α2.

Proof. Let us start with α = α1 with Fourier coefficient Fα1(M ; g) where

Uα1(A) =

{(
1 u1 u2 u3

1
1

1

)
: ui ∈ A

}
and M =

(
1 m1 m2 m3

1
1

1

)
. (4.28)

Since ψU is assumed to be non-trivial at least one of the charges mi is non-zero. Without
loss of generality we can assume that m3 = m′3 6= 0 since otherwise the non-zero charge
can be moved to the position of m3 using a Weyl reflection w1 part of Lα1(Q).
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Then,

Fα1

(( 1 m1 m2 m′3
1

1
1

)
;w1g

)
= Fα1

(( 1 m′3
1

1
1

)
;

(
1

1 −m1/m′3
1 −m2/m′3

1

)
w1g

)
=

∫
E(χ,

(
1 u1 u2 u3

1
1

1

)( 1
1 −m1/m′3

1 −m2/m′3
1

)
w1g)e(m′3u3) d3u

=

∫
F(212)(χ,m

′
3;

(
1 u1 u2

1
1

1

)( 1
1 −m1/m′3

1 −m2/m′3
1

)
w1g) d2u

(4.29)

The fact that M could be conjugated to the form in the second line above with elements
in Lα1(Q) tells us that M is in the orbit G(Q) ·MOmin .

Similarly for α = α3, we have a Fourier coefficient Fα3(M ; g) with

Uα3(A) =

{( 1 u3
1 u2

1 u1
1

)
: ui ∈ A

}
and M =

( 1 m3
1 m2

1 m1
1

)
(4.30)

where, again, without loss of generality we may assume that m3 = m′3 6= 0 using w3 in
Lα3(Q). Thus,

Fα3

(( 1 m′3
1 m2

1 m1
1

)
;w3g

)
= Fα3

(( 1 m′3
1

1
1

)
;

(
1 m2/m′3 m1/m′3

1
1

1

)
w3g

)
=

∫
E(χ,

( 1 u3
1 u2

1 u1
1

)(
1 m2/m′3 m1/m′3

1
1

1

)
w3g)e(m′3u3) d3u

=

∫
F(212)(χ,m

′
3;

(
1

1 u2
1 u1

1

)(
1 m2/m′3 m1/m′3

1
1

1

)
w3g) d2u

(4.31)

We see that M is in the orbit G(Q) ·MOmin .

Finally, for α = α2 we have a Fourier coefficient Fα2(M ; g) with

Uα2(A) =

{(
1 u1 u2

1 u3 u4
1

1

)}
and M =

(
1 m1 m2

1 m3 m4
1

1

)
(4.32)

If m1m4 −m2m3 6= 0 the coefficient Fα2 is attached to Ontm according to table 2, see
also example 2.2. M is then trivially in G(Q) ·MOntm .

Let now m1m4 − m2m3 = 0. Since we have assumed that ψU is non-trivial at least
one of the charges is non-zero and using a Weyl reflection w2 in Lα2(Q) we can assume
m2 = m′2 6= 0.
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Fα2

(( 1 m1 m′2
1 m3 m4

1
1

)
;w2g

)

= Fα2

( 1 m′2
1 m3−m1m4

m′2
1

1

;

(
1 m4/m′2

1
1 −m1/m′2

1

)
w2g

)

= Fα2

(( 1 m′2
1

1
1

)
;

(
1 m4/m′2

1
1 −m1/m′2

1

)
w2g

)
=

∫
E(χ,

(
1 u1 u2

1 u3 u4
1

1

)( 1 m4/m′2
1

1 −m1/m′2
1

)
w2g)e(m′2u2) d4u

=

∫
F(212)(χ,m

′
2;

(
1 u1

1 u3 u4
1

1

)( 1 m4/m′2
1

1 −m1/m′2
1

)
w2g) d3u

(4.33)

Again, M is seen to be in the orbit G(Q) ·MOmin .

Let us draw some parallells to the proof of the main theorem in Miller-Sahi [29] discussed
at the end of section 2.3. The statement that ψU is L-conjugate to ψ|U as defined in
(2.24) is parallel to the statement that M is in the orbit G(Q) ·MOmin after noting that
all conjugations in the proof of theorem 4.3 were done with elements in Lα(Q). The
statement for M is generalizable to the next-to-minimal representation and the orbit
G(Q) ·MOntm .

