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The vibrational relaxation of NO in Ar: tunneling
in a curve-crossing mechanism

E. I. Dashevskaya,ab E. E. Nikitinab and J. Troe*bc

Experimental data for the vibrational relaxation NO(X2P, v = 1) + Ar - NO(X2P, v = 0) + Ar between 300

and 2000 K are analyzed. The measured rate coefficients k10 greatly exceed Landau–Teller values LTk10.

This observation can be attributed to a mechanism involving curve-crossing of the (A00, v = 1) and (A0, v = 0)

vibronic states of the collision system. At high temperatures, the rate coefficients k10 are well represented

by the thermally averaged Landau–Zener rate constant LZk10 with an apparent Arrhenius activation energy

Ea/kB near 4500 K. At intermediate temperatures, around T = 900 K, the measured k10 values are a factor

of two higher than the extrapolated LZk10 values. This deviation is attributed to tunneling in nonadiabatic

curve-crossing transitions, which are analyzed within the Airy approximation (linear model for crossing dia-

batic curves) and an effective mass approach. This suggests a substantial contribution of hindered rotation

of NO to the nonadiabatic perturbation. The extrapolation of the Airy probabilities to even lower tempera-

tures (by the Landau–Lifshitz WKB tunneling expression for simple nonlinear model potentials) indicates a

further marked increase of the tunneling contribution beyond the extrapolated LZk10. Near 300 K, the k10

can be two to three orders of magnitude higher than the extrapolated LZk10. This agrees with the limited

available experimental data for NO–Ar relaxation near room temperature.

1. Introduction

The vibrational relaxation of diatomic molecules AB in a
degenerate electronic state upon collisions with chemically
inert atoms C proceeds mainly through a curve-crossing mecha-
nism, provided the Landau–Teller path makes a smaller con-
tribution to the inelastic event.1,2 In particular, in the case of
the deactivation of the first vibrational state (rate coefficient
k10(T)) the relevant crossing diabatic potentials correspond to
the least repulsive vibronic state of the system AB(v = 1) + C and
the strongest repulsive vibronic state of the system AB(v = 0) + C.
An example of this mechanism is the relaxation of NO(X2P, v = 1)
in collisions with noble gas atoms where two crossing vibronic
potential energy surfaces (PESs) correspond to the (A00, v = 1) and
(A0, v = 0) vibronic states of the collision system. Being of
different symmetry with respect to a reflection of the electron
coordinates in the three-atom plane, the two vibronic states are
coupled by Coriolis interaction, induced by the rotation of the
plane, and by spin–orbit interaction mixing the electronic states
of different symmetry. If the nonadiabatic coupling in the

crossing region is described by the Landau–Zener (LZ) form-
alism, the LZ vibrational relaxation rate coefficient LZk10(T)
assumes a well-defined temperature dependence3,4 governed
mainly by an Arrhenius factor with the activation energy Ea.
Within this approach, tunneling nonadiabatic transitions are
ignored. Earlier estimates of tunneling corrections to the LZ
rate indeed showed that they are negligible at T 4 1000 K such
that the LZ approach3,4 appeared to be adequate for inter-
pretation of the available experimental data.5,6 In the present
work we revisit the question of tunneling nonadiabatic transi-
tions for two reasons. First, earlier estimates were performed
on the basis of rather low values of Ea (Ea/kB E 750 K), whereas
later experiments suggested a much higher barrier7,8 for
which tunneling may be more pronounced. Second, these
experiments also indicated a tendency of a slower decrease
of k10(T) with decreasing temperature than predicted by the
LZ treatment.9,10 It is the aim of the present work to correct
the LZ expression for the relaxation rate coefficient and to
elucidate implications for NO–Ar collisions that follow from
this correction. In our article, Section 2 discusses the evidence
for tunneling, and Section 3 presents a description of the
tunneling contributions in a linear model of diabatic potential
curves. In Section 4 this description is generalized to non-
linear diabatic potential curves. Section 5 applies the results
to NO–Ar collisions in the effective mass approximation for
two-dimensional (translational/rotational) non-adiabatic dynamics
and Section 6 concludes the paper.
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2. Evidence for nonadiabatic
tunneling in NO(X2P, v = 1) + Ar -
NO(X2P, v = 0) + Ar collisions

Experimental data for the rate coefficient of the vibrational
relaxation NO(X2P, v = 1) + Ar from ref. 7 (denoted by GTk10(T))
are presented in Fig. 1 as red circles. The figure compares these
data with a number of representations.

