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1 Introduction

In recent years, we have witnessed numerous fruitful interactions between number the-

ory and particle physics. A particularly rich domain of intersection are iterated integrals,

which prominently appear in scattering amplitudes in field theories and string theories.

For a large class of Feynman and worldsheet integrals, multiple polylogarithms were rec-

ognized as a suitable language to cast results into a manageable form, see e.g. refs. [1–4].

In a variety of cases, the polylogarithms’ Hopf algebra structure [5–8] paved the way to-

wards efficient manipulations and the recognition of the simplicity hidden in the resulting

scattering amplitudes.

However, a growing list of iterated integrals from various field and string theories

implies that multiple polylogarithms do not mark the end of the rope in terms of transcen-

dental functions appearing in scattering amplitudes. For example, multiple polylogarithms

fail to capture the two-loop sunset integral with non-zero masses [9–11], an eight-loop graph

in φ4 theory [12, 13] as well as the ten-point two-loop N3MHV amplitude in N = 4 super-

Yang-Mills (sYM) theory [14]. The sunset integral and its generalization have recently

been expressed in terms of elliptic di- and trilogarithms [10, 11, 15], whose connection to

the language suggested below remains to be worked out. Considering in addition their

appearance in one-loop open-string amplitudes, the situation calls for a systematic study

and classification of the entire family of elliptic iterated integrals.1

In the present article, we propose a framework for elliptic iterated integrals (or eIIs for

short) and the associated periods, elliptic multiple zeta values (eMZVs). The framework

aims at expressing scattering amplitudes in a variety of theories, and we here apply the

techniques to one-loop amplitudes in open string theory as a first example. The language

employed in the present article is primarily inspired by refs. [16, 17], while refs. [18–22]

contain further information on the mathematical background.

As opposed to multiple polylogarithms, which can be defined using just one type

of differential form, elliptic iterated integrals require an infinite tower thereof [16]. These

1The elliptic iterated integrals discussed in this work shall not be confused with elliptic integrals deter-

mining the arc length of an ellipse.
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differential forms are based on a certain non-holomorphic extension of a classical Eisenstein-

Kronecker series [16, 23], and we show how they can be used to naturally characterize and

label elliptic iterated integrals as well as eMZVs. We investigate their relations, which

results in constructive algorithms to perform amplitude computations.

In the same way as multiple zeta values (MZVs) arise from multiple polylogarithms

at unit argument, the evaluation of iterated integrals along a certain path of an elliptic

curve leads to structurally interesting periods, the eMZVs [17] mentioned above. These are

certain analogues of the standard MZVs, which are related to elliptic associators [24] in

the same way as MZVs are related to the Drinfeld associator [25–27]. However, the precise

connection is beyond the scope of the current article. Given their ubiquitous appearance

in the subsequent string amplitude computation, we will investigate eMZVs and discuss

some of their properties as well as their Q-linear relations.

The description of string scattering amplitudes via punctured Riemann surfaces at vari-

ous genera directly leads to iterated integrals at the corresponding loop order. In particular,

the disk integrals in open-string2 tree-level amplitudes closely resemble multiple polyloga-

rithms. Initially addressed via hypergeometric functions in refs. [34, 35], the α′-expansion

of disk amplitudes finally proved to be a rich laboratory for MZVs. Their pattern of appear-

ance has been understood in terms of mathematical structures such as motivic MZVs [7, 29]

and the Drinfeld associator [36–38]. Explicit expressions with any number of open-string

states can be determined using polylogarithm manipulations [3] or a matrix representation

of the associator [38]. A variety of examples are available for download at the website [39].

The calculation of one-loop open-string amplitudes involves worldsheet integrals of

cylinder and Möbius-strip topology [40]. In the current article, we focus on iterated in-

tegrals over a single cylinder boundary and leave the other topologies for later. Recog-

nizing the cylinder as a genus-one surface with boundaries, it is not surprising that the

α′-expansion of one-loop open-string amplitudes is a natural, simple and representative

framework for the application of eIIs and eMZVs. We will explicitly perform calculations

at four and five points for low orders in α′ in order to demonstrate their usefulness. Higher

multiplicities and orders in α′ are argued to yield eMZVs and Eisenstein series on general

grounds. In summary, one-loop string amplitudes turn out to be an ideal testing ground

for the study of eMZVs, in particular because they appear in a more digestible context as

compared to their instances in field theory.

This article is organized as follows: in section 2, we start by reviewing multiple poly-

logarithms and show, how their structure suggests a generalization to genus one. The

appropriate differential forms and doubly-periodic functions are discussed and put into a

larger mathematical context in section 3. Section 4 is devoted to the application of eIIs and

eMZVs to the four-point one-loop amplitude of the open string, while section 5 contains a

discussion of its multi-particle generalization.

2In comparison to open-string amplitudes at tree-level, MZVs occurring in closed-string tree ampli-

tudes [28, 29] are constrained by the single-valued projection, see [30, 31] for mathematics and [32, 33] for

physics literature.
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2 Iterated integrals on an elliptic curve

After recalling the definition of multiple polylogarithms as well as several conventions, we

will introduce elliptic iterated integrals (eIIs) as their genus-one analogues. While we will

limit ourselves to basic definitions and calculational tools in the current section, a thorough

introduction to the mathematical background of doubly-periodic functions will be provided

in section 3.

2.1 Multiple polylogarithms

Multiple polylogarithms are defined by3

G(a1, a2, . . . , an; z) ≡

∫ z

0

dt

t− a1
G(a2, . . . , an; t) (2.1)

where G(; z) ≡ 1 apart from G(~a; 0) = G(; 0) = 0. Below, we will refer to ~a = (a1, . . . , an)

as the label and call z the argument of the polylogarithm G. Powers of ordinary logarithms

can be conveniently represented in terms of multiple polylogarithms via

G(0, 0, . . . , 0
︸ ︷︷ ︸

n

; z) =
1

n!
lnn z, G(1, 1 . . . , 1

︸ ︷︷ ︸

n

; z) =
1

n!
lnn(1− z) and

G(a, a, . . . , a
︸ ︷︷ ︸

n

; z) =
1

n!
lnn

(

1−
z

a

)

. (2.2)

In addition, multiple polylogarithms satisfy the scaling property

G(ka1, ka2, . . . , kan; kz) = G(a1, a2, . . . , an; z) , k 6= 0 , an 6= 0 , z 6= 0 , (2.3)

whose interplay with a general shuffle regularization will be discussed below eq. (2.9). An-

other property is referred to as the Hölder convolution [44]: for a1 6= 1 and an 6= 0 one finds

G(a1, . . . , an; 1) =
n∑

k=0

(−1)k G

(

1− ak, . . . , 1− a1; 1−
1

p

)

G

(

ak+1, . . . , an;
1

p

)

(2.4)

for all p ∈ C \ {0}. Multiple polylogarithms constitute a graded commutative algebra with

the shuffle product [5–8]

G(a1, . . . , ar; z)G(ar+1, . . . , ar+s; z) =
∑

σ∈Σ(r,s)

G(aσ(1), . . . , aσ(r+s); z) (2.5)

≡ G
(
(a1, . . . , ar)� (ar+1, . . . , ar+s); z

)
,

where the shuffle Σ(r, s) is the subset of the permutation group Sr+s acting on

{a1, . . . , ar+s} which leaves the order of the elements of the individual tuples {a1, . . . , ar}

and {ar+1, . . . , ar+s} unchanged. The unit element for shuffling is G(; z)=1.

3The conventions for multiple polylogarithms used in this paper agree with those in refs. [5, 29, 41].

Other aspects of multiple polylogarithms are discussed for example in references [42, 43].
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MZVs are special cases of multiple polylogarithms with labels ai ∈ {0, 1} evaluated at

argument z = 1:

ζn1,...,nr = (−1)rG(0, 0, . . . , 0, 1
︸ ︷︷ ︸

nr

, . . . , 0, 0, . . . , 0, 1
︸ ︷︷ ︸

n1

; 1) , (2.6)

where the numbers below the underbraces denote the number of entries.4

From the definition (2.1) it is obvious that multiple polylogarithms diverge when either

a1 = z or an = 0. As discussed in refs. [5, 6], the general idea for regularizing the integrals

is to slightly move the endpoints of the integration by a small parameter and to afterwards

expand in this parameter. The regularized value of the polylogarithm is defined to be the

piece independent of the regularization parameter, which can be extracted using shuffle

relations. For the case where a1 = z the regularized value can be obtained via

G(z, a2, . . . , an; z) = G(z; z)G(a2, . . . , an; z)−G(a2, z, a3, . . . , an; z)

−G(a2, a3, z, a4, . . . , an; z)− . . .−G(a2, . . . , an, z; z) (2.7)

where one defines

G(z, . . . , z; z) = 0 . (2.8)

The situation, where an = 0 can be dealt with accordingly

G(a1, a2, . . . , an−1, 0; z) = G(a1, a2, . . . , an−1; z)G(0; z)−G(a1, a2, . . . , 0, an−1; z)

−G(a1, a2, . . . , 0, an−2, an−1; z)− . . .−G(0, a2, . . . , an−1; z) , (2.9)

where now, however, G(0; z) = ln(z) 6= 0. Although the above rewriting keeps the pure

logarithms explicit, it will nevertheless prove convenient in order to bypass subtleties of the

identity eq. (2.11) below. Multiple polylogarithms are understood to be shuffle-regularized

in a way compatible with eq. (2.3).

Regularization of multiple polylogarithms can be straightforwardly translated to

MZVs. All MZVs ζn1,...,nr with nr = 1 are defined by their shuffled version eq. (2.7).

Employing eq. (2.3), one finds G(1, . . . , 1; 1) = 0 from eq. (2.8) immediately.

2.1.1 Removing the argument z from the label

Starting from an arbitrary iterated integral, the corresponding polylogarithm can not al-

ways be determined straightforwardly: whenever the argument appears in the label ~a, an

integration using eq. (2.1) is impossible. Solving this problem requires a rewriting of the

multiple polylogarithm

G({0, a1, a2, . . . , an, z}; z) (2.10)

in terms of polylogarithms whose labels are free of the argument. In the above equation

{a, b, . . .} refers to a word built from the letters a, b, . . . . Polylogarithms of the special

form G(~a, z) with ai ∈ {0, z} can be rescaled to yield MZVs using eq. (2.3) provided that

the last entry of ~a is different from zero. In a generic situation, the relation [3]

G(a1, . . . , ai−1, z, ai+1, . . . , an; z) = G(ai−1, a1, . . . , ai−1, ẑ, ai+1, . . . , an; z) (2.11a)

4Our convention for MZVs agrees with refs. [5, 29, 45].
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−G(ai+1, a1, . . . , ai−1, ẑ, ai+1, . . . , an; z) (2.11b)

−

∫ z

0

dt

t− ai−1
G(a1, . . . , âi−1, t, ai+1, . . . , an; t) (2.11c)

+

∫ z

0

dt

t−ai+1
G(a1, . . . , ai−1, t, âi+1, . . . , an; t) (2.11d)

+

∫ z

0

dt

t− a1
G(a2, . . . , ai−1, t, ai+1, . . . , an; t) (2.11e)

allows to recursively remove the argument z from the labels of a multiple polylogarithm, be-

cause the expressions on the right-hand side either have shorter labels or are free of z. A hat

denotes the omission of the respective label, and it is assumed that at least one aj 6= 0. The

availability of a recursive formula like eq. (2.11) is intrinsic to the moduli space of Riemann

spheres with marked points [46]. An explicit discussion including algorithms is ref. [47].

As an identity similar to eq. (2.11) will be crucial in deriving relations for eIIs in sub-

section 2.2 below, let us briefly comment on the application and generalization of eq. (2.11):

if the argument z appears multiple times in the label ~a, the first four terms on the right

hand side (terms (2.11a) to (2.11d)) have to be evaluated for each occurrence of z. The

reduction will lead to expressions where the labels of the polylogarithms on the right hand

side are independent of z or shorter, which is ensured by cancellations between neighboring

terms. If an = z, the term (2.11d) has to be dropped and the term (2.11b) needs to be

altered to −G(0, a1, . . . , ai−1, ẑ; z).

Multiple polylogarithms with a1 = z require special attention as well. However, in

order to keep the exposition simple, we will assume that those polylogarithms have already

been taken care of by applying the shuffle regularization rule eq. (2.7).

The following examples (with aj 6= z) are typical relations derived from the above

identity:

G(a1, 0, z; z)=G(0, 0, a1; z)−G(0, a1, a1; z)−G(a1; z)ζ2

G(a1, z, a2; z)=G(a1, a1, a2; z)−G(a2, 0, a1; z)+G(a2, a1, a1; z)−G(a2, a1, a2; z) . (2.12)

Proving eq. (2.11) is straightforward. It relies on writing the polylogarithm on the left

hand side as the integral over its total derivative and using partial fraction as well as

relations (A.1) to (A.3) in appendix A. Finally, let us note that eq. (2.11) preserves shuffle

regularization. The complete proof of eq. (2.11) as well as numerous examples are contained

in section 5 of ref. [3]. A collection of identities between MZVs can be found in the multiple

zeta value data mine [48].

2.2 Iterated integrals on an elliptic curve

In this subsection we are going to take a first look at eIIs. In the following exposition, we

will omit several mathematical details, which will be discussed in section 3 below. As eIIs

will turn out to be a generalization of the multiple polylogarithms discussed above, we will

follow the structure of the previous subsection closely.

