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1 Introduction

More than forty years ago, 26 was noted as a critical dimension for the dual-resonance models that preceded string
theory [1, 2, 3]. One way of obtaining the critical dimension has been to show that in light-cone gauge quantisation the
longitudinal Lorentz-operatorsMi−, i = 1, . . . , d > 1, only commute in D = d+ 2 = 26 space-time dimensions [4]. In this
computation the generators Mi− are normal-ordered infinite sums cubic in the oscillator modes of the quantised string.1

Whereas the quantisation of the string is well understood, much less is known for generalM -dimensional extended objects;
however, in [6] it was noted that, as a consequence of Lorentz invariance, a dynamical symmetry exists - which might give
a way to algebraically determine the spectrum if one can understand this symmetry in the quantum theory. Classically,
these higher-dimensional objects can be described – similarly to the string – in the light-cone gauge, but the corresponding
world-volume theories are not free as in the case of strings. Therefore one does not have an expansion in terms of harmonic
oscillators that would make it possible to quantise the theory directly. On the other hand, one can still use field theory
techniques like operator-product expansions (OPE) in the computations.

These considerations motivated us to rederive the critical dimension of bosonic string theory in the light-cone gauge
quantisation by only using the operator product expansion on the Lorentzian world-sheet. As the world-sheet theory is
free, the OPEs are simple and completely equivalent to the harmonic oscillator commutators of the corresponding modes
(so that it is guaranteed that the result is the same as in the oscillator approach). The computation, however, turned
out to be surprisingly tedious and subtle (it involves a careful treatment of composite and non-local operators). We
decided to write it up and present it in this note, in the hope that the approach might be useful for higher dimensional
extended objects (note also [7]), - as well as an alternative derivation of the critical dimension (see also [8] where yet
another derivation of the Lorentz anomaly was presented). We should add that, similar to the oscillator computation, it
seems that one can not pinpoint any particular step of the computation where the anomaly arises; it rather appears as
a result of an interplay of several anomalous terms that arise due to the regularisations needed to define the composite
operators. Note however that, because we work on the (Lorentzian) cylinder, there is no need to artificially introduce a

1cp. [5]; standard textbooks have curiously refrained from presenting the calculation in detail
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normal-ordering constant in the computation; it is already set to the right value by using the most natural definition of
composite operators.

Let us describe the computation in a language that can also be used for higher-dimensional extended objects (see
[9] for some naive heuristic considerations). The string is parameterised by a map from the Lorentzian cylinder (time
coordinate t and angular variable ϕ) to a flat Minkowski space. In the light-cone gauge the degrees of freedom are carried
by the transversal fields ~x and their conjugate momenta ~p, as well as by the zero mode ζ0 of the coordinate ζ = x− and
by its conjugate variable η.

Classically the longitudinal generators of the Lorentz algebra are given by

Mi− :=

∫ 2π

0

(xiH− ζpi)dϕ, i = 1, . . . , d = D − 2 . (1.1)

Here
H(ϕ) :=

π

η
(~p · ~p+ ~x′ · ~x′) (1.2)

is the classical Hamiltonian density (corresponding to p−), and

ζ(ϕ) = ζ0 −
2π

η

∫ 2π

ϕ

~p · ~x′ dψ +
1

η

∫ 2π

0

~p · ~x′ ψdψ +
π − ϕ

η

∫ 2π

0

~p · ~x′ dψ (1.3)

is the reconstructed x− coordinate of the string that follows from ζ′ = 2π
η
~p · ~x′. The transversal fields xi(ϕ), pj(ϕ) are

constrained by
∫ 2π

0

~p · ~x′dϕ = 0 , (1.4)

so that the last term in (1.3) could be dropped, and ζ can be rewritten as

ζ(ϕ) = ζ0 +
2π

η

∫ ϕ

0

~p · ~x′ dψ +
1

η

∫ 2π

0

~p · ~x′ ψdψ . (1.5)

That the Mi− Poisson-commute (provided (1.4) holds) is a particular case of a result of Goldstone [10], who for arbitrary
dimension M of the extended object solved

∂ζ

∂ϕa
=
~p · ∂a~x

ηρ
, a = 1, . . . ,M (1.6)

for ζ in terms of ~x and ~p and some Green’s function G (ρ is a density satisfying
∫

ρ dMϕ = 1) and then showed that classi-
cally, for all M , the generators of the inhomogeneous Lorentz group can be consistently realised on the (η, ζ0, ~x(ϕ), ~p(ϕ))
phase-space constrained by the consistency of (1.6) (which for M = 1 and ρ = 1

2π
simply becomes (1.4)). In the string

case considered here,

G(ϕ, ψ) = 2π(ψ − ϕ)θ(ψ − ϕ)−
1

2
(ψ − ϕ+ π)2 +

π2

6
, (1.7)

and the reconstructed x− coordinate is

ζ(ϕ) = ζ0 −
1

η

∫ 2π

0

∂ψG(ϕ, ψ) ~p(ψ) · ~x
′(ψ) dψ , (1.8)

which reduces to the expression (1.5) given above.
The paper is organised as follows. In section 2 we explain the OPE techniques that are needed to get to a quantum

definition of the Lorentz operators. We then derive the commutation relations of all basic fields in section 3. Finally,
we compute the crucial commutator [Mi−,Mj−] in section 4. The three appendices contain some technical parts of the
computation.
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2 Operator product expansion and composite operators

The definition of the Lorentz generators involves products of fields which we have to define properly in the quantum
theory. In a free theory this can be done by using an oscillator expansion of the free fields and then define normal-ordered
products by moving annihilation operators to the right of creation operators. Alternatively we can use the operator
product expansion (OPE) of the fields to define composite operators by subtracting the singular part of the OPE. This
leads to an equivalent description for free fields, but it can in principle also be used in more general situations where the
usual normal ordering prescription in terms of annihilation and creation operators is not possible.