The blue line is drawn through the data points over the
temperature range 900–1500 K where the rate coefficients for
the competing LT relaxation mechanism LTk10 (green dotted
line) lie much lower than the experimental values of k10(T). The
LT rate coefficients for NO(X2P, v = 1) + Ar collisions were
estimated by renormalization of experimental data for O2–Ar
collisions from ref. 11 taking into account the difference in the
vibrational energy release, DE10(NO) and DE10(O2). The obser-
vation LTk10(T) { GTk10(T) allows one to unambiguously attri-
bute the relaxation NO(X2P, v = 1) + Ar to a curve-crossing
mechanism. The figure includes experimental results for sub-
stantially lower temperatures (near 300 K, blue triangle) obtained
by LIF and IR-UV double resonance techniques.9,10 It is our aim
to provide an analysis of the combined set of experimental data.

Once the relaxation mechanism is described within the LZ
formalism following ref. 1, 3 and 4, the temperature depen-
dence of LZk10(T), calculated within the transition state method,
can be represented as

LZk10(T) = LZAT1/2(T + TSO)exp(�Ea/kBT) (2.1)

Here the temperature independent factor LZA includes contri-
butions of the nonadiabatic coupling. The temperature depen-
dent factors of eqn (2.1) consist of an Arrhenius factor arising
from the probability of arriving at the crossing of the two
vibronic PESs on the initial (A00, v = 1) PES, the middle factor
related to the coupling (with the linear term, T, from averaged

Coriolis interaction and the temperature independent term,
TSO, from spin–orbit interaction) and the first factor, T1/2,
originating from the width of the channel that passes through
the activation energy point Ea. Within the LZ treatment the
nonadiabatic transition for the linear model neglects classically
forbidden transitions (i.e. for collision energies E below the
crossing value Ea) and includes classically allowed transitions
(for E 4 Ea) without accounting for interference effects. The LZ
rate coefficient LZk10 within this approach in Fig. 1 is fitted by
eqn (2.1) to the high-temperature part of GTk10, leading to
values of A = 5.0 � 10�19 cm3 s�1, Ea/kB = 4500 K, and a
parameter TSO = 3225 K which is proportional to the known
spin–orbit splitting of the X2P state of NO. We note here that
the fitted value Ea/kB = 4500 K somewhat differs from the
estimated value of Ea/kB derived from the ab initio calculations
of potentials in ref. 12–14 that yield Ea/k E 5400 K.

Because of the dominance of the Arrhenius factor, the
temperature dependence of the preexponential factor in
eqn (2.1) is hardly discernable. The deviations of the experi-
mental points from a straight line, i.e. the difference between
the full and dashed curves in Fig. 1, can then be interpreted as a
manifestation of tunneling and interference that are ignored by
the LZ modeling. We represent these deviations by an expres-
sion of the form

k10(T) = C(T)LZk10(T) (2.2)

For the lowest temperatures attained in the shock tube experi-
ments (about 900 K), C(T) takes a value of about 2.

The following comment on the adiabatic states of the
NO(X2P) + Ar system will be in order. In the asymptotic region,
R - N, the rotronic (i.e. rotational + electronic) states of NO
belong to states that fall into F1 and F2 manifolds of the a–b
intermediate Hund coupling case.15 In the region of the strong
electrostatic and exchange interaction, where the energy difference
DBO between the two Born–Oppenheimer (BO) PESs is much larger
than the spin–orbital coupling, the BO states, within the accuracy
to A2/DBO, can be specified by the projections of the electron spin
onto a space-fixed axis and the symmetry character (symmetric or
antisymmetric) of the coordinate wave function (2A0 or 2A00) with
respect to reflection in the system plane (i.e. in the NOAr plane).
The BO energies of these states within the accuracy to A2/DBO are
then calculated completely neglecting the spin–orbital interaction,
and the latter, together with the Coriolis coupling, then considered
as a weak perturbation. This scheme of transformation of asymp-
totic states into the states with strong interfragment interaction is
discussed in detail in ref. 16. Within the transition state approach,
the initial canonical distribution over the states of collision
partners becomes a canonical distribution over the states of the
activated complex. A lot of processes can happen on the way
from the asymptotic region to the critical surface but they do
not show up in the canonical-to-canonical transformation of
the distribution function, including the L-doublet propensities
in the rotationally inelastic Ar–NO(X2P) scattering.

Within the linear model of weak nonadiabatic coupling,
which is the basis of the LZ approximation to k10, the tunneling
and the interference effects can be taken into account by

Fig. 1 Landau–Zener (LZ) rate coefficients (dashed red line, LZk10) of the
vibrational relaxation NO in Ar fitted to high-temperature experimental
data (red points, GTk10(T)) and Landau–Teller rate coefficients (green
dotted line, LTk10, rescaled from O2–Ar relaxation data11). Also shown is
an experimental result near 300 K from ref. 9 and 10 (blue triangle, S,Kk10).