In eq. (2.1), the differential dt is weighted by

1

t− ai
, (2.13)

– 5 –
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which yields iterated integrals on the genus-zero curve C \ {a1, . . . , an}. Here, we propose

a generalization to eIIs. An infinite number of weighting functions f (n) of weights n =

0, 1, 2, . . . is necessary, whose appearance will be justified and whose precise definition will

be provided in section 3. They lead to eIIs in the same way as does eq. (2.13) at genus zero.

Accordingly, the functions f (n)(z, τ) are doubly periodic with respect to the two cycles of

the torus, with modular parameter τ in the upper half plane

f (n)(z, τ) = f (n)(z + 1, τ) and f (n)(z, τ) = f (n)(z + τ, τ) . (2.14)

Below, we are going to suppress the τ -dependence and will simply write f (n)(z). As will

be explained in subsection 3.3, the functions f (n) are known for all non-negative integer

weights n. In particular they are non-holomorphic and expressible in terms of the odd

Jacobi function θ1(z, τ), e.g.

f (0)(z) ≡ 1 , f (1)(z) ≡ ∂ ln θ1(z, τ) + 2πi
Im z

Im τ
(2.15)

f (2)(z) ≡
1

2

[(

∂ ln θ1(z, τ) + 2πi
Im z

Im τ

)2

+ ∂2 ln θ1(z, τ)−
1

3

θ′′′1 (0, τ)

θ′1(0, τ)

]

(2.16)

where ∂ and ′ denote a derivative in the first argument of θ1. Their parity alternates

depending on the weight n:

f (n)(−z) = (−1)nf (n)(z) . (2.17)

The functions f (n) are defined for arbitrary complex arguments z. Restricting to real

arguments z, however, will not only simplify eqs. (2.15) and (2.16) but in addition lead

to the system of iterated integrals appropriate for the one-loop open-string calculations in

sections 4 and 5 below. Hence, in the remainder of the current section, any argument and

label of the eIIs to be defined is assumed to be real. We will comment on the additional

ingredients required for generic complex arguments z and relate them to multiple elliptic

polylogarithms in subsection 3.1.

Employing the functions f (n), eIIs are defined in analogy to eq. (2.1) via

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) ≡

∫ z

0
dt f (n1)(t− a1) Γ ( n2 ... nr

a2 ... ar ; t) , (2.18)

where the recursion starts with Γ(; z) ≡ 1. Following the terminology used for f (n) above,

the eII in eq. (2.18) is said to have weight
∑r

i=1 ni, and the number r of integrations will

be referred to as its length.

The definition of eIIs directly implies a shuffle relation with respect to the combined

letters Ai ≡
ni
ai describing the integration weights f (ni)(z − ai),

Γ(A1, A2, . . . , Ar; z) Γ(B1, B2, . . . , Bq; z) = Γ
(
(A1, A2, . . . , Ar)� (B1, B2, . . . , Bq); z

)
,

(2.19)

where the shuffle symbol has been defined in eq. (2.5). Another immediate consequence of

definition (2.18) is the reflection identity

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) = (−1)n1+n2+...+nr Γ ( nr ... n2 n1

z−ar ... z−a2 z−a1 ; z) . (2.20)

– 6 –
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Formally reminiscent of the Hölder convolution in eq. (2.4), the above reflection identity

is valid for all arguments z ∈ C \ {0}. It can be proven using the parity properties of the

weighting functions f (n) in eq. (2.17) and a reparametrization of the integration domain.

If all the labels ai vanish, we will often use the notation

Γ(n1, n2, . . . , nr; z) ≡ Γ ( n1 n2 ... nr
0 0 ... 0 ; z) . (2.21)

2.2.1 Elliptic multiple zeta values

Evaluating eIIs with all ai equal to 0 (or equivalently ai = 1 by the periodicity property

eq. (2.14)) at z = 1 gives rise to iterated integrals

ω(n1, n2, . . . , nr) ≡

∫

0≤zi≤zi+1≤1

f (n1)(z1)dz1 f
(n2)(z2)dz2 . . . f (nr)(zr)dzr (2.22)

= Γ(nr, . . . , n2, n1; 1)

which we will refer to as elliptic multiple zeta values or eMZV s for short. They furnish

a natural genus-one generalization of standard MZVs5 as defined in eq. (2.6). The shuffle

relation eq. (2.19) can be straightforwardly applied to eMZVs

ω(n1, n2, . . . , nr)ω(k1, k2, . . . , ks) = ω
(
(n1, n2, . . . , nr)� (k1, k2, . . . , ks)

)
, (2.23)

and the parity property eq. (2.17) of the functions f (n) implies the reflection identity

ω(n1, n2, . . . , nr−1, nr) = (−1)n1+n2+...+nrω(nr, nr−1, . . . , n2, n1) . (2.24)

Note that a similar set of ω’s can be defined by an iterated integral along the path from

0 to τ replacing the integration domain [0, 1] in eq. (2.22). They appear in the modular

transformations of eMZVs and naturally satisfy the properties eqs. (2.23) and (2.24) as

well. Likewise, the eIIs defined in eq. (2.18) allow for a version with integrations on the

path from 0 to τ .

Regularization. Among the family of functions f (n)(z) used to define eIIs and eMZVs,

only f (1)(z) has a simple pole at zero and its images under the translations in eq. (2.14).

Therefore, iterated integrals of the form

Γ ( nr ... n2 n1
ar ... a2 a1 ; z) =

∫

0≤zi≤zi+1≤z

f (n1)(z1 − a1)dz1 f
(n2)(z2 − a2)dz2 . . . f (nr)(zr − ar)dzr (2.25)

with n1 = 1 or nr = 1 need to be regularized if either a1 = 0 or ar = z. As with multiple

polylogarithms, the idea is to slightly move the endpoints of the integration domain by a

small parameter, and then to expand in this parameter. More precisely, one writes the

integral
∫

ε≤zi≤zi+1≤z−ε

f (n1)(z1 − a1)dz1 f
(n2)(z2 − a2)dz2 . . . f (nr)(zr − ar)dzr (2.26)

5In order to distinguish between eMZVs and MZVs, we will sometimes refer to the latter as standard

MZVs.

– 7 –
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as a polynomial in ln(−2πiε), where the branch of the logarithm is chosen such that we have

ln(−i) = −πi
2 . The regularized value of eq. (2.26) is then defined to be the constant term in

this expansion. The additional −2πi in the expansion parameter ln(−2πiε) ensures that no

logarithms appear in the limit τ → i∞, and that eMZVs degenerate to MZVs. A thorough

treatment of this degeneration can be found in ref. [24] and will be exploited in ref. [49].

2.2.2 Removing the argument z from the label

As for the multiple polylogarithms, no arguments z are allowed in the labels {a1 . . . ar}

in order to perform the integration using eq. (2.18). Therefore we need to find relations,

which trade eIIs with one or multiple occurrences of the argument z in the label for eIIs

where z appears in the argument exclusively. The key idea for finding those relations is to

write the eII as the integral of its total derivative

Γ ( n1 n2 ... nq ... nr
a1 a2 ... z ... ar ; z) =

∫ z

0
dt

d

dt
Γ
( n1 n2 ... nq ... nr

a1 a2 ... t ... ar ; t
)
+ lim

z→0
Γ ( n1 n2 ... nq ... nr

a1 a2 ... z ... ar ; z) . (2.27)

This resembles the strategy at genus zero which led to the identity eq. (2.11) between

multiple polylogarithms. In the subsequent, we address additional features and subtleties

intrinsic to the elliptic case. The feasibility of this approach in the elliptic scenario is

discussed in ref. [16], see in particular theorem 26 therein.

Boundary terms. The boundary term at z = 0 usually drops out from eq. (2.27) due

to the vanishing volume of the integration domain. However, the special situation when all

nj = 1 leads to the appearance of standard MZVs. As will be elaborated on in section 3,

the function f (1) is the only source of singularities in the integration variables, as can be

seen from its leading behavior f (1)(z) = z−1 +O(z). Hence, the regime z → 0 reproduces

multiple polylogarithms as defined in eq. (2.1):

lim
z→0

Γ
(

1 1 ... 1
a1 a2 ... ar ; z

)
= lim

z→0

∫ z

0

dt1
t1 − a1

∫ t1

0

dt2
t2 − a2

. . .

∫ tr−1

0

dtr
tr − ar

= lim
z→0

G(a1, a2, . . . , ar; z) . (2.28)

If all aj ∈ {0, z}, the scaling relation eq. (2.3) allows to rewrite the polylogarithms in terms

of MZVs (see eq. (2.6)), leading to

lim
z→0

Γ
( n1 n2 ... nr
b1z b2z ... brz ; z

)
= G(b1, b2, . . . , br; 1)

r∏

j=1

δnj ,1 , bj ∈ {0, 1} . (2.29)

Partial derivatives. The total t-derivative in eq. (2.27) can be written in terms of partial

derivatives with respect to the arguments and the labels. This requires the elliptic analogues

of eqs. (A.1) to (A.3) listed below in order to arrive at shorter elliptic polylogarithms. The

derivative with respect to the argument

∂

∂z
Γ ( n1 n2 ... nr

a1 a2 ... ar ; z) = f (n1)(z − a1) Γ ( n2 ... nr
a2 ... ar ; z) (2.30)
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follows straightforwardly from eq. (2.18). Slightly more work using ∂
∂af

(n)(t − a) =

− ∂
∂tf

(n)(t − a) as well as eq. (2.30) is required for derivatives with respect to labels aq.

Starting with the special cases q = 1 and q = r one finds

∂

∂a1
Γ ( n1 n2 ... nr

a1 a2 ... ar ; t0) = −f (n1)(t0 − a1) Γ ( n2 n3 ... nr
a2 a3 ... ar ; t0)

+

∫ t0

0
dt f (n1)(t− a1)f

(n2)(t− a2) Γ ( n3 ... nr
a3 ... ar ; t) (2.31)

∂

∂ar
Γ ( n1 n2 ... nr

a1 a2 ... ar ; t0) = f (nr)(−ar) Γ
( n1 n2 ... nr−1
a1 a2 ... ar−1 ; t0

)

−





r−2∏

j=1

∫ tj−1

0
dtj f

(nj)(tj − aj)





∫ tr−2

0
dt f (nr−1)(t− ar−1)f

(nr)(t− ar) . (2.32)

Deriving with respect to a label aq with q 6= 1, r yields

∂

∂aq
Γ ( n1 n2 ... nr

a1 a2 ... ar ; t0) (2.33)

=





q−1
∏

j=1

∫ tj−1

0
dtj f

(nj)(tj − aj)





∫ tq−1

0
dt f (nq)(t− aq)f

(nq+1)(t− aq+1) Γ
( nq+2 ... nr
aq+2 ... ar ; t

)

−





q−2
∏

j=1

∫ tj−1

0
dtj f

(nj)(tj − aj)





∫ tq−2

0
dt f (nq−1)(t− aq−1)f

(nq)(t− aq) Γ
( nq+1 ... nr
aq+1 ... ar ; t

)
.

Total derivatives. Summing the above partial derivatives with respect to the argument

z and the labels aq, total derivatives from eq. (2.27) can be expressed in a very efficient

way. For a single instance of aq = z, the special cases q = 1 and q = r give rise to

d

dt0
Γ
( n1 n2 ... nr
t0 a2 ... ar ; t0

)
=

∫ t0

0
dt f (n1)(t− t0)f

(n2)(t− a2) Γ ( n3 ... nr
a3 ... ar ; t) and (2.34)

d

dt0
Γ
( n1 ... nr−1 nr
a1 ... ar−1 t0 ; t0

)
= f (n1)(t0 − a1) Γ

( n2 ... nr−1 nr
a2 ... ar−1 t0 ; t0

)
+ f (nr)(−t0) Γ

( n1 ... nr−1
a1 ... ar−1 ; t0

)

−

(
r−2∏

j=1

∫ tj−1

0
dtj f

(nj)(tj − aj)

)
∫ tr−2

0
dt f (nr−1)(t− ar−1)f

(nr)(t− t0) . (2.35)

For q 6= 1, r, the integrand of eq. (2.27) takes the form

d

dt0
Γ
( n1 n2 ... nq−1 nq nq+1 ... nr

a1 a2 ... aq−1 t0 aq+1 ... ar ; t0
)
= f (n1)(t0 − a1) Γ

( n2 ... nq−1 nq nq+1 ... nr

a2 ... aq−1 t0 aq+1 ... ar ; t0
)

(2.36)

+





q−1
∏

j=1

∫ tj−1

0
dtj f

(nj)(tj − aj)





∫ tq−1

0
dt f (nq)(t− t0)f

(nq+1)(t− aq+1) Γ
( nq+2 ... nr
aq+2 ... ar ; t

)

−





q−2
∏

j=1

∫ tj−1

0
dtj f

(nj)(tj − aj)





∫ tq−2

0
dt f (nq−1)(t− aq−1)f

(nq)(t− t0) Γ
( nq+1 ... nr
aq+1 ... ar ; t

)
.