In the case at hand, the xi are massless free fields on the two-dimensional cylinder, and their OPE reads (no summation
over i)

xi(ϕ̃)xi(ϕ) = −
1

2π
log
∣

∣ sin ϕ̃−ϕ
2

∣

∣+ regular . (2.1)

Then the OPE of the fields x′i is given by

x′i(ϕ̃)x
′

i(ϕ) = Ssing(ϕ̃, ϕ) + regular , (2.2)

with the distribution Ssing in two variables ϕ̃ and ϕ given by

Ssing(ϕ̃, ϕ) = −
1

2π
∂ϕ̃∂ϕ log

∣

∣ sin ϕ̃−ϕ
2

∣

∣ =
1

4π
∂ϕ̃

(

cos
( ϕ̃− ϕ

2

)

P
1

sin( ϕ̃−ϕ
2

)

)

, (2.3)

where P denotes the principal value. To define the operator ”x′i(ϕ)x
′
i(ϕ)” we use point-splitting, so we evaluate (2.2) for

ϕ̃ = ϕ− ǫ and determine the singular piece,

x′i(ϕ̃)x
′

i(ϕ)
∣

∣

∣

ϕ̃=ϕ−ǫ
= −

1

2πǫ2
+ regular . (2.4)

Note that away from ϕ = ϕ̃, Ssing is a regular function, and we can replace ϕ̃ = ϕ − ǫ. This singular piece is then
subtracted to define the product of x′i with itself,

((

x′ix
′

i

))

(ϕ) := lim
ǫ→0

(

x′i(ϕ̃)x
′

i(ϕ)
∣

∣

∣

ϕ̃=ϕ−ǫ
+

1

2πǫ2

)

. (2.5)

Up to an additive constant this is equivalent to the normal ordering prescription using oscillators.
Similarly we have

pi(ϕ̃)pi(ϕ) = Ssing(ϕ̃, ϕ) + regular , (2.6)

and
((

pipi
))

(ϕ) := lim
ǫ→0

(

pi(ϕ̃)pi(ϕ)
∣

∣

∣

ϕ̃=ϕ−ǫ
+

1

2πǫ2

)

. (2.7)

This then leads to the quantum definition of H,

H(ϕ) =
π

η

∑

i

(((

pipi
))

(ϕ) +
((

x′ix
′

i

))

(ϕ)
)

(2.8)

= lim
ǫ→0

π

η

(

∑

i

(pi(ϕ̃)pi(ϕ) + x′i(ϕ̃)x
′

i(ϕ))
∣

∣

∣

ϕ̃=ϕ−ǫ
+ 2(D − 2)

1

2πǫ2

)

. (2.9)

4



In the definition of ζ we also meet the product of pi and x
′
i. Their operator product expansion only has singularities of

contact type,

pi(ϕ̃)x
′

i(ϕ) =
i

2
∂ϕ̃δ(ϕ̃− ϕ) + regular . (2.10)

We therefore get a well-defined composite operator just by point-splitting,

((

pix
′

i

))

(ϕ) = lim
ǫ→0

(pi(ϕ̃)x
′

i(ϕ))
∣

∣

∣

ϕ̃=ϕ−ǫ
, (2.11)

and we can define the quantum version of ζ as

ζ(ϕ) = ζ0 −
1

η

∫ 2π

0

∂ψG(ϕ, ψ)
((

~p · ~x′
))

(ψ) dψ . (2.12)

When we define the Lorentz generators Mi− we also encounter the product of H and xi as well as the product of ζ and
pi, which we have to regularise to obtain well-defined expressions.

Let us start with the product of H and xi. The singularities in the operator product expansion follow via Wick’s
theorem from the individual contractions of xi and the x′j appearing inside H,

xi(ϕ̃)H(ϕ)
∣

∣

∣

ϕ̃=ϕ−ǫ
=
π

η

(

−
1

πǫ
x′i(ϕ)

)

+ regular . (2.13)

Therefore we can define the quantum product of xi and H by

((

xiH
))

(ϕ) = lim
ǫ→0

(

xi(ϕ̃)H(ϕ)
∣

∣

∣

ϕ̃=ϕ−ǫ
+

1

ǫη
x′i(ϕ)

)

. (2.14)

A little more work is needed to define the product of pi and ζ, because ζ is defined as a non-local expression in the fields.
The possible singularities come from the contact singularity between pi and x

′
j inside ζ, and from the singularity between

pi and the pj inside ζ. The contact singularity is avoided if we consider the symmetrised product piζ + ζpi, and we find

1

2

(

pi(ϕ̃)
((

~p · ~x′
))

(ψ) +
((

~p · ~x′
))

(ψ) pi(ϕ̃)
)

= −
1

4π
x′i(ψ) ∂ψ

(

cos
(ψ − ϕ̃

2

)

P
1

sin(ψ−ϕ̃
2

)

)

+ regular . (2.15)

The possible singularity in the symmetrised product of ζ and pi is then

1

2
(pi(ϕ̃)ζ(ϕ) + ζ(ϕ)pi(ϕ̃))

∣

∣

∣

ϕ̃=ϕ−ǫ

=
1

4πη

∫ 2π

0

∂ψG(ϕ, ψ)x
′

i(ψ) ∂ψ

(

cos
(ψ − ϕ̃

2

)

P
1

sin(ψ−ϕ̃
2

)

)

∣

∣

∣

ϕ̃=ϕ−ǫ
dψ + regular (2.16)

= −
1

4πη

∫ 2π

0

xi(ψ) ∂ψ

(

∂ψG(ϕ, ψ) ∂ψ

(

cos
(ψ − ϕ̃

2

)

P
1

sin(ψ−ϕ̃
2

)

)

∣

∣

∣

ϕ̃=ϕ−ǫ

)

dψ + regular (2.17)

= ∂ϕ

(

1

4πη

∫ 2π

0

xi(ψ)

(

∂ψG(ϕ, ψ) ∂ψ

(

cos
(ψ − ϕ̃

2

)

P
1

sin(ψ−ϕ̃
2

)

)

∣

∣

∣

ϕ̃=ϕ−ǫ

))

dψ + regular . (2.18)

The possible singular part is therefore a total derivative in ϕ, which means that it does not matter in the expression for
Mi−, which involves an integration over ϕ.
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Similarly, also the singular part of the product of xi and H is a total derivative (see (2.13)), which vanishes upon
integration. Therefore the quantum definition of Mi− using symmetrised products and point-splitting is given by

Mi− = lim
ǫ,δ→0

Mi−(ǫ, δ) (2.19)

= lim
ǫ,δ→0

1

2

∫

(

xi(ϕ+ ǫ)H(ϕ) +H(ϕ)xi(ϕ+ ǫ)− ζ(ϕ + δ)pi(ϕ)− pi(ϕ)ζ(ϕ + δ)
)

dϕ . (2.20)

This is our starting point for analysing the commutator of Mi− and Mj−.