Paper PCCP

Pu
bl

is
he

d 
on

 1
4 

O
ct

ob
er

 2
01

4.
 D

ow
nl

oa
de

d 
on

 0
6/

01
/2

01
5 

11
:4

2:
15

. 
View Article Online

http://dx.doi.org/10.1039/c4cp04107k


This journal is© the Owner Societies 2015 Phys. Chem. Chem. Phys., 2015, 17, 151--158 | 153

expressing the nonadiabatic transition probability through the
Airy (Ai) function. We discuss this approach in Section 3 and
employ it to the experimental data in Section 5. When eqn (2.2)
is applied to experimental conditions near room temperature
the factor C(T) exceeds a factor of one hundred such that an
analysis by the Airy approximation is not possible. This issue
will be discussed in Section 4.

3. Airy approximation for nonadiabatic
tunneling

In the weak-coupling limit of the linear model, the non-adiabatic
transition probability P(E) for transition between the PESs of two
contributing vibronic states is expressed1 through the Airy function
(with P(E) = AiP(E)) as

AiP(E) p Ai2 (�(E � Ea)/Eq) (3.1)

Here E is the energy of the representative point moving on the
linear diabatic potential curves that cross at the energy Ea.
The characteristic energy parameter Eq depends on the slopes
of the diabatic potentials F0 and F00, their difference DF = |F 0 � F 00|,
and the effective mass mq of the motion along the reaction
coordinate q,

Eq ¼
�h2

2mq

 !1=3
F 0F 00

DF

� �2=3

(3.2)

The factor in front of Ai2 in eqn (3.1) does not depend on
the energy. It is proportional to the square of the coupling
interaction, which is responsible to the change of the crossing
diabatic potential curves into the nearly-crossing adiabatic
curves with small avoided crossing gap. Since in the follow-
ing we discuss the ratios of probabilities this factor can be
disregarded.

The LZ approximation of AiP(E) is obtained from eqn (3.1)
when the square of the Airy function, for (E � Ea)/Eq c 1, is
replaced by its WKB asymptote which then is averaged over the
Stueckelberg (St) oscillations and extended over the classically
allowed energy range by extrapolation down to (E � Ea)/Eq { 1,

LZPðEÞ / Ai2WKB � E � Eað Þ
�
Eq

� �� �
St
Y E � Eað Þ

¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq

�
E � Eað Þ

q
Y E � Eað Þ

(3.3)

where Y is the step function. Within the Airy approximation,
the correction factor CRAiC(T) then is expressed through the
ratio of the canonically averaged probabilities with the formal
energy limits �N o E o N;

AiCðTÞ �
Ð1
�1

AiPðEÞ exp �E=kBTð ÞdEÐ1
0

LZPðEÞ exp �E=kBTð ÞdE
(3.4)

The convergence of the integrals in eqn (3.4) at the upper limit
is guaranteed by the exponential drop in the Boltzmann factor
while convergence of the integral in the numerator at the lower
limit is a result of the stronger drop of the Airy asymptote

compared to the increasing Boltzmann factor. Finally, AiC(T)
can be expressed analytically as

AiCðTÞ ¼ exp
1

12

Eq

kBT

� �3
" #

(3.5)

Considering the quality of the Airy approximation in AiC(T) one
should take into account that AiC(T) can overestimate the
tunneling effect for two reasons: (i) the triangular barrier
formed by the two straight lines of the diabatic curves is too
narrow compared to a more realistic crossing and (ii) the
extension of collision energies to values much lower than Ea

can lead to incorrect contributions from negative collision
energies. It is thus instructive to split AiC(T) into two terms,
AiC+ and AiC� that come from classically allowed and classically
forbidden energy ranges (E 4 Ea and E o Ea, respectively), i.e.
AiC = AiC+ + AiC�. Graphs of AiC, AiC+, AiC� vs. Eq/kBT are shown
in Fig. 2.

One should note that the decrease of AiC+ with increasing
Eq/kBT is due to the decreasing quality of the WKB approxi-
mation in the shrinking effective energy range above the
activation barrier, while the fast increase of AiC+ arises from
the tunneling transitions.

