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Abstract

Reference metrics are used to define th&edeéntial structure on multicube representations of
manifolds, i.e., they provide a simple and practical way éfirce what it means globally for
tensor fields and their derivatives to be continuous. ThEepantroduces a general procedure
for constructing reference metrics automatically on neulbe representations of manifolds with
arbitrary topologies. The method is tested here by constigiceference metrics for compact,
orientable two-dimensional manifolds with genera betweero and five. These metrics are
shown to satisfy the Gauss-Bonnet identity numericallyh® level of truncation error (which
converges toward zero as the numerical resolution is isea These reference metrics can be
made smoother and more uniform by evolving them with Riceivfldhis smoothing procedure
is tested on the two-dimensional reference metrics cocistiunere. These smoothing evolu-
tions (using volume-normalized Ricci flow with DeTurck gadixing) are all shown to produce
reference metrics with constant scalar curvatures (aetred bf numerical truncation error).

Keywords: topological manifolds, dferential structure, numerical methods, Ricci flow

1. Introduction

The multicube representation of a manif@aonsists of a collection of non-intersecting
dimensional cubic regiornBa c R" for A = 1,2, ..., Ng, together with a set of one-to-one invert-
ible maps‘}‘@g that determine how the boundaries of these regions are torreected together.
The maps),Ba = ‘I’Qg(aﬁBB) define these connections by identifying points on the bawnd
facedpBg of regionBg with points on the boundary faee, B of regionBa (cf. Ref. [1] and
Appendix B. Itis convenientto choose all these cubic regiorkrio have the same coordinate
sizel, the same orientation, and to locate them so that regioassit (if at all) inR" only at
faces that are identified by thlégg maps. Since the regions do not overlap, the global Cartesian
coordinates oR" can be used to identify points &a Tensor fields oz can be represented by
their components in the tensor bases associated with th&sal Cartesian coordinates.

The Cartesian components of smooth tensor fields on a mbéimanifold are smooth func-
tions of the global Cartesian coordinates within each re@ig, but these components may not
be smooth (or even continuous) across the interface boigsdaB, between regions. Smooth
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tensor fields must instead satisfy more complicated interé@ntinuity conditions defined by cer-
tain JacobiansJQg}, that determine how vectors and covectorsy; transform across interface

boundariesy,, = Jg5 v andwa; = 3.2 wgj. As discussed in Refl], the needed Jacobians are
easy to construct given a smooth, positive-definite refeenetricg;; on .

A smooth reference metric also makes it possible to defing winaeans for tensor fields
to beC?, i.e., to have continous derivatives across interface taties. Tensors a@! if their
covariant gradients (defined with respect to the smooth ection determined by the reference
metric) are continuous. At interface boundaries, the owiitly of these gradients (which are
themselves tensors) is defined by the Jacob.ﬂéﬂsin the same way it is defined for any tensor
field.

A reference metric is therefore an extremely useful (if restemtial) tool for defining and en-
forcing continuity of tensor fields and their derivativesroualticube representations of manifolds.
Unfortunately there is (at present) no straightforward wagonstruct these reference metrics
on manifolds with arbitrary topologies. The examples git@date in the literature have been
limited to manifolds with simple topologies where explitdrmulas for smooth metrics were
already known ]. The purpose of this paper is to present a general appraaaohstructing
suitable reference metrics for arbitrary manifolds. Thalde to develop a method that can be
implemented automatically by a code using as input only thiiocube structure of the manifold,
i.e., from a knowledge of the collection of regiof#ig and the way these regions are connected
together by the interface maj4?.

In this paper we develop, implement, and test a method fostcocting positive-definite
(i.e., RiemannianT! reference metrics for compact, orientable two-dimendioramifolds with
arbitrary topologies. Whil€™ reference metrics might theoretically be preferaliiemetrics
are all that are required to define the continuity of tensdddiand their derivatives. We show
in Appendix Athat anyC* reference metric provides the same definitions of contrafitensor
fields and their derivatives across interface boundariesGfs reference metric. This level of
smoothness is all that is needed to provide the appropritgeface boundary conditions for the
solutions of the systems of second-order PDEs most commadyg in mathematical physics.
For all practicable purposes, therefa@,reference metrics are all that are generally required.

Our method of constructing a reference megfjcon X is built on a collection of star-shaped
domainsS; with | = 1,2, ..., Ns that surround the vertex pointg;, which make up the corners
of the multicube regions. The star-shaped donsins composed of copies of all the regions
Ba that intersect at the vertex poifit,. The interface boundaries of the regions that include
the vertexV, are to be connected together withh using the same interface boundary maps
‘P’gg that define the multicube structure. Figuréllustrates a two-dimensional example of a
star-shaped domaify whose centefy; is a vertex point where five regions intersect. A region
Ba would be represented multiple times in a particufarif more than one of its vertices is
identified by the interface boundary maps with the vertexnpdf, at the center ofS,. For
example, consider a one-region representatioi’ofThe singleS; in this case consists of four
copies of the single regiofia, glued together so that each of the vertices of the origiegibn
coincides with the center &,. The interior of each star-shaped domé&inhas the topology of
an open ball ilR", and together they form a set of overlapping domains thagicihve manifold:

U S = 2.

A smooth reference metric is constructed on each star-shdpmainS, by introducing
local Cartesian coordinates on it that have smooth tramsitiaps with the global multicube
coordinates of each regidu that it contains. Leg; denote the flat Euclidean metric with8),



Figure 1: Two-dimensional star-shaped dom§jnvhose centef| is a vertex point where five regioif$y intersect.

i.e., the tensor whose components are the unit matrix whetewin terms of the local Cartesian
coordinates ofS;. These metrics are manifestly free of singularities witbachS,, and they
can be transformed from the local star-shaped domain coateB into the global multicube
coordinates in eac84 using the smooth transition maps that relate them.

These smooth metrics on the star-shaped dom§jnsan be combined to form a global
metric onZ by introducing a partition of unity, (X). These functions must be positivg(x) > 0,
for pointsX in the interior ofS;; they must vanishy,(X) = 0, for points outsideS;; and they
are normalized so that £ >, u;(X) at every pointX in . Using these functions, the tensor
gi(x) = X uX e,'j (X) is positive definite at each poimtin £ and can therefore be used as a
reference metric foE. Although each metritei'j is smooth within its own domai;, it may
not be smooth with respect to the Cartesian coordinateseobther star-shaped domains that
intersectS;. For this reason the combined metgg will generally only be as smooth as the
productsu; (X) el'j.

At the present time we only know how to construct function) that make the combined
metricg;j continuous (but noE?) across all the interface boundaries. The magican be mod-
ified in a systematic and fairly straightforward way, howete produce a new metrig;;"whose
extrinsic curvatureKij vanishes along each multicube interface boundgfy,. Continuity of
the extrinsic curvature is the geometrical condition nelddeensure the continuity of the deriva-
tives of the metric across interface boundaries. The mafiifietricsg;; constructed in this way
can therefore be used @$ reference metrics. In the two-dimensional case, the madiifin that
convertsg;; into §i; can be accomplished using a simple conformal transformatio higher
dimensions, a more complicated transformation is required

The following sections present detailed descriptions afgocedure for constructing refer-
ence metricgjj on two-dimensional multicube manifolds having arbitrargdlogies. In Sec.1
an explicit method is described for systematically corting the overlapping star-shaped do-
mainssS;; formulas are given for transforming between the intriictesian coordinates in each
S, and the global Cartesian coordinatesAR; explicit representations are given (in both local
and global Cartesian coordinates) for the flat memjf(s?) in each domairs,; ; and examples of
usefulCP partition of unity functionsy (X) are given. The resulting® metrics are then modified
in Sec.2.2 by constructing an explicit conformal transformation tpeaduces a metric having
vanishing extrinsic curvature at each of the interface blawieso,Ba. The resulting metric is
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C! and can therefore be used as a reference metric for theséohdani

We test these procedures for constructing reference raatn@ collection of compact, ori-
entable two-dimensional manifolds in S&3. New multicube representations of orientable
two-dimensional manifolds having arbitrary topologies described in detail i\ppendix B
These procedures have been implemented in the Spectr&iBi@ode (SpEC, developed by the
SXS Collaboration, originally at Caltech and Corn@4]). Reference metrics are constructed
numerically in Sec2.3for two-dimensional multicube manifolds with gené¥g between zero
and five; the scalar curvatur&sassociated with these reference metrics are illustratedina-
merical results are presented which demonstrate that thesdimensional reference metrics
satisfy the Gauss-Bonnet identity up to truncation levedrsr(which converge to zero as the nu-
merical resolution is increased). We also show that theimoatis (but noC?!) reference metrics
g;j fail to satisfy the Gauss-Bonnet identity numerically hesmof the curvature singularities
which occur on the interface boundaries in this case.

The scalar curvatures associated with@eeference metrics constructed in SB¢urn out
to be quite nonuniform. SectioB explores the possibility of using Ricci flow to smooth out
the inhomogenities in these metrigs. “In particular we develop a slightly modified version of
volume-normalized Ricci flow with DeTurck gauge fixing. Thisrsion is found to perform bet-
ter numerically with regard to keeping the volume of the rfaldifixed at a prescribed value. We
describe our implementation of these new Ricci flow equatiorSpEC in Sec3.1 We test this
implementation by evolving a round-sphere metric with @ndperturbations on a six-region
multicube representation of the two-sphere manif&#tl, These tests show that our numerical
Ricci flow works as expected: the solutions evolve towardstamt-curvature metrics, the vol-
umes of the manifolds are driven toward the prescribed galued the Gauss-Bonnet identities
remain satisfied throughout the evolutions. In S2@.we use Ricci flow to evolve the rather
nonuniformC? reference metricg;j” constructed in Se, using theseyj both as initial data
and as the fixed reference metrics throughout the evolutidfesshow that all these evolutions
approach constant curvature metrics, as expected for imersional Ricci flow. The volumes
of these manifolds remain fixed throughout the evolutions, #the Gauss-Bonnet identities are
satisfied for all the geometries tested (which include gehgrbetween zero and five). These
Ricci-flow-evolved metrics therefore provide smoother amate uniform reference metrics for
these manifolds.

2. Two-Dimensional Reference M etrics

This section develops a procedure for constructing reteremetrics on multicube repre-
sentations of two-dimensional manifolds. Continuousnexiee metrics are created in Sécl
and then transformed in Se2.2 into metrics whose derivatives are also continuous actess t
multicube interface boundaries. The resultidyreference metrics are tested in SB@ (on
two-dimensional manifolds with genelNy between zero and five) to ensure that they satisfy the
appropriate Gauss-Bonnet identities.