3 Basic commutation relations

To compute the commutators of the Lorentz algebra generators we need to determine the commutators of the fields
xi(ϕ), pj(ϕ),H(ϕ), ζ(ϕ), which follow from the canonical commutation relations of xi and pj , and η and ζ0. We first list
the results, and present the derivation subsequently. The commutators are

[η, ζ0] = i (3.1)

[xi(ϕ), pj(ϕ̃)] = iδij δ(ϕ− ϕ̃) (3.2)

[H(ϕ), pj(ϕ̃)] =
2πi

η
∂ϕδ(ϕ− ϕ̃)x′j(ϕ) (3.3)

[xi(ϕ), ζ(ϕ̃)] = −
i

η
∂ϕG(ϕ̃, ϕ)x

′

i(ϕ) (3.4)

[H(ϕ), ζ(ϕ̃)] = −
2πi

η
δ(ϕ− ϕ̃)H(ϕ) −

i

η
∂ϕ

(

∂ϕG(ϕ̃, ϕ)H(ϕ)
)

+
πi

3η2
(D − 2) ∂2ϕδ(ϕ− ϕ̃) (3.5)

[H(ϕ),H(ϕ̃)] =
2iπ2

η2
∂ϕδ(ϕ− ϕ̃)

(

~p(ϕ) · ~x′(ϕ̃) + ~x′(ϕ̃) · ~p(ϕ) + ~p(ϕ̃) · ~x′(ϕ) + ~x′(ϕ) · ~p(ϕ̃)
)

(3.6)

[H(ϕ), xj(ϕ̃)] = −
2πi

η
δ(ϕ− ϕ̃) pj(ϕ̃) (3.7)

[ζ(ϕ), pj(ϕ̃)] =
i

η
∂ϕ̃

(

∂ϕ̃G(ϕ, ϕ̃) pj(ϕ̃)
)

(3.8)

[ζ(ϕ), ζ(ϕ̃)] = −
i

η
∂ϕG(ϕ̃, ϕ)

(

ζ′(ϕ) + ζ′(ϕ̃)
)

. (3.9)

The derivation is straightforward:

• (3.1),(3.2): These are the canonical commutation relations.

• (3.3): We use the definition of H via point-splitting (see (2.9)). The only contribution to the commutator comes
from the x′2 term in H,

[H(ϕ), pj(ϕ̃)] =
π

η
lim
ǫ→0

[

~x′(ϕ) · ~x′(ϕ− ǫ), pj(ϕ̃)
]

(3.10)

= i
π

η
lim
ǫ→0

(

x′j(ϕ) ∂ϕδ(ϕ− ϕ̃− ǫ) + x′j(ϕ+ ǫ) ∂ϕδ(ϕ− ϕ̃)
)

=
2πi

η
∂ϕδ(ϕ− ϕ̃)x′j(ϕ) . (3.11)

• (3.4):

[xi(ϕ), ζ(ϕ̃)] = lim
ǫ→0

1

η

∫

G(ϕ̃, ψ) ∂ψ
[

xi(ϕ), ~p(ψ) · ~x
′(ψ − ǫ)

]

dψ = −
i

η
∂ϕG(ϕ̃, ϕ)x

′

i(ϕ) , (3.12)
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where in the second step we integrated by parts, computed the commutator
[

xi(ϕ), ~p(ψ) · ~x
′(ψ − ǫ)

]

and took the
limit ǫ→ 0.

• (3.5): The derivation of the commutator of H and ζ is straightforward, but slightly more involved,

[H(ϕ), ζ(ϕ̃)] =

[

π

η

(

((

~p · ~p
))

(ϕ) +
((

~x′ · ~x′
))

(ϕ)
)

, ζ0 −
1

η

∫

∂ψG(ϕ̃, ψ)
((

~p · ~x′
))

(ψ) dψ

]

(3.13)

= −
iπ

η2

(

((

~p · ~p
))

(ϕ) +
((

~x′ · ~x′
))

(ϕ)
)

−
π

η2
lim
ǫ,ǫ̃→0

∫

∂ψG(ϕ̃, ψ)
[

~p(ϕ) · ~p(ϕ− ǫ) + ~x′(ϕ) · ~x′(ϕ− ǫ), ~p(ψ) · ~x′(ψ − ǫ̃)
]

dψ (3.14)

= −
i

η
H(ϕ) +

2πi

η2
lim
ǫ̃→0

∫

∂ψG(ϕ̃, ψ)
(

∂ψδ(ϕ− ψ + ǫ̃) ~p(ϕ) · ~p(ψ) + ∂ψδ(ϕ− ψ) ~x′(ϕ) · ~x′(ψ − ǫ̃)
)

dψ

(3.15)

= −
i

η
H(ϕ) +

2πi

η2

∫

∂ψG(ϕ̃, ψ) ∂ψδ(ϕ − ψ)
(

~p(ϕ) · ~p(ψ) + ~x′(ϕ) · ~x′(ψ)− 2(D − 2)Ssing(ϕ, ψ)
)

dψ

+
2πi

η2
(D − 2) lim

ǫ̃→0

∫

∂ψG(ϕ̃, ψ)
(

∂ψδ(ϕ− ψ)Ssing(ϕ, ψ − ǫ̃) + ∂ψδ(ϕ− ψ + ǫ̃)Ssing(ϕ, ψ)
)

dψ

(3.16)

= −
i

η
H(ϕ)−

2πi

η2

(

∂2ϕG(ϕ̃, ϕ)

(

η

π
H(ϕ) +

D − 2

12π

)

+ ∂ϕG(ϕ̃, ϕ)
η

2π
∂ϕH(ϕ)

)

−
2πi

η2
(D − 2)

∫

∂ψG(ϕ̃, ψ)
1

12π

(

∂ψδ(ϕ− ψ) + ∂3ψδ(ϕ− ψ)
)

dψ (3.17)

= −
2πi

η
δ(ϕ− ϕ̃)H(ϕ) −

i

η
∂ϕ

(

∂ϕG(ϕ̃, ϕ)H(ϕ)
)

+
πi

3η2
(D − 2) ∂2ϕδ(ϕ − ϕ̃) , (3.18)

where we used that

∂ψδ(ϕ− ψ)Ssing(ϕ, ψ − ǫ̃) = ∂ψδ(ϕ− ψ)Ssing(ϕ, ϕ− ǫ̃)− δ(ϕ− ψ)∂ψSsing(ϕ, ψ − ǫ̃)|ψ=ϕ (3.19)

=
(

−
1

2πǫ̃2
−

1

24π
+O

(

ǫ̃2
)

)

∂ψδ(ϕ− ψ) +
( 1

πǫ̃3
+O(ǫ̃)

)

δ(ϕ− ψ) . (3.20)

Note that the commutator of H and ζ contains a term that depends on the number D of space-time dimensions.