Further examples with repeated appearances of t0 are displayed in appendix B.1.
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Fay identities. Having applied the above derivative identities, one is usually left with

expressions containing integrals of the form
∫ z

0
dt f (n1)(t− a1)f

(n2)(t− a2) , (2.37)

where the integration variable appears in the argument of more than one function f (n). In

the corresponding situation for multiple polylogarithms, with weights of the form eq. (2.13),

one would have used partial fraction identities

1

(t− a)(t− b)
=

1

(t− a)(a− b)
+

1

(t− b)(b− a)
(2.38)

in order to avoid the repeated appearance of the integration variable t. Analogous relations

for the more general class of weighting functions f (n) are provided by Fay identities, which

will be put in a larger mathematical context in section 3 below. They relate products

f (n1)f (n2) at arguments x, t and x− t and thereby allow to systematically remove repeated

appearances of some integration variable. A simple example of a Fay identity relates

products of functions f (1) to a sum of functions f (2)

f (1)(t−x)f (1)(t) = f (1)(t−x)f (1)(x)−f (1)(t)f (1)(x)+f (2)(t)+f (2)(x)+f (2)(t−x) . (2.39)

The general relation, which is valid for complex arguments x, t as well,

f (n1)(t− x)f (n2)(t) = −(−1)n1f (n1+n2)(x) +

n2∑

j=0

(
n1 − 1 + j

j

)

f (n2−j)(x)f (n1+j)(t− x)

+

n1∑

j=0

(
n2 − 1 + j

j

)

(−1)n1+jf (n1−j)(x)f (n2+j)(t) , (2.40)

in turn allows to remove all repeated occurrences of the variable t. Iterating the above

steps, one can thus eliminate all arguments from the label of any eII recursively.

Result. Combining the Fay identity eq. (2.40) with the total derivatives in eqs. (2.34)

to (2.36) turns (2.27) into a recursive rule for removing the argument z from the label of

Γ ( n1 ... nq ... nr
a1 ... z ... ar ; z). In the equations below, all terms on the right-hand side are either free

of aq = z or have shorter labels. The special cases q = 1 and q = r yield

Γ ( n1 n2 ... nr
z a2 ... ar

; z) = lim
z→0

G(z, a2, . . . , ar; z)
r∏

j=1

δnj ,1 − (−1)n1 Γ
(
n1+n2 0 n3 ... nr

a2 0 a3 ... ar
; z
)

+

n1∑

j=0

(−1)n1+j

(
n2 − 1 + j

j

)

Γ
(
n1−j n2+j n3 ... nr
a2 a2 a3 ... ar

; z
)

+

n2∑

j=0

(
n1 − 1 + j

j

)∫ z

0

dt f (n2−j)(t− a2) Γ
(
n1+j n3 ... nr

t a3 ... ar
; t
)

(2.41)

Γ
( n1 ... nr−1 nr
a1 ... ar−1 z ; z

)
= lim

z→0
G(a1, . . . , ar−1, z; z)

r∏

j=1

δnj ,1 +

∫ z

0

dt f (n1)(t− a1) Γ
( n2 ... nr−1 nr

a2 ... ar−1 t ; t
)

+ (−1)nr Γ
( nr n1 ... nr−1

0 a1 ... ar−1
; z
)
+ (−1)nr Γ

(
nr−1+nr n1 ... nr−2 0

ar−1 a1 ... ar−2 0 ; z
)
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−

nr−1∑

j=0

(
nr − 1 + j

j

)∫ z

0

dt f (nr−1−j)(t− ar−1) Γ
(

n1 ... nr−2 nr+j
a1 ... ar−2 t ; t

)

−
nr∑

j=0

(
nr−1 − 1 + j

j

)

(−1)nr+j Γ
(
nr−j n1 ... nr−2 nr−1+j
ar−1 a1 ... ar−2 ar−1

; z
)
, (2.42)

while aq = z at a generic position q 6= 1, r can be addressed via

Γ
( n1 n2 ... nq−1 nq nq+1 ... nr

a1 a2 ... aq−1 z aq+1 ... ar
; z
)
= lim

z→0
G(a1, . . . , aq−1, z, aq+1, . . . , ar; z)

r∏

j=1

δnj ,1

+

∫ z

0

dt f (n1)(t− a1) Γ
( n2 ... nq−1 nq nq+1 ...nr

a2 ... aq−1 t aq+1 ...ar
; t
)

− (−1)nq Γ
(

nq+nq+1 n1 ... nq−1 0 nq+2 ... nr

aq+1 a1 ... aq−1 0 aq+2 ... ar
; z
)

+ (−1)nq Γ
(

nq+nq−1 n1 ... nq−2 0 nq+1 ... nr

aq−1 a1 ... aq−2 0 aq+1 ... ar
; z
)

+

nq+1∑

j=0

(
nq − 1 + j

j

)∫ z

0

dt f (nq+1−j)(t− aq+1) Γ
(

n1 ... nq−1 nq+j nq+2 ... nr

a1 ... aq−1 t aq+2 ... ar
; t
)

+

nq∑

j=0

(
nq+1 − 1 + j

j

)

(−1)nq+j Γ
(
nq−j n1 ... nq−1 nq+1+j nq+2 ... nr

aq+1 a1 ... aq−1 aq+1 aq+2 ... ar
; z
)

−

nq−1∑

j=0

(
nq − 1 + j

j

)∫ z

0

dt f (nq−1−j)(t− aq−1) Γ
(

n1 ... nq−2 nq+j nq+1 ... nr

a1 ... aq−2 t aq+1 ... ar
; t
)

−

nq∑

j=0

(
nq−1 − 1 + j

j

)

(−1)nq+j Γ
(
nq−j n1 ... nq−2 nq−1+j nq+1 ... nr

aq−1 a1 ... aq−2 aq−1 aq+1 ... ar
; z
)
. (2.43)

Situations with multiple successive appearance of aj = z are discussed in appendix B.

Examples. At length one, the reflection identity eq. (2.20) implies that

Γ ( nz ; z) = (−1)n Γ(n; z) , (2.44)

which covers all identities at this length. At length two, cases with n1 = 0 or n2 = 0

are similarly determined by eq. (2.20), so the simplest non-trivial application of eq. (2.27)

is Γ ( 1 1
z 0 ; z). The differential can be derived via eq. (2.31) and simplified using the Fay

identity eq. (2.39) as well as eq. (2.44),

d

dt
Γ ( 1 1

t 0 ; t) = 2Γ(2; t) + f (2)(t) Γ(0; t)− 2f (1)(t) Γ(1; t) , (2.45)

see eq. (2.21) for the notation on the right hand side. In combination with the boundary

term

lim
z→0

Γ ( 1 1
z 0 ; z) = G(1, 0; 1) = ζ2 , (2.46)

we find

Γ ( 1 1
z 0 ; z) = 2Γ(0, 2; z) + Γ(2, 0; z)− 2Γ(1, 1; z) + ζ2 , (2.47)

which of course agrees with the general formula eq. (2.41). The same reasoning can be

applied recursively to obtain for example

Γ ( 1 1 1
z 0 0 ; z) = −Γ ( 1 1 1

z z 0 ; z) = −Γ(0, 3, 0; z)− Γ(0, 0, 3; z)− 3Γ(1, 1, 1; z) + Γ(2, 0, 1; z)
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+ Γ(1, 2, 0; z) + 2Γ(0, 2, 1; z) + 2Γ(1, 0, 2; z) + ζ2 Γ(1; z)− ζ3 (2.48)

Γ ( 1 0 0 1
z 0 0 0 ; z) = 2Γ(0, 0, 0, 2; z) + Γ(0, 0, 2, 0; z)− 2Γ(0, 0, 1, 1; z) + ζ2 Γ(0, 0; z) (2.49)

as well as

Γ ( 0 1 0 1 0
0 z 0 0 0 ; z) = 2Γ(0, 0, 0, 2, 0; z) + Γ(0, 2, 0, 0, 0; z)− 2Γ(0, 1, 0, 1, 0; z) (2.50)

Γ ( 0 1 1 0 0
0 z 0 0 0 ; z) = Γ(0, 0, 2, 0, 0; z) + Γ(0, 0, 0, 2, 0; z) + Γ(2, 0, 0, 0, 0; z)

− Γ(1, 0, 1, 0, 0; z)− Γ(1, 0, 0, 1, 0; z) . (2.51)

In subsection 4.3 these relations turn out to be crucial to express the low energy expansion

of one-loop string amplitudes in terms of eMZVs.

The most general relation at length two following from eq. (2.41) reads

Γ ( n1 n2
z 0 ; z) = −(−1)n1 Γ(n1 + n2, 0; z) +

n2∑

r=0

(−1)n1+r

(
n1 − 1 + r

r

)

Γ(n2 − r, n1 + r; z)

+

n1∑

r=0

(−1)n1+r

(
n2 − 1 + r

r

)

Γ(n1 − r, n2 + r; z) + δn1,1δn2,1ζ2 , (2.52)

and determines Γ ( n1 n2
0 z ; z) through the shuffle identity and eq. (2.44). Analogous relations

at length three can be found in appendix B.3.

2.2.3 Relations among elliptic multiple zeta values

Apart from their application to string amplitudes, the above manipulations of eIIs are

instrumental to derive relations among eMZVs beyond the obvious reflection and shuffle

properties. By definition eq. (2.22), eIIs with all labels aj = 0 yield eMZVs in the limit

z → 1 of their argument. At the level of labels aj = z, the limit z → 1 is equivalent to

aj → 0 since the f (n) are periodic under z 7→ z + 1, hence

lim
z→1

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) = ω(nr, . . . , n2, n1) , aj ∈ {0, z} , n1, nr 6= 1 . (2.53)

Note that endpoint divergences caused by the simple pole in f (1) might introduce additional

MZV constants similar to eq. (2.29), that is why the cases n1, nr = 1 are excluded explicitly.

At length two, for example, eq. (2.52) implies the following eMZV identity provided

that the limit z → 1 is non-singular:

ω(n2, n1) = −(−1)n1ω(0, n1 + n2) +

n2∑

r=0

(−1)n1+r

(
n1 − 1 + r

r

)

ω(n1 + r, n2 − r)

+

n1∑

r=0

(−1)n1+r

(
n2 − 1 + r

r

)

ω(n2 + r, n1 − r) , n1, n2 6= 1 . (2.54)

At low weights ni, the coefficients in eq. (2.54) are particularly simple such as

ω(2, 3) = ω(0, 5) , ω(3, 4) = −2ω(0, 7) + ω(2, 5) . (2.55)
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Similar procedures can be carried out at higher length. Combining e.g. eq. (B.7) and a

suitable generalization thereof to length four leads to

0 = ω(0, 0, 5) + ω(0, 1, 4) + ω(2, 0, 3) (2.56)

0 = 10ω(0, 0, 0, 5) + 4ω(0, 0, 3, 2) + 2ω(0, 2, 0, 3)− ω(2)ω(0, 3)− ω(0, 5) . (2.57)

At length five, a combination of eqs. (2.50) and (2.51) with the shuffle relation eq. (2.23)

yields

ω(0, 1, 0, 1, 0) = ω(0, 2, 0, 0, 0) (2.58)

ω(0, 1, 1, 0, 0) = ω(2, 0, 0, 0, 0)− ω(2)ω(0, 0, 0, 0) , (2.59)

which will be applied in subsection 4.3.

3 The functions f (n) on the elliptic curve

In this section, we provide the definition and mathematical framework for the functions

f (n), thereby supplementing our heuristic approach in section 2. Before doing so, let us

start with some mathematical motivation, in which we explain in particular why we need

— in distinction to multiple polylogarithms — an infinite number of them.

3.1 Motivation

The importance of multiple polylogarithms as defined in eq. (2.1) becomes evident, when

considering homotopy-invariant iterated integrals on the multiply punctured complex plane

C \ {a1, . . . , an}: the value of any such integral evaluated on a path γ depends on the

homotopy class of the path only and is a C-linear combination of multiple polylogarithms.

Instead of the multiply punctured plane, let us now consider the complex elliptic

curve Eτ = C/(Z+ Zτ) with its origin removed (we write this as E×
τ ), where Im (τ) > 0.

One possible definition of multiple elliptic polylogarithms is via iterated integrals on E×
τ .

Writing the canonical coordinate on E×
τ as z = s+ rτ with s, r ∈ R, such that r ≡ Im (z)

Im (τ) ,

two natural differential forms on E×
τ read

dz and ν ≡ 2πi dr . (3.1)

These differential forms, however, are not sufficient to describe all iterated integrals on

E×
τ . Even worse, iterated integrals employing the differential forms dz and ν only will not

be homotopy-invariant in general, i.e. they will depend on the choice of a path in a given

homotopy class.

Both problems are overcome simultaneously by supplementing eq. (3.1) by an infinite

tower of differentials f (n)(z)dz constructed through a generating function [16]6

Ω(z, α, τ) =
∑

n≥0

f (n)(z)αn−1 , (3.2)

6Note that in ref. [16], Ω(z, α, τ) is defined as a differential form, i.e. includes dz.
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where f (0)(z) ≡ 1. In particular, it has been proven in ref. [16] that every iterated integral

in ν and dz can be uniquely lifted to a homotopy-invariant iterated integral over ν and

f (n)(z)dz. Conversely, every homotopy-invariant iterated integral on E×
τ arises in this way.

The form of the generating function and its coefficients f (n) in eq. (3.2) can be fixed

by constructing a doubly-periodic connection J satisfying the integrability condition

dJ + J ∧ J = 0 . (3.3)

This requirement singles out a unique completion of J = νX0 + dz X1 + . . . to a formal

power series in non-commuting variables X0 and X1 given by [16]

J = νX0 − adX0Ω(z,−adX0 , τ)(X1)dz . (3.4)

It follows from eq. (3.3) that every word in X0, X1 in the formal power series

∞∑

k=0

∫

Jk (3.5)

is a homotopy-invariant iterated integral on E×
τ , and one can prove that in fact every such

iterated integral arises in this way. Therefore, every homotopy invariant iterated integral

on E×
τ can be written as a special linear combination of iterated integrals of the differential

forms f (n)(z)dz and ν. The differential form ν eq. (3.1), however, vanishes on the real

integration path γ(t) ∈ R. Hence, the setup in subsection 2.2 based on real variables leads

to elliptic multiple zeta values defined in ref. [17] without referring to the differential form ν.