2.1. Constructing Continuous Reference Metrics

The procedure for creating a continuo@) reference metrigjj presented here has three
basic steps. First, a set of star-shaped dom&jnfor the multicube manifold is constructed
from a knowledge of the regior8a and their interface boundary identification map8a =
‘I’gg(ﬁﬁBB). The interiors of thesé, have the topology of open balls R" and together they
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form an open cover of the manifold. The primary task in this first step of the procedure
is to organize the multicube structure in a way that allowsaudetermine which star-shaped
domains, is centered around each vertey, of each multicube regio®, and to determine
how many region®a belong to eacls,;. In the second step, intrinsic Cartesian coordinates
and metrics are constructed for ea8h These intrinsic coordinates are chosen to have smooth
transformations with the global Cartesian coordinatesaithemulticube regioma. Metricse],

for each star-shaped domain are introduced in this step tbhebEuclidean metric expressed in
terms of the intrinsic Cartesian coordinates in e&chin the third step, partitions of unity; (X)

are constructed that are positive for poirtmisideS), that vanish for pointX outsideS;, and
that sum to unity at each point in the manifold=1}, u;(X). A global reference metric is then
obtained by taking weighted linear combinations of the flatnas from each of the domaiis:
gij(x) = 2 w(x el'j (X). At present we only know how to choose the partition of ufityctions

u (X) in a way that makeg;; continuous across the boundary interfaces.

2.1.1. Step One

The first step is to compose and sort a list of all the vertigg$n a given multicube structure.
The indexu = {1, ...,2"}, wheren is the dimension of the manifold, identifies the vertices of a
particular multicube regiomBa. This list of vertices/a, can be sorted into equivalence classes
V1 whose members are identified with one another by the intetfaandary-identification maps,
i.e.,va, andve, belong to the sam@’, ift there exists a sequence of mdpfs phaan ,‘PQ‘,}"“

101’ T Avarn?
with va, = (‘Pﬁ‘l"a1 o ‘Pﬁ;g; °...0 ‘P’é;;’”) (vBo)- - -
One star-shaped domath is centered on each equivalence class of vertidesThe domain
S consists of copies of all the multicube regidfs having vertices that belong to the equiva-
lence classV,. For two-dimensional manifolds, the primary computatidask to be completed
in this first step is to determine the numlgrof verticesv, that belong to each of th#, classes.

The quantityK, represents the number of multicube regi@sclustered around the vertei,

in the star-shaped domai#y. Our code performs this counting process in two dimensigns b
using the fact that each vertex, belongs to two dterent boundaries of the regi®n. The
code arbitrarily picks one of these boundaries,&a@§,, and follows the identification maﬁ;'fi

to the neighboring regiog. The mapped vertexg, = ‘I’Eﬁ(vA,l) again belongs to two bound-
aries of the new regiofg: the mapped boundaggBg and another one, say Bg. The code
then follows the maﬁ’gj across this other boundary to its neighboring regigrand to the new
mapped vertexc, = \Pgi(v&r). Continuing in this way, the code makes a sequence of transi
between regions until it arrives back at the original vestgxof the starting regiomBa. The code
counts these transitions and returns the nurikpevhen the loop is closed. Figufdllustrates a
two-dimensional star-shaped domain with= 5.

2.1.2. Step Two

The second step in this procedure is to construct local Slarteoordinates that cover each
of the star-shaped domait¥%. We do this by noting that each, consists of a cluster of cubes
Ba whose vertices coincide with the central poiit. If these cubes are appropriately distorted
into parallelograms (by adjusting the angles between twrdinate axes), they can be fitted
together (without overlapping and without leaving gapsMeein them) to form a domain iR"
whose interior has the topology of an open ball. E&gttan therefore be covered by a single
coordinate chart, which in two-dimensions can be writtethia formx” = (x;,y;). Figure2



illustrates both the distorted (on the left) and the undistb(on the right) representations of a
two-dimensionaiBa.
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Figure 2: Distorted and undistorted representations of kicube region. Left side shows one of the two-dimensional
multicube region®3 that has been distorted to allow it to fit together with theeotfegions in a particular star-shaped
domainsS,. The vectorss, andd’, are tangent to the boundaries®£. Right side is a representation of this safg
showing the associations of the vectgfsandd, for its various possible vertices (labeled by the ingigx

In two dimensions the distortions needed to allow #eto be fitted around a vertex point
V, are quite simple: adjust the opening anglgg of the coordinate axes of each cube so they
sum to Z around each vertexy o, 6ia, = 27. The optimal way to satisfy this local flatness
condition is to distort all of the two-dimensional cubesttheake upS; in the same way, i.e.,
by settingdia, = 27/K,. In higher dimensions the problem of fitting t#a together to form a
smooth star-shaped domain (without conical singularitesveithout gaps) is more complicated.
The complication in higher dimensions comes from the lackrafueness and a clear optimal
choice, rather than being a fundamental problem of existeWe plan to study the problem of
finding a practical way to perform this construction in higlenensions in a future paper.

The simplest metri(el'j_to assign to the star-shaped domé&inis the flat Euclidean metric
expressed in terms of the local coordinate$af

d = &;dXdx! = dx} + dy?. (1)

EachB, that intersectsS; will inherit this flat geometry via the coordinate transfation that
connects them. This fact can be used to deduce the coordiaagformations between the local
Cartesian coordinate$ = (X, y;) of S; and the global coordinated = (xa,ya) of Ba. The

left side of Fig.2 shows a regioB, in S; that has been distorted into a parallelogram having an
opening angl®a,. The vectorg, andd, in this figure represent unit vectors (according to the
local flat metric ofS)) that are tangent to the boundary facesBafat this vertex. The indep
identifies which of the vertices @, these unit vectors belong to. Since the opening angle at this
particular vertex i®) ., the inner product of these vectors is jgst ¢, = costia,. The vectors

p. anda’, are proportional to the coordinate vectorsanddy of the global Cartesian coordinates
used to describe points in the multicube reg#®—exactly which coordinate vectors depends
on which vertex ofB, coincides with this point. The right side of Fig.shows these vectors at
each of the vertices dBa, any of which could be the one that coincides with the cente$,o
Tablel gives the relationships betwegnand¢’, and the coordinate basis vector#ia for each
vertexy,. Also listed in Tablel are the vectors, that give the location of each vertex relative to
the center of its regiofa.



Table 1: The vectorg, and¢d, are proportional to the basis vectoisandﬁy at each vertey of the regionBa. This
table gives the global Cartesian coordinate representatig, anda, at each vertex, the vertex-dependent constants
€., and the locations), of the vertices with respect to the center®x.

M Pu P Eu Vi

1 (0,1) (1,0) +1 IL(-1,-1)
2 (1,0) (0,-1) -1 IL(-1,+1)
3 (0,-1) (-1,0) +1 IL(+1,+1)
4 (-1,0) (0,1) -1 IL(+1,-1)

The inner products, -g,, ¢.,-&,, andg, - &, are scalars that are independent of the coordinate
representation of the vectors. Singeand¢, are unit vectors that are (up to signs) just the
coordinate basis vectors in the global Cartesian cooreinétfollows that the components of the
metrice; in the global coordinates @ must have the valugs, - g, = &, - 0, = €, = €y = 1
andg, -, = costia, = €, €, Whereg, = +1 is the vertex-dependent constant defined in Table
The flat metricg]; of the regionS; N B, therefore has the form

ds’ = éfdxydx) = dx3 + 26, COSHa, dXa dya + dyA )

when expressed in terms of the global Cartesian coordin@t% (Xa, ya) Of Ba. This metric
can also be written as

d’ = ef\dX,dx, = (dXa + €, COSAla, dya)? + SIr 61, dYA. 3)

This is identical to the standard representatiodjdh_the local coordinates &), Eq. (L), if new
coordinatesa andyja are defined as

)'Z|A = XA—CZ—V;+€ﬂCOS¢9|Aﬂ (yA_CX_VI);)’ (4)
Yia singar (y — ¢y — V7). (5)

The constantsiA represent the global Cartesian coordinates of the centegidnB,, and the
constantsy, represent the location of the vertex of the region relative to its center. These
are included in the transformations in Eg4) &nd 6) to ensure that the poinga = §ia = 0
corresponds to the poift= Ca + V,,, Which is theva, vertex ofB, that coincides with the center

of 8. These new coordinatesy andyja are therefore equal to the local Cartesian coordinates
of Sy, X, andyy, up to a rigid rotation:

Xi cosyia Xia + Sinyia Yia, (6)

Yi = —singia Xa + cosyia Yia, (7)

for some anglea. The composition of Eqs6} and (7) with Egs. @) and 6) therefore gives the
transformation between the local Cartesian coordinatés,ofy andy,, and the global Cartesian
coordinatesxa andya, of the multicube representation of the manifold.

The metricei'jA given in Eqg. @) must be constructed for each vertey, of each regiorBa
in terms of its global Cartesian coordinabé@ These expressions depend only on the opening
anglesa,, which in turn depend only on the paramelgr The full coordinate transformations
between the global Cartesian coordinatg®ndy, and the local coordinates andy; given in
Egs. @)—(7) are not actually needed to evaluate the reference metrics.
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Figure 3: Weight function&(w) defined in Eq. 9) are positive for < w < 1 and vanish fow = 1.

2.1.3. Step Three

The third step in this procedure for constructing a refeeemetric is to build a partition of
unity u; (X) that is adapted to the star-shaped domains. We do this tndinting a collection of
weight functionsw, (X) that are positive within a particuld; and that fall to zero at its boundary.
We experimented with a number offiirent weight functions and found that writing them as
simple separable functions of the global Cartesian coatdmof each regio®, worked far
better than anything else we tried. Thus we let

XA—Cﬁ—Vﬁ)h(VA—C\A—VZ)

(8)

W'(X)zh( L L

whereL is the coordinate size of each regiBR. The function$(w) are chosen to have the value
h(0) = 1, which corresponds to the vertex point at the center of traainS,, and the value
h(1) = 0 at the points which correspond to the outer boundarg,ofWe find that the simple
class of functions

h(w) = (1 - w?)’, (9)

with integersk > 0 and¢ > 0, works quite well. Some of these functions are illustrateig. 3,
with integer values in the range that worked best in our nizaktests. Figurd illustrates these
weight functions expressed in terms of the local Cartestamdinates of one of the star-shaped
domainsS;. This figure shows clearly that this choicewp(X) is continuous but nat! across the
interface boundaries. We could also make these func@émeth respect to the local coordinates
in one of theS;, however it is not possible to make th&hwith respect to all of the overlapping
local star-shaped coordinates at the same time.

A partition of unity uj(X) is constructed from the weight functiomg(X) by normalizing
them:

H(X)'
8

u (%) (10)



Figure 4: Weight functiorw; (X) illustrated on a star-shaped doman where five region®a meet. Left illustration
shows countours of (X), which uses thé(w) functions defined in EP with k = 1 and¢ = 4. Right illustration shows
the same function in a three-dimensional rendering. Thasnmte illustrates the fact that thesg(X) are continuous but
notC! across the region interface boundaries.

whereH(X) is defined by

HE) = > wi(9). (11)
|

This definition ensures that thg(X) satisfy the normalization conditiof, u;(X) = 1 for every
point Xin the manifold.