• (3.6):

[H(ϕ),H(ϕ̃)] =
π2

η2
lim
ǫ,ǫ̃→0

[

~p(ϕ) · ~p(ϕ− ǫ) + ~x′(ϕ) · ~x′(ϕ− ǫ), ~p(ϕ̃) · ~p(ϕ̃− ǫ̃) + ~x′(ϕ̃) · ~x′(ϕ̃− ǫ̃)
]

(3.21)

=
2iπ2

η2
∂ϕδ(ϕ− ϕ̃)

(

~p(ϕ) · ~x′(ϕ̃) + ~x′(ϕ̃) · ~p(ϕ) + ~p(ϕ̃) · ~x′(ϕ) + ~x′(ϕ) · ~p(ϕ̃)
)

. (3.22)

• (3.7):

[H(ϕ), xj(ϕ̃)] =
π

η
lim
ǫ→0

[

~p(ϕ) · ~p(ϕ− ǫ), xj(ϕ̃)
]

(3.23)

= −i
π

η
lim
ǫ→0

(

pj(ϕ) δ(ϕ− ϕ̃− ǫ) + pj(ϕ+ ǫ) δ(ϕ− ϕ̃)
)

= −
2πi

η
δ(ϕ− ϕ̃) pj(ϕ) . (3.24)
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• (3.8):

[ζ(ϕ), pj(ϕ̃)] = − lim
ǫ→0

1

η

∫

G(ϕ, ψ) ∂ψ
[

pj(ϕ̃), ~p(ψ) · ~x
′(ψ − ǫ)

]

dψ =
i

η
∂ϕ̃

(

∂ϕ̃G(ϕ, ϕ̃) pj(ϕ̃)
)

(3.25)

where in the second equality we integrated by parts, computed the commutator [pj(ϕ̃), ~p(ψ) · ~x
′(ψ − ǫ)], integrated

by parts again and finally took the limit ǫ→ 0.

• (3.9):

[ζ(ϕ), ζ(ϕ̃)] =
i

η
(ζ(ϕ) − ζ(ϕ̃))

+
1

4η2
lim
ǫ,ǫ̃→0

∫ ∫

∂ψ̃G(ϕ̃, ψ̃) ∂ψG(ϕ, ψ)
[

~p(ψ) · ~x′(ψ − ǫ), ~p(ψ̃) · ~x′(ψ̃ − ǫ̃)
]

dψ dψ̃ (3.26)

= lim
ǫ,ǫ̃→0

(

−
2π

η2
∂ϕG(ϕ̃, ϕ) ~p(ϕ) · ~x

′(ϕ− ǫ− ǫ̃)− (ϕ↔ ϕ̃)

)

(3.27)

= −
i

η
∂ϕG(ϕ̃, ϕ)

(

ζ′(ϕ) + ζ′(ϕ̃)
)

, (3.28)

where in the last step we used that ζ′ = 2π
η

((

~p · ~x′
))

.

4 The crucial commutator

We now want to analyse the commutator of the generatorsMi− andMj−, which we defined in (2.20). It can be decomposed
as

[Mi−,Mj−] = lim
ǫ,δ→0

lim
ǫ̃,δ̃→0

[

Mi−(ǫ, δ),Mi−(ǫ̃, δ̃)
]

(4.1)

= lim
ǫ,δ→0

lim
ǫ̃,δ̃→0

∫ ∫

[

xi(ϕ+ ǫ)H(ϕ)− 1
2

(

ζ(ϕ + δ)pi(ϕ) + pi(ϕ)ζ(ϕ + δ)
)

,

xj(ϕ̃+ ǫ̃)H(ϕ̃)− 1
2

(

ζ(ϕ̃+ δ̃)pj(ϕ̃) + pj(ϕ̃)ζ(ϕ̃ + δ̃)
)

]

dϕdϕ̃ . (4.2)

Here we used the fact that xi(ϕ + ǫ) and H(ϕ) commute for ǫ > 0 (see (3.7)). There are four types of contributions: the
commutator of the terms of the form xH, the two mixed commutators of xH and ζp, and the commutator of the terms of
the form ζp.

At the end we want to analyse the behaviour when ǫ, δ and ǫ̃, δ̃ go to zero. It is not guaranteed that this limit exists,
and indeed we will see that e.g. the commutator of the terms of the form xH alone is singular when the regularisation
parameters go to zero; this singularity will go away when we combine all contributions to the commutator of Mi− and
Mj−. On the other hand we expect that we can take one set of parameters to zero without getting a singularity in
the different contributions: because the individual entries entering the commutator are regularised and do not show any
singularity in ǫ, δ or in ǫ̃, δ̃, the only way a new singularity can appear is through terms that become singular when both
type of parameters go to zero (like (ǫ+ ǫ̃)−1).

Our strategy will therefore be to always take the limit ǫ̃, δ̃ to zero first, and then consider the limit when ǫ and δ go
to zero.

We start by analysing the commutator of the terms xH in detail. We then present the results for the remaining
commutators, and evaluate the total expression.
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4.1 Commutators of the form [xiH, xjH]

We want to analyse

C
xH,xH
ij (ǫ, ǫ̃) =

∫ ∫

[

xi(ϕ+ ǫ)H(ϕ), xj(ϕ̃+ ǫ̃)H(ϕ̃)
]

dϕdϕ̃ (4.3)

by using the commutation relations that we worked out in section 3. In a first step we obtain

C
xH,xH
ij (ǫ, ǫ̃) =

2πi

η

∫

(

xj(ϕ+ ǫ̃)pi(ϕ)H(ϕ − ǫ)− xi(ϕ+ ǫ + ǫ̃)pj(ϕ+ ǫ̃)H(ϕ)

+
(

xi(ϕ+ ǫ)x′j(ϕ+ ǫ̃)− x′i(ϕ + ǫ)xj(ϕ+ ǫ̃)
)

ζ′(ϕ)
)

dϕ . (4.4)

We now consider the behaviour when ǫ̃ goes to zero, and we find

C
xH,xH
ij (ǫ, ǫ̃) =

2πi

η

∫

{

((

xjpi
))

(ϕ)H(ϕ − ǫ)

−

(

xi(ϕ+ ǫ) + ǫ̃x′i(ϕ+ ǫ) +
1

2
ǫ̃2x′′i (ϕ+ ǫ)

)(

((

pjH
))

(ϕ) −
1

ηǫ̃2
pj(ϕ)