Although homotopy invariance is generically lost for the iterated integral over the

forms f (n1)(z1)dz1 . . . f
(nr)(zr)dzr on the punctured elliptic curve E×

τ , its value at the real

path [0, 1] as in eq. (2.22) can in fact be written as a Z-linear combination of coefficients

of words in eq. (3.5), again evaluated on the path [0, 1]. In particular, this shows that the

eMZVs associated with the path [0, 1] [17] are periods of the fundamental group of E×
τ .

Hence, the eIIs defined by eq. (2.18) coincide with the elliptic polylogarithms defined

in ref. [16] when restricted to the real line. They can be lifted to honest homotopy-invariant

iterated integrals on the punctured elliptic curve by means of the differential form ν defined

in eq. (3.1). However, generic combinations of f (n)(z)dz accompany several words inX0, X1

in eq. (3.5) and therefore allow for various homotopy-invariant completions using ν. Iter-

ated integrals over ν and dz, on the other hand, correspond to a single word in eq. (3.5) and

therefore have a unique uplift via f (n≥1)(z)dz towards the elliptic polylogarithms of ref. [16].

3.2 Doubly-periodic functions and generating series

In this section, we define the functions f (n) through a generating series, closely following

ref. [16]. In the sequel, z and α are complex coordinates on E×
τ . Simultaneously, α will be

used as a formal expansion variable below. The modular parameter often appears in the

combination

q ≡ e2πiτ , (3.6)

where Im (τ) > 0 translates into |q| < 1, relevant for convergence issues.
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3.2.1 Some doubly-periodic functions

A general reference on doubly-periodic functions is ref. [23]. Let θ1 denote the odd Jacobi

function7 defined by

θ1(z, τ) ≡ 2iq1/8 sin(πz)
∞∏

j=1

(1− qj)
∞∏

j=1

(1− e2πizqj)
∞∏

j=1

(1− e−2πizqj) , (3.7)

subject to the following periodicity properties

θ1(z + 1, τ) = −θ1(z, τ) , θ1(z + τ, τ) = −e−πiτe−2πizθ1(z, τ) . (3.8)

For j ≥ 1 we also define the Eisenstein function Ej(z, τ) and the Eisenstein series ej(τ) by
8

Ej(z, τ) ≡
∑

m,n∈Z

1

(z +m+ nτ)j
ej(τ) ≡

∑

m,n∈Z

(m,n) 6=(0,0)

1

(m+ nτ)j
(3.9)

which are related to the function θ1(z, τ) via

∂

∂z
ln(θ1(z, τ)) = E1(z, τ) ,

∂

∂z
Ej(z, τ) = −jEj+1(z, τ) . (3.10)

3.2.2 The Eisenstein-Kronecker series

The Eisenstein-Kronecker series F (z, α, τ) is defined by [16, 51]

F (z, α, τ) ≡
θ′1(0, τ)θ1(z + α, τ)

θ1(z, τ)θ1(α, τ)
, (3.11)

where ′ denotes a derivative with respect to the first argument. Taking the logarithmic

derivative of eq. (3.11) together with the Taylor expansion E1(α, τ) =
1
α −

∑∞
j=0 α

jej+1(τ)

leads to the following alternative representation [50, 52]

F (z, α, τ) =
1

α
exp



−
∑

j≥1

(−α)j

j
(Ej(z, τ)− ej(τ))



 (3.12)

in terms of the Eisenstein functions and Eisenstein series defined in eq. (3.9). The period-

icity properties of the θ1-function in eq. (3.8) imply that the Eisenstein-Kronecker series is

quasi-periodic,

F (z + 1, α, τ) = F (z, α, τ), F (z + τ, α, τ) = e−2πiαF (z, α, τ) . (3.13)

Moreover, the representation (3.12) together with the Fay trisecant equation [53] yields the

Fay identity

F (z1, α1, τ)F (z2, α2, τ) = F (z1, α1 + α2, τ)F (z2 − z1, α2, τ)

+ F (z2, α1 + α2, τ)F (z1 − z2, α1, τ) . (3.14)

7The subsequent definitions of f (n) are unchanged by z-independent rescalings of θ1. Hence, the current

setup is consistent with refs. [16, 50], which rely on θ(z, τ) ≡ 2iq1/12 sin(πz)
∏∞

j=1(1 − e2πizqj)
∏∞

j=1(1 −

e−2πizqj).
8The two cases j = 1, 2 require the Eisenstein summation prescription

∑

m,n∈Z

am,n ≡ lim
N→∞

lim
M→∞

N
∑

n=−N

M
∑

m=−M

am,n .
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3.2.3 Restoring double periodicity and modularity

The quasi-periodicity of the Eisenstein-Kronecker series under z → z + τ as given in

eq. (3.13) can be lifted to an honest periodic behavior by defining

Ω(z, α, τ) ≡ exp

(

2πiα
Im (z)

Im (τ)

)

F (z, α, τ) . (3.15)

Clearly, the resulting function Ω(z, α, τ) is doubly-periodic in z,

Ω(z + 1, α, τ) = Ω(z + τ, α, τ) = Ω(z, α, τ) , (3.16)

and holomorphicity of the Eisenstein-Kronecker series eq. (3.11) gives rise to the differential

equation
∂

∂z̄
Ω(z, α, τ) = −

πα

Im (τ)
Ω(z, α, τ) . (3.17)

The latter implies that the connection J in eq. (3.4) satisfies the integrability condition

eq. (3.3) and generates homotopy-invariant iterated integrals via the formal power series

eq. (3.5) [16].

Upon taking the exponential in eq. (3.15) into account, the modular transformation

properties of the Eisenstein-Kronecker series [52, 55], can be translated into

Ω

(
z

cτ + d
,

α

cτ + d
,
aτ + b

cτ + d

)

= (cτ + d)Ω(z, α, τ) (3.18)

for
(
a b
c d

)
∈ SL(2,Z). The Fay identity eq. (3.14) for the Eisenstein-Kronecker series carries

over to

Ω(z1, α1, τ)Ω(z2, α2, τ) = Ω(z1, α1 + α2, τ)Ω(z2 − z1, α2, τ)

+ Ω(z2, α1 + α2, τ)Ω(z1 − z2, α1, τ) (3.19)

after multiplication with exp
(

2πi
Im (τ)

[
α1Im (z1) + α2Im (z2)

])
.

3.3 Definition and properties of the weighting functions f (n)

3.3.1 Definition of f (n)

We define the functions f (n) entering the eIIs eq. (2.18) through the following Taylor series

in α,

αΩ(z, α, τ) ≡
∞∑

n=0

f (n)(z, τ)αn . (3.20)

They are real analytic on the punctured elliptic curve E×
τ . As above, we will omit the

argument τ and write f (n)(z) or often simply f (n). Their explicit form is conveniently

captured by the following functions9 En

E1(z, τ) ≡ E1(z, τ) + 2πi
Im (z)

Im (τ)
, En(z, τ) ≡ (−1)n

(
en(τ)− En(z, τ)

)
∀ n ≥ 2 . (3.21)

9Note that all En are meromorphic except for E1 (due to the term Im (z)), and that E2(z) = −℘(z) is the

Weierstrass function. Higher functions En at n ≥ 3 are related to derivatives of the Weierstrass function,

e.g. E3 = − 1
2
∂℘ and E4 = e4 −

1
6
∂2℘.
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These functions result in a simple representation of the generating series

αΩ(z, α, τ) = exp





∞∑

j=1

αj

j
Ej(z, τ)



 , (3.22)

and allow for a combinatorial interpretation of f (n)(z, τ) in terms of the cycle index of the

symmetric group Sn (see appendix D).

Comparison with eq. (3.20) yields the following expressions for the lowest functions f (n)

f (1) = E1

f (2) =
1

2

(
E2
1 + E2

)

f (3) =
1

3!

(
E3
1 + 3E1E2 + 2E3

)
(3.23)

f (4) =
1

4!

(
E4
1 + 6E2

1E2 + 8E1E3 + 3E2
2 + 6E4

)

f (5) =
1

5!

(
E5
1 + 10E3

1E2 + 20E2
1E3 + 15E1E

2
2 + 30E1E4 + 20E2E3 + 24E5

)
.

The functions Ej can be expressed in terms of ln θ1 via eq. (3.10), which leads to

the representations for f (1) and f (2) provided in eqs. (2.15) and (2.16). As shown in

appendix D, the general expression for f (n) following from eq. (3.22) reads

f (n) =
∑

a1,a2,...,an≥0

δ

(
n∑

i=1

iai − n

)
n∏

j=1

E
aj
j

jajaj !
, (3.24)

and an equivalent recursive representation is given by

f (n) =
1

n

n∑

j=1

Ejf
(n−j) . (3.25)

3.3.2 Properties of f (n)

The functions f (n) inherit their double periodicity, the form of their antiholomorphic deriva-

tive as well as their behavior under modular transformations from the generating series in

eqs. (3.16), (3.17) and (3.18):

f (n)(z + 1) = f (n)(z + τ) = f (n)(z) (3.26)

∂f (n)(z)

∂z̄
= −

π

Im (τ)
f (n−1)(z) (3.27)

f (n)

(
z

cτ + d
,
aτ + b

cτ + d

)

= (cτ + d)nf (n)(z, τ) . (3.28)

Likewise, the Fay identity eq. (3.19) implies for f
(n)
ij ≡ f (n)(zi − zj):

f
(m−1)
il f

(n)
jl +f

(m)
il f

(n−1)
jl =

n∑

r=0

(
m−1+r

r

)

f
(n−r)
ji f

(m−1+r)
il +

m∑

r=0

(
n−1+r

r

)

f
(m−r)
ij f

(n−1+r)
jl .

(3.29)
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This identity has been used repeatedly to derive relations among eIIs in section 2 (cf.

eq. (2.40) above).

Given the singular factor
θ′1(0,τ)
θ1(z,τ)

= 1
z+O(z) in the Eisenstein-Kronecker series eq. (3.11),

one can check that the residue at the simple pole of Ω at the origin is independent on α.

Hence, only f (1) has a simple pole at any z = k+τ l for k, l ∈ Z whereas all other weighting

functions f (n 6=1) are regular on the entire elliptic curve:

lim
z→0

zf (n)(z) = δn,1 . (3.30)

It is this property of the functions f (n), which is responsible for the z → 0 behavior stated

in eq. (2.29).

3.3.3 q-expansions of f (n)

The Eisenstein-Kronecker series eq. (3.11) is known to have the following power-series

expansion in q = e2πiτ [16, 23]

αF (z, α, τ) = 1 + πα cot(πz)− 2
∞∑

k=1

ζ2kα
2k − 2πiα

∞∑

m,n=1

(

e2πi(mz+nα) − e−2πi(mz+nα)
)

qmn

≡
∞∑

n=0

g(n)(z)αn . (3.31)

Disentangling the powers of α yields the holomorphic parts g(n) of the functions f (n), e.g.

g(1)(z) = π cot(πz) + 4π
∞∑

m=1

sin(2πmz)
∞∑

n=1

qmn (3.32)

g(2)(z) = −2ζ2 + 8π2
∞∑

m=1

cos(2πmz)
∞∑

n=1

nqmn (3.33)

g(3)(z) = −8π3
∞∑

m=1

sin(2πmz)
∞∑

n=1

n2qmn , (3.34)

where cot(πz) = 1
πz +O(z) captures the simple pole of f (1). More generally, we find

g(k)(z)
∣
∣
∣
k=2,4,...

= −2

[

ζk +
(2πi)k

(k − 1)!

∞∑

m=1

cos(2πmz)
∞∑

n=1

nk−1qmn

]

(3.35)

g(k)(z)
∣
∣
∣
k=3,5,...

= −2i
(2πi)k

(k − 1)!

∞∑

m=1

sin(2πmz)
∞∑

n=1

nk−1qmn . (3.36)

The non-holomorphic piece in f (n) consisting of factors Im (z)
Im (τ) can be immediately restored

via

f (n)(z) =

n∑

k=0

[
2πiIm (z)

]k

k!
[
Im (τ)

]k
g(n−k)(z) . (3.37)

Even though the functions f (n) in the definition eq. (2.18) of eIIs are evaluated at real

arguments in the subsequent, we will keep track of the admixtures of Im (z) in eq. (3.37)
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for further applications beyond this work. For example, another system of eIIs and eMZVs

can be defined for the path from 0 to τ instead of the real interval [0, 1] whose properties

are crucially affected by the factors of Im (z) and the resulting modular properties.

4 The one-loop four-point amplitude in open string theory

Iterated integrals defined on an elliptic curve in subsection 2.2 appear naturally in su-

perstring theory. Calculating one-loop scattering amplitudes among open string states

amounts to evaluating iterated integrals weighted by the functions f (n) defined in sec-

tion 3. Accordingly, the expansion of one-loop superstring amplitudes in the inverse string

tension α′ involves eMZVs.

The α′-expansion of tree-level amplitudes in open string theory is well known to involve

standard MZVs, see e.g. ref. [34]. The pattern of their appearance is much simpler as

compared to the MZVs and polylogarithms in loop amplitudes of field theory and can be

understood in terms of motivic MZVs [29] as well as the Drinfeld associator [38]. Hence,

it is not surprising that one-loop string amplitudes furnish a perfect laboratory to study

patterns and properties of eMZVs.

Iterated integrals in one-loop open string amplitudes occur on the boundaries of a

two-dimensional worldsheet of either cylinder or Möbius-strip topology [40]. They describe

conformally inequivalent configurations of inserting open string states on the respective

boundaries. As a first field of application for eMZVs, we will entirely focus on cylindrical

worldsheets in this work with all integrations confined to one boundary.10 As shown in fig-

ure 1, this situation can be described by a torus with purely imaginary modular parameter

τ = it with t ∈ R. The cylinder boundaries are then parametrized by Re (zj) ∈ [0, 1] with

Im (zj) = 0 and Im (zj) =
t
2 , respectively. The configuration of interest with one boundary

empty is captured by real insertion points zj ∈ R.