Using theorem II and appendix B we find that FOmin can be expanded in terms of
maximally degenerate Whittaker vectors all charged on a single simple root α which can
be chosen to be either α1, α2 or α3 and thus to correspond to the root defined by ψ|U
and ψα in (2.24). This means that, in the minimal representation, Fourier coefficients on
maximal parabolic subgroups defined by a root α can be expressed in terms of Whittaker
vectors on N with support only on α.

We expect theorem 4.3 to generalise for general Fourier coefficients beyond the case of
maximal parabolic subgroups, that is, if M is in the orbit O, then the Fourier coefficient
F (M ; g) associated to M should be linearly determined by the orbit coefficient FO.

Before concluding this section, let us also briefly discuss the next-to-next-to-minimal
representation associated with the orbit O = (31). From table 3 we expect that the
F(31) coefficient can be expanded in terms of Whittaker vectors WN (χ,m′1,m

′
4, 0; g) and

WN (χ, 0,m′4,m
′
6; g) together with WN (χ,m′1,m

′
4,m

′
6; g) attached to the orbit (4) similar

to F(22) in lemma 4.3 and F(212) in lemma 4.1. This would mean that, in the next-to-
next-to-minimal representation, F(31) would be expressed in terms of Whittaker vectors
on N charged on two non-commuting roots (type A2).
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5 Spherical vectors for minimal representations of excep-
tional groups

So far in this paper all our results have been global, i.e. pertaining to automorphic
representations π of adelic groups G(A). In cases where π factorises according to

π = π∞ ⊗
⊗
p<∞

πp, (5.1)

one can sometimes obtain local results for spherical vectors f◦p of πp by factoring global
vectors in π. In this section we shall use this fact to show that our results can be used
to calculate local spherical Whittaker vectors associated with minimal automorphic
representations of the exceptional groups E6, E7, E8. In particular, we shall prove
Propositions 1.1, 1.2 and 1.3 stated in the introduction. These results constitute strong
support for our assertion that theorems I, II, III can be extended to all simply-laced,
simple Lie groups.

5.1 Spherical vectors

Consider the local principal series IndG(Qp)
B(Qp)χp for G(Qp) a split, reductive algebraic group

over Qp and B = NA its Borel subgroup. At the infinite place p =∞, G(Q∞) = G(R) is
a split real Lie group. Up to scalar multiple there is a unique spherical standard section
f◦p ∈ IndG(Qp)

B(Qp)χp defined by

f◦p (nak) = χp(na) = χp(a). (5.2)

The module IndG(Qp)
B(Qp)χp has an embedding

IndG(Qp)
B(Qp)χp ↪→ IndG(Qp)

N(Q) ψp, (5.3)

where ψp is a unitary character on the unipotent radical N(Qp). The image of the
principal series representation inside IndG(Qp)

N(Q) ψp is called a Whittaker model, denoted
by Whψp , and its elements are Whittaker vectors. Associated with f◦p there is a unique
spherical Whittaker vector defined by

W ◦ψp(χp, g) :=

∫
N(Qp)

χp(w0ng)ψp(n)dn, (5.4)

satisfying
W ◦ψp(χp, ngk) = ψp(n)W ◦ψp(χp, g). (5.5)

Formula (5.4) is the local analogue of (2.10) for generic characters ψp. When ψp is
degenerate, one has to start from the definition (2.7) and evaluate W ◦ψp(χp, g) using the
formalism developed in [15].
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For finite places p <∞ there is a general formula forW ◦ψp for generic ψp due to Shintani [53]
and Casselman-Shalika [44], famously given in terms of characters of the Langlands dual
group LG(C). In the special case of SL(2,Qp) this formula reads

W ◦ψp(s, v) = |v|−2s+2
p γp(mv

2)(1− p−2s)
1− p−2s+1|mv2|2s−1

p

1− p−2s+1
, (5.6)

with m ∈ Q×p parametrising the character ψp and we parametrized the torus A(Qp)
by (

v
v−1

)
, v ∈ Q∗p. (5.7)

At the real place p = ∞ no such general formula exists for arbitrary reductive groups,
although for SL(n,R), Stade [54] has found a formula in terms of nested integrals over
products of modified Bessel functions (generalising a famous formula of Bump and
Vinogradov-Takhtajan for SL(3,R)).