A global reference metric is constructed by combining thdx'm:xzael'j associated with each of
the star-shaped domaiss and defined in Eq2), using the partition of unity defined in EQL@):

Gi() = > u(®e®. (12)
|

This metric is positive definite, and it is continuous acrab®f the multicube interface bound-
aries. It can therefore be used as a continuous referencemet

In an dfort to reduce the spatial variation of the metric defined in @8) and thus reduce
the required numerical resolution, we add additional teofithe formua(X) e’ whereeﬁ are
flat metrics with support in a single multicube regiBp. Thus we let

ds’ = efldxydx, = dxd + dyi (13)

be the flat Euclidean metric expressed in terms of the glohekSian coordinateg andya. We
define new weight functionsa(X) associated with the individual multicube regions to be

e =n[27D) (205-D)

(14)

which have the valuaa(Ca) = 1 at the center of the regiaBa and the valueva(xX) = O for
pointsX on its boundary. These weight functions can be combined thitke assocated with
the star-shaped domains, E§),(to form a new partition of unity. We modify the normalizati
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functionH(X) to be

H) = Y wi(® + > wa(. (15)
| A
Then we redefine the functions(X) using Eq. L0) with this newH(X), and we define functions
ua(X) using Egs. 14) and (5):

wa(X)
H(®)

A new metric is then formed by combining these region-certenetrics with the star-shaped
domain metrics constructed above:

Gi() = > u (e () + D ua(x) & (9. (17)
| A

Ua(X) = (16)

The addition of the region-centered metrics does not appdaave a significant impact on the
required numerical resolution. Nevertheless, this iswltedimensional reference metric that we
use (after conformally transforming as described in thie¥dhg section) in the numerical work

described in the later sections of this paper.

2.2. Constructing €Reference Metrics

The continuous metrigi; has been constructed in a way that ensures the geometry has no
conical singularities at the vertices of the multicube oegi Howeverg; is not in generaC!
across the interface boundaries; e.qg., the partition df what we use is noE? there. The geom-
etry defined byg;j will therefore have curvature singularities along thoderiiace boundaries.

In order to remove these singularities, our next goal is talifiyag;; by making itC?, while at
the same time keeping it continuous, positive definite, a@e 6f conical singularities. It should
be possible, for example, to find a tenggrthat vanishes at the interface boundaries, and whose
normal derivatives are the negatives of those@;pf In this case the new tensgs = Gij + ¥ij
and its first derivatives should be continuous at the bouesai here is in fact a great deal of
freedom available in choosing;. In particular, it can be changed arbitrarily in the inteidd a
region so long as its boundary values and derivatives remahanged. The idea is to use this
freedom to keegi; small enough everywhere thg femains positive definite. We plan to find
a practical way to do this for manifolds of arbitrary dimearsin a future work. In this paper we
focus on the two-dimensional case, where a simple confamaradformation is all that is needed
to make the continuous metrgg; C!. We introduce the conformal facter, for the metric in
multicube regiorBa:

& = VA gl (18)
The conformal factoga is chosen to make the resulting megﬁg and its derivatives continuous
across interface boundaries.

The extrinsic curvaturh(i’?” of thed, B boundary of cubic regiofB, is defined by

KA = (8 — 1, Ma) Vi Aai, (19)
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wheren‘;a is the unit normal to the boundary aRg is the covariant derivative associated with
the metriog’fj‘. In two dimensions this can be rewritten as

K_G\LY = (gﬁ - ﬁA”i ﬁA(tj)K_An» (20)

whereKp, = V_kﬁ';” is the trace. Since the normal vect%_depends only on the metrgg;, its
divergence can be written explicitly in terms of derivatiaf the metric:

K_Aa = gkﬁk/_\a = % [ﬁm(gﬂ( + WMﬁkM) - 2@?] ﬁkAa] aigjk- (21)

Under the conformal transformation given in E@8), the trace of the extrinsic curvature
Kae transforms as follows:

Kao = a2 (Kna + 2, Valogys). (22)

The idea is to choose the conformal facigr so that it has the valuga = 1 on each interface
boundarys,Ba, with a normal derivative on each boundary given by

M3, Valogya = —Ka,. (23)

These boundary conditions ensure that the megfyicdntinues to be continuous everywhere and
free of cone singularities at the vertices of each cubicibtegion, while also ensuring that the
extrinsic curvature at each interface boundary is zero.

There is no unique conformal factor satisfying the boundamyditionsya = 1 and the
normal-derivative condition given in Eq28). However, the following expression fgiy does
satisfy these conditions:

o (Xa-cy 1)L Ka-x(Ya) 1 xa-c\L Kaix(Ya)
logga = ~f ( T 2) 2w Lom T2 T L) 2, 0m
A L Ka_ — )\ LK,
_ (y“ A 1) Ky a) (} _Ya A) a0 g
L 2) 21, (Xa) 2 L 2, (Xa)

The required properties of the functidiw) are that it has the valuegg0) = f(1) = 0 and the
derivativesf’(0) = 1 andf’(1) = 0. The simple choicd(w) = w h(w) satisfies these conditions,
with h(w) given in Eq. @). The expression for the conformal factor in EB4) has the property
that logya = O everywhere on the boundary of the cubic-block region, evitd derivatives on
the boundary satisfy Eg28). The values of the extrinsic curvaturés, and the normal vectors
H'Aa used in Eq. 24) are those associated with the continuous mefrigiven in Eq. (7).
Continuity of the extrinsic curvature across interface faries is the necessary andfisu
cient condition for the metric to b€ and singularity-free at those interfaces (cf. the Israel
junction conditions$]). The metricsgi; defined in Eq. 18), with conformal factogya given by
Eq. 24), will be C! even across the multicube interface boundaries, sincedhginsic curva-
tures vanish and are continuous there. The reference mgfrican thus be used to define&ca
differential structure, which defines the continuity of tengd8 and their derivatives\ppendix
A shows that this dierential structure is unique in the sense that it is the saweoald be pro-
duced by any othe€? reference metric expressed in the same global multicubeltwades.
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2.3. Testing the Reference Metrics

We have implemented the method outlined in S€c$.and 2.2 for constructing &C? ref-
erence metrig;j in SPEC. This section describes some tests we have perfaonestify that
our code correctly constructs reference metrics accortditigese procedures. We begin by con-
structing multicube representations of compact, oridetalio-dimensional manifolds having
generaNy between zero and fiveAppendix Bgives detailed descriptions of these multicube
representations and also shows explicitly how they can Inergéized to compact, orientable
two-dimensional manifolds of any genddy. These multicube representations consist of lists
of the regionsBa and their specific locations iR", together with a complete list of the spe-
cific interface boundary identification maﬂr%g that define how the regions are to be connected
together.

Any C! metricgjj, including the reference metrg; from Eq. (18), must satisfy the Gauss-
Bonnet identity, which relates the scalar curvatlite the topology of any compact, orientable
two-dimensional Riemannian manifold:

VIR = 87(1 - Ng), (25)

where||R]| is the spatially averaged scalar curvature,

[ RyGd?x
IRl = =—— (26)
V is the volume,
V= f Vg d3x, (27)

and whereNy is the genus of the manifold. The Gauss-Bonnet identityefioee provides a
powerful test: The multicube manifold must have the corgeetus or the identity will fail. And
the metric must b€* across all the interface boundaries, or curvature sinigi@along those
boundaries will cause the numerical integrals used in taedéntity to fail.

We use the quantit§ss, defined by

~ [VIIRI - 87(1 - Ng)|
BT T B+ Ny

(28)

to monitor how well the Gauss-Bonnet identity is satisfieanetically in our tests. Figuré
shows the values dsg computed for each of the multicube manifolds describedppendix

B using theC! reference metrig;j defined in Eq. 18). Each curve in Fig5 represent€gp

for a particular multicube manifold as a function of the nuited resolutionN (the number of
grid points along each dimension of each multicube re@ah The manifolds are identified in
Fig. 5 by their generdNy and the numbers of regiomNg used in their particular representations.
These graphs show that the Gauss-Bonnet identity is sdtisjiehe reference metrigs; with
numerical errors that decrease exponentially as the naedggsolutionN is increased. The
numerical errors arise both in the numerical derivativesdus the computation of the scalar
curvatureR and in the numerical integrations used to evalyi&ge A minimum error ofO(107°)

is reached at a resolution of aboNt = 46, which corresponds to the level of accumulated
rounddT error in the calculation ofgg at that resolution.
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Figure 5: The error in the Gauss-Bonnet idenditys, defined in Eq.28), as a function of resolution for two-dimensional
multicube manifolds having fierent gener&ly and diferent numbers of multicube regiohk.

We have also tested the Gauss-Bonnet identity on this safteetoan of multicube mani-
folds using the scalar curvatures computed from the coatinueference metriag; of Eq. (17)
instead of theC! metricsgij of Eq. (18). Using theseC? reference metrics, we find thé&g
is of order unity (with values between about 0.5 and 2) foioélihe tests illustrated in Figb.
The Gauss-Bonnet identity fails in this case because theatures associated with ti@? ref-
erence metrics have singularities along the multicubefeaxte boundaries. This failure, which
was expected in this case, reinforces the conclusion thdtave successfully implemented the
procedure outlined in Sec®.1and2.2for constructingC* reference metrics on two-dimensional
manifolds with arbitrary topologies.

3. Smoothing the Reference Metrics Using Ricci Flow

TheC* reference metricg;introduced in Sec®.1and2.2satisfy the minimal requirements
needed to establish low-ordefldirential structures on two-dimensional manifolds. Théses
tures allow us to define the continuity of tensors and theivdgves, which is all that is required
for solving the systems of second-order equations of méstést in mathematical physics. Un-
fortunately these metrics exhibit a great deal of spatralcstire and consequently require fairly
high numerical resolution to be represented accuratefyurei illustrates the scalar curvature
R associated with these reference metggsor the case of a six-regiolNg = 6, representation
of the genus\y = 0 multicube manifold (the two-sphere), and also for the cdseforty-region,
Nr = 40, representation of the gently = 5 multicube manifold (the five-handled sphere).
While these scalar curvatures appear to be continuous @sress the region interface bound-
aries) they have very large spatial variations. The godhisfsection is to develop a method of
transforming these metrics into more uniform (and smogQtlegerence metrics.