4.1 The four-point amplitude

For massless open-string excitations in ten dimensions — gluons and gluinos — supersym-

metry requires at least four external states for a non-vanishing one-loop amplitude, so the

simplest case to be studied below is the four-point function [59, 60],

A1-loop
string (1, 2, 3, 4) = s12s23A

tree
YM(1, 2, 3, 4)

∫ ∞

0
dt I4pt(1, 2, 3, 4) (4.1)

I4pt(1, 2, 3, 4) ≡

∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2

∫ z2

0
dz1 δ(z1)

4∏

j<k

exp
[
sjkPjk

]
. (4.2)

The entire polarization dependence is captured by the four-point tree amplitude of sYM

field theory, see [61] for its tensor structure. The worldsheet integral I4pt(1, 2, 3, 4) depends

on the external momenta ki through dimensionless Mandelstam invariants

sij ≡ α′(ki + kj)
2 , (4.3)

10The interplay between open string worldsheets of different topologies is crucial for the cancellations of

infinities [56] and anomalies [57, 58] which occur for gauge group SO(32).

– 19 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
2

Re (z)

Im (z)

× × ×

z2 z3 zN· · ·
|
1

−
t

2

−t

= =

||

||

Figure 1. Parametrization of the cylinder worldsheet through the shaded region. The bound-

ary under investigation has real coordinates zj ∈ [0, 1]. The identified edges inherited from the

underlying torus at τ = it are marked by = and ||, respectively.

where momentum conservation and the mass-shell condition k2i = 0 leave two independent

sij ,

s34 = s12 , s14 = s23 , s13 = s24 = −s12 − s23 . (4.4)

The dependence on worldsheet positions zj ∈ [0, 1] enters through the genus-one Green

function

Pij ≡ ln

∣
∣
∣
∣

θ1(zi − zj , τ)

θ′1(0, τ)

∣
∣
∣
∣

2

−
2π

Im (τ)

[
Im (zi − zj)

]2
(4.5)

which is related to the singular function f
(1)
ij ≡ f (1)(zi − zj) in eq. (2.15) via

∂Pij = f
(1)
ij , Pij =

∫ zi

zj

dw f (1)(w − zj) . (4.6)

The endpoint divergence as w → zj can be dealt with through the regularization prescrip-

tion eq. (2.26) which heuristically amounts to limzi→zj Pij = 0. Note that the dependence

of I4pt(1, 2, 3, 4) on sij and q ≡ e−2πt is suppressed for ease of notation.

The non-holomorphic piece in f (1)(z) ≡ ∂ ln θ1(z, τ)+2πi Im z
Im τ drops out for the present

cylinder parametrization where all vertices are inserted on the boundary with real coordi-

nates zj . Accordingly, the differential form ν ∼ d Im (z) in eq. (3.1) required for homotopy

invariance does not contribute to the cylinder integrals under consideration. However, the

admixtures of Im z
Im τ in f (n) are crucial for modular invariance of closed-string amplitudes

and cylinder diagrams with open string states on both boundaries.

Translation invariance on genus-one surfaces can be used to fix z1 = 0. In addition,

the N -point integration measure which appears for N = 4 in eq. (4.2),

∫

12...N
≡

∫ 1

0
dzN

∫ zN

0
dzN−1 . . .

∫ z3

0
dz2

∫ z2

0
dz1 δ(z1) , (4.7)
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is invariant under cyclic shifts zi → zi+1modN and, up to a sign (−1)N , under reflection

zi → zN+1−i. Some features of the one-loop N -point amplitudes are discussed in section 5.

Their integrand then involves factors of f (wi)(zj − zk) with overall weight
∑

iwi = N − 4.

As another generalization of the one-loop amplitude eq. (4.1) in ten spacetime di-

mensions, one could consider supersymmetry-preserving compactifications on a torus. For

each circular dimension of radius R, the associated momentum components are quantized

and contribute a correction factor of
∑∞

n=−∞ e−n2πtR2/α′
to the t-integrand [62]. Since this

does not affect the zj-integrations within I4pt(1, 2, 3, 4) and the resulting eMZVs, the subse-

quent results on the α′-expansion are universal for any torus compactification to spacetime

dimensions D ≤ 10.

4.2 The α′-expansion

In this section, we investigate the α′-expansion of the t-integrand in eq. (4.1),

I4pt(1, 2, 3, 4) =

∫

1234

4∏

i<j

∞∑

nij=0

1

nij !
(sijPij)

nij , (4.8)

which encodes the low-energy effective action for the gluon supermultiplet. Expanding in α′

amounts to Taylor expanding the exponential in eq. (4.2) in all the Mandelstam invariants

sij defined in eq. (4.3) as well as the corresponding worldsheet Green function Pij given by

eq. (4.6).

In addition to the power-series expansion in α′ discussed in the subsequent, the inte-

gration region of large t in the amplitude eq. (4.1) gives rise to logarithmic, non-analytic

momentum dependence. The associated threshold singularities in sij are for instance cru-

cial to make contact with the Feynman box integral in the sYM amplitude arising in the

point-particle limit [62]. Mimicking the low energy-analysis of closed string one-loop am-

plitudes [63–66], we separate the analytic from the non-analytic parts of the amplitude and

do not keep track of the non-analytic threshold singularities.

The simplest monomials in Pij inequivalent under cyclic shifts and reflections of the

vertex positions zj integrate to

c0 ≡

∫

1234
1 , c11 ≡

∫

1234
P12 , c12 ≡

∫

1234
P13 . (4.9)

At second and third order in α′ one finds

c21 ≡
1

2

∫

1234
P 2
12 , c23 ≡

∫

1234
P12P14 , c25 ≡

∫

1234
P12P34

c22 ≡
1

2

∫

1234
P 2
13 , c24 ≡

∫

1234
P13P24 , c26 ≡

∫

1234
P12P13 (4.10)

as well as

c31 ≡
1

6

∫

1234
P 3
12 , c35 ≡

1

2

∫

1234
P 2
12P34 , c39 ≡

∫

1234
P12P13P23

c32 ≡
1

6

∫

1234
P 3
13 , c36 ≡

1

2

∫

1234
P 2
12P13 , c310 ≡

∫

1234
P12P13P14
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c33 ≡
1

2

∫

1234
P 2
12P23 , c37 ≡

1

2

∫

1234
P12P

2
13 , c311 ≡

∫

1234
P12P34P13

c34 ≡
1

2

∫

1234
P 2
13P24 , c38 ≡

∫

1234
P12P23P34 , c312 ≡

∫

1234
P13P24P12 . (4.11)

As will be demonstrated in section 4.3, eMZVs defined in eq. (2.22) are the natural language

to describe the above cji and to understand the linear combinations appearing after applying

momentum conservation eq. (4.4):

I4pt(1, 2, 3, 4) = c0 + 2(c11 − c12) (s12 + s23) + (2c21 + 2c22 − c23 − c24)
(
s212 +

1
4s12s23 + s223

)

+
1

4
(−2c21+14c22+c23−7c24)s12s23+2(c310−2c31−c32+2c33+c34−2c39)s12s23(s12+s23)

+ (2c310+2c31−2c32+6c33+2c34−8c36−2c38) (s12+s23)(s
2
12+s12s23+s223)+O(α′4) . (4.12)

A first flavor of relations among cji (and thus ultimately among eMZVs) can be obtained

by exploiting cyclic and reflection properties of five-point integrals such as
∫

12345
P45∂2P23 =

∫

12345
P51∂2P23 ⇒

∫

1345
P45P13 =

∫

1345
P51P13 ⇒ c23 = c25 ,

(4.13)

see eq. (4.7) for the measure
∫

12345. Similar methods imply that

2c26 = c23 + c24 , c33 = c35 , c310 = c311 , c37 + c36 = c33 + c34 , c311 + c310 = c38 + c312 , (4.14)

these relations have been used to eliminate c25, c
2
6 as well as c35, c

3
7, c

3
12, c

3
11 from eq. (4.12).

Note that the α′-expansion of closed string one-loop amplitudes has been analyzed

along similar lines in refs. [63–66]. Since each closed-string insertion point zj is integrated

over the entire torus Eτ , integrals involving propagators with a free endpoint vanish and

therefore much fewer closed-string counterparts of the coefficients cji arise.

4.3 Elliptic multiple zeta values

In this section we convert the constituents of the α′-expansion, cji defined by

eqs. (4.9), (4.10) and (4.11), to eMZVs. This will provide a characterization of the partic-

ular linear combinations of cji which appear in eq. (4.12) along with various powers of s12
and s23.

The leading term c0 in eq. (4.9) can be straightforwardly evaluated to yield 1
6 and

furnishes a special case of

ω(0, 0, . . . , 0
︸ ︷︷ ︸

n

) =
1

n!
, (4.15)

which follows from multiple insertions of 1 = f (0)(zi). Nevertheless, it will prove instructive

for the comparison with higher orders in α′ to express c0 as an unevaluated eMZV:

c0 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

= Γ(0, 0, 0; 1) = ω(0, 0, 0) . (4.16)

Below, we will repeatedly apply the definitions eq. (2.18) and eq. (2.22) of eIIs and eMZVs,

respectively, in order to express the other integrals cji in the same fashion.
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4.3.1 First order in Pij: integrals c1i

At linear order in sij , we substitute P1j =
∫ zj
0 f (1)(w) dw according to eq. (4.6) and z1 = 0

into the definitions eq. (4.9) and find

c11 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

∫ z2

0
f (1)(w) dw

= Γ(0, 0, 0, 1; 1) = ω(1, 0, 0, 0) (4.17)

c12 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

∫ z3

0
f (1)(w) dw

=

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3 Γ(0; z3) Γ(1; z3)

=

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

[
Γ(1, 0; z3) + Γ(0, 1; z3)

]

= Γ(0, 0, 0, 1; 1) + Γ(0, 0, 1, 0; 1) = ω(1, 0, 0, 0) + ω(0, 1, 0, 0) . (4.18)

The second line of eq. (4.18) makes use of the shuffle product eq. (2.19) for eIIs. Equivalence

of eq. (4.17) with the cyclically shifted integrand
∫

1234
P14 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

∫ z4

0
f (1)(w) dw

= ω(1, 0, 0, 0) + ω(0, 1, 0, 0) + ω(0, 0, 1, 0) (4.19)

can be checked using antisymmetry ω(0, 1, 0, 0)+ω(0, 0, 1, 0) = 0 following from eq. (2.24).

4.3.2 Second order in Pij: integrals c2i

At quadratic order in sij , the rewriting P1j =
∫ zj
0 f (1)(w) dw = −

∫ 1
zj
f (1)(w) dw allows

to straightforwardly address any quadratic monomial in P12, P13, P14 along the lines of

eqs. (4.17) and (4.18):

c21 = ω(1, 1, 0, 0, 0) (4.20a)

c22 = ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0) + ω(0, 1, 1, 0, 0) (4.20b)

c23 = −ω(1, 0, 0, 0, 1) (4.20c)

c26 = 2ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0) . (4.20d)

Then, eqs. (4.13) and (4.14) can be used to determine the remaining two c2j in eq. (4.10):

c24 = 2ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0)− ω(1, 0, 0, 1, 0) (4.21a)

c25 = −ω(1, 0, 0, 0, 1) . (4.21b)

Note that the integration limits
∫ zj
0 . . . in the representation of P1j can be traded for

−
∫ 1
zj
. . .. This is equivalent to applying a shuffle relation eq. (2.23),

0=ω(1)ω(1, 0, 0, 0)=2ω(1, 1, 0, 0, 0)+ω(1, 0, 1, 0, 0)+ω(1, 0, 0, 1, 0)+ω(1, 0, 0, 0, 1) (4.22)

0=ω(1)ω(0, 1, 0, 0)=ω(1, 0, 1, 0, 0)+2ω(0, 1, 1, 0, 0)+ω(0, 1, 0, 1, 0)+ω(0, 1, 0, 0, 1), (4.23)

where ω(1) vanishes by the reflection identity eq. (2.24).
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4.3.3 Integration techniques for P23, P24, P34

Green functions Pij where both indices describe a leg to be integrated (legs 2, 3, 4) are

more difficult to integrate. Their integral representation eq. (4.6) inevitably gives rise to

iterated integrals Γ ( n1 ... nr
a1 ... ar ; z) with the argument appearing in the labels, that is ai = z.

Integration over z3 and z4 then requires the techniques of subsection 2.2.2, in particular

the recursion formulæ eq. (2.41) to eq. (2.43).

The simple corollary Γ ( 1 0
z 0 ; z) = −Γ ( 0 1

0 0 ; z) of the reflection identity eq. (2.20) is

sufficient to integrate P23 and to reproduce eq. (4.17) from a different cyclic representative.

The quadratic case c25 =
∫

1234 P12P34, on the other hand, requires more effort. One obtains

∫

1234
P12P34 = −

∫ 1

0
f (0)dz4

∫ z4

0
f (1)(w − z4)dw

∫ w

0
f (0)dz3

∫ z3

0
f (0)dz2

∫ z2

0
f (1)(u)du

= −

∫ 1

0
f (0)(z4)dz4 Γ

(
1 0 0 1
z4 0 0 0 ; z4

)

= 2ω(1, 1, 0, 0, 0)− 2ω(2, 0, 0, 0, 0)− ω(0, 2, 0, 0, 0)− ζ2ω(0, 0, 0) , (4.24)

where Γ
(

1 0 0 1
z4 0 0 0 ; z4

)
has been reexpressed via eq. (2.49) in the last step. In order to repro-

duce the result of eq. (4.21b), −ω(1, 0, 0, 0, 1), one needs to combine the shuffle relations

eqs. (4.22) and (4.23) with eqs. (2.58) and (2.59). The desired result then follows from the

constant eMZVs in eq. (4.15) and ω(2) = −2ζ2 which is a special case of

ω(n) =

{

−2ζn : n even

0 : n odd
. (4.25)

The expression for ω(n) can be inferred from order q0 in the expansions eqs. (3.35)

and (3.36).