5.2 Minimal representations of exceptional groups

For induced representations IndG(Qp)
P (Qp)χP,p associated with other standard parabolic

subgroups P = LU much less is known about the associated spherical vectors. In
general one does not expect a multiplicity one theorem in this case, i.e. the space of
spherical vectors inside IndG(Qp)

U(Qp)ψU,p might be more than one-dimensional. However,
the situation improves for minimal representations, i.e. those with smallest non-trivial
Gelfand-Kirillov dimension. It is known that the minimal representation πmin,p can
always be realised as a sub-module inside IndG(Qp)

P (Qp)χP,p for P a maximal parabolic and
χP,p chosen suitably. When P is maximal, χP,p can be parametrised by a single complex
variable s and for some special value s = s0 one has

πmin ⊂ IndG(Qp)
P (Qp)χP,p(s)

∣∣∣
s=s0

↪→ IndG(Qp)
U(Qp)ψU,p. (5.8)

For the minimal representation one has again a multiplicity one theorem (see [37]) and so
there is a unique spherical vector F ◦U ∈ IndG(Qp)

U(Qp)ψU,p.

In what follows we shall discuss explicit examples of spherical vectors in different
realisations of minimal representations of E6, E7, E8. For later use we record the functional
dimensions of these minimal representations below:

GKdimπmin =


11, E6

17, E7

29, E8

(5.9)

By referring back to example 2.1 we note that the (Gelfand–Kirillov) dimension of
the minimal representation is half the (complex) dimension of the minimal nilpotent
orbit of E7(C). This is a general feature of the wavefront set and special unipotent
representations.
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5.2.1 Abelian realisation

Finite places (p <∞). For the exceptional groups E6, E7 the p-adic spherical vectors
in the minimal representation have been found by Savin and Woodbury in [27]. They use
a realisation of πmin,p embedded in IndG(Qp)

Q(Qp)ψQ,p where PQ = LQ is a maximal parabolic
subgroup such that the unipotent radical Q is abelian. These unipotent radicals are
associated with the following 3-gradings of the underlying Lie algebras

e6 = g−1 ⊕ g0 ⊕ g1 = 16⊕ (so(5, 5)⊕ 1)⊕ 16

e7 = g−1 ⊕ g0 ⊕ g1 = 27⊕ (e6 ⊕ 1)⊕ 27, (5.10)

where the g1-space is the Lie algebra of the unipotent radical Q. Savin and Woodbury
then give the following formula for the minimal spherical vectors:

e6 : F ◦Q,p(x) =
1− p2|x|−2

p

1− p2
,

e7 : F ◦Q,p(x) =
1− p3|x|−3

p

1− p3
. (5.11)

We have evaluated the spherical vector at the identity 1 ∈ A(Qp), and viewed F ◦ψQ,p as a
function F ◦Q,p(x) of the “charge” x ∈ Q× which characterises ψQ,p (along one direction in
[Q,Q]\Q = Q since Q is abelian).

Real place (p =∞). At the real place, the spherical vector in the same realisation of
the minimal representation of E6, E7 was obtained by Dvorsky and Sahi in [24] with the
result:

e6 : F ◦Q,∞(x) = x−1K1(x),

e7 : F ◦Q,∞(x) = x−3/2K3/2(x), (5.12)

where Kt denotes the modified Bessel function.

5.2.2 Heisenberg realisation

There is another model for the minimal representation where the parabolic PU = MU
is such that the unipotent radical U is non-abelian. This realisation is associated with
a 5-grading of the Lie algebra, and therefore also exists for e8 (which does not admit a
3-grading). Specifically, we have:

e6 = 1⊕ 20⊕ (sl(6,R)⊕ 1)⊕ 20⊕ 1

e7 = 1⊕ 32⊕ (so(6, 6)⊕ 1)⊕ 32⊕ 1,

e8 = 1⊕ 56⊕ (e7 ⊕ 1)⊕ 56⊕ 1. (5.13)
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The Lie algebra of U is the positive part of the grading, and so has the structure of a
Heisenberg algebra, thereby explaining the name “Heisenberg realisation”. In the physics
literature, this realisation is called the quasi-conformal realisation [55].