The uniformization theorem implies that every orientable-dimensional manifol® admits
a metric having constant scalar curvatuk [One approach to making the reference metgigs ~
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Figure 6: lllustration of the scalar curvatuReof two multicube manifolds witlC! reference metrics; i constructed via
the procedure described in S&.Both cases use a numerical resolutiorNof 40 grid points along each dimension
of each multicube regionTop: The genusNg = 0, six-region case. The left side shows the manifold mapped-(
isometrically) onto a 2-sphere, with radial warping prdmoral to the scalar curvatur®. The right side shows the
same manifold in the multicube Cartesian coordinates, withping in thez-direction proportional td2. Bottom: The

genusNg = 5, forty-region multicube manifold in the multicube Cartgscoordinates, with warping in tredirection
proportional to the scalar curvature

more uniform, therefore, would be to find a way to transforenthinto metrics having constant
scalar curvatures. Fortunately there is a well-studielrtiegie for doing exactly that. Volume-
normalized Ricci flow is a parabolic evolution equation foe tmetric whose solutions in two
dimensions all evolve toward metrics having spatially ¢ansscalar curvature§+9].

The evolution equation we use for the volume-normalizea&Rlow of a two-dimensional

14



metricg; is given by

V(t) -
=V V(t)

The quantitiegR| andV(t) in Eqg. (29) are the volume-averaged scalar curvature and the volume
of the manifold defined in Eqs26) and @7), respectively. The terms containing these quantities
are added to control the volume of the manifold. The term propnal tou in Eq. 29) is new

to the best of our knowledge. We have found that it makes onramical solutions of Eq.29)
track the target volum¥, more accurately The DeTurck gauge-fixing covetipis defined by

gl]gk[(l—‘J - rjg) (30)

wherel"l'([ is the connection associated with the metyic andl:,'(e is any other fixed connection

on the manifold 10]. The DeTurck terms (those containirt)) are added to make Eq29)

strongly parabolic, and thus to have a manifestly well-pdséial value problem11].
Contracting Eq.29) with the inverse metrig' gives

V() - Vo
=V

Integrating this equation over any compact manifold presithe evolution equation for the
volumeV(t) of the manifold:

0gj = -2Rj+ ”R(t)”glj gl] + ViHj + VjH;. (29)

dlog Vg = -R+|R| - + ViH'. (31)

O [V(1) = Vol = —u[V(1) - Vol . (32)

Without the term proportional te, the volume of the manifold would be fixeg@lV(t) = 0, at the
analytical level. In numerical simulations, however, ditization and round®d error give rise
to slow, approximately linear drifts in the volume. With thamping term we have added, the
volume of the manifold is driven toward the target valieat a rate determined by the constant
w. Inour numerical tests, we find that a valueuof 10 works well.

3.1. Numerical Ricci Flow

We have implemented the volume-normalized Ricci flow equmatvith DeTurck gauge fix-
ing, Eq. R9), in SpEC. This code evolves PDEs using pseudo-spectralbdsto evaluate spatial
derivatives, and it performs explicit time integration atk collocation point using standard or-
dinary diferential equation solvers (e.g., Runge-Kutta). Boundamnddions are imposed at
multicube interface boundaries to enforce continuity @ thetricg;; and its normal derivative

kag., The vectom® is the unit normal to the boundary ai is the covariant derivative

associated with the reference mejic ~

Boundary conditions are imposed in SpEC using penalty nasthd@he desired boundary
conditions are added to the evolution equations at the banyrabllocation points. The evolution
equations on thé, 5B boundary, which is identified with th#;8g boundary, for example, have
the form . B

agij = Fij + o (g — (@) + BRE(Vidf} — (Vig)a). (33)

whereF;; represents the right side of EQ9), anda andg are positive constant penalty factors.
The quantltles{gB>A and(ngF‘>A represent the transformatlonsgﬁ andegB into the tensor
basis of regloﬁSA using the mterface boundary Jacobians:

@a = LIR3HPE, (34)
Cghya = ¥ e0 g8, (35)
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If the penalty factorer andg are chosen properly, these additional terms drive the &oolat
the boundary in a way that reduces any small boundary conditiror L2]. There is a range of
constantsy andp that work well—too small can lead to instability, while tcarge may make
the system overly gti. Empirically, we have found that the following values worklhin most
cases:

a=3IN3(N+1), B=1IN(N+1) (36)

In some cases the penalty factors (particulaflycan be decreased below the values given in
Eq. 36) without sacrificing stability. Using smaller values all®wa less restrictive condition
on the size of the maximum time step and therefore allows reficdent numerical evolutions.
In rare cases, we have found it necessary to incrgag®ove the value given in Eg36). For
example, in the low-resolutioN = 16, ten-regionNg = 10, genus\y = O case, a value @&

at least twice that given in Eq36) was needed for stability. Hesthaven and Gottlig®] have
derived rigorous lower bounds on the penalty factors nedaledtable evolution of a simple,
second-order parabolic equation in one dimension. Thew shat when Robin-type boundary
conditions are used (like those we use here), penalty fadtat scale likexr ~ O(N?) and

B ~ O(N?) are required. Our results agree with theirsdpbut we have found it necessary to use
much larger values af that scale as ~ O(N*) in most cases.

We test the stability and robustness of our implementatiothese Ricci flow evolution
equations on a six-regioMJr = 6, multicube representation of the two-sphere manif&ig],
which is described in detail iAppendix B.1 As initial data for these tests we use the standard
round-sphere metric with pseudo-random white noise of agugd Q1 added to each component
of the metricg;; at each collocation point. The reference megicused in these tests is the
usual smooth, unperturbed round-sphere metric, whichvisngexplicitly in global Cartesian
multicube coordinates in Refl].

We use several measures to determine whether our impletioenté numerical Ricci flow
is working properly and whether it actually drives the metdward a constant-curvature state,
as it is expected to do in two dimensions. First, we measuve Well the numerical Ricci
flow evolves toward geometries having uniform scalar cumest. One possible dimensionless
measure of this scalar-curvature uniformity is the qugidj, defined by

g2 _ JR-IRD? G d?x
R V[IR|2 '

For the two-dimensional manifolds studied here, the vohawveraged scalar curvatuji| is
given by the Gauss-Bonnet identityRl| = 87(1 — Ng)/V. The scalar-curvature uniformity
measure can therefore be rewritten in the form

-V [(R-IRI?yad®x

(37)

= 38
R T - NP (38)
This measure is singular fddg = 1, so we define an alternative measéigeas follows:
V [(R- 2./gd3x
»  VJ/R-IRN*vE (39)

R™ [87(1 + Ng)]2

1We use the factoN + 1 in Eq. 36), instead of the simpleN, because it is natural to write andg as multiples of
the inverse of the Legendre quadrature weight at the entipain= 2/N(N + 1), sincew enters the proofs of stability for
these penalty methods. In termswafwe user = N2/w andg = 1/w.
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This alternative measure is well defined for all compacgmrble two-dimensional manifolds.
It differs from&Er by the factoril — Ng|/(1 + Ng), which is of order unity, except for the singular
caseNy = 1. We use the measué& to monitor the uniformity of the scalar curvature in all of
our Ricci flow evolutions. Second, we monitor the volume @f thanifold to determine whether
the volume-normalized flow is working properly. We do thisngsthe dimensionless quantity
&v, defined by

_ V@ - Vol

Ev v

(40)
to measure the fractional change in the volume relative éaddhget volumé/y. Third, we use
the quantity&y to measure the evolution of the DeTurck gauge-source corect

&2 = fginiHJ' Vg d?x
H— .
J 2 (19112 + Ziclowgiif?) VG d2x

And finally, we assess how well the geometries produced lsyRigci flow satisfy the Gauss-
Bonnet identity, using the quanti§tg defined in Eq. 28).

Figure7 shows the results of our Ricci flow evolutions using initiatalconstructed from the
round-sphere metric with random noise perturbations. figpise plots the time evolutions of the
four error measureSg, &y, €y, andEgg, defined in Eqs.39), (40), (41), and @8), respectively,
for evolutions performed with severalftérent numerical resolutioris. As evidenced in these
figures, the Ricci flow evolutions are stable and convergertha numerical resolutiolN is
increased. Nonuniformities in the random initial scalaweture, as measured B and shown
in the upper left part of Fig7, decay exponentially in time as the geometry evolves towaed
constant-curvature round-sphere metric until thedénces are dominated by truncation level
errors at each resolution. The upper right part of Fighows that the volume-controlling terms
in Eq. 9) are dfective at driving the volume of the manifold to the vaMg as measured by
Ev. The target volumé/, in these tests was taken to be the volume measured by thetsmoot
round-sphere reference metric, rather than the volumeeoiritial random metric. The lower
left part of Fig.7 shows that the gauge source one-fétmmeasured by, is efectively driven
to zero by the DeTurck term, and the lower right part of Fighows that the Gauss-Bonnet error
Ecg decays very quickly to truncation level at each resolutiRandom noise was added to the
initial data in these tests at each grid point, so the prestiseture of the initial data is fierent
at each resolution. Therefore, numerical convergenceintfeasing resolutiol at the initial
and very early times was not expected (or observed).

(41)

3.2. Smoother Reference Metrics

We have used volume-normalized Ricci flow to construct simeoéand more uniform ref-
erence metrics for several multicube manifolds in two digiens. In particular we have per-
formed Ricci-flow smoothing of the reference metrics for ticube representations of compact,
orientable two-dimensional manifolds with genera betwige: O (the two-sphere) andg = 5
(the five-handled two-sphere). In each case, initial datadhe evolution are prepared by con-
structing the metrig;j according to the procedure described in Sed’ hesegjj use the polyno-
mial generating functionk(w) of Eq. 9), with k = 1 and¢ = 4, both for the partition of unity
and for the functiond (w) = wh(w) that appear in the conformal factor in EQ4J. Although
this choice of powers appears to give the best results, we foand that other choices often
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Figure 7: Ricci flow evolutions of a six-regiog = 6, multicube representation of the 2-sphere, with randorseno
added to the round-sphere metric as the initial data. Grapbw the evolutions of the scalar-curvature uniformity
measureEg, the volume-normalization errdy, the DeTurck gauge-covector no@p, and the Gauss-Bonnet identity
errorEgp. These quantities are defined in EQ9)( (40), (41), and @8), respectively. The reference metric used in these
tests is the usual unperturbed round-sphere metric. Thercathresolution in each spatial dimension of each square
region is denoted biX.

work nearly as well. We use the metgg fot only as initial data for these Ricci flow evolutions,
but also as the fixed reference metric, which defines the maityiof all tensor fields and their
derivatives throughout the evolutions, including the Ritmv-evolvedg;; (t).