4.3.4 Third order in Pij: integrals c3i

Starting from the third order in Mandelstam variables, relations such as eq. (4.14) are

no longer sufficient to reduce the complete list of c3i in eq. (4.11) to elementary integrals

over monomials in P12, P13 and P14. Instead, the inevitable factors of P23, P24 and P34

require the procedure described in eq. (4.24) together with the recursive identities eq. (2.41)

to (2.43) in order to rearrange the labels of the eIIs. This allows to reduce integrals over

arbitrary monomials in Pij with 1 ≤ i < j ≤ 4 to eMZVs. The integrals c3i , which are cubic

in Pij , give rise to

c31 = ω(1, 1, 1, 0, 0, 0) (4.26a)

c32 = ω(1, 1, 1, 0, 0, 0) + ω(1, 1, 0, 1, 0, 0) + ω(1, 0, 1, 1, 0, 0) + ω(0, 1, 1, 1, 0, 0) (4.26b)

c33 = −ω(1, 1, 0, 0, 0, 1) (4.26c)

c34 = 6ω(1, 1, 1, 0, 0, 0) + 3ω(1, 1, 0, 1, 0, 0) + ω(1, 0, 1, 1, 0, 0) + ω(1, 1, 0, 0, 0, 1) (4.26d)

c35 = −ω(1, 1, 0, 0, 0, 1) (4.26e)

c36 = 3ω(1, 1, 1, 0, 0, 0) + ω(1, 1, 0, 1, 0, 0) (4.26f)

c37 = 3ω(1, 1, 1, 0, 0, 0) + 2ω(1, 1, 0, 1, 0, 0) + ω(1, 0, 1, 1, 0, 0) (4.26g)
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c38 = 2ω(2, 0, 0, 0, 0, 1) + ω(0, 2, 0, 0, 0, 1)− 2ω(1, 1, 0, 0, 0, 1)− ζ2ω(1, 0, 0, 0) (4.26h)

c39 = 2ω(2, 0, 0, 0, 1, 0) + 2ω(2, 0, 0, 0, 0, 1) + ω(0, 2, 0, 0, 1, 0) + ω(0, 2, 0, 0, 0, 1)

− 2ω(1, 1, 0, 0, 1, 0)− 2ω(1, 1, 0, 0, 0, 1)− ζ2ω(1, 0, 0, 0)− ζ2ω(0, 1, 0, 0) (4.26i)

c310 = −2ω(1, 1, 0, 0, 0, 1)− ω(1, 0, 1, 0, 0, 1) (4.26j)

c311 = −2ω(1, 1, 0, 0, 0, 1)− ω(1, 0, 1, 0, 0, 1) (4.26k)

c312 = −2ω(2, 0, 0, 0, 0, 1)− ω(0, 2, 0, 0, 0, 1) + ζ2ω(1, 0, 0, 0)

− 2ω(1, 0, 1, 0, 0, 1)− 2ω(1, 1, 0, 0, 0, 1) , (4.26l)

where the occurrences of ζ2 can be traced back to eq. (2.47).

4.3.5 Assembling the results

Momentum conservation only admits particular linear combinations of cji in the four-point

amplitude eq. (4.12). It turns out that for all cases considered divergent eMZVs with the

singular integrand f (1) in the first or last position drop out. Up to third order in sij , we have

I4pt(1, 2, 3, 4) = ω(0, 0, 0) − 2ω(0, 1, 0, 0) (s12 + s23) + 2ω(0, 1, 1, 0, 0)
(
s212 + s223

)
(4.27)

− 2ω(0, 1, 0, 1, 0)s12s23+β5(s
3
12+2s212s23+2s12s

2
23+s323)+β2,3s12s23(s12+s23)+O(α′4)

with

β5 =
4

3

[
ω(0, 0, 1, 0, 0, 2) + ω(0, 1, 1, 0, 1, 0)− ω(2, 0, 1, 0, 0, 0)− ζ2ω(0, 1, 0, 0)

]
(4.28)

β2,3 =
1

3
ω(0, 0, 1, 0, 2, 0)−

3

2
ω(0, 1, 0, 0, 0, 2)−

1

2
ω(0, 1, 1, 1, 0, 0)

− 2ω(2, 0, 1, 0, 0, 0)−
4

3
ω(0, 0, 1, 0, 0, 2)−

10

3
ζ2ω(0, 1, 0, 0) , (4.29)

and the pattern at higher orders is under investigation. The above expressions for β5 and

β2,3 are obtained using various eMZV relations using the methods of subsection 2.2.3.

4.4 On the q-expansion of eMZVs and the string amplitude

The evaluation of eMZVs as initiated in eq. (4.15) and eq. (4.25) will be pursued systemati-

cally in [49, 67, 68]. In this section, we give a glimpse of non-trivial q-dependence in simple

cases and provide consistency checks for the constant piece of the low energy expansion

eq. (4.27) of the four-point amplitude.

4.4.1 The simplest q-expansions

To determine the q-expansions of the simplest eMZVs, we start from the expansions of f (1)

and f (2) spelled out in eq. (3.37), which in turn is based on eqs. (3.32) and (3.33). Using

the integrals in appendix C, we arrive at

ω(0, 1, 0, 0) =
ζ3
8ζ2

+
3

2π2

∞∑

m,n=1

1

m3
qmn (4.30)
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as well as

ω(0, 1, 1, 0, 0) =
ζ2
15

−
1

2π2

∞∑

m,n=1

n

m4
qmn +

1

3

∞∑

m,n=1

n

m2
qmn (4.31)

ω(0, 1, 0, 1, 0) = −
ζ2
60

+
2

π2

∞∑

m,n=1

n

m4
qmn −

1

3

∞∑

m,n=1

n

m2
qmn . (4.32)

A systematic method is under investigation and will appear in [68]. Note that the q-

dependence of all the examples above can be expressed in terms of the function ELin,m
introduced in section 8 of ref. [11] at arguments x = y = 1.

4.4.2 The constant piece of eMZVs and the α′-derivative

The t-integration in the four-point amplitude eq. (4.1) is divergent unless the choice of gauge

group SO(32) leads to cancellations between the cylinder and the Möbius-strip diagram [56].

The divergence is interpreted as a zero-momentum dilaton propagating to the vacuum and

therefore proportional to the derivative of the tree level amplitude with respect to α′ [59].

The latter is given by

Atree
string(1, 2, 3, 4) =

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
Atree

YM(1, 2, 3, 4) (4.33)

with α′-expansion

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
= exp

{
∞∑

k=2

(−1)k
ζk
k

[
sk12 + sk23 − (s12 + s23)

k
]

}

= 1− ζ2s12s23 + ζ3s12s23(s12 + s23)− ζ4s12s23
(
s212 +

1
4s12s23 + s223

)
(4.34)

− ζ5s12s23(s
3
12 + 2s212s23 + 2s12s

2
23 + s323)− ζ2ζ3(s12s23)

2(s12 + s23) +O(α′6) .

In the representation of the one-loop amplitude given in eq. (4.27), the divergence originates

from the constant part of the eMZVs’ power series expansion in q = e2πiτ = e−2πt. A

systematic method to extract the constant term of eMZVs will be described in ref. [49].

The resulting divergence in the above result is given by

A1-loop
string (1, 2, 3, 4)

∣
∣
∣
div

= s12s23A
tree
YM(1, 2, 3, 4) I4pt(1, 2, 3, 4)

∣
∣
∣
q0

=
1

2π2
s12s23A

tree
YM(1, 2, 3, 4)

{

2ζ2 − 3ζ3(s12 + s23) + 4ζ4
(
s212 +

1
4s12s23 + s223

)
(4.35)

− 5ζ5(s
3
12 + 2s212s23 + 2s12s

2
23 + s323) + 5ζ2ζ3s12s23(s12 + s23) +O(α′4)

}

,

which is consistent with the α′-derivative of the tree amplitude [59] upon comparison with

eq. (4.34),

A1-loop
string (1, 2, 3, 4)

∣
∣
∣
div

= −
α′

2π2

∂

∂α′
Atree

string(1, 2, 3, 4) . (4.36)
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5 Multi-particle one-loop string amplitudes and f (n)

This section is devoted to one-loop amplitudes involving five and more open string states.

We firstly provide the five-point extension of the four-point α′-expansion in eq. (4.27).

It is secondly demonstrated that the doubly-periodic functions f (n) defined in section 3

naturally enter the calculation of one-loop amplitudes with any number of external legs.

5.1 The five-point open string amplitude

In the same way as the four-point open string amplitude in eq. (4.1) allows to factor out the

polarization dependence via Atree
YM(1, 2, 3, 4), one can express the five-point string amplitude

in a basis of color-ordered trees of YM theory [69]. BCJ relations [70] single out two inde-

pendent subamplitudes Atree
YM(1, ρ(2, 3), 4, 5) with permutation ρ ∈ S2, and for convenience,

we consider the same color orderings in the one-loop string theory counterparts:

A1-loop
string (1, σ(2, 3), 4, 5) =

∫ ∞

0
dt

∑

ρ∈S2

I5pt(σ|ρ)A
tree
YM(1, ρ(2, 3), 4, 5) . (5.1)

The 2 × 2 matrix I5pt(σ|ρ) is the generalization of the four-point scalar integral

I4pt(1, 2, 3, 4). It can be assembled from the kinematic factors which were simplified in

ref. [69] using the pure spinor formalism [71],

∑

ρ∈S2

I5pt(1|ρ)A
tree
YM(1, ρ(2, 3), 4, 5)=

∫

12345

5∏

k<l

exp
[
sklPkl

]
(5.2)

×
[
s23f

(1)
23 〈C1|23,4,5〉+ (23 ↔ 24, 25, 34, 35, 45)

]

〈C1|23,4,5〉=s45
(
s24A

tree
YM(1, 3, 2, 4, 5)− s34A

tree
YM(1, 2, 3, 4, 5)

)
. (5.3)

The integration measure
∫

12345 is defined in eq. (4.7), the functions f
(1)
ij = f (1)(zi − zj)

stem from OPE contractions among the worldsheet fields and the five-point Mandelstam

invariants eq. (4.3) can be cast into a five-dimensional basis via momentum conservation,

e.g. s13 = s45 − s12 − s23.

From the mathematical point of view, the only novel five-point ingredient as compared

to the four-point amplitude is the extra factor of f
(1)
ij = ∂Pij in the integrand of eq. (5.2).

Thanks to the embedding of f (1) into the framework of eIIs eq. (2.18), the α′-expansion

of the integrals
∫

12345 f
(1)
ij

∏5
k<l exp

[
sklPkl

]
in eq. (5.3) is again captured by eMZVs. The

detailed discussion of kinematic poles as well as the order-by-order treatment of the expo-

nential will be discussed elsewhere; here we simply quote the final result:

I5pt(σ|ρ) =
[
− ω(0, 0, 0)P2 − 2ω(0, 1, 0, 0)M3 − 5ω(0, 1, 1, 0, 0)P4

−
(
2ω(0, 1, 0, 1, 0) + 1

2ω(0, 1, 1, 0, 0)
)
L4 +O(α′5)

]

σ,ρ
. (5.4)

Up to weight two at order O(α4), the eMZV content is the same as in the four-point expan-

sion eq. (4.27). The accompanying 2 × 2 matrices Pi,Mi, Li are indexed by permutations

ρ, σ, and their entries are polynomials of degree i in Mandelstam variables. The represen-

tatives Pi and Mi already appear in the α′-expansion of open-string tree amplitudes, along
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with even and odd Riemann zeta values ζi, respectively [29]. Given that the low-energy

limit of one-loop amplitudes at any multiplicity has the mass dimension of s2ijA
tree
YM(. . .),

the eMZV coefficients of Pi,Mi, Li have weight i − 2. This amounts to a shift of −2 in

weight in comparison to the MZV coefficients of Pi,Mi at tree-level.

They are available at the website [39] whereas L4 reads

(L4)11 = s212s
2
23 + 2s212s23s24 + s212s

2
24 + 2s212s23s34 + 2s12s13s23s34 + 2s12s

2
23s34

+ 2s212s24s34 + s12s13s24s34 + 2s12s23s24s34 + s212s
2
34 + 2s12s13s

2
34

+ s213s
2
34 + 2s12s23s

2
34 + 2s13s23s

2
34 + s223s

2
34 (5.5)

(L4)12 = −s13s24(3s12s23 + s13s23 + s223 + 2s12s24 + s13s24 + s23s24

+ 3s12s34 + 2s13s34 + 3s23s34) (5.6)

and (L4)22 = (L4)11
∣
∣
2↔3

and (L4)21 = (L4)12
∣
∣
2↔3

. The relabelling 2 ↔ 3 refers to the i, j

along with the Mandelstam invariants sij .

The four-point one-loop amplitude eq. (4.27) can be cast into the same form as eq. (5.4)

upon setting L4 → 0 and

P2 → −s12s23 , M3 → s12s23 (s12+s23) , P4 → −
2

5
s12s23

(
s212 +

1
4s12s23 + s223

)
, (5.7)

in agreement with the four-point open string tree eq. (4.33). The pattern of eMZVs at

higher orders in α′ as well as the properties of the novel matrices Li are left for further

projects.