Finite places (p < ∞). At the finite places the minimal representation πmin,p is
realised as a submodule of the induced representation IndG(Qp)

U(Qp)χPU ,p(s) for some value
s = s0. The values of s0 can be found in [8]. Since U is a Heisenberg group, there
are Whittaker models associated with characters on U which are trivial on the centre
Z = [U,U ] as well as one-dimensional characters which are non-trivial on Z (but trivial
on Z\U). This is a consequence of the Stone-von-Neumann theorem. Denoting by ψZ,p a
unitary character on Z we thus have two different function spaces in which to embed the
minimal representation:

IndG(Qp)
U(Qp)ψU,p, or IndG(Qp)

Z(Qp)ψZ,p. (5.14)

One can roughly think of the elements of the former as “abelian spherical vectors” and
elements of the latter as “non-abelian spherical vectors”. This is due to the fact that the
latter will naturally depend on a variable along the centre of the Heisenberg group Z,
while the abelian vectors will only be functions on the abelianization Z\U .

Kazhdan and Polishchuk [26] have constructed non-abelian p-adic spherical vec-
tors for E6, E7, E8. These spherical vectors depend on a set of rational variables
(y, x0, x1, . . . , xn) ∈ Qn+2 where n = 9, 15, 27 for E6, E7, E8, respectively. The variable y
parametrizes the centre g2 of the Heisenberg algebra, while (x0, x1, . . . , xn) parametrize
a Lagrangian subspace of g1. We denote these p-adic non-abelian spherical vectors
by FnaU,p(y;x0, x1, . . . , xn). Kazhdan and Polishchuk show that at the locus x0 6= 0
one can consistently take an abelian limit y → 0, yielding abelian spherical vectors
FU,p(x0, x1, . . . , xn). Restricting further to the locus where all xi = 0, i = 1, . . . , n, one
can extract the following form of the spherical vectors from [26]:

e6 : FU,p(x0) = |x0|−2
p

1− p|x0|−1
p

1− p

e7 : FU,p(x0) = |x0|−3
p

1− p2|x0|−2
p

1− p2

e8 : FU,p(x0) = |x0|−5
p

1− p4|x0|−4
p

1− p4
. (5.15)

The further restriction to dependence only on x0 is in line with taking a representative
of the M -orbit on U on the single simple root space that defines the maximal parabolic
PU .

Real place (p = ∞). The real spherical vectors in the Heisenberg realisation of the
minimal representations of E6, E7, E8 were obtained by Kazhdan-Pioline-Waldron in [25].
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With similar manipulations as above one can extract the abelian limit of these spherical
vectors with the result:

e6 : FU,∞(x0) = x
−5/2
0 K1/2(x0)

e7 : FU,∞(x0) = x−4
0 K1(x0)

e8 : FU,∞(x0) = x−7
0 K2(x0). (5.16)

5.3 Relation with degenerate Whittaker vectors

The spherical vectors analyzed in the previous subsections should be viewed as Fourier
coefficients with respect to the relevant unipotent radicals. For example, suppose we
have an automorphic form ϕ in the minimal representation πmin of E6, E7, E8. We can
then consider its non-abelian Fourier expansion with respect to the Heisenberg unipotent
radical U . Schematically this expansion takes the form

ϕ =
∑
y∈Q×

(x0,x1,...,xn)∈Qn+1

[ ∏
p<∞

FnaU,p(y;x0, x1, . . . , xn)

]
FnaU,∞(y;x0, x1, . . . , xn)

+
∑

(x0,x1,...xn)∈Qn+1

[ ∏
p<∞

FU,p(x0, x1, . . . , xn)

]
FU,∞(x0, x1, . . . , xn), (5.17)

where we have suppressed the constant terms. The coefficients in this expansion
correspond precisely to the spherical vectors in the Heisenberg realisation of the minimal
representation.