We have performed Ricci flow evolutions on all the multicubanifolds described ii\p-
pendix B and the results look very similar to one another. For thésoa we describe only
one of these cases in detail, and then we summarize and certiparesults of our highest-
resolution evolutions from all of the cases. We show deafaiésults for our most complex case:
a forty-regionNr = 40, representation of a genblg = 5 multicube manifold (the five-handled
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Figure 8: Ricci flow evolutions of a geniy = 5, forty-region,Nr = 40, multicube manifold. Graphs show the evo-
lutions of the scalar-curvature uniformity measékg the volume-normalization errd@y, the DeTurck gauge-covector
norm&y, and the Gauss-Bonnet identity eréatg. These quantities are defined in E9)( (40), (41), and 8), respec-
tively. The reference metric, which is identical to theiaditmetric in this case, is constructed according to the giace
described in Se@. The numerical resolution in each spatial dimension of eaahicube region is denoted by.

two-sphere). The scalar curvature for the reference méfrim this case is illustrated in the
bottom part of Fig6. The details of the multicube structure for this case (ahdwalother cases)
are given inAppendix B

Figure8 shows the results of these gerg = 5 evolutions for several ffierent numerical
resolutiondN. The graphs in Fig3 indicate that the evolutions are stable and convergentpdem
strating our ability to evolve PDEs on arbitrary, complaztwo-dimensional manifolds using
the C! reference metrics developed in S@c.These evolutions ffier from the random-metric
evolutions shown in Fig7 in several ways. First, these initial data are much smodtieer the
random metrics (which are unresolved by construction).S8goently, the Gauss-Bonnet error
Ecs IS much smaller at early times. Second, the initial metrithiese tests is identical to the
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Figure 9: High-resolutionN = 40) results of Ricci flow evolutions on a variety ofigirent multicube manifolds. The
genusNg and the number of multicube regiohi of each case are indicated in the legends. Graphs show theiexe
of the scalar-curvature uniformity measwg, the volume-normalization err@y, the DeTurck gauge-covector norm
&En, and the Gauss-Bonnet identity eréagg. These quantities are defined in EQ9)( (40), (41), and @8), respectively.
In each case, the reference metric is identical to the imitigtric and is constructed according to the procedure destr
in Sec.2.

reference metric, and accordingly the error measéteand&y are much smaller (about trun-
cation level) at early times. These error measures remasedb these initial truncation-error
levels throughout the evolutions. We also note that the rooneplicated spatial structures of the
reference metrics in these simulations require somewhaehinumerical resolutions in order to
obtain the same level of truncation errors as the randonmicr&t tests described in Se8.1
Figure9 compares the highest-resolution Ricci flow evolutions freexch of the multicube
manifolds described il\ppendix B (up to and including the forty-region representation of a
genus 5 manifold). All of these cases are found to be staldecanvergent, with qualitatively
similar results to the genudy = 5 evolutions shown in Fig8. The only significant dference
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between the cases is the rate at which nonuniformities is¢aar curvatures decay. The refer-
ence metrics that we construct on thesedent multicube manifolds have nonuniformities on
different length scales, and these nonuniformities correspglydiecay at dferent rates under
the Ricci flow. There are alsofiiérences in the levels of the truncation errors for thesescase
at the same numerical resolution. The ten-reghdt= 10, representation of the genhig = 1
multicube manifold (the two-torus), for example, has thghleist level of truncation error among
the examples we have studied.

4. Discussion

This paper presents a method for constructing referenceasi@n multicube representa-
tions of manifolds having arbitrary topologies. The methas implemented and successfully
tested, as described in S&; for a variety of compact, orientable two-dimensional Régmian
manifolds with genera between 0 and 5. The reference metpiestructed in this way are not
smooth, but they have continuous derivatives, which aant to define theC! differential
structures needed for solving the systems of second-ofles Bf most interest in mathematical
physics. We have demonstrated in S&cfor example, that thesg! reference metrics can be
used successfully to solve systems of second-order pacavolution equations.

The reference metrics constructed using the methods in23eave large spatial variations,
which are not easy to resolve numerically. We demonstragem3 that these metrics can be
made more uniform by evolving them with Ricci flow. The twovrdinsional reference metrics
studied in our tests all evolve under Ricci flow to metricsihgwonstant scalar curvatures.

Ricci flow also has smoothing properties similar to the headion: solutions to the Ricci
flow equation on compact manifolds become smooth, in fadtaealytic, fort > O provided
the initial curvature is bounded (which is the case for Glireference metrics)If3, 14]. Our
numerical evolutions show smoothing of the metrics thadisststent with this fact. The presence
of the DeTurck gauge-fixing terms, however, somewhat olafiescthis question of smoothness.
Our evolutions show that the DeTurck gauge-fixing covettpis zero, up to truncation level
errors, throughout the evolutions. The connecﬁt?m)f the metriag;j at the end of our Ricci flow
evolutions could (in principle) therefore retain some @& tion-smooth features of the reference
connectiorf"}‘j, sinceH; = 0 = g;;g¢(I"}, - T'},). However, the vanishing df; shows that the
evolved metric satisfies the original Ricci flow equationhsiit the DeTurck terms, and thus
must be smooth by the aforementioned theoreh3s 14]. Hence any non-smoothness of the
connection must just reflect the (non-smooth) coordinatesitions at the interface boundaries.

We made somefort to avoid even the potentialfects of the non-smoothness of the con-
nection associated with the DeTurck terms by modifying thgi®Ricci flow Eq. 29) in various
ways. For example, we attempted to carry out numerical Rioai evolutions without includ-
ing the DeTurck terms at all, i.e., simply by settirig = 0 in Eq. 9). All of these evolutions
were unstable. The DeTurck terms were added to the Ricci fopration to make it strongly
parabolic and thereby manifestly well-poséd. [ Without the DeTurck terms, the basic Ricci
flow equations may simply be ill-suited for numerical sabati We also tried modifying the De-
Turck terms in a way that would attempt to drive the solutimha&rmonic gauge, i.e., to a gauge
in which 0= g”l"!‘j. We did this by changing the definition bf; to give the reference connection

an explicit time dependence, ashf = gi,-gkf(l",i(e —eH f"b), for example. Unfortunately all of

these runs failed as well. While these runs appeared to bkestae Ricci flows in these cases
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did not evolve toward metrics having constant scalar curest and the DeTurck gauge-source
covectorH; did not remain small during the evolutions.

We plan to continue to search foffective and #icient ways to construct reference metrics
on manifolds with arbitrary spatial topologies. In two dimséns the remaining questions are re-
lated to finding better gauge conditions for the referenctiose In three and higher dimensions
the challenge will be to findf&cient ways to implement the general techniques developed he

Acknowledgments

We thank Jorg Enders, Gerhard Huisken, James Isenberglans Kroncke for helpful dis-
cussions about Ricci flow. LL and NT thank the Max Planck g for Gravitational Physics
(Albert Einstein Institute) in Golm, Germany for their hdasfity during a visit when a portion
of this research was completed. LL and NT were supportedrinbyaa grant from the Sherman
Fairchild Foundation and by grants DMS-1065438 and PHY4B540 from the National Science
Foundation. OR was supported by a Heisenberg Fellowshigeartt Rl 224 from the Ger-
man Research Foundation (DFG). We also thank the CenterdimpQtational Mathematics at
the University of California at San Diego for providing asséo their computer cluster (aquired
through NSF DM&MVRI Award 0821816) on which all the numerical tests repoitethis paper
were performed.

Appendix A. Uniqueness of the C! Multicube Differential Structure

The traditional definition of & differential structure on a manifold consists of an atlas of
coordinate charts having the property that the transiti@psrbetween overlapping charts are
C*! functions? Tensor fields are defined to I&¥ with respect to this dierential structure if
their components when represented in terms of this atla€'afenctions. In a multicube rep-
resentation of a manifold, we define the continuity of terfigds and their derivatives instead
using the Jacobians and the connection determined by &nefemetric. This enables us to de-
fine these concepts without needing an overlap@iftg atlas. The two definitions of fierential
structure are equivalent on any manifold having both a mwifté structure and @** atlas. In
this appendix we consider the technical question of theuerigss of the multicube method of
specifying the dferential structure.

The purpose of this appendix is to show that @'edifferential structure of a multicube
manifold defined by a particula@® reference metric is independent of the choice of reference
metric. In particular, we show that the definitions of contiy of tensor fields and their covariant
derivatives based on@! reference metrigg, are the same as those based on any @henetric
Jan, I-€., @any metriggy, that is continuous and whose covariant gradﬁg@bc is continuous with
respect to the dlierential structure defined k. Since anyC* metric withk > 1 is alsoC?, this
argument implies that th@* differential structure defined by ti# metricgap is also equivalent
to theC? differential structure defined by a@f metric gap.

We have shownl]] how the diferential structure for a multicube representation of a fotahi
may be specified by giving @' metric gu, represented in the global Cartesian multicube coor-

2We use the slightly non-standard terminology that“adifferential structure is needed to defi@& tensor fields.
This choice implies that the transition maps between oppitay domains in the atlas must 6&+1.
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dinate basi$. This method of defining the fierential structure constructs Jacobiafggg and

their dualsﬁiﬁb that transform tensors from tl#gBg face of cubic regiorBg to thed,Ba face
of cubic regionBa. These Jacobians are determined by the mgig@fid the rotation matrices
Cégg that define the identification maps (&ppendix B between neighboring regions. The

expressions for these Jacobians are given by Lindblom aiteb$i[ 1]:

j%l? = Cgie (53 - ﬁcBﬁﬁBﬁb) L (A.1)
JHP = (65— Fianalil, ) Chtre — Maalid. (A.2)

The vectorsiy | andn”gﬁ that appear in these expressions represent the outwauotedinenit nor-
mal vectors to thé, B, face of regionBa and thedsBg face of cubic regiorBg, respectively.
These normals are unit vectors with respect toghearietric, i.e., 1= gAabﬁi‘,ﬁg‘, = QBabﬁgﬁﬁgﬁ.
These Jacobians, defined in EgA.1) and A.2), determine the way continuous tensor fields
transform across interface boundaries. The referencea@dto determines a covariant deriva-
tive V, that, together with the Jacobians, defines i@wensor fields transform across interface
boundaries. These definitions of continuity for tensor 8eddd their derivatives determine the
C! differential structure of the manifold. The question of the ueiess of th&€? differential
structure reduces therefore to the questions of the un&gseof the Jacobian%gg, and of the

uniqueness of the continuity of the derivatives determimgthe covariant derivative,.
The normal covectorsa,, that appear in EqsA(1) and @A.2) are proportional to the gradi-
|

ents of thex,'=constant coordinate surfaces that define the particulardany face of the region
(i.e., in this case the face of regionA):

faca = NAnaaX‘/f\l‘- (AS)

The indexa can have either sign, e.g., to representxeor the—x coordinate boundary face.
The notationxy indicates the coordinate associated with either case;-bioth the+x and the
—x faces are surfaces of constait The proportionality constam,, in Eq. (A.3) is determined
by the requirement thata,, is a unit covector with respect to the reference megxig:~

NaZ = §a20aXs 0y . (A.4)

The sign ofN,, is chosen to ensure that,; is the outward directed normal. The normal vector
is defined as the dual to this normal covectd; = ggbﬁMb.