)

+ xi(ϕ+ ǫ)

(

((

x′jζ
′
))

(ϕ) −
1

ηǫ̃2
pj(ϕ)

)

− x′i(ϕ+ ǫ)

(

((

xjζ
′
))

(ϕ) +
1

ηǫ̃
pj(ϕ)

)

}

dϕ+O(ǫ̃) (4.5)

=
2πi

η

∫

{

((

xjpi
))

(ϕ+ ǫ)H(ϕ)− xi(ϕ+ ǫ)
((

pjH
))

(ϕ)

+ xi(ϕ+ ǫ)
((

x′jζ
′
))

(ϕ) − x′i(ϕ+ ǫ)
((

xjζ
′
))

(ϕ) +
1

2η
x′′i (ϕ+ ǫ)pj(ϕ)

}

dϕ+O(ǫ̃) , (4.6)

where in the first summand we shifted the integration variable by ǫ. As expected there is no singularity when ǫ̃ is taken
to zero.

We now want to analyse the possible singularities in ǫ. The singularities between normal-ordered expressions arise
from singularities between the constituents, we have e.g.

xi(ϕ+ ǫ)
((

x′jζ
′
))

(ϕ) =
2π

η
xi(ϕ+ ǫ)

((

x′j
((

p · x′
))))

(ϕ) (4.7)

=
1

ηǫ

((

x′jpi
))

(ϕ) + regular . (4.8)

OPE normal ordering is in general not associative, and we want to define the normal-ordering of several operators in a
right-nested way,

((

ABC
))

:=
((

A
((

BC
))))

. (4.9)

In the case at hand we have (see appendix C)

((((

xjpi
))

H
))

=
((

xjpiH
))

−
1

2η

(((

x′′j pi
))

− 2
((

p′ix
′

j

)))

(4.10)

((((

xix
′

j

))

ζ′
))

=
((

xix
′

jζ
′
))

+
1

2η

(

2
((

x′′j pi
))

−
((

x′′i pj
)))

, (4.11)
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so that we find

C
xH,xH
ij (ǫ, 0) =

2πi

η

∫

{

(

((((

xjpi
))

H
))

(ϕ)−
1

ǫ2η

((

pixj
))

(ϕ)

)

−

(

((

xipjH
))

(ϕ) +
1

ǫη

((

pjx
′

i

))

(ϕ)

)

+

(

((

xix
′

jζ
′
))

(ϕ) +
1

ǫη

((

x′jpi
))

(ϕ)

)

−

(

((

x′ixjζ
′
))

(ϕ)−
1

ǫ2η

((

xjpi
))

(ϕ)

)

+
1

2η

((

x′′i pj
))

(ϕ)

}

dϕ+O(ǫ)

=
2πi

η

∫

{

1

ǫη

(

((

pix
′

j

))

(ϕ)−
((

pjx
′

i

))

(ϕ)

)

+
1

2η

((

x′′i pj
))

(ϕ)−
3

2η

((

x′′j pi
))

(ϕ)

+
((

xjpiH
))

(ϕ)−
((

xipjH
))

(ϕ) +
((

xix
′

jζ
′
))

(ϕ) −
((

x′ixjζ
′
))

(ϕ)

}

dϕ+O(ǫ) . (4.12)

The remaining singularity in ǫ will be cancelled by the contribution CxH,pζij that we discuss in the following.

4.2 Commutators of the form [xiH, pjζ ]

We now turn to the analysis of the contribution

C
xH,pζ
ij (ǫ, δ̃) = −

1

2

∫ ∫

[

xi(ϕ+ ǫ)H(ϕ), ζ(ϕ̃ + δ̃)pj(ϕ̃) + pj(ϕ̃)ζ(ϕ̃ + δ̃)
]

dϕdϕ̃ . (4.13)

Evaluating the commutator we find (for i 6= j)

C
xH,pζ
ij (ǫ, δ̃) =

2πi

η

∫

(

xi(ϕ+ ǫ)pj(ϕ− δ̃)H(ϕ)− xi(ϕ + ǫ− δ̃)x′j(ϕ − δ̃)ζ′(ϕ)
)

dϕ

+
i

η

∫ ∫

x′i(ϕ+ ǫ)pj(ϕ̃)H(ϕ) ∂ϕ
(

G(ϕ̃ + δ̃, ϕ+ ǫ)−G(ϕ̃+ δ̃, ϕ)
)

dϕdϕ̃

−
πi

3η2
(D − 2)

∫

x′′i (ϕ+ δ̃ + ǫ)pj(ϕ) dϕ . (4.14)

We expand this expression first in δ̃, and we obtain

C
xH,pζ
ij (ǫ, δ̃) =

2πi

η

∫

(

xi(ϕ+ ǫ)

(

((

pjH
))

(ϕ) −
1

δ̃2η
pj(ϕ)

)

−

(

xi(ϕ+ ǫ)− δ̃x′i(ϕ+ ǫ) +
δ̃2

2
x′′i (ϕ+ ǫ)

)(

((

x′jζ
′
))

(ϕ) −
1

δ̃2η
pj(ϕ)

)

)

dϕ

+
i

η

∫ ∫

x′i(ϕ+ ǫ)

(

pj(ϕ̃)H(ϕ)−
2π

η
Ssing(ϕ̃, ϕ)pj(ϕ)

)

∂ϕ
(

G(ϕ̃+ δ̃, ϕ+ ǫ)−G(ϕ̃ + δ̃, ϕ)
)

dϕdϕ̃

+
i

η

∫ ∫

x′i(ϕ+ ǫ)

(

2π

η
Ssing(ϕ̃, ϕ)pj(ϕ)

)

∂ϕ
(

G(ϕ̃+ δ̃, ϕ+ ǫ)−G(ϕ̃ + δ̃, ϕ)
)

dϕdϕ̃

−
πi

3η2
(D − 2)

∫

x′′i (ϕ+ ǫ)pj(ϕ) dϕ +O(δ̃) . (4.15)
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In the third and fourth line we have subtracted and added the singular piece of pj(ϕ̃)H(ϕ). In the third line, there is

therefore no singularity coming from the operator part when ϕ and ϕ̃ are close together, and we can just set δ̃ to 0. The
fourth line can be evaluated by writing Ssing as a derivative and then using partial integration,

i

η

∫ ∫

x′i(ϕ+ ǫ)

(

2π

η
Ssing(ϕ̃, ϕ)pj(ϕ)

)