Similarly, if we expand ϕ along the maximal abelian unipotent radical Q (now restricting
to E6, E7) the expansion instead takes the form

ϕ =
∑

(x0,x1,...,xr)∈Qr+1

[ ∏
p<∞

FQ,p(x0, x1, . . . , xr)

]
FQ,∞(x0, x1, . . . , xr), (5.18)

where r = 10, 16 for E6, E7, respectively. The Fourier coefficients are in this case purely
abelian and correspond to the spherical vectors in the Savin-Woodbury realisation of the
minimal representation.

Following the arguments of section 2.3 we expect that the abelian spherical vectors in the
minimal representation should be captured by certain maximally degenerate Whittaker
vectors along the maximal unipotent radical N (associated with the Borel subgroup).

As mentioned in the introduction, one can realise the minimal representation of G =
E6, E7, E8 using the maximal parabolic Eisenstein series associated with node 1 of the
Dynkin diagram in Bourbaki labelling, see [11] (following [8]). There is a one parameter
family E(s, g) of such Eisenstein series and for s = 3/2 the series belongs to the minimal
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representation. All maximally degenerate Whittaker vectors of E(3/2, g) were computed
in [15] and we now wish to compare those results with the minimal spherical vectors
discussed above.

5.3.1 Proof of Proposition 1.1

In this section we consider the case G = E6. Let us begin with the abelian case
corresponding to the Savin-Woodbury realisation of the minimal representation. The
unipotent radical Q contains a single simple root which is α1 in Bourbaki labelling. We
therefore expect the associated spherical vector to arise from a degenerate Whittaker
vector on N which is non-trivial only along this simple root. This is the Whittaker vector
labelled by the vector (m, 0, 0, 0, 0, 0) in Table A.1 of [15]. Here, m ∈ Q parametrises the
maximally degenerate unitary character ψα1 on N . From Table A.1 of [15] we then find
the following expression for the degenerate Whittaker vector along α1:

Wψα1
(3/2, 1) =

2

ξ(3)
|m|−1σ2(m)K1(m). (5.19)

As is well-known, the divisor sum σs(m) can be written as an Euler product for integer
m and s ∈ C according to

σs(m) =
∏
p<∞

1− ps|m|−sp
1− ps

. (5.20)

Inserting this into the expression for the Whittaker vector, we get

Wψα1
(3/2, 1) =

2

ξ(3)

[∏
p<∞

1− p2|m|−2
p

1− p2

]
|m|−1K1(m), (5.21)

where we recognise Savin and Woodbury’s p-adic spherical vector F ◦Q,p(m) inside the
brackets and the Dvorsky-Sahi real spherical vector F ◦Q,∞(m) outside the brackets. We
conclude that in this case the global degenerate Whittaker vector indeed reproduces the
spherical vector in the minimal representation at all local places.

Let us now also study the Heisenberg realisation. In this case the unipotent radical U
contains the simple root α2. Degenerate Whittaker vectors non-trivial along this root
correspond to (0,m, 0, 0, 0, 0) in Table A.1 of [15] and we find

Wψα2
(3/2, 1) =

2

ξ(3)
|m|−1/2σ1(m)K1/2(m)

=
2

ξ(3)

[∏
p<∞
|m|−2

p

1− p|m|−1
p

1− p

]
|m|−5/2K1/2(m), (5.22)

where in the second equality we used the fact that
∏
p<∞ |m|−2

p = |m|2. Comparing this
with eqs. (5.15) and (5.16) we see that p-adic and real spherical vectors are correctly
reproduced.

�
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5.3.2 Proof of Proposition 1.2

Let now G = E7. The abelian unipotent radical Q of E7 arises from the decomposition
with respect to node 7 in the Dynkin diagram. Hence the degenerate Whittaker vector
which is relevant in this case is Wψα7

; this is the case (0, 0, 0, 0, 0, 0,m) in Table A.2
of [15], yielding

Wψα7
(3/2, 1) =

2

ξ(4)
|m|−3/2σ3(m)K3/2(m) =

2

ξ(4)

[∏
p<∞

1− p3|m|−3
p

1− p3

]
|m|−3/2K3/2(m).