The Jacobians defined in Eq#.1) and A.2) transform these normals across interface
boundaries in the appropriate way:

m, = —J”Qggﬁgﬁ, (A.5)
faa = —Jp Figgn. (A.6)

They also transform vectotgﬁ that are tangent to the interfaag,.qta, = O, by the rotations

Cégg used to define the interface boundary mapsAppendix B:

7 b b
th, = Jaiotds = Corntds- (A7)

3While the global Cartesian multicube coordinates are séyeonstrained (e.g., the faces of the cubic-block regions
are required to be constant coordinate surfaces on whicletues of the surface coordinates have particular fixed
values), they are not fixed uniquely. The remaining cootdifiledom is discussed at the end of this appendix, but for
the first part of this discussion we assume that all tensaisfiate represented in one particular choice of these global
Cartesian multicube coordinates.
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These Jacobians and dual Jacobians are inverses of each®othell (cf. Ref. 1]):

82 = Jheag,e. (A.8)

Now consider a second positive-definite meig that isC* with respect to the dierential
structure defined by the metrgz,. This second metric can be used to define alternate normal
COVECtOraa = Na,daXs and vectorsi¥ = §2Ma,p, with N;2 = §200.XJ1apX. 1t follows
from Eq. (A.6) and the continuity 0§y, that the norm of,a WI'[h respect tay;, is continuous
across interface boundaries:

Ga Masalaab = 33 Pigsaligs. (A.9)

This norm can be rewritten as

< 2

N

G2 N avaliach = N2, G2P0aXy Xl = (NM)' (A.10)
Aa

Equation A.9) therefore implies the continuity of the ratin, /Na, across interface boundaries.
The alternate normaia,a, Which can be written aBa,a = (NA(,/NA(,)ﬁA(,a, is therefore contin-
uous (up to a sign flip) across interface boundaries. Thisiaiplies that the alternate normal
vectorny | = gA Naqb IS CcONtinuous. These alternate normals must thereforsfigdltie same
continuity conditions (up to the sign flips) across inteef@doundaries as any continuous tensor
field:

ha, = -Jheang,, (A.11)

faca = It R, (A.12)

The normal vecton®, together with a collection of linearly independent tangestttors, i.e.,
vectorstia(k satisfying 0= tia(k)ﬁAwa' can be used as a basis of vector fields on the boundary.
Therefore any vector field, including ;, can be expressed as a linear combination of the form

M, = QM + > Gty (A.13)
k

Contracting this expression witiy s and using Eq.4.10), it follows thatQ = Na,/Na,. Note
that the tangent vectortgd ® which are orthogonal toa,, by definition, are also orthogonal
to Nasa. Therefore, the alternate norma] “together with a linearly independent collection of
tangent vectors can also be used as a basis of vectors onuthddg.

Next define alternate Jacobia.ﬂ&'b andJ*Bﬁ using the alternate metrigp:

Jgaa = CR2(0F - Mgshean) — 113, Mg (A.14)
y«Bgb > b X ~
\]AlBlfi = (63 - nA‘Yan;%«y) Czc - nA(tangﬁ~ (A15)

These alternate Jacobians transform the alternate nofgnahd any tangent vect(bgd(k) in the
following way:

x YA

My, = —Jggpi nBﬁ, (A.16)
TAca +b Aaa b

ti&(k) = ‘]Bﬁb tBﬁ(k) = Csﬁg tB,B(k)' (A.17)
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The alternative Jacobian and its dual are also inverse of ether:

52 = Jpead,e (A.18)
The action of the alternate Jacobiai§? on the basis of vectors consistingrdf, and a collection

of tangent vectorgw(k), Egs. A.16) and A.17), is identical to the action of the original Jacobians

JA‘“'" on this basis, EqsA(7) and A.11). It follows that the alternate Jacobians must be identical
to the originals:

Jhaa = Jpaa. (A.19)

Since the alternate dual Jacobiafjgﬁb are the inverses of the alternate Jacobians, they must
also be identical to the original dual Jacobians (which laeaniverses of the original Jacobians).
We have shown therefore that the Jacobians used to definentiawty of tensor fields across
boundary interfaces do not depend on which metric is usednstouct them. This argument
depends only on the continuity of those metrics (not theiivdéves).

Now consider the uniqueness of the multicube definition efdbntinuity of the derivatives
of tensor fields. LeV, andV, denote the covariant derivatives defined by@ieeference metric
ab and theC* reference metrigan, respectively. Let? andw, denote vector and covector fields
that are continuous across the interface boundaries, amddfy the Jacobians constructed from
either of the reference metrics. Assume tRat® and V,w, are also continuous across inter-
face boundaries. Theftierences between these tensors and those computed usitethata
covariant derivativé/, are tensors:

ValP — VaP = ARV, (A.20)
VaWp — VaWp = —AS We. (A.21)

The quantityA, = T%, — T, being the diference between connections, is also a tensor. It is
continuous across mterface boundaries as long as the twricen®, andds, used to construct

it are bothC'. Continuity of the derivative§,\° andV,w, across interface boundaries therefore
implies the continuity of the alternatlve derlvatl\)@§/b andVawb

The equality of the Jacobia ’a and Jggg, together with the continuity of the covariant

derivativesV, andV,, implies that the€1 differential structure constructed from tB&metricap

is equivalent to the one constructed from any alterGateetricdap. In dimensions two and three
there is only one diierential structure on a particular manifoli]. In those cases, this argument
shows that theC! differential structures determined by any t®b metrics are equivalent. In
higher dimensional manifolds, however, there can be maliigequivalent dierential structures
[15]. The argument given here only establishes the indeperdeithe multicube dferential
structure constructed from reference metrics belonginiggsame dferential structure in those
cases.

The uniqueness of the Jacobialfs? discussed above assumed a particular fixed choice
of global Cartesian multicube coordinates. Although th@agesian multicube coordinates are
severely restricted, they are not unique. The two assumpticade about them are the follow-
ing. First, the faces of each cubic-block region are assumée@ constant-coordinate surfaces.
And second, the interface boundary maps identify pointhérhanifold across boundaries in
a particular way (cfAppendix B. The global Cartesian multicube coordinates on these-mani
folds can therefore be modified in any way that leaves thé@riace boundary values and the
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identification of points on the interface boundaries ungeah The coordinates can be modified
smoothly in the interior of each cubic-block region, for eyae, while keeping their values fixed

on their faces. More generally, the coordinates can be tdjisnoothly even on the boundary
faces as long as complementary adjustments are made toriesmanding coordinates in the

neighboring region.

Let x4 denote one particular choice of coordinates on regioand letx denote another set
of smoothly related coordinates that satisfy the restittidescribed above. Also assume that
the Jacobiang’d /x5 are everywhere nonsingular and nondegeneratevd ahdwa, denote
a smooth vector and covector fields in regi@nThe representations of these fields within this
region using theq coordinates are given by the standard expressions

I o
Vo= W, A.22
A s (A22)
_ e
Waa = —6)??\ Wab. (A.23)

Analogous changes of coordinates can be made in each offtielgiock regions. The resulting
JacobiansJBA‘ﬁ’,g1 needed to transform tensor fields represented inifeoordinates are related to

those of the original fixed coordinatéggéi by the following transformations:

_a
Jge = Jg\gg%a—:%. (A.24)
X3 X3
This multicube coordinate freedom does not reqaﬁ%/axg to be the identitysf on the faces
of the multicube regions, and consequently the Jacohigty3 need not be identical td%;.
Nevertheless, the formulas for the Jacobians, E&4)(and A.2), have the same form in any
particular multicube coordinate system. When the indigldtlements (e.gn3 ) that enter these
equations forJ_BA‘ﬁ’g1 are transformed to afiierent coordinate basis using Ega.42) and A.23),
the resulting\]%ii is related to the original Jacobian by Ed.24). This equation represents
the coordinate freedom that exists in the expressions ®irtterface Jacobians on multicube
manifolds within a particular dierential structure. Every two- and three-dimensional fiodhi
has a unique global fierential structure, and therefore E4.24) represents all the freedom that
exists in the boundary interface Jacobians on those mdsifol

Appendix B. Two-Dimensional Multicube Manifolds

The purpose of this appendix is to present explicit multeeudpresentations of compact,
orientable two-dimensional manifolds with genera betweero and three. A straightforward
procedure allows us to extend these examples to arbitramysgey gluing together copies of the
Ny = 2 multicube structures. The topologies of all these twoatisional manifolds are uniquely
determined by their genudy, which can have non-negative integer values. The dise 0 is
the two-sphere$S?, andNy = 1 is the two-torusT?2. Larger values oy can be thought of as
two-spheres witliNg handles attached.

A multicube representation of a manifold consists of a @iten of multicube regionBa
together with map¥A4? that determine how the boundarigsBa of these regions are connected
together. We choose multicube regidfs that have uniform coordinate sizeand that are all
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aligned inR" with the global Cartesian coordinate axes. We positionetlsin R" in such a
way that regions intersect (if at all) only along boundatlest are identified with one another
by one of the?A? maps. For each multicube manifold, we provide a table oforsd, that
represent the global Cartesian coordinates of the centexaah of the multicube regiorBa.
These tables serve as lists of the regi®aghat are to be included in each particular multicube
representation. We also provide tables of all of the interfaoundary identifications for each
multicube representation. A typical entry in one of theddds is an expression of the form
0.x8B2 < 0_yB3, which would indicate that thex boundary of multicubes; is to be identified
with the —y boundary of multicub&ss.

The boundary identification maps used in our multicube nadahsfare simple linear transfor-
mations of the form

Xy = Cp + T} + Chal(x4 — ch — 1)), (B.1)

This transformation takes points labeled by the global €gain coordinate};’B on the bound-
ary dzBg to points labeled by the global Cartesian coordina@;\esn the boundary,8a. The
constantg, represent the location of the center of multicube regganwhile the constants;,
represent the position of the center of thdace relative to the center of the region. Since we
have chosen the regions to have uniform sizes and oriengatibe constant§, have the same
form in each multicube region:

1L(+1,0), (B.2)
IL(0, £1). (B.3)

iy

fiy

The matrixcgg which appears in EqB(1) is the combined rotation and reflection matrix needed
to reorient the)zBg boundary withd, Ba. Our specification of a particular multicube representa-
tionincludes the matrice@gg for each interface boundary identification map. The listaggible
matrices is quite small in two-dimensions, consisting &f ithentityl, various combinations of
90-degree rotatiorR., and reflection$/. Explicit representations of these matrices in terms of
the global Cartesian coordinate basis are given by

'=(é (1)) Ri:(iol $ol)’ Mz(_o1 (1)) (B.4)

In the following sections we give the specific matric&s; and their inverseé:ifi needed for
each interface boundary identificati6pBa < dzBg of each multicube manifold. The methods
and the notation used here are the same as those developef jh]R

Appendix B.1. Six-RegiongN:= 6, Representation of the Genug M 0 Multicube Manifold

The locations of the six square regions used to construstr#presentation & are illus-
trated in Fig.B.1. The values of the square-center location vectiarior this configuration are
summarized in TablB.1. The inner edges of the touching squares in the right sideggoBrlL are
connected by identity maps. The identifications of all thge=dof the regions are described in
TableB.2, and the corresponding transformation matrices are giv@ahleB.3. This six-region
representation aB? is equivalent to the standard two-dimensional cubed-spiegresentation
of S2[16-18).
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Figure B.1: Six-regionNr = 6, multicube representation of the gerlg = O manifold, the two-spheres?. Left
figure shows a multicube representation using distortedreguto indicate as many interfacial connections as pessibl
Greek letters indicate identifications between externgésdRight figure shows the same multicube representating us
uniformly sized, undistorted squares, including theiatigé locations in the background Euclidean space.