We now turn to a discussion of the applicability of the
linear model. The applicability of the linear model is limited
by the condition that it still applies to energies E below
the activation threshold (i.e. E o Ea), which substantially
contribute to the tunneling probability. The main contribu-
tion here comes from energies close to the steepest descent
energy E*. The value of E* can be found from the interplay
of the Boltzmann factor exp((Ea � E)/kBT) that increases with
decreasing E and the asymptotic Airy tunneling probability
being proportional to exp(�4(Ea � E)3/2/3Eq

3). A steepest
descent argument yields

Ea � E* = (1/2 kBT)2 Eq
3 (3.6)

Fig. 2 Plots of the function AiC from eqn (3.4) and its classically allowed
and classically forbidden components AiC+ and AiC� as a function of Eq/kBT
(Eq is defined by eqn (3.2)).
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wherefrom one finds

exp Ea � E�ð Þ=kBTð Þ exp �4
3

Ea � E�

Eq

� �3=2
 !

¼ exp
1

12

Eq

kBT

� �3
 !

(3.7)

If, as an example, one takes the condition of the applicability of
the Airy approximation as Ea � E* r Ea, this leads to

(Eq/kT)3 r 2(Ea/kBT) (3.8)

With the limit Eq = Ẽq, that makes E* equal to Ea/2 (i.e. which
replaces r in eqn (3.7) by =), the tunneling correction
amounts to

AiC



Eq¼ ~Eq

¼ exp
1

12
~Eq

�
kBT

� �3� �
¼ exp

Ea

6kBT

� �
(3.9)

For higher values of Eq, Eq 4 Ẽq, the factor AiC will be larger, but
the corresponding values of E* will decrease, such that the
difference Ea � E* is also larger, and the approximation of the
linear model becomes more questionable. Assuming that
the choice E* = Ea/2 corresponds to the minimal value of E*
that meets the criterion for applicability of the linear model,
eqn (3.9) defines the maximum value of Eq for which eqn (3.7) is
still approximately valid. As an example, T = 900 K in Fig. 1
corresponds to Ea/kBT D 5. At this temperature, as shown in the
figure, the factor C is about 2. On the other hand, eqn (3.9)
yields exp(Ea/6kBT) = 2.3 which appears to be the maximum
reliable value of the factor C expressed through AiC The given
discussion illustrates the limitations of the linear model in
accounting for tunneling corrections and its failure for the
extrapolation of experimental data to lower temperatures (here
below about 900 K).

4. Beyond the Airy approximation:
generalized semiclassical treatment

The Airy approximation to the tunneling correction can be
considered as a special case of Miller’s quantum transition
state theory.17 One of the versions of this theory is the optimal
trajectory (OT) approach18 which is based on the calculation of
the classical action integrals along the tunneling trajectories
and the choice of a single optimum trajectory out of the initial
Boltzmann ensemble of possible trajectories. The OT begins on
one PES, reaches the crossing manifold, and exits on the other
PES. The OT leads a part of the Boltzmann ensemble on the
initial PES to a distribution on the final PES. The general OT
method is outlined in ref. 18. In the following we use a more
simplified version, retaining the notion of the reaction coordinate
and the effective mass, but going beyond the linear approximation
for the diabatic potential curves. This eliminates difficulties
related to the multidimensional character of the tunneling
process, but improves the incorrect asymptotic behavior of
the linear diabatic curves. It allows one to pass to cases where
the tunneling contribution is large.

In extending the Airy approximation for curve-crossing
situations to lower energies, we apply the same approach as

used in our earlier work for an extension of the classical
LT treatment for non-crossing curves to a quantum energy
regime.19 Here we will follow the Landau idea20 explained in
detail in ref. 21. Explicitly, in the semiclassical approximation
(SC), the expression for the probability of transitions between
crossing diabatic curves, V 0 and V 00, takes the form (see
eqn (51.8) of ref. 21):

SCP / exp �2
ffiffiffiffiffiffi
2m
p

�h
Im

ðqc
~q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V 0ðqÞ

p
dq�

ðqc
~q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V 00ðqÞ

p
dq

� �
 �
(4.1)

where qc is the crossing point (i.e. V 0(qc) = V 00(qc)) and q̃ is any
point in the classically allowed region of motion for both V0 and
V 00 potentials. Note that asymptotically (for q - N) V 00(q)
converges to zero, while V 0(q) assumes a quantity �DE10. The
collision energy E varies in the range 0 o E o Ea, where the
condition E 4 0 secures the applicability of the WKB approxi-
mation at the lower limit of the important energy range and the
condition E o Ea corresponds to an exponentially small prob-
ability at the upper limit of the energy range.