5.2 Functions f (n) from the RNS formalism

In this subsection we will show that the doubly-periodic functions f (n) for any n are

naturally generated in the one-loop amplitude computation using the RNS formalism [72–

74]. Their emergence in the parity-even and parity-odd sectors turns out to follow two

separate mechanisms.

5.2.1 Parity-even RNS amplitudes

In the parity-even sector of the RNS computation, the functions f (n) arise from the sum-

mation over the even spin structures of the fermions on a genus-one worldsheet. We also

take this opportunity to use the method of refs. [75, 76] to write down explicit results for

the N -point spin sum for N > 7.

Definition of Vp(x1, . . . , xN). In the subsequent we use the variables xi ≡ zi − zi+1

for i = 1, . . . , N with the condition zN+1 = z1 such that
∑N

i=1 xi = 0. Using the shorthand

Ωi ≡ αΩ(xi, α) it follows from eq. (3.30) that the αp-component of Ω1 · · ·ΩN has at most

p simultaneous single poles in the variables xi. This suggests the following definition

Vp(x1, x2, . . . , xN ) ≡ (Ω1Ω2 . . .ΩN )
∣
∣
∣
αp

. (5.8)

For example, with f
(n)
i ≡ f (n)(xi),

V1(x1, . . . , x5) =
5∑

i=1

f
(1)
i

– 28 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
2

V2(x1, . . . , x6) =
6∑

i=1

f
(2)
i +

6∑

1≤i<j

f
(1)
i f

(1)
j

V3(x1, . . . , x7) =
7∑

i=1

f
(3)
i +

7∑

1≤i<j

(f
(1)
i f

(2)
j + f

(2)
i f

(1)
j ) +

7∑

1≤i<j<k

f
(1)
i f

(1)
j f

(1)
k

V4(x1, . . . , x8)=
8∑

i=1

f
(4)
i +

8∑

1≤i<j

(f
(1)
i f

(3)
j +f

(2)
i f

(2)
j +f

(3)
i f

(1)
j )+

8∑

1≤i<j<k<l

f
(1)
i f

(1)
j f

(1)
k f

(1)
l

+
8∑

1≤i<j<k

(f
(1)
i f

(1)
j f

(2)
k + f

(1)
i f

(2)
j f

(1)
k + f

(2)
i f

(1)
j f

(1)
k ) . (5.9)

Interestingly, the anti-holomorphic recursion eq. (3.27) implies that Vp(x1, . . . , xN ) is holo-

morphic; ∂
∂z̄i

Vp(x1, . . . , xN ) = 0. Equivalently, the non-holomorphic factors Im (xi) in

Vp(x1, . . . , xN ) trivially vanish because of the condition
∑N

i=1 xi = 0. One can therefore

replace E1(x, τ) by E1(x, τ) and f
(n)
i → g

(n)
i in the notation of subsection 3.3.3 to establish

manifest holomorphicity.

Note that the functions in eq. (5.8) were also used in [77] to cast one-loop correlation

functions among arbitrary numbers of Kac-Moody currents into a closed form.

Spin sums in one-loop amplitudes. In the computation of parity-even one-loop am-

plitudes in the RNS formalism the bosonic worldsheet fields can be straightforwardly in-

tegrated out to yield products of f (1), possibly after integration by parts. Worldsheet

fermions, on the other hand, give rise to the following spin sums,

GN (x1, . . . , xN ) ≡
∑

ν=1,2,3

(−1)ν
(
θν+1(0, τ)

θ′1(0, τ)

)4

Sν(x1)Sν(x2) . . . Sν(xN ) , (5.10)

where
∑N

i=1 xi = 0, Sν is the Szegö kernel and ν denotes the even spin structure with

associated Jacobi theta functions θ2, θ3, θ4 [53, 78–80],

Sν(z) ≡
θ′1(0, τ)θν+1(z, τ)

θν+1(0, τ)θ1(z, τ)
. (5.11)

A method to evaluate such sums was presented in ref. [75] and its explicit results at N ≤ 7

can be written in terms of f (1)(z), the Weierstrass function ℘(z) and its derivatives ∂k℘(z),

G4(x1, . . . , x4) = 1

G5(x1, . . . , x5) =
5∑

j=1

f (1)(xj)

G6(x1, . . . , x6) =
1

2

{( 6∑

j=1

f (1)(xj)
)2

−
6∑

j=1

℘(xj)

}

G7(x1, . . . , x7) =
1

6

{( 7∑

j=1

f (1)(xj)

)3

−
7∑

j=1

∂℘(xj)−3

( 7∑

j=1

f (1)(xj)

)( 7∑

j=1

℘(xj)

)}

. (5.12)
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One can show that the above results are naturally described by the elliptic functions

Vp(x1, . . . , xN ),

GN (x1, . . . , xN ) = VN−4(x1, . . . , xN ), 4 ≤ N ≤ 7 . (5.13)

An alternative method was used in [81, 82] to express GN in terms of single derivatives

of the bosonic Green function. The equivalence of the expression for G6 given in these

references with eq. (5.12) can be verified through the Fay identity eq. (2.39).

Although the results for N ≥ 8 were not written down explicitly in ref. [75], they also

take a natural form when expressed in terms of elliptic functions Vp(x1, . . . , xN ),

G8(x1, . . . , x8) = V4(x1, . . . , x8) + 3e4 (5.14)

G9(x1, . . . , x9) = V5(x1, . . . , x9) + 3e4V1(x1, . . . , x9)

G10(x1, . . . , x10) = V6(x1, . . . , x10) + 3e4V2(x1, . . . , x10) + 10e6

G11(x1, . . . , x11) = V7(x1, . . . , x11) + 3e4V3(x1, . . . , x11) + 10e6V1(x1, . . . , x11)

G12(x1, . . . , x12) = V8(x1, . . . , x12) + 3e4V4(x1, . . . , x12) + 10e6V2(x1, . . . , x12) + 42e8 .

The factors of the Eisenstein series ej eq. (3.9) can be systematically computed as well.

Following ref. [76], we define Q0(℘) = 1, Q1(℘) = ℘ and Qk+1(℘) = ℘(2k). For example,

Q2(℘) = 3!℘2 − 1
2g2

Q3(℘) = 5!℘3 − 18g2℘− 12g3

Q4(℘) = 7!℘4 − 1008g2℘
2 − 720g3℘+ 9g22

Q5(℘) = 9!℘5 − 90720g2℘
3 − 64800g3℘

2 + 3024g22℘+ 2376g2g3 , (5.15)

where the Weierstrass equation (℘′)2 = 4℘3 − g2℘ − g3 has been used to rewrite the 2kth

derivative of ℘ as a polynomial in ℘. In the above equation, g2 = −4(s1s2+ s2s3+ s3s1) =

60e4, g3 = 4s1s2s3 = 140e6 are the elliptic invariants and si are the branch points of the

genus-one elliptic curve y2 = 4(z− s1)(z − s2)(z− s3) satisfying s1 + s2 + s3 = 0. Defining

F2k−4 ≡ −
1

(2k − 1)!

[
(s1 − s3)Qk(s2) + (s3 − s2)Qk(s1) + (s2 − s1)Qk(s3)

]

(s1 − s3)(s3 − s2)(s2 − s1)
, k ≥ 4

(5.16)

straightforward calculation leads to11

F4 = 3e4, F6 = 10e6, F8 = 42e8, F10 = 168e10, F12 = 627e12 + 9e34 ,

11The Eisenstein series e8, e10 and e12 can be written in terms of e4 and e6 as follows

e8 =
3

7
e
2
4, e10 =

5

11
e4e6, e12 =

18

143
e
3
4 +

25

143
e
2
6.

The general formula is written in terms of dk ≡ (2k + 3)k!e2k+4

dn+2 =
3n+ 6

2n+ 9

n
∑

k=0

(

n

k

)

dkdn−k .
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which precisely captures the factors of ej in eq. (5.14). We have explicitly checked up to

N = 12 that the spin sums can be uniformly written as,

GN (x1, . . . , xN ) = VN−4(x1, . . . , xN ) +

⌊N−8
2

⌋+1
∑

k=1

F2k+2VN−2k−6(x1, . . . , xN ) . (5.17)

5.2.2 Parity-odd RNS amplitudes

The parity-odd sector of the RNS computation entirely stems from the unique odd spin

structure at genus one where the worldsheet spinors obey anti-periodic boundary conditions

along both torus cycles and acquire a zero mode. The worldsheet integrand is governed by

zero-mode saturation and, probably as a common feature with the Green-Schwarz or pure

spinor formalism, OPE contractions of the worldsheet fields which generate N − 4 factors

of f
(1)
ij where f

(n)
ij ≡ f (n)(zi − zj).

For six points, the direct evaluation of the OPEs gives rise to a quadratic factor

f
(1)
ij f

(1)
kl for various combinations of labels capturing the behavior of the singularities as the

vertices collide. However, we know from the Fay identity eq. (2.39) that these quadratic

combinations are not linearly independent and therefore one is naturally led to higher-

weight f (n)’s when considering a minimal basis of integrals to evaluate. The simplest

example where a higher-weight f (n) is generated this way is f
(1)
12 f

(1)
13 + f

(1)
23 f

(1)
21 + f

(1)
31 f

(1)
32 =

f
(2)
12 +f

(2)
23 +f

(2)
31 which can be viewed as generalizing the genus-zero partial fraction identity

eq. (2.38). The non-vanishing of the right-hand side provides an important distinction

between one-loop and tree-level string amplitudes and it is ultimately related to the gauge

anomaly cancellation mechanism in the superstring [57, 58]. It can be shown that the

parity-odd part of the six-point amplitude as firstly computed in ref. [83] can be entirely

written in terms of f (2), i.e. that any appearance of f (1) can be removed via eq. (2.39).

More generally, the N − 4 powers of f (1) in the N -point amplitude allow, via the Fay

identity, the generation of f (p) with up to p = N − 4. In this way the need for a general

integration method for the type of iterated integrals on an elliptic curve considered in this

paper is justified.

6 Discussion and further directions

In this article, we have proposed an organization scheme for elliptic iterated integrals and

elliptic multiple zeta values (eMZVs), where the key definitions are provided in eqs. (2.18)

and (2.22). The infinite family of doubly-periodic functions f (n) appearing in the inte-

grands of section 2 are put into a mathematical context and are related to multiple elliptic

polylogarithms in section 3. As a first natural and simple application of this framework,

we have identified eMZVs in the α′-expansion of one-loop scattering amplitudes in open

string theory. The leading orders in the low-energy behavior of the four- and five-point

amplitudes in terms of eMZVs are presented in eqs. (4.27) and (5.4). Divergent eMZVs

turn out to cancel from our results.

Having demonstrated the potential of the formalism for an initial example, there are

numerous open questions to be pursued in the near future. Most obviously, the eMZV
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content of the low energy expansion of cylinder amplitudes needs to be understood for

higher orders in α′, which can be done conveniently using the new techniques. Further-

more, the contributions from the cylinder configuration with open string insertions on both

boundaries as well as from the Möbius-strip topology shall be determined in terms of the

iterated integrals introduced in subsection 2.2. The q-expansion of eMZVs exemplified in

section 4.4.1 offers a promising approach to systematically perform the t-integration in

eq. (4.1) after summing all topologies for the gauge group SO(32) [56].

On the mathematical side, the network of relations between eMZVs explored in sub-

section 2.2.3 will be further investigated in refs. [49, 67, 68]. A suitable coaction along the

lines of refs. [5–8, 16] might lead to a natural basis choice for eMZVs and might allow to

further identify patterns in the one-loop string amplitudes. In the same way as the Drin-

feld associator was instrumental in understanding the pattern of MZVs [29] in open string

tree-level amplitudes [37] and finally allowed to completely determine their α′-expansion

in ref. [38], the elliptic associators discussed in ref. [24] might encode the structure of the

α′-expansion at one-loop. Furthermore, in refs. [84, 85] so-called multiple modular values

are discussed whose possible relation to the eMZVs studied here needs to be explored.

In multi-particle one-loop open string amplitudes, the pure spinor formalism, in partic-

ular the ingredients of ref. [86] are expected to yield a compact description of the kinematic

factors associated to the functions f (n). While the precise superspace kinematic factors

along with various powers of f (1) have been derived in ref. [69], the kinematic companions

of f (n≥2) in the higher-point amplitudes are currently under investigation.

Finally, it would be desirable to find a similar scheme for organizing the α′-expansion

of closed string one-loop amplitudes. In particular, the worldsheet integrals investigated in

refs. [64–66] might allow for a description in terms of eMZVs and their counterpart defined

with respect to the other cycle of the torus. The peculiar linear combinations of torus

integrals appearing in the α′-expansion of closed-string amplitudes call for an explanation

along the lines of the above finding that divergent eMZVs drop out from the open-string

expansions.
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A Derivatives of multiple polylogarithms w.r.t. the labels

The proof of the recursion in eq. (2.11) relies on the derivatives of multiple polylogarithms

eq. (2.1) with respect to their labels a1, a2, . . . , an [5]:

∂

∂z
G(~a; z) =

1

z − a1
G(a2, . . . , an; z). (A.1)

∂

∂ai
G(~a; z) =

1

ai−1 − ai
G(. . . , âi−1, . . . ; z) +

1

ai − ai+1
G(. . . , âi+1, . . . ; z)

−
ai−1 − ai+1

(ai−1 − ai)(ai − ai+1)
G(. . . , âi, . . . ; z) , i 6= 1, n (A.2)

∂

∂an
G(~a; z) =

1

an−1 − an
G(. . . , ân−1, an; z)−

an−1

(an−1 − an)an
G(. . . , an−1; z) . (A.3)

B Identities for iterated integrals

This appendix provides further relations to integrate eIIs whose argument occurs in the

labels.