Table B.1: Region center locations for the six-regibi,= 6, genusNg = 0 multicube manifold.

6A = (X’ y)
& =(0.0) G=(LL G=(L0)
¢i=(L-L) G=(2L,0) & =(3L,0)

Table B.2: Region interface identificatiodsBa <> dsBp for the six-regionNr = 6, representation of the genblig = 0
manifold, the two-spheres?.

9.8 > 9585
0,xB1 & 0_xB3 0_xB1 < 0,.xBs 0,yB1 & 0_xB2 0_yB1 & 0_xBs
0.xB2 & 0.yBs 04yB2 < 0.yBs 0_yBo & 0,yB3 0:xB3 < 0_xBs
0yBs & 0iyBa  00xBa o 04Bs 9By 0By 0uxBs o I_xBe

Table B.3: Transformation matrices’ég for the interface identificationd,Ba < d3Bp in the six-region,Nr = 6,
representation of the gendl = 0 manifold, the two-spher&?. All transformation matriceé:’ég are assumed to be the
identity |, except those specified in this table.

0.Ba o 0Bs  ChY C¥  0.8reo 3B Cha CJF
(9+y81 d (9_)(82 R+ R_ 6_yB;|_ — 6_)(84 R_ R+
3+XBZ Ad 6+y85 R+ R_ 6+y82 > 6+y86 Ri R%

0.,Bso 0.8 RZ RZ  0,B,00.,8 R. R,

Appendix B.2. Ten-RegiongrN 10, Representation of the Genug N 0 Multicube Manifold

The locations of the ten square regions used to constrigtépresentation @ are illus-
trated in Fig.B.2. The values of the square-center location vectiarior this configuration are
summarized in Tabl8.4. The inner edges of the touching squares in the right sidegofd=2
are assumed to be connected by identity maps. The idenitficaaf all the edges of the regions
are described in TabR.5, and the corresponding transformation matrices are givéalleB.6.
This ten-region representation 8f is a simple generalization of the standard two-dimensional
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cubed-sphere representation3#. It is constructed by splitting the four “equatorial” sqaar
in the standard six-region representation into eight sgiaith the new interface boundaries
running along the equator.

o a a a
7 € ) al 7 It
€ d o T
Y| 1] 3 5 6| 8| 10|Y Y1 3 5 6 8| 10|Y
Y vV K A
4 9 “4\, KQ)\
B B B B

Figure B.2: Ten-regionNr = 10, multicube representation of the gerig = 0 manifold, the two-spheres?. Left
figure shows a multicube representation using distortedreguo indicate as many interfacial connections as pessibl
Greek letters indicate identifications between externgésdRight figure shows the same multicube representating us
uniformly sized, undistorted squares, including theiatigé locations in the background Euclidean space.

Table B.4: Region center locations for the ten-regidp,= 10, genusNg = 0 multicube manifold.

6A = (X7 y)
¢ =(0,0) G=(L cG=(0) c&=(L-L) &=(L0)
& =(L0) &=(4LL) &=@L0) &=(@L-L) &o=(L0)

Table B.5: Region interface identificatiods 8a < d3Bp for the ten-regionNr = 10, representation of the genus
Ng = 0 manifold, the two-spher&?2.

303/.\ g aﬁBB

0:x8B1 & 0_xB3
0+xB2 © 04yBs
0_yBs &> 0.Ba
0:xB6 < 0_xBs
0_yB7 © 0.y Bg

0_xB1 < 0.xB10
1yB2 > 0.y By
sxBas © 0y Bs
D1y Bs © 03B
0.xBg < 0_xB1o

0,yB1 & 048,
0_yBy & 0.,yBs
0_yBs & 0_,By
0_yBs © 0_xBo
0_yBg © 0,,Bq

9_yB1 & I_yBy
0:xB3 & 0_4Bs
0:xBs5 < 0_xBs
0,387 & 0.yB1o
0:xBg & 0_yB1g

Appendix B.3. Ten-RegiongrN 10, Representation of the Genug N 1 Multicube Manifold

The locations of the ten square regions used to constrigtépresentation of? are illus-
trated in Fig.B.3. The values of the square-center location vectiarior this configuration are
summarized in Tabl8.7. The inner edges of the touching squares in the right sidegofE=3
are connected by identity maps. The identifications of @ledges of the regions are described
in TableB.8, and the corresponding transformation matrices are giwérableB.9. This ten-
region representation df is a simple generalization of the standard one-region sgprtation.
The outer edges of the squares in the left illustration in Bi§ are identified with the opposing
outer edges using identity maps, just as in the standardegien representation af?. This
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Table B.6: Transformation matricésgg for the interface identificationd,8a < d3Bg in the ten-regionNg = 10,
representation of the gendl = 0 manifold, the two-spher&?. All transformation matriceé:’é;k are assumed to be the
identity |, except those specified in this table.

0uBr o 0pBs  Cht CF  0.BacdBs Chi CF

0B d B, R, R 0,Bod,8 R R,
0nBr o 0yBs R, R 0,BrodyB8, RZ R?
0.Bsod By R2 R2  9,B,00,8 R R,
OwBs 0B R, R 0,Bsod B8 R R,
0iBr o 0By R, R 0,800,809 R R,

ten-region representation merely subdivides the singdgen representation into ten regions, as
shown in Fig B.3.

a a B
2 gl 2 |6 gl 7t
€ 5 o T
Yl 1|3 | 5| 6| 8] 10|V Yl 1| 3| 5|6 | 8]10|Y
4 9 “H4VVKK9)\)\
o B o B

Figure B.3: Ten-regionNr = 10, multicube representation of the gerdg = 1 manifold, the two-torusT?. Left
figure shows a multicube representation using distortedreguo indicate as many interfacial connections as pessibl
Greek letters indicate identifications between externgésdRight figure shows the same multicube representating us
uniformly sized, undistorted squares, including theiatige locations in the background Euclidean space.

Table B.7: Region center locations for the ten-regidp,= 10, genusNg = 1 multicube manifold.

6A = (X7 y)
¢ =(0,0) G=(LL) G=(L0) &=(L-L) &=(2L0)
CG=(L,0) C=(4LL) C=@A4L0) &=@4L,-L) Ccio=(5L0)

Appendix B.4. Eight-Region\= 8, Representation of the Genug N 1 Multicube Manifold

The locations of the eight square regions used to constrisctépresentation af? are illus-
trated in Fig.B.4. The values of the square-center location vectiarior this configuration are
summarized in TablB.10. The inner edges of the touching squares in Big.are connected by
identity maps. The identifications of all the edges of théargare described in TabRe11 All
of the interface identification maps have transformatiotr'masc’gg that are the identity matrix
I, so they are not included in a table for this case. This eighien,Ngr = 8, representation
of T? is constructed by gluing a handle onto the ten-region remtesion ofS? described in
Appendix B.2 The two inner regions (3 and 8 in FiB.2) are removed, and the holes created in
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Table B.8: Region interface identificatiods Ba < d3Bp for the ten-regionNr = 10, representation of the genus
Ng = 1 manifold, the two-torusT 2.

&,BA g 6'383

0.x8B1 & 0483
0+xB2 © 0.4yBs
9_yB3 © 8.yB4
0.yBo < 0_xBr
9_yB7 © 0.yBs

0_xB1 < 0.:xB10
d1yB2 & 0_yBa
BexBa & 9y Bs
9_yBs <> 0-xBo
0.xBg < 0_xB1o

D1y B1 & 0_xB,
9_yBs & 9,y Bs
0.:x8Bs5 < 0_xBs
0.xB7 & 0.yB1o
9_yBs © .y Bo

9By & 0_yBy
0,383 < 0_yBs
0.xBe < 0_xBs
d1yB7 &> 0y Bg
0.x8Bg & 0_yBio

Table B.9: Transformation matricé%g for the region interface identificatiords Ba <> dgBg in the ten-regionNg = 10,
representation of the gendly = 1 manifold, the two-torusT 2. All transformation matriceﬁ:’g;k are assumed to be the
identity |, except those specified in this table.

0aBa o 0Bs  Cht CF  0.BacdBs Chs CF
0yB1odxB, R, R 9yB1o058, R R,
0:x82 © dyBs R, R.  3.8100485 R. R,
0yBs > dxB; R, R 0yBso058y R. R,
087 & 0,980 Ry R_ 0389 & 0_yB1p R- Ry

this way are connected together to form a handle. The ouggrseit this eight-regio\r = 8,
representation of? are therefore connected together, as shown in the left $ifiiggoB.4, using
the same identification maps as in the ten-region repres@miaf S> shown in the left side of
Fig. B.2. The inner edges that make up the handle in this new repegsantare identified as
indicated by the Greek letters in FiB.4.

o 1
o a
y 1]y
2 7
o| 7| 2 |d
V15‘\je3 68568V
€l 6| 3 |¢
4 5
B| 5| 4 |B
B B Fa—

Figure B.4: Alternative eight-regio\r = 8, multicube representation of the geriig = 1 manifold, the two-torus,
T2, Leftillustration shows a multicube representation usiigjorted squares to indicate as many interfacial conmesti

as possible. Greek letters indicate identifications betweseernal edges. Right illustration shows the same mudécu
representation using uniformly sized, undistorted sgganeluding their relative locations in the background liglean
space. The locations of the regions in the right illustratieere chosen to show explicitly as many nearest neighbor
identifications as possible.
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Table B.10: Region center locations for the eight-regidn,= 8, genusNg = 1 multicube manifold.

6A = (X’ y)
G=(L2l) &=(LL) &=(L0) &=(L-L)
G=(0-L) G&=(0,00 & =(0L) Cs=(0,2L)

Table B.11: Region interface identificatiodsBa < dgBp for the eight-regionNg = 8, representation of the genus
Ng = 1 manifold, the two-torusT 2.