The expression of eqn (4.1) is obtained by analytical con-
tinuation of the WKB functions from the classically allowed
region of the under-barrier energy range into the classically
forbidden region. It differs from the expression for the prob-
ability to reach the crossing point qc by WKB tunneling, TunnP,
from the classically allowed region. The expression for TunnP is
similar to that of SCP except that the minus sign in the square
brackets in the exponent is replaced by plus, such that the
exponential becomes proportional to the product of the tunnel-
ing asymptotics of the squared initial and final WKB wave
functions.22 Since each of the action integrals in the exponent
in eqn (4.1) is supposed to be large under the applicability of
the WKB approximation, the change in the sign results in the
relation TunnP { SCP. This indicates that the term ‘‘tunneling
nonadiabatic transition’’ should not be interpreted too literally:
actually, a nonadiabatic transition here occurs as a result of the
motion in a classically allowed region which is separated from
the crossing point by a region in which the quantum motion is
classically forbidden and therefore bears the tunneling char-
acter. Again, we note that the potentials in the classically
forbidden region must represent analytical continuations of
potentials from the classically allowed region. This point is
discussed in detail in ref. 23.

Eqn (4.1) allows one to consider the limit when the energy
E is only slightly below Ea but the WKB exponent (WKBE) is
still large. Then, near the crossing point, where V 0(R) =
V 0(R) = Ea, both potentials are represented by linear functions
of R � Rc, and eqn (4.1) is expected to yield the tunneling Airy
probability (expressed through the asymptotic representation
of the Airy function) for not too large values of Ea � E.
Moreover, the complete expression for SCP (with the pre-
exponential factor included) should be identical to the Airy
tunneling probability AiP:

SCP|(Ea�E)/Ea{1,WKBEc1 - AiP|(Ea�E)/Eq c1 (4.2)
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where Eq is defined by eqn (3.2). In this way, the expression
of eqn (4.2) permits a rough estimate of the unknown pre-
exponential factor of eqn (4.1) provided it can be extrapolated
beyond the limits of the linear model.

We will illustrate the above for a model of two exponentially
(Exp) decaying potentials

V00(q) = Ea exp(�a(q � qc))

V0(q) = (Ea + DE10) exp(�a(q � qc)) � DE10 (4.3)

which have adjustable slopes at the crossing point and the
asymptotic position of the vibronic energy levels. Besides, the
action integrals in eqn (4.1) can be expressed analytically.
For this model, eqn (4.2) assumes the form

SCExpP p exp(�2Wa
ExpF(e, d)) (4.4)

with

ExpFðe; dÞ ¼
ð� ln e

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�xÞ � e

p
dx

�
ð� ln

eþd
1þd

� �
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�xÞð1þ dÞ � e� d

p
dx (4.5)

In eqn (4.4) and (4.5), e = E/Ea is the scaled energy, d = DE10/Ea is
the reduced asymptotic spacing, and Wa ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mEa

p �
�ha is the

WKB parameter (the product of the wave vector for the collision
energy E = Ea and the range of the potential). The latter is
related to the characteristic Massey parameter xa for nonadia-
batic transitions between the asymptotic states at the collision
energy E = Ea, xa = Wad. Note that the applicability of the WKB
approximation and the adiabatic behavior at infinity require
the fulfillment of the condition Wa c 1 and xa c 1.

For e close to unity, i.e. 1 � e { 1, the exponential functions
in eqn (4.5) can be replaced by linear ones, so that the
expression for ExpF(e, d) simplifies to

ExpFðe; dÞ



1�e�1

! LinFðe; dÞ ¼ ð2=3Þð1� eÞ3=2 d
1þ d

(4.6)

This expression, when substituted into eqn (4.4) yields the
asymptotic Airy probability from eqn (3.1) with Eq given by

Eq ¼
�h2a2

2mq

 !1=3
Ea Ea þ DE10ð Þ

DE10

� �2=3

(4.7)

The SCExp tunneling correction SCExpC is calculated by aver-
aging SCExpP(E) over a Boltzmann distribution (counted from
the reference energy E = Ea) of tunneling energies:

SCExpC ¼
ðEa

0

SCExpPðEÞ exp �ðE � EaÞ=kBT½ �dE=kBT (4.8)

The interplay between the Boltzmann factor (increasing with
decreasing E) and the tunneling probability (decreasing with
decreasing E) leads to a pronounced maximum in the integrand

such that WKBC can again be estimated by the steepest descent
approximation. This leads to

SCExpC /
ð1
0

exp ExpF e;Aa;Wa; dð Þ
� �

de

/ exp ExpM Aa;Wa; dð Þ
� �

(4.9)

where

ExpF(e; Aa, Wa, d) = Aa (1 � e) � 2Wa
ExpF(e, d) (4.10)

with Aa = Ea/kBT and ExpM denoting the maximum of ExpF at an
optimal energy e = e*:

ExpM(Aa, Wa, d) = ExpF(e; Aa, Wa, d)|e=e* (4.11)

Note that e = e* determines the energy of the OT for the above
model. If e* is close to unity (i.e. 1� e* { 1), the exponentials in
eqn (4.5) can be approximated by linear functions which yields

SCExpC ! SCLinC ¼ exp LinM Aa;Wa; dð Þ
� �

¼ exp
Aa

3ð1þ dÞ2

12Wa
2d2

" #
(4.12)

This result coincides with the Airy correction AiC in eqn (3.3)
when one uses the relation Eq

3 = Ea
3(1 + d)2/Wa

2d2. The
comparison of SCExpC with AiC through SCLinC allows one to
estimate the preexponential factor in the general expression of
eqn (4.8) which is assumed to be of the order of unity as follows
from the expression of eqn (3.3) for AiC.

Results for ExpM(Aa, Wa, d) (full curves) and LinM(Aa, Wa, d)
(points) as a function of Aa in Fig. 3 are compared for Ea/kB =
4500 K and DE10/kB = 2700 K, which correspond to d = 0.6.
The plots demonstrate the convergence of ExpM(Aa, Wa, d) to
LinM(Aa, Wa, d) when Aa decreases. E.g., we see a good agreement
between the Exp and Lin models for Aa = 3, a qualitative
agreement for Aa = 5 and a large difference for Aa = 7. This
difference increases dramatically for higher values of Aa when
the linear model for low temperatures becomes inadequate.

Fig. 3 Comparison of ExpM(Aa, Wa, d) (lines) and LinM(Aa, Wa, d) (points) as a
function of Aa. The convergence of dotted lines to full lines indicates the
performance of the Airy approximation (see the text).
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Note that, for Aa = 15 (corresponding to T = 300 K in the present
case), SCExpC is quite large reaching up to values of 100–400.

Two features of Fig. 3 deserve particular attention:
(i) Tunneling contributions for exponential potentials, for

not too small values of the Arrhenius parameter Aa, are sub-
stantially lower than obtained using the Airy approach. We
ascribe this to an overestimation of tunneling by the Airy
approach that relies on the linear model with a narrow tri-
angular crossing pattern of diabatic potential curves

(ii) On the other hand, the tunneling contribution for
exponential potentials may be particularly large for large Arrhenius
factors. For instance, for Aa = 15 (i.e. here for T = 300 K) the values
of SCExpC, as judged from their exponents with Wa = 8–10, amount
to 150–400. At these values of Aa = 15 and Wa, the optimal
energy is E* E Ea/2, and the WKB and Massey parameters are

W� ¼Wa

� ffiffiffi
2
p

and x� ¼ xa
ffiffiffi
2
p

.
We believe that conclusion (ii) is quite general and will hold

for other nonlinear one-dimensional potentials and for more
realistic multidimensional potentials as well. This observation
suggests that the NO–Ar system is an interesting example for
multidimensional quantum treatments of nonadiabatic tunnel-
ing once the adiabatic vibronic PES is reasonably well known.
The simplifying features (at room temperature and above) here
are the WKB conditions for rotation of NO and NO–Ar transla-
tion, and the extensive quenching of interference effects for the
initial thermal ensemble which eliminates the need to resort of
multidimensional uniform approximations.24–26 The simplest
semiclassical counterpart of the multidimensional quantum
treatment of the nonadiabatic tunneling might be the optimal
trajectory methods18 and more general approaches as described
in ref. 27 and 28.

5. Nonadiabatic tunneling in
NO(X2P, v = 1) + Ar - NO(X2P, v = 1) +
Ar collisions

In this section, we analyze the Airy approximation in order to
learn more about some features of nonadiabatic tunneling near
900 K (see Fig. 4). We adhere to this approximation not only
because of its simplicity, but also since it takes into account
contributions from overbarrier transitions. For instance, with
C D 2, the latter contribute about 25% to the total value of C
(see Fig. 2). We therefore assume that the value of C is given by
eqn (3.5) and we regard Eq as a fitting parameter. The perfor-
mance of this approximation, for Eq/kB = 1800 K, is illustrated in
Fig. 4.