∂ϕ
(

G(ϕ̃+ δ̃, ϕ+ ǫ)−G(ϕ̃ + δ̃, ϕ)
)

dϕdϕ̃

=
i

2η2

∫ ∫

x′i(ϕ+ ǫ)∂ϕ̃

(

cos
ϕ̃− ϕ

2
P

1

sin ϕ̃−ϕ
2

)

pj(ϕ) ∂ϕ
(

G(ϕ̃+ δ̃, ϕ+ ǫ)−G(ϕ̃+ δ̃, ϕ)
)

dϕdϕ̃ (4.16)

= −
i

2η2

∫ ∫

x′i(ϕ+ ǫ)

(

cos
ϕ̃− ϕ

2
P

1

sin ϕ̃−ϕ
2

)

pj(ϕ)
(

− 2πδ(ϕ̃− ϕ+ δ̃ − ǫ) + 2πδ(ϕ̃− ϕ+ δ̃)
)

dϕdϕ̃ (4.17)

=
iπ

η2

∫

x′i(ϕ+ ǫ)pj(ϕ)

(

cos
ǫ− δ̃

2

1

sin ǫ−δ̃
2

+ cos
δ̃

2

1

sin δ̃
2

)

dϕ (4.18)

=
iπ

η2

∫

x′i(ϕ+ ǫ)pj(ϕ)

(

cos
ǫ

2

1

sin ǫ
2

+
2

δ̃

)

dϕ+O(δ̃) . (4.19)

Inserting this result into (4.15) we obtain

C
xH,pζ
ij (ǫ, δ̃) =

2πi

η

∫

(

xi(ϕ+ ǫ)
((

pjH
))

(ϕ)− xi(ϕ+ ǫ)
((

x′jζ
′
))

(ϕ) +
1

2η
x′′i (ϕ+ ǫ)pj(ϕ)

)

dϕ

+
i

η

∫ ∫

x′i(ϕ+ ǫ)

(

pj(ϕ̃)H(ϕ) −
2π

η
Ssing(ϕ̃, ϕ)pj(ϕ)

)

∂ϕ
(

G(ϕ̃, ϕ+ ǫ)−G(ϕ̃, ϕ)
)

dϕdϕ̃

+
iπ

η2

∫

x′i(ϕ+ ǫ)pj(ϕ)

(

cos
ǫ

2

1

sin ǫ
2

)

dϕ

−
πi

3η2
(D − 2)

∫

x′′i (ϕ+ ǫ)pj(ϕ) dϕ +O(δ̃) . (4.20)

We observe that the expression contains no singularity in δ̃. Now we expand in ǫ,

C
xH,pζ
ij (ǫ, 0) =

2πi

η

∫

(

((

xipjH
))

(ϕ) +
1

ǫη

((

pjx
′

i

))

(ϕ)−
((

xix
′

jζ
′
))

(ϕ) −
1

ǫη

((

pix
′

j

))

(ϕ) +
1

2η

((

x′′i pj
))

(ϕ)

)

dϕ

+
i

η

∫
(

−
2π

ǫη

((

x′ipj
))

(ϕ) +
π

η

((

x′′i pj
))

(ϕ)

)

dϕ

+
iπ

η2

∫
(

2

ǫ

((

x′ipj
))

(ϕ) + 2
((

x′′i pj
))

(ϕ)

)

dϕ

−
πi

3η2
(D − 2)

∫

((

x′′i pj
))

(ϕ) dϕ +O(ǫ) (4.21)

=
2πi

η

∫

{

1

ǫη

(

((

pjx
′

i

))

(ϕ)−
((

pix
′

j

))

(ϕ)

)

+
((

xipjH
))

(ϕ) −
((

xix
′

jζ
′
))

(ϕ)

+
2

η

((

x′′i pj
))

(ϕ)−
D − 2

6η

((

x′′i pj
))

(ϕ)

}

dϕ+O(ǫ) . (4.22)
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The remaining singularity cancels the terms that we found in CxH,xHij (see (4.12)), so that we find

lim
ǫ→0

∫

[

xi(ϕ+ ǫ)H(ϕ),Mj−

]

dϕ

= lim
ǫ→0

(

C
xH,xH
ij (ǫ, 0) + C

xH,pζ
ij (ǫ, 0)

)

(4.23)

=
2πi

η

∫

{

((

xjpiH
))

(ϕ)−
((

x′ixjζ
′
))

(ϕ) +
5

2η

((

x′′i pj
))

(ϕ)−
3

2η

((

x′′j pi
))

(ϕ) −
D − 2

6η

((

x′′i pj
))

(ϕ)

}

dϕ . (4.24)

4.3 Remaining commutators and final result

The remaining commutators can be computed analogously to the computations we displayed above, which is done in the
appendices A and B, and the results are given in (A.5) and (B.10). Their sum does not contain any singularity, and one
obtains

lim
δ→0

∫
[

−
1

2

(

ζ(ϕ+ δ)pi(ϕ) + pi(ϕ)ζ(ϕ + δ)
)

,Mj−

]

dϕ

= lim
δ→0

(

C
pζ,xH
ij (δ, 0) + C

pζ,pζ
ij (δ, 0)

)

(4.25)

=
2πi

η

∫

{

−
((

pixjH
))

(ϕ) +
((

xjx
′

iζ
′
))

(ϕ)−
5

2η

((

x′′j pi
))

(ϕ) +
3

2η

((

pjx
′′

i

))

(ϕ) +
D − 2

6η

((

x′′j pi
))

(ϕ)

}

dϕ . (4.26)

Combining now all contributions we find for the quantum commutator the final result

[

Mi−,Mj−

]

=
πi

3η2
(D − 26)

∫

(

((

x′′j pi
))

(ϕ) −
((

x′′i pj
))

(ϕ)
)

dϕ , (4.27)

which vanishes if D = 26.
The dimension-dependent term (linear in D − 2) came from the commutator of H and ζ, the other anomalous terms

came from all commutators that occur in the computation. As already remarked in the introduction, we did not introduce
a normal-ordering constant to define H. In principle such a shift (H → H + const.