B.1 Total derivatives

The following identities generalize eqs. (2.34) to (2.36) for multiple successive occurrences

of the argument t0 in the label. If the first k labels match the argument, one can show that

d

dt0
Γ
( n1 n2 ... nk nk+1 ... nr

t0 t0 ... t0 ak+1 ... ar ; t0
)

(B.1)

=

(
k−1∏

j=1

tj−1∫

0

dtj f
(nj)(tj − t0)

)
∫ tk−1

0
dt f (nk)(t− t0)f

(nk+1)(t− ak+1) Γ
( nk+2 ... nr
ak+2 ... ar ; t

)
.

For a terminal sequence of aj = t0, we find

d

dt0
Γ
( n1 ... nℓ−1 nℓ ... nr

a1 ... aℓ−1 t0 ... t0 ; t0
)
= f (n1)(t0 − a1) Γ

( n2 ... nℓ−1 nℓ ... nr

a2 ... aℓ−1 t0 ... t0 ; t0
)

−

(
ℓ−2∏

j=1

tj−1∫

0

dtj f
(nj)(tj − aj)

)
∫ tℓ−2

0
dt f (nℓ−1)(t− aℓ−1)f

(nℓ)(t− t0) Γ
( nℓ+1 ... nr

t0 ... t0 ; t
)

+ f (nr)(−t0) Γ
( n1 ... nℓ−1 nℓ ... nr−1

a1 ... aℓ−1 t0 ... t0 ; t0
)
. (B.2)

Finally, an intermediate sequence of aj = t0 ranging from j = p to j = q with p 6= 1 and

q 6= r can be addressed via

d

dt0
Γ
( n1 ... np−1 np ... nq nq+1 ... nr

a1 ... ap−1 t0 ... t0 aq+1 ... ar ; t0
)
= f (n1)(t0 − a1) Γ

( n2 ... np−1 np ... nq nq+1 ... nr

a2 ... ap−1 t0 ... t0 aq+1 ... ar ; t0
)

−

(
p−2
∏

j=1

tj−1∫

0

dtj f
(nj)(tj − aj)

)
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×

∫ tp−2

0
dt f (np−1)(t− ap−1)f

(np)(t− t0) Γ
( np+1 ... nq nq+1 ... nr

t0 ... t0 aq+1 ... ar ; t
)

+

(
p−1
∏

j=1

tj−1∫

0

dtj f
(nj)(tj − aj)

)(
q−1
∏

j=p

tj−1∫

0

dtj f
(nj)(tj − t0)

)

(B.3)

×

∫ tq−1

0
dt f (nq)(t− t0)f

(nq+1)(t− aq+1) Γ
( nq+2 ... nr
aq+2 ... ar ; t

)
.

Cases with multiple disconnected sequences of aj = t0 can be treated along similar lines.

B.2 Recursive removal of the argument from the labels

On the basis of eqs. (B.1) to (B.3), we can generalize the recursions eqs. (2.41) to (2.43)

to situations where several successive instances of the argument occur among the labels. If

the first k labels match the argument, one can show that

Γ
( n1 n2 ... nk nk+1 ... nr

z z ... z ak+1 ... ar ; z
)
= lim

z→0
G(z, . . . , z, ak+1, . . . , ar; z)

r∏

j=1

δnj ,1

− (−1)nk

∫ z

0
dt f (nk+nk+1)(t− ak+1) Γ

(
n1 ... nk−1 0 nk+2 ... nr

t ... t 0 ak+2 ... ar
; t
)

(B.4)

+

nk+1∑

j=0

(
nk − 1 + j

j

)∫ z

0
dt f (nk+1−j)(t− ak+1) Γ

(
n1 ... nk−1 nk+j nk+2 ... nr

t ... t t ak+2 ... ar
; t
)

+

nk∑

j=0

(
nk+1 − 1 + j

j

)

(−1)nk+j

∫ z

0
dt f (nk−j)(t− ak+1) Γ

(
n1 ... nk−1 nk+1+j nk+2 ... nr

t ... t ak+1 ak+2 ... ar
; t
)

.

For a terminal sequence of aj = z, we find

Γ
( n1 ... nℓ−1 nℓ ... nr
a1 ... aℓ−1 z ... z ; z

)
= lim

z→0
G(a1, . . . , aℓ−1, z, . . . , z; z)

r∏

j=1

δnj ,1

+

∫ z

0
dt f (n1)(t− a1) Γ

( n2 ... nℓ−1 nℓ ... nr

a2 ... aℓ−1 t ... t ; t
)

+ (−1)nℓ

∫ z

0
dt f (nℓ+nℓ−1)(t− aℓ−1) Γ

(
n1 ... nℓ−2 0 nℓ+1 ... nr

a1 ... aℓ−2 0 t ... t ; t
)

(B.5)

−

nℓ−1∑

j=0

(
nℓ − 1 + j

j

)∫ z

0
dt f (nℓ−1−j)(t− aℓ−1) Γ

(
n1 ... nℓ−2 nℓ+j nℓ+1 ... nr

a1 ... aℓ−2 t t ... t ; t
)

−

nℓ∑

j=0

(
nℓ−1 − 1 + j

j

)

(−1)nℓ+j

∫ z

0
dt f (nℓ−j)(t− aℓ−1) Γ

(
n1 ... nℓ−2 nℓ−1+j nℓ+1 ... nr

a1 ... aℓ−2 aℓ−1 t ... t ; t
)

+ (−1)nr

∫ z

0
dt f (nr)(t) Γ

( n1 ... nℓ−1 nℓ ... nr−1

a1 ... aℓ−1 t ... t ; t
)
.

Finally, an intermediate sequence of aj = z ranging from j = p to j = q with p 6= 1 and

q 6= r can be addressed via

Γ
( n1 ... np−1 np ... nq nq+1 ... nr
a1 ... ap−1 z ... z aq+1 ... ar ; z

)
= lim

z→0
G(a1, . . . , ap−1, z, . . . , z, aq+1, . . . , ar; z)

r∏

j=1

δnj ,1

– 34 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
2

+

∫ z

0
dt f (n1)(t− a1) Γ

( n2 ... np−1 np ... nq nq+1 ... nr

a2 ... ap−1 t ... t aq+1 ... ar ; t
)

+ (−1)np

∫ z

0
dt f (np+np−1)(t− ap−1) Γ

(
n1 ... np−2 0 np+1 ... nq nq+1 ... nr

a1 ... ap−2 0 t ... t aq+1 ... ar
; t
)

(B.6)

−

np−1∑

j=0

(
np − 1 + j

j

)∫ z

0
dt f (np−1−j)(t− ap−1) Γ

(
n1 ... np−2 np+j np+1 ... nq nq+1 ... nr

a1 ... ap−2 t t ... t aq+1 ... ar
; t
)

−

np∑

j=0

(
np−1−1+j

j

)

(−1)np+j

∫ z

0
dt f (np−j)(t−ap−1) Γ

(
n1 ... np−2 np−1+j np+1 ... nq nq+1 ... nr

a1 ... ap−2 ap−1 t ... t aq+1 ... ar
; t
)

− (−1)nq

∫ z

0
dt f (nq+nq+1)(t− aq+1) Γ

(
n1 ... np−1 np ... nq−1 0 nq+2 ... nr

a1 ... ap−1 t ... t 0 aq+2 ... ar
; t
)

+

nq+1∑

j=0

(
nq − 1 + j

j

)∫ z

0
dt f (nq+1−j)(t− aq+1) Γ

(
n1 ... np−1 np ... nq−1 nq+j nq+2 ... nr

a1 ... ap−1 t ... t t aq+2 ... ar
; t
)

+

nq∑

j=0

(
nq+1−1+j

j

)

(−1)nq+j

∫ z

0
dt f (nq−j)(t−aq+1) Γ

(
n1 ... np−1 np ... nq−1 nq+1+j nq+2 ... nr

a1 ... ap−1 t ... t aq+1 aq+2 ... ar
; t
)

.

These relations reproduce eqs. (2.41) to (2.43) for k = 1, p = q and ℓ = r, respectively.

B.3 Eliminating labels aj = z at length three

The generalization of eq. (2.52) to length three is governed by

Γ ( n1 n2 n3
z 0 0 ; z) = −ζ3δ

1
n1
δ1n2

δ1n3
+ ζ2

n2∑

j=0

δ1n3
δ1n1+j

(
n1 − 1 + j

j

)

Γ(n2 − j; z)

− (−1)n1 Γ(n1 + n2, 0, n3; z) +

n1∑

j=0

(−1)n1+j

(
n2 − 1 + j

j

)

Γ(n1 − j, n2 + j, n3; z)

−
n2∑

j=0

(−1)n1+j

(
n1 − 1 + j

j

)

Γ(n2 − j, n1 + n3 + j, 0; z) (B.7)

+

n2∑

j=0

(
n1 − 1 + j

j

) n3∑

k=0

(−1)n1+j+k

(
n1 + j − 1 + k

k

)

Γ(n2 − j, n3 − k, n1 + j + k; z)

+

n2∑

j=0

(
n1 − 1 + j

j

) n1+j
∑

k=0

(−1)n1+j+k

(
n3 − 1 + k

k

)

Γ(n2 − j, n1 + j − k, n3 + k; z) .

The reflection identity (2.20) allows to infer Γ ( n1 n2 n3
z z 0 ; z) = (−1)n1+n2+n3 Γ ( n3 n2 n1

z 0 0 ; z),

and permutations in the labels are covered by shuffle relations.

C Trigonometric integrals

This appendix gathers trigonometric integrals relevant for the evaluation of eMZVs. The

result in eq. (4.30) for ω(0, 1, 0, 0) relies on

∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 sin(2πnz2) z2 =

3

8π3n3
(C.1)
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∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 cot(πz2) z2 =

3ζ3
4π3

, (C.2)

and the eMZVs relevant at order s2ij as given by eq. (4.31) and eq. (4.32) are based on

∫ 1

0
dz5

∫ z5

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2

∫ z2

0
dz1 cos(2πnz1) =

1

24π2n2
−

1

16π4n4
(C.3)

∫ 1

0
dz5

∫ z5

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 cos(2πnz2) z2 = −

1

24π2n2
+

1

4π4n4
. (C.4)

D Cycle index of the symmetric group and the f (n) functions

This appendix highlights the connection between the explicit expansion of the doubly-

periodic functions f (n) in (3.23) with the cycle index of the symmetric group Sn. For

general references, see [87, 88].

Cycle structures. Every permutation g ∈ Sn of X = {1, . . . , n} can be written as the

product of disjoint cycles with lengths a1, . . . , an such that n =
∑n

i=1 ai. This integer

partition of n is represented by λ = 1a12a2 . . . nan and is called the cycle structure of the

permutation. Therefore the total number of cycle structures for the permutations in Sn

is given by the integer partition P (n) = 1, 2, 3, 5, 7, . . .. Note that the number of terms in

each f (n) is also P (n). Furthermore, if λ = 1a12a2 . . . nan is a partition of n (denoted by

λ ⊢ n), the number of permutations with cycle structure λ is [87]

n!
∏n

i=1 i
aiai!

. (D.1)

Note that the coefficients of the monomials Ea1
1 . . . Ean

n in f (n) given by eq. (3.24) are repro-

duced by the formula (D.1) with the corresponding cycle structure. This observation can

be made more precise with the definition of the cycle index of the symmetric group Sn [87],

Z(Sn; s1, . . . , sn) =
1

n!

∑

g∈Sn

z(g; s1, . . . , sn) , (D.2)

where z(g; s1, . . . , sn) = sa11 sa22 . . . sann and ai counts the number of cycles of length i in the

permutation g. One can see from the first few examples,12

Z(S1, s1) = s1

Z(S2, s1, . . . , s2) =
1

2!

(
s21 + s2

)

Z(S3, s1, . . . , s3) =
1

3!

(
s31 + 3s1s2 + 2s3

)

Z(S4, s1, . . . , s4) =
1

4!

(
s41 + 6s21s2 + 8s1s3 + 3s22 + 6s4

)

12In addition, it is convenient to define Z(S0) = 1.
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that the cycle index of Sn captures the expansions in (3.23). More precisely, theorem 1.3.3

of [89] can be written as

∞∑

n=0

αnZ(Sn; E1, . . . , En) = exp

( ∞∑

j=1

Ej
j
αj

)

, (D.3)

and comparing (3.22) with (D.3) leads to,

f (n) = Z(Sn; E1, . . . , En)

=
∑

λ⊢n

n∏

i=1

Eai
i

iaiai!
, λ = 1a12a2 . . . nan . (D.4)

Furthermore, one can also show that [88],

∂f (n)(z, τ)

∂Ep
=

1

p
f (n−p)(z, τ). (D.5)

Note, in particular, that (D.5) yields an alternative proof of (3.27),

∂f (n)(z, τ)

∂z̄
=

∂f (n)(z, τ)

∂E1

∂E1
∂z̄

= −
π

Im(τ)
f (n−1)(z, τ). (D.6)

Symmetric polynomials. The cycle index of the symmetric group Sn also provides a

recipe for expressing the complete symmetric function hj in terms of the power sum function

pj , i.e., hn = Z(Sn; p1, p2, . . . , pn) [87]. Therefore the functional form of hn matches that

of f (n) and one can exploit the well-known relation nhn =
∑n

i=1 pihn−i from the theory of

symmetric functions to obtain the corresponding recursion formula eq. (3.25) for f (n).
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