We consider the value Eq/kB = 1800 K as an optimally fitted
quantity since the plot of AiC(T) vs. 1/T passes through all error
bars of the ratio GTk10/LZk10. In order to demonstrate the high
sensitivity of AiC(T) on Eq, we also show a plot of AiC(T) with
Eq/kB = 1430 K which is about 20% lower than the optimal value
Eq/kB = 1800 K. If the latter value is used within the SC
exponential model of Section 4, with Ea/kB = 4500 K, DE10/kB =
2700 K, we obtain Wa D 10 and xa D 6.

On the other hand, a rough estimation of Eq in eqn (3.2) can
be made by assuming an exponential dependence of the
diabatic curves on the reaction coordinate of eqn (4.3) which
expresses Eq by eqn (4.7). The parameter a with the asymptotic
behavior of the exchange interaction from ref. 29, is estimated
to be close to 2 a.u. Substituting this value in eqn (4.7) and
identifying mq with the reduced mass of the collision partners
m = 17.14 a.m.u., we obtain Eq/kB = 1430 K. Fig. 4 shows that this
value of Eq/kB apparently is too small for a correct description of
the tunneling effect in k10.

Within the same scheme as above, a higher value of Eq

might be obtained if the mq could be identified with the effective
mass of the coordinate which is normal to the dividing surface
in the region close to the lowest crossing energy point Ea. In the
present case, the dividing surface becomes a crossing line
R = Rc(y), which is defined as a solution of the equation

DV(R,y) = DE10 (5.1)

In turn, the minimum energy on the V00 PES along the crossing
line is attained at a certain angle y = ya, and two coordinates
ya and Ra R Rc(ya) determine the apparent activation energy
Ea = V 00(Ra,ya).

The effective mass meff
a simulates the combined effect of the

relative radial motion NO–Ar and the hindered rotational
motion of NO along a two-dimensional trajectory that passes
through the point Ra, ya normally to the crossing line. The
expression for meff

a then reads (see eqn (6) from ref. 29)

meff
a = m/(1 � m(dRc/dy)y=ya

2/I) (5.2)

where I is the moment of inertia of NO, I = Mre
2 with M and re

being the reduced mass of NO at the equilibrium internuclear
separation re (M = 7.27 a.m.u and re = 2.175 a.u.). Once the
quantity (dRc/dy)y=ya

2 is known from the form of the crossing
line close to y = ya, eqn (5.2) can serve for the determination of

Fig. 4 The ratio of the experimental (GTk10) and Landau–Zener (LZk10)
relaxation rate coefficients (red dashed line) in comparison to the Airy
approximation according to eqn (3.5) with Eq/kB = 1430 K (blue dotted line)
and Eq/kB = 1800 K (green dotted line).
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meff
a and the calculation of Eq. Otherwise, if meff

a in Eq is
considered as a fitting parameter for the correct description
of nonadiabatic tunneling, eqn (5.2) defines the quantity
(dRc/dy)y=ya

2 which sheds some light on the collision dynamics.
We use the latter approach to elucidate the activated complex
configuration.

The quantity (dRc/dy)y=ya
as found from eqn (5.2) is given by

dRc=dyð Þy¼ya¼ �re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� meffa

meffa

M

m

s
(5.3)

On the other hand, (dRc/dy)y=ya
can be calculated from eqn (5.1)

if one assumes an explicit expression for DV(R,y). This can be
derived from the argument that the difference DV(R,y) is
determined by the exchange interaction of the electrons of
the Ar atom with the electron of NO that occupies the outer
2p00 molecular orbital.3,4 Taking this interaction in its asymp-
totic form when the 2p00 MO of NO is approximated by a dp
atomic orbital counted from the center of mass of NO,3,4

we write:

DV(R,y) = DE10 exp(�a(R � R0)sin2 2y (5.4)

where R0 is a reference radius which enters into scaling of
DV(R,y). With this definition of DV(R,y), the crossing curve of a
two-lobe rosette shape lies inside the circle of radius R0 and
touches it at y = p/4 and 3p/4. The calculation of (dRc/dy)y=ya

from eqn (5.2) with the restriction by eqn (5.4) yields

dRc=dyð Þy¼ya¼
4

a
cot 2ya (5.5)

This expression determines the value of ya which is consistent
with the fitted value of meff

a through the intermediate quantity
(dRc/dy)y=ya

that enters into eqn (5.3) and (5.5). With y counted
from the linear Ar–N–O arrangement, one should choose the
negative sign for (dRc/dy)y=ya

as belonging to the internal side of
the first lobe of the rosette. The final result reads

cot 2ya ¼ �
are
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� meffa

meffa

M

m

s
(5.6)

With Eq/kB = 1800 K we find meff
a E m/2 and the above values of a,

re, M, and m make the r.h.s. of eqn (3.8) equal to �0.72. This
yields ya = 1.1 which is close to p/3.These results are summar-
ized in Fig. 5 which shows a part of the lobe (full red line
bounded in the lower-right corner to indicate the non-
asymptotic region of the exchange interaction). The lobe
touches the reference circle at y = p/4 (dashed red line), and
the equipotential line V00(R,y) = Ea at ya = p/3 (blue dash-dotted
line). The transition state (encircled green region) is located
near the latter touching point, and the reaction coordinate is
normal to the lobe line at this point (an arrow).