η
) could be considered (then one would

derive from demanding a vanishing commutator [Mi−,Mj−] that this constant is zero), but the definition of H via OPE
normal ordering on the cylinder appears to be most natural.
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A Commutators of the form [piζ, xjH]

We discuss here the contribution

C
pζ,xH
ij (δ, ǫ̃) = −

1

2

∫ ∫

[

ζ(ϕ + δ)pi(ϕ) + pi(ϕ)ζ(ϕ + δ), xj(ϕ̃+ ǫ̃)H(ϕ̃)
]

dϕdϕ̃ . (A.1)

12



For i 6= j the commutator is given by

C
pζ,xH
ij (δ, ǫ̃) = −

2πi

η

∫

(

xj(ϕ+ ǫ̃)pi(ϕ− δ)H(ϕ)− xj(ϕ+ ǫ̃− δ)x′i(ϕ− δ)ζ′(ϕ)
)

dϕ

−
i

η

∫ ∫

x′j(ϕ̃+ ǫ̃)pi(ϕ)H(ϕ̃) ∂ϕ̃
(

G(ϕ+ δ, ϕ̃+ ǫ̃)−G(ϕ + δ, ϕ̃)
)

dϕdϕ̃

+
πi

3η2
(D − 2)

∫

x′′j (ϕ+ δ + ǫ̃)pi(ϕ) dϕ . (A.2)

The result is regular when we expand in ǫ̃, and we obtain

C
pζ,xH
ij (δ, 0) =

2πi

η

∫

{

− pi(ϕ− δ)
((

xjH
))

(ϕ) +
((

xjx
′

i

))

(ϕ− δ)ζ′(ϕ)

−
1

2η
x′′j (ϕ+ δ)pi(ϕ) +

D − 2

6η
x′′j (ϕ+ δ)pi(ϕ)

}

dϕ . (A.3)

Expanding in δ we find

C
pζ,xH
ij (δ, 0) =

2πi

η

∫

{

1

δη

(

((

pix
′

j

))

(ϕ) −
((

pjx
′

i

))

(ϕ)

)

−
((

pixjH
))

(ϕ) +
((((

xjx
′

i

))

ζ′
))

(ϕ)

−
1

2η

((

x′′j pi
))

(ϕ) +
D − 2

6η

((

x′′j pi
))

(ϕ)

}

dϕ+O(δ) (A.4)

=
2πi

η

∫

{

1

δη

(

((

pix
′

j

))

(ϕ) −
((

pjx
′

i

))

(ϕ)

)

−
((

pixjH
))

(ϕ) +
((

xjx
′

iζ
′
))

(ϕ)

+
1

η

((

x′′i pj
))

−
1

η

((

x′′j pi
))

(ϕ) +
D − 2

6η

((

x′′j pi
))

(ϕ)

}

dϕ+O(δ) . (A.5)

B Commutators of the form [piζ, pjζ]

Let us now discuss the term

C
pζ,pζ
ij (δ, δ̃) =

1

4

∫ ∫

[

ζ(ϕ+ δ)pi(ϕ) + pi(ϕ)ζ(ϕ + δ), ζ(ϕ̃ + δ̃)pj(ϕ̃) + pj(ϕ̃)ζ(ϕ̃+ δ̃)
]

dϕdϕ̃ . (B.1)

One can straightforwardly show that the four different terms that one obtains from expanding the commutator above all
lead to the same contribution,

C
pζ,pζ
ij (δ, δ̃) =

1

4

∫ ∫

[

[

ζ(ϕ + δ), pi(ϕ)
]

+ 2pi(ϕ)ζ(ϕ + δ),
[

ζ(ϕ̃ + δ̃), pj(ϕ̃)
]

+ 2pj(ϕ̃)ζ(ϕ̃+ δ̃)
]

dϕdϕ̃ (B.2)

=

∫ ∫

[

pi(ϕ)ζ(ϕ + δ), pj(ϕ̃)ζ(ϕ̃+ δ̃)
]

dϕdϕ̃ . (B.3)
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By explicitly evaluating the commutator we find

C
pζ,pζ
ij (δ, δ̃) =

2πi

η

∫

(

pi(ϕ− δ − δ̃)pj(ϕ− δ̃)− pj(ϕ− δ − δ̃)pi(ϕ− δ)
)

ζ(ϕ) dϕ

+
i

η

∫ ∫

{

pi(ϕ− δ)p′j(ϕ̃− δ̃)∂ϕ̃
(

G(ϕ, ϕ̃ − δ̃)−G(ϕ, ϕ̃)
)

ζ(ϕ̃)

− pj(ϕ̃− δ̃)p′i(ϕ− δ)∂ϕ
(

G(ϕ̃, ϕ− δ)−G(ϕ̃, ϕ)
)

ζ(ϕ)
}

dϕdϕ̃ (B.4)

=
i

η

∫ ∫

{

− pi(ϕ− δ)pj(ϕ̃− δ̃)∂ϕ̃
(

G(ϕ, ϕ̃− δ̃)−G(ϕ, ϕ̃)
)

ζ′(ϕ̃)

+ pj(ϕ̃− δ̃)pi(ϕ− δ)∂ϕ
(

G(ϕ̃, ϕ− δ)−G(ϕ̃, ϕ)
)

ζ′(ϕ)
}

dϕdϕ̃ . (B.5)

We now expand this expression in δ̃ analogously to the cases we discussed before. We obtain

C
pζ,pζ
ij (δ, δ̃) =

i

η

∫ ∫

{

− pi(ϕ− δ)

(

−
1

ηδ̃2
x′j(ϕ̃) +

((

pjζ
′
))

(ϕ̃)

)(

− δ̃∂2ϕ̃G(ϕ, ϕ̃) +
δ̃2

2
∂3ϕ̃G(ϕ, ϕ̃)

)

+ pi(ϕ− δ)∂ϕ
(

G(ϕ̃, ϕ− δ)−G(ϕ̃, ϕ)
)

(

pj(ϕ̃− δ̃)ζ′(ϕ) −
2π

η
Ssing(ϕ̃− δ̃, ϕ)x′j(ϕ)

)

+ pi(ϕ− δ)∂ϕ
(

G(ϕ̃, ϕ− δ)−G(ϕ̃, ϕ)
)2π

η
Ssing(ϕ̃− δ̃, ϕ)x′j(ϕ)

}

dϕdϕ̃+O(δ̃) (B.6)

=
πi

η2

∫
(

−
2

δ̃
pi(ϕ− δ)x′j(ϕ) − pi(ϕ− δ)x′′j (ϕ)

)

dϕ

+
i

η

∫ ∫

pi(ϕ− δ)∂ϕ
(

G(ϕ̃, ϕ− δ)−G(ϕ̃, ϕ)
)

(

pj(ϕ̃)ζ
′(ϕ) −

2π

η
Ssing(ϕ̃, ϕ)x

′

j(ϕ)

)

dϕdϕ̃

+
πi

η2

∫

pi(ϕ− δ)x′j(ϕ)