(5.23)
Inside the bracket we now recognise the Savin-Woodbury p-adic spherical vector F ◦Q,p(m)
in (5.11) and outside the brackets we recognise the Dvorsky-Sahi real spherical vector
F ◦Q,∞(m) in (5.12). Thus, also for the abelian realisation of the minimal representation of
E7 everything is correctly reproduced.

Now, let us turn to the Heisenberg realisation. The Heisenberg unipotent radical U of E7

corresponds to the decomposition with respect to node 1, and hence we should compare
with the degenerate Whittaker vector (m, 0, 0, 0, 0, 0, 0) in Table A.2 of [15]. From there
we find

Wψα1
(3/2, 1) =

2

ξ(3)
|m|−1σ2(m)K1(m) =

2

ξ(3)

[∏
p<∞
|m|−3

p

1− p2|m|−2
p

1− p2

]
|m|−4K1(m).

(5.24)
Again we see that the spherical vectors in (5.15) and (5.16) are correctly reproduced.

�

5.3.3 Proof of Proposition 1.3

Finally we consider the case G = E8. The group E8 does not exhibit a 3-grading so the
only realisation of the minimal representation is the one associated with the 5-grading
(5.13). The unipotent radical U is a 57-dimensional Heisenberg group which contains the
simple root α8. Thus the relevant degenerate Whittaker vector is (0, 0, 0, 0, 0, 0, 0,m) in
Table A.3 of [15]. This yields

Wψα8
(3/2, 1) =

2ξ(4)

ξ(3)ξ(5)
|m|−2σ4(m)K2(m)

=
2ξ(4)

ξ(3)ξ(5)

[∏
p<∞
|m|−5

p

1− p4|m|−4
p

1− p4

]
|m|−7K2(m). (5.25)

As before this matches nicely with (5.15) and (5.16).

�
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A SL(4) Whittaker vectors in terms of orbit coefficients

The constant term and the generic Whittaker vectors on N are directly attached to the
trivial and regular orbits respectively.

Maximally degenerate Whittaker vectors on N∫
F(212)(χ,m

′
1;

(
1

−1
1

1

)( 1 u2 u3
1 u4 u5

1 u6
1

)
g) d5u

=

∫
E(χ,

(
1 x1

1
1

1

)( 1 u2 u3
1 u4 u5

1 u6
1

)
g)e(m′1x1) dx1 d

5u

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m′1x1) d6x = WN (χ,m′1, 0, 0; g)

(A.1)

where x2 = u2 + u4x1, x3 = u3 + u5x1 and the rest xi = ui.

∫
F(212)(χ,m

′
4;

(
1

1
1

1

)( 1 u1 u2 u3
1 u5

1 u6
1

)
g) d5u

=

∫
E(χ,

(
1

1 x4
1

1

)( 1 u1 u2 u3
1 u5

1 u6
1

)
g)e(m′4x4) dx4 d

5u

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m′4x4) d6x = WN (χ, 0,m′4, 0; g)

(A.2)

where x5 = u5 + u6x4 and the rest xi = ui.

∫
F(212)(χ,m

′
6;

(
1

1
−1

1

)(
1 u1 u2 u3

1 u4 u5
1

1

)
g) d5u

=

∫
E(χ,

(
1

1
1 x6

1

)(
1 u1 u2 u3

1 u4 u5
1

1

)
g)e(m′6x6) dx6 d

5u

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m′6x6) d6x = WN (χ, 0, 0,m′6; g)

(A.3)

where xi = ui.
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Remaining degenerate Whittaker vectors on N∑
m

∫
F(31)(χ,m

′
1, 0,m

′
4,m;

(
1

1
−1

1

)(
1

1 u5
1 u6

1

)
g) d2u

=
∑
m

∫
E(χ,

( 1 x1 x3 x2
1 x4

1 x0
1

)(
1

1
−1

1

)(
1

1 u5
1 u6

1

)
g)e(m′1x1 +m′4x4 +mx0) d2u d5x

=

∫
E(χ,

(
1 x1 x3 x2

1 x4
1

1

)(
1

1
−1

1

)(
1

1 u5
1 u6

1

)
g)e(m′1x1 +m′4x4) d2u d4x

=

∫
E(χ,

(
1 x1 x2 −x3

1 x4
1

1

)(
1

1 u5
1 u6

1

)
g)e(m′1x1 +m′4x4) d2u d4x

=

∫
E(χ,

(
1 −x3

1
1

1

)(
1 x1 x2

1 x4
1

1

)(
1

1 u5
1 u6

1

)
g)e(m′1x1 +m′4x4) d2u d4x

(A.4)