&,BA d 6'383

0+xB1 © 0_xBs
0:xB2 & 0_xB7
0_xB3 < 0,xBs
1yB5 > 0_yBg

0-xB1 © 0.xBs
0_xB2 & 0,487
9.yB3 & d,yBa
9_yBs & 0,y Bs

00yB1 & 0_yBs
9_yBy & 0.yBa
0:xB4 < 0_xBs
91yB6 > 0By

9By © 0,yB>
0:xB3 < 0_xBs
0_xB4 < 0,xBs
01yB7 &> 0By

Appendix B.5. Eight-RegionJ\= 8, Representation of the Genug N 2 Multicube Manifold

The locations of the eight square regions used to constnigctépresentation of the genus
Ny = 2 manifold, the two-handled sphere, are illustrated in Bi$. The values of the square-
center location vector@, for this configuration are summarized in TaBe.2 The inner edges
of the touching squares in FiB.5 are connected by identity maps. The identifications of &l th
edges of the regions are described in TahlE3, and the corresponding transformation matrices
are given in Tabld3.14. This representation of the two-handled sphere is cortsiiuny starting
with the ten-region representation of the two-torus shawfig. B.3, removing the two internal
regions (3 and 8 in FigB.3), and then connecting together the holes created in thiseviyrm
the second handle. The outer edges in this eight-regiorseptation of the genusy = 2
manifold are therefore connected together, as shown irefhsitle of Fig.B.5, using the same
identification maps as in the ten-region representatiofi‘ashown in the left side of FigB.3.
The inner edges that make up the handle in this new repregeméae identified as indicated by
the Greek letters in Fid3.5.

Table B.12: Region center locations for the eight-regidn,= 8, genusNg = 2 multicube manifold.

6A = (X7 y)
G=(L2) &=(LL &=(L0) &=(L-L)
65 = (0» _L) 66 = (0» O) 67 = (07 L) C)8 = (0» 2L)

Appendix B.6. Ten-RegiongrN 10, Representation of the Genug N 2 Multicube Manifold
The locations of the ten square regions used to constristréipresentation of the genus
Ny = 2 manifold, the two-handled sphere, are illustrated in Big. The values of the square-
center location vectorg, for this configuration are summarized in TaBel5. The inner edges
of the touching squares in FiB.6 are connected by identity maps. The identifications of &l th
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Figure B.5: Eight-regionNr = 8, multicube representation of the gerig= 2 manifold, the two-handled sphere. Left
illustration shows a multicube representation using distbsquares that are arranged to indicate the associdttbis o
case with theNr = 10 representation of thig = 1 manifold. Greek letters indicate identifications betwegternal
faces. Right illustration shows the same multicube reptesien using uniformly sized, undistorted squares, idiclg
their relative locations in the background Euclidean spaEiee locations of the regions in the right illustration were
chosen to show explicitly as many nearest neighbor ideatifins as possible.

Table B.13: Region interface identificatiodsBa < dgBp for the eight-regionNr = 8, representation of the genus
Ng = 2 manifold, the two-handled sphere.

3.Bn & 0585

0uxBL o 0xBs 0B o 0By 0uyBr > 0yBs  0yBL o 0.8y
0_xB2 < 0.xB7 0:xB2 < 0,484 0_yBs < 0,yB3 0:xB3 < 0_xBs
0_xB3 < 0.,xBs 0_yB3 & 0.yB4 0_xB4 < 0.xBs 0_xBs & 0_xB7
0vyBs © 0yBs  0yBs o 0uyBs 0B o 0487 duyBr o Iy Bs

Table B.14: Transformation matricé%g for the region interface identification®, 8a < dgBg in the eight-region,

Nr = 8, representation of the gendy = 2 manifold, the two-handled sphere. All transformation noas Cég are
assumed to be the identity except those specified in this table.

0.Br o 9B Cha CJF
0.xB2 & 0,xB4 RE RE
6,x35 d 6,x37 Ri R%

edges of the regions are described in TahEs, and the corresponding transformation matrices
are given in Tabld.17. This representation of the two-handled sphere is cortsiilzy starting
with the eight-region representation shown in B¢ and adding additional squares to separate
more distinctly the ends of the second handle on the torus.otiter edges in this ten-region rep-
resentation of the geniy = 2 manifold are therefore connected together as shown irBrgy.
This representation has the advantage that it reduces tkienona number of squares meeting
at a single vertex from eight to six. The reference metrichis tase therefore requires less
distortion of the flat metric pieces that go into its constiart
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Figure B.6: Ten-regioniNg = 10, multicube representation of the gemjs= 2 manifold, the two-handled sphere. Left
illustration shows a multicube representation using distbsquares that are arranged to indicate the associdttbis o
case with theNr = 10 representation of thdg = 1 manifold. Greek letters indicate identifications betwegternal
faces. Right illustration shows the same multicube reptesien using uniformly sized, undistorted squares, idiclg
their relative locations in the background Euclidean spaEiee locations of the regions in the right illustration were
chosen to show explicitly as many nearest neighbor ideatifins as possible.

Table B.15: Region center locations for the ten-reghda,= 10, genud\g = 2 multicube manifold.

6A = (X7 y)
G =(L2) &=(LL) &=(L0) ¢c=(-L) &=(0-L)
66 = (07 0) 67 = (07 L) 68 = (0» 2L) 69 = (_L» O) 610 = (_Lv 2L)

Table B.16: Region interface identificatiodsBa < dsBp for the ten-regionNg = 10, representation of the genus
Ng = 2 manifold, the two-handled sphere.

303/.\ g aﬁBB

0.xB1 & 0_xB1o
0_xB2 < 0.xB7
0_yBz < 0,4Bs
D,y Bs © 9y Bo
d:yB7 & 9y Bg

0xB1 © 0,xBs
0.:x8B2 < 0,xBa
0_yBs © 0.yB
9.yBs © 9,y Bs
0_xBg < 0.xB1o

00yB1 > 0 Ba
0_yBa > B,y Bs
0-xBy © 0,xBs
0-xBe < 0,xBo
B1yBo © 0_yBg

9_yB1 & 0,y Bo
0.:x8B3 < 0_xBo
0_xBs < 0_4B7
D1y Bo © 9.y Br
0.yB1o < 0_yBio

Table B.17: Transformation matric(ﬁ%‘ﬁk for the region interface identificatioris, 8 <> d3Bg in the ten-regionNg =
10, representation of the genblg = 2 manifold, the two-handled sphere. All transformation rrinatscgg are assumed
to be the identityl, except those specified in this table.

0.Ba o 9Bs  Chs CJF
0:xB2 & 0,:xB4 R% Ri
0_yBs & 0_yB7 Rf_ R2

Appendix B.7. Representations of Genys\8 Multicube Manifolds Using O(Ng— 1) Regions

Multicube representations of two-dimensional manifoldthvgeneraNg > 3 can be con-
structed by gluing together copies of the gehlys= 2 multicube manifold depicted in Fig.6.
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This is done by breaking the interface identifications dedgtandx in Fig. B.6 and then at-
taching in their place additional copies of the same multicstructure, as shown in Fi§.7

for the genud\y = 3 case. Each copy of the genhg = 2 multicube structure added in this
way increases the genus of the resulting manifold by one.a@ldéion of one copy, as shown in
Fig. B.7, produces a multicube manifold of genNg = 3. The values of the square-center loca-
tion vectorsC for this genusNy = 3 case are summarized in Tallel 8. The inner edges of the
touching squares in Figg.7 are connected by identity maps. The identifications of &l¢tiges

of the twenty square regions are described in T&bld, and the corresponding transformation
matrices are given in TabR.20.

w o0 1 w g U
y/10| 8 | 1 |10| 8 | 1'|Y

oB| 7| 2| g 7| 2]

K| 9 6 3| 9|6 | 3K

Bl 5 | 4 apg 5| 4 |«

0- -[ O.i .[1
Figure B.7: Twenty-regioniNg = 20, multicube representation of the gemis= 3 manifold, the three-handled sphere.
The touching edges of adjacent squares in this figure aréifidenwhile Greek letters indicate identifications betwee

external edges. This representation of the géyis 3 manifold was constructed by connecting together two copie
the Ng = 2 manifold illustrated in FigB.6.

Table B.18: Region center locations for the twenty-regldn,= 20, genusNg = 3 multicube manifold, the three-handled
sphere.

6A = (X7 y)
G=(L2) &=(LL &=(0) &=(L-L)  &=(0,-L)
66 = (0» O) 67 = (0» L) 68 = (07 2L) 69 = (_L» O) C)ZI.O = (_Lv 2L)

¢ =(4L2L) & =(4L L) ¢y =(4L0) ¢ =(@L-L) & =(3L -L)
G =(3L0) ¢ =@BLL ¢ =0BL2L) & =(L0) Cpo =(2L2L)
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Table B.19: Region interface identificatioris,8a <> dzBg, for the twenty-regionNg = 20, representation of the genus
Ng = 3 manifold, the three-handled sphere.

303/.\ g aﬁBB

0.xB1 & 0_xB1o
0_xB2 & 0,xB7
0_xB3 < 0.xBs
9,1y Bs © 9y Bo
d0yB7 © 0_yBg
0x8B1 < 0_xB10

0_yB1 < 0,4Bs
0:xB2 < 0:xBa
9_yB3 & 0.yBa
9_yBs © 0.yBs
0_xBg < 0.xB1o
0_xBr < 0,x8Bg

9:yB1 & 9_yBa
9_yBs © 8,yBs
0_yBy & 0.4Bs
0_xBe & 0.xBo
9:yBo & 0By
oyBy © 0By

0_yB1 & 0,yBo
0,xB3 & 0_yBy
0_yBs < 0_yB7
04yBs & 0_yBy
0.yB1o < 0_yBio
0_yB1r & 0.yBy

0_yBy & 0,387
0_yBy < 0,48
04+yBy & 0_yBg
04yBr & 0_yBg

0xB2 < 0,xBay
0By © d.yBy
0_yBs < 0.yBg
0_xBg < 0,xB1o

9By © 0.yB3
0_yBy < 0,485
0By < 0.xBy
0:yBy > 0_yBy

04xBz < 0_xBy
03By o 0By
9.0yBe © 0487
0.yB1o < 0_yBio

Table B.20: Transformation matric@g for the region interface identification®, 8a < dgBg in the twenty-region,
Nr = 20, representation of the gendg = 3 manifold, the three-handled sphere. All transformati(ntr'mescgg are
assumed to be the identity except those specified in this table.

6QBA g 6ﬁ£3 ng Ciﬁ aa,.gA d aﬁBB Cé‘g C;'g
0.xBr & 0,484 R2 Ri 0_xBs < 0_xB7 Ri R?
6+x82’ L 6+X84/ R? RE 3,)(85/ d 3,)(87/ RE R%
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