(

− cos
δ + δ̃

2

1

sin δ+δ̃
2

+ cos
δ̃

2

1

sin δ̃
2

)

dϕ+O(δ̃) (B.7)

=
πi

η2

∫
(

− pi(ϕ− δ)x′′j (ϕ)

)

dϕ

+
i

η

∫ ∫

pi(ϕ− δ)∂ϕ
(

G(ϕ̃, ϕ− δ)−G(ϕ̃, ϕ)
)

(

pj(ϕ̃)ζ
′(ϕ) −

2π

η
Ssing(ϕ̃, ϕ)x

′

j(ϕ)

)

dϕdϕ̃

+
πi

η2

∫

pi(ϕ− δ)x′j(ϕ)

(

− cos
δ + δ̃

2

1

sin δ+δ̃
2

)

dϕ+O(δ̃) . (B.8)
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As expected there is no singularity in δ̃. We now set δ̃ = 0 and expand in δ,

C
pζ,pζ
ij (δ, 0) =

πi

η2

∫
(

−
((

pix
′′

j

))

(ϕ)

)

dϕ

+
πi

η2

∫
(

2

δ

((

pjx
′

i

))

(ϕ) +
((

pjx
′′

i

))

(ϕ)

)

dϕ

+
πi

η2

∫
(

−
2

δ

((

pix
′

j

))

(ϕ) − 2
((

pix
′′

j

))

(ϕ)

)

dϕ+O(δ) (B.9)

=
2πi

η

∫

{

1

δη

(

((

pjx
′

i

))

(ϕ)−
((

pix
′

j

))

(ϕ)

)

+

(

−
3

2η

((

pix
′′

j

))

(ϕ) +
1

2η

((

pjx
′′

i

))

(ϕ)

)

}

dϕ+O(δ) . (B.10)

C Non-associativity

OPE normal ordering is in general not associative. In this appendix we will discuss those cases that are relevant in the
main text.

The first identity, we want to explain is

((((

xjpi
))

H
))

=
((

xjpiH
))

−
1

2η

(((

x′′j pi
))

− 2
((

p′ix
′

j

)))

. (C.1)

The simplest way to show this is to write

H =
∑

k

Hk , Hk =
π

η

(

((

p2k
))

+
((

x′2k
))

)

, (C.2)

and consider the summands Hk individually. For k different from i and j there is no singularity, and thus normal ordering
of xj , pi and Hk is associative. Now consider k = i,

((((

xjpi
))

Hi

))

(ϕ) = lim
ǫ→0

(

xj(ϕ− ǫ)pi(ϕ− ǫ)Hi(ϕ) +
1

ǫ2η

(

xj(ϕ) − ǫx′j(ϕ)
)

pi(ϕ)

)

(C.3)

= lim
ǫ→0

(

xj(ϕ− ǫ)
(

((

piHi

))

(ϕ) −
1

ǫ2η
pi(ϕ)

)

+
1

ǫ2η

(

xj(ϕ) − ǫx′j(ϕ)
)

pi(ϕ)

)

(C.4)

=
((

xjpiHi

))

(ϕ)−
1

2η

((

x′′j pi
))

(ϕ) . (C.5)

If we instead consider k = j, we find

((((

xjpi
))

Hj

))

(ϕ) = lim
ǫ→0

(

xj(ϕ− ǫ)pi(ϕ− ǫ)Hj(ϕ) +
1

ǫη
x′j(ϕ)pi(ϕ)

)

(C.6)

= lim
ǫ→0

(

xj(ϕ− ǫ)
(

pi(ϕ)− ǫp′i(ϕ)
)

Hj(ϕ) +
1

ǫη
x′j(ϕ)pi(ϕ)

)

(C.7)

= lim
ǫ→0

(

(

((

xjpiHj

))

(ϕ) −
1

ǫη
x′j(ϕ)pi(ϕ)

)

+
1

η
x′j(ϕ)p

′

i(ϕ) +
1

ǫη
x′j(ϕ)pi(ϕ)

)

(C.8)

=
((

xjpiHj

))

(ϕ) +
1

η

((

x′jp
′

i

))

(ϕ) . (C.9)
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Combining (C.5) and (C.9) we arrive at the desired result (C.1).
The second relation that we need is

((((

xix
′

j

))

ζ′
))

=
((

xix
′

jζ
′
))

+
1

2η

(

2
((

x′′j pi
))

−
((

x′′i pj
)))

. (C.10)

We can prove it analogously. Write

ζ′ =
∑

k

ζ′k , ζ′k =
2π

η

((

pkxk
))

, (C.11)

and consider first the case when ζ′i appears in the normal-ordered product,

((((

xix
′

j

))

ζ′i
))

= lim
ǫ→0

(

xi(ϕ− ǫ)x′j(ϕ − ǫ)ζ′i(ϕ) +
1

ǫη
x′j(ϕ)pi(ϕ)

)

(C.12)

= lim
ǫ→0

(

xi(ϕ− ǫ)
(

x′j(ϕ)− ǫx′′j (ϕ)
)

ζ′i(ϕ) +
1

ǫη
x′j(ϕ)pi(ϕ)

)

(C.13)

= lim
ǫ→0

(

(

((

xix
′

jζ
′

i

))

(ϕ)−
1

ǫη
x′j(ϕ)pi(ϕ)

)

+
1

η
x′′j (ϕ)pi(ϕ) +

1

ǫη
x′j(ϕ)pi(ϕ)

)

(C.14)

=
((

xix
′

jζ
′

i

))

(ϕ) +
1

η

((

x′′j pi
))

(ϕ) . (C.15)

Now consider the case, when ζ′j occurs,

((((

xix
′

j

))

ζ′j
))

= lim
ǫ→0

(

xi(ϕ− ǫ)x′j(ϕ− ǫ)ζ′j(ϕ) +
1

ǫ2η

(

xi(ϕ)− ǫx′i(ϕ)
)

pj(ϕ)

)

(C.16)

= lim
ǫ→0

(

xi(ϕ− ǫ)
(

((

x′jζ
′

j

))

(ϕ)−
1

ǫ2η
pj(ϕ)

)

+
1

ǫ2η

(

xi(ϕ)− ǫx′i(ϕ)
)

pj(ϕ)

)

(C.17)

=
((

xix
′

jζ
′

j

))

(ϕ)−
1

2η

((

x′′i pj
))

(ϕ) . (C.18)

Combining (C.15) and (C.18) we arrive at the final result (C.10).
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