Fig. 5, therefore, will provide a qualitatively correct picture
of the non-adiabatic transitions near the configuration of the
activated complex in a position which is defined through its
angular coordinate. What is missing here is the value of the
radial coordinate Ra of the activated complex. Instead of this,
we have the transition state energy Ea which was recovered from

the Arrhenius plot of the LZ rate relaxation coefficient in the
temperature range where the tunneling is negligible. The relation
between Ea and Ra could be established from the information on
the V 00 PES.

6. Conclusion

The present work analyzes deviations from an Arrhenius tem-
perature dependence of the rate constant of the vibrational
relaxation of NO(X2P, v = 1) in Ar. These are attributed to
tunneling nonadiabatic transitions between initial (A00, v = 1)
and final (A0, v = 0) vibronic PESs. The tunneling probability is
approximately described by a linear model of the nonadiabatic
interaction in its weak-coupling limit, when the transition
probability can be expressed through the Airy function. The
fitting of the parameters in the tunneling correction factor
indicates a substantial contribution from the rotation of NO
to the nonadiabatic tunneling. Limitations of the linear model,
which arise from a too thin barrier and an unrestricted lower
bound of the collision energies within a model of linear cross-
ing diabatic curves, are also noted.

The reported experimental value of k10 at T E 300 K being
about 10�17 cm3 s�1 (ref. 9 and 10) is about three orders of
magnitude higher than the value for LZk10 from the LZ treat-
ment, eqn (2.1) and its extrapolation to room temperature (see
Fig. 1). The large difference between k10 and LZk10 apparently
can be attributed to tunneling. We note, however, that the Airy
approximation certainly breaks down for experiments at tem-
peratures as low as room temperature. (In addition, one should
also be aware of reservations about the experimental values of
k10 near 300 K which were expressed in ref. 30). Obviously, more

Fig. 5 Polar representation (coordinates R, y) in the Cartesian frame
(coordinates X = R cos y, Y = R sin y) of quantities relevant for nonadiabatic
tunneling at the internal side of the first lobe (0 o yo p/2) (see the text for
details).
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experimental measurements of the relaxation rate coefficients
at lower temperatures are desirable. Furthermore, more general
two-dimensional models of nonadiabatic coupling including
tunneling are required which should be based on ab initio
calculations of adiabatic PESs for interaction energies above
those already available.12–14 Of course, the use of the full
multichannel treatment in calculating the rate coefficient
would be ideal, but this is not possible unless the dependence
of the potentials on the N–O distance is known. Moreover, here
it is not clear how one can determine the tunneling correction
coefficient without the full quantum calculation of the rate
coefficient. In our paper, which addresses a more modest aim
to only estimate the tunneling correction without full calcula-
tion of the rate coefficient, we have identified the ‘‘reaction
coordinate’’ of the transition state approach by considering the
shape of the crossing line found from the asymptotic form of
the exchange interaction between the 2p00 electron of MO and
electrons of the Ar atom, the approach which has already been
introduced quite some time ago3,4 and used recently again.16 In
this way, it became possible to derive a simplified expression
for the tunneling correction coefficient that depends on two
dimensionless parameters, d and W, which in turn are
expressed through the conventional physical parameters, the
energy Ea at the crossing point, the steepness of the potentials a
at the crossing point and the effective mass meff for the motion
along the ‘‘reaction coordinate’’. Once the latter is identified,
Ea, a, and meff can be determined for any crossing PES, includ-
ing those calculated ab initio in different approximations.

We conclude this work by emphasizing the interesting
intermediate position of the present relaxation system with a
two-state vibronic curve-crossing mechanism between the
Landau–Teller mechanism without curve-crossing and even
more efficient vibrational relaxation in chemically interacting
situations with the participation of several vibronic states. The
latter was observed, e.g. for NO relaxation in collisions with NO,
NO2, O, Cl and I (see ref. 7, 8 and 31) where it was shown that
relaxation and recombination (here forming (NO)2. N2O3, NO2,
NOCl, and NOI) are directly related (see ref. 32).
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