Since the integrand is invariant under discrete shifts in x3 we can make the substitution
x3 → −x3 without introducing an overall minus sign if we keep the integral domain Q\A
unchanged. Thus, the above expression becomes∫

E(χ,

(
1 x3

1
1

1

)(
1 x1 x2

1 x4
1

1

)(
1

1 u5
1 u6

1

)
g)e(m′1x1 +m′4x4) d2u d4x

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m′1x1 +m′4x4) d2u d4x = WN (χ,m′1,m

′
4, 0; g)

(A.5)

where we have made the substitutions x3 + u5x1 + u6x2 → x3, u5 + u6x4 → x5 and
u6 → x6.∑
m

∫
F(31)(χ,m,m

′
4, 0,m

′
6;

(
1

−1
1

1

)(
1 u1 u2

1
1

1

)
g) d2u

=
∑
m

∫
E(χ,

( 1 x0 x4 x5
1 x3

1 x6
1

)(
1

−1
1

1

)(
1 u1 u2

1
1

1

)
g)e(mx0 +m′4x4 +m′6x6) d2u d5x

=

∫
E(χ,

( 1 x4 x5
1 x3

1 x6
1

)(
1

−1
1

1

)(
1 u1 u2

1
1

1

)
g)e(m′4x4 +m′6x6) d2u d4x

=

∫
E(χ,

( 1 −x3
1 x4 x5

1 x6
1

)(
1 u1 u2

1
1

1

)
g)e(m′4x4 +m′6x6) d2u d4x

=

∫
E(χ,

( 1 x3
1 x4 x5

1 x6
1

)(
1 u1 u2

1
1

1

)
g)e(m′4x4 +m′6x6) d2u d4x

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m′4x4 +m′6x6) d2u d4x = WN (χ, 0,m′4,m

′
6; g)

(A.6)

where x1 = u1 and x2 = u2.
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∑
m

∫
F(22)(χ,−m′1, 0,m,m′6;

(−1
1

1
1

)(
1 u2

1 u4 u5
1

1

)
g) d3u

=
∑
m

∫
E(χ,

(
1 x1 x3

1 x0 x6
1

1

)(−1
1

1
1

)(
1 u2

1 u4 u5
1

1

)
g)e(mx0 −m′1x1 +m′6x6) d3u d4x

=

∫
E(χ,

(
1 x1 x3

1 x6
1

1

)(−1
1

1
1

)(
1 u2

1 u4 u5
1

1

)
g)e(−m′1x1 +m′6x6) d3u d3x

=

∫
E(χ,

(
1 −x1 −x3

1
1 x6

1

)(
1 u2

1 u4 u5
1

1

)
g)e(−m′1x1 +m′6x6) d3u d3x

=

∫
E(χ,

(
1 x1 x3

1
1 x6

1

)(
1 u2

1 u4 u5
1

1

)
g)e(m′1x1 +m′6x6) d3u d3x

=

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
g)e(m′1x1 +m′6x6) d6x = WN (χ,m′1, 0,m

′
6; g)

(A.7)

where we have made the substitution u2 + u4x1 → x2, x3 + u5x1 → x3 and the rest
ui → xi.

Whittaker vectors on N ′∫
F(212)(χ,m

′
1;

(
1

1
−1

1

)(
1 u2

1 u3
1

1

)
g) d2u

=

∫
E(χ,

(
1 x1

1
1

1

)(
1 u2

1 u3
1

1

)
g)e(m′1x1) d2u dx1

=

∫
E(χ,

(
1 x1 x2

1 x3
1

1

)
g)e(m′1x1) d3x = WN ′(χ,m

′
1, 0, 0; g)

(A.8)

∫
F(212)(χ,m

′
3;

(
1

−1
1

1

)(
1 u1 u2

1
1

1

)
g) d2u

=

∫
E(χ,

(
1

1 x3
1

1

)(
1 u1 u2

1
1

1

)
g)e(m′3x3) d2u dx1

=

∫
E(χ,

(
1 x1 x2

1 x3
1

1

)
g)e(m′3x3) d3x = WN ′(χ, 0, 0,m

′
3; g)

(A.9)
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∑
m

F(22)(χ,m
′
1, 0,m,m

′
3; g)

=
∑
m

∫
E(χ,

(
1 x1 x2

1 x0 x3
1

1

)
g)e(mx0 +m′1x1 +m′3x3) d4x

=

∫
E(χ,

(
1 x1 x2

1 x3
1

1

)
g)e(m′1x1 +m′3x3) d3x = WN ′(χ,m

′
1, 0,m

′
3; g)

(A.10)

∫
F(212)(χ,m

′
2;

(
1 u1

1 u3
1

1

)( 1 m3/m′2
1

1 −m1/m′2
1

)
g) d2u

=

∫
E(χ,

(
1 u1 x2

1 u3
1

1

)( 1 m3/m′2
1

1 −m1/m′2
1

)
g)e(m′2x2) dx2 d

2u

=

∫
E(χ,

(
1 u1 x2−m1

m′2
u1−m3

m′2
u3

1 u3
1

1

)
g)e(m′2x2) dx2 d

2u

=

∫
E(χ,

(
1 u1 u2

1 u3
1

1

)
g)e(m1u1 +m′2u2 +m3u3) d3u

= WN ′(χ,m1,m
′
2,m3; g)

(A.11)

B Alternative expansions for F(212)

Instead of expanding F(212) such that it is a sum of maximally degenerate Whittaker
vectors charged on α2 in the minimal representation, we will now show that it is possible to
let the maximally degenerate Whittaker vectors be charged only on α1 or α3 instead.

The expansion made in the proof of theorem 4.1 resembles more the proof in theorem 4.2
than those presented here and was thus suited better as an introduction before the latter
theorem. On the other hand the expansion carried out here is more easily generalised to
SL(n).

Let

l1 =

(
1

1
1 −m2/m′1

−1 m3/m′1

)
l2 =

( 1
1

1
−m5/m′4 1

)
w =

(
1

1
1

−1

)
(B.1)

where we recall that when summing over such l1 and l2 we may do a rescaling of the
charges and consider them independent of m′1 and m′4.
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Then,

F(212)(χ,m
′
1; g)

=
∑
m2,m3

∫
E(χ,

(
1 x3 x2 x1

1
1

1

)
g)e(m′1x1 +m2x2 +m3x3) d3x

=
∑
l1

∫
E(χ,

(
1 x1 x2 x3

1
1

1

)
l1g)e(m′1x1) d3x

=
∑
l1

m4,m5

∫
E(χ,

(
1 x1 x2 x3

1 x4 x5
1

1

)
l1g)e(m′1x1 +m4x4 +m5x5) d5x

=
∑
l1,l2
m′4

∫
E(χ,

(
1 x1 x2 x3

1 x4 x5
1

1

)
l2l1g)e(m′1x1 +m′4x4) d5x+

+
∑
l1
m5

∫
E(χ,

(
1 x1 x2 x3

1 x4 x5
1

1

)
wl1g)e(m′1x1 +m5x4) d5x

=
∑
l1,l2
m′4,m6

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
l2l1g)e(m′1x1 +m′4x4 +m6x6) d6x+

+
∑
l1

m5,m6

∫
E(χ,

( 1 x1 x2 x3
1 x4 x5

1 x6
1

)
wl1g)e(m′1x1 +m5x4 +m6x6) d6x

(B.2)

In the minimal representation only the maximally degenerate Whittaker vector of the
last term survives. Hence,

F(212)(χmin,m
′
1; g) =

∑
a,b

WN (χmin,m
′
1, 0, 0;

(
1

1
−1 a
−1 b

)
g) (B.3)

using table 3.

A similar expansion can be done for α3 yielding

F(212)(χmin,m
′
6; g) =

∑
a,b

WN (χmin, 0, 0,m
′
6;

( −1
−1

1 a b
1

)
g) (B.4)
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