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In this paper, we describe a hybrid-extended Kalman filter algorithm to synchronize the clocks and
to precisely determine the interspacecraft distances for space-based gravitational wave detectors, such as
(e)LISA. According to the simulation, the algorithm has significantly improved the ranging accuracy and
synchronized the clocks, making the phase-meter raw measurements qualified for time-delay interfer-

ometry algorithms.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) [1-3] is
a space-borne gravitational wave (GW) detector, aimed at
various kinds of GW signals in the low-frequency band
between 0.1 mHz and 1 Hz. It consists of three identical
spacecraft (S/C), each individually following a slightly
elliptical orbit around the Sun, trailing the Earth by about
20°. These orbits are chosen such that the three S/C retain
an equilateral triangular configuration with an arm length
of about 5 x 10 m as much as possible. This is accom-
plished by tilting the plane of the triangle by about 60° out
of the ecliptic. Graphically, the triangular configuration
makes a cartwheel motion around the Sun. As a (evolving)
variation of LISA, eLISA [4] is an ESA L2/L3 candidate
space-based GW detector. It consists of one mother S/C and
two daughter S/C, separated from each other by 1 x 10° m.
Although the configurations are slightly different, the
principles and the techniques are equally applicable.
Therefore, we will mainly focus on LISA hereafter.

Since GWSs are propagating spacetime perturbations,
they induce proper distance variations between test masses
(TMs) [5], which are free-falling references inside the S/C
shield. LISA measures GW signals by monitoring distance
changes between S/C. Spacetime is very stiff. Usually, even
a fairly strong GW still produces spacetime perturbations
only of order about 107! in dimensionless strain. This
strain amplitude can introduce distance changes at the pm
level in a 5 x 10° m arm length. Therefore, a capable GW
detector must be able to monitor distance changes with this
accuracy. The extremely precise measurements are supposed
to be achieved by large laser interferometers. A schematic
classic LISA configuration with exchanged laser beams is
shown in Fig. 1. LISA makes use of heterodyne interfer-
ometers with coherent offset-phase locked transponders [6].
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The phase-meter [7] measurements at each end are combined
in postprocessing to form the equivalent of one or more
Michelson interferometers. Information of proper-distance
variations between TMs is contained in the phase-meter
measurements.

Unlike the several existing ground-based interferometric
GW detectors [9-11], the arm lengths of LISA are varying
significantly with time due to celestial mechanics in the
solar system. As a result, the arm lengths differ by about
1% (5 x 107 m), and the dominating laser-frequency noise
will not cancel out. The remaining laser-frequency noise
would be stronger than other noises by many orders of
magnitude. Fortunately, the coupling between distance
variations and the laser-frequency noise is very well known
and understood. Therefore, we can use time-delay interfer-
ometry (TDI) techniques [12-20], which combine the
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FIG. 1 (color online). Schematic configuration of LISA S/C and
the exchanged laser beams (by S. Barke [8]).
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measurement data series with appropriate time delays, in
order to cancel the laser-frequency noise to the desired level.

However, the performance of TDI [17,21] depends largely
on the knowledge of arm lengths and relative longitudinal
velocities between the S/C, which are required to determine
the correct delays to be adopted in the TDI combinations. In
addition, the raw data are referred to the individual spacecraft
clocks, which are not physically synchronized but inde-
pendently drifting and jittering. This timing mismatch would
degrade the performance of TDI variables. Therefore, they
need to be referred to a virtual common “constellation clock”
which needs to be synthesized from the inter-spacecraft
measurements. Simultaneously, one also needs to extract the
inter-spacecraft separations and synchronize the time-stamps
properly to ensure the TDI performance. More precisely,
the knowledge of the distances between S/C needs to be
better than 1 m rms at 3 Hz. Accordingly, the differential
clock errors between the S/C are required to be estimated to a
precision of 3.3 ns rms at 3 Hz.' These are the main goal of
the first stage of LISA data processing, which is the main
topic of this paper.

The paper is organized as follows. In the next section,
we will describe the entire LISA data processing chain,
identifying the first stage of LISA data analysis. In Secs. I1I
and IV, we will introduce and formulate the interspacecraft
measurements. In Secs. V and VI, we describe the hybrid-
extended Kalman filter algorithm and design a Kalman filter
model for LISA. In Sec. VII, we show the simulation results.
Finally the summary comes in Sec. VIIL

II. OVERVIEW OF THE ENTIRE LISA DATA
PROCESSING CHAIN

In this section, we will talk about the perspective of a
complete LISA simulation. The future goal is to simulate
the entire LISA data processing chain as detailed as one
can, so that one will be able to test the fidelity of the LISA
data processing chain, verify the science potential of LISA
and set requirements for the instruments. The flow chart of
the whole simulation is shown in Fig. 2.

The first step is to simulate LISA orbits [2,22] under the
solar system dynamics. It should provide the position and
velocity of each TM, or roughly S/C, as functions of some
nominal time, e.g., UTC (Coordinated universal time), for
subsequent simulations. Since TDI requires knowledge of
the delayed arm lengths (or light travel time) down to meter
accuracies [3], and the pre-data-processing algorithms
could hopefully determine the delayed arm lengths to
centimeter accuracies, the position information provided

'Better knowledge of the arm lengths and the differential clock
errors will result in better cancellation of laser-frequency noise in
TDI variables, since the residual laser-frequency noise in TDI
variables is proportional to the arm-length errors and the differ-
ential clock errors.
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FIG. 2. LISA data processing chain.

should be more accurate than centimeters. In this paper, we
will adopt Kepler orbits in the simulation.

The second step is to simulate GWs. There are various
kinds of GW sources [3,23] in the LISA band, such as
massive black hole (MBH) binaries, extreme-mass-ratio
inspirals (EMRISs), intermediate-mass-ratio inspirals (IMRIs),
galactic white dwarf binaries (WDBs), gravitational wave
cosmic background etc. However, the simulation of GWs is
irrelevant to the preprocessing simulation in this paper, since
GWs introduce arm-length variations to LISA at the pm
level, which is many orders of magnitude below the ranging
accuracy considered in the preprocessing stage.

The third step is to simulate the measurements and the
noise. The most relevant measurements to this paper are
science measurements, ranging measurements, clock side
band beat notes.’ Meanwhile, there are various kinds of
noise sources [24-26], such as the laser-frequency noise,
clock errors, the readout noise, the acceleration noise. Since
the ranging and timing problem to be solved in the
preprocessing stage in this paper is at millimeter to meter
level, only the laser-frequency noise and the clock errors
are relevant. See more discussions of these measurements
and noise in Secs. III, IV and VII.

The “down link” is referred to as a procedure of
transferring the onboard measurement data back to
Earth, which is also an important step in the simulation.
Since the beat notes between the incoming laser beam and
the local laser are in the MHz range, the sampling rate of
analog-to-digital convertors (ADCs) should be at least
twice that, i.e., at least 40-50 MHz. The phase-meter
prototype developed in Albert Einstein Institute Hannover
for ESA uses 80 MHz [27]. Due to the limited bandwidth of

There are many more measurements, such as S/C positions
and clock offsets observed by deep space network (DSN), various
auxiliary measurements, incident beam angle measured by
differential wavefront sensing (DWS).
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the down link to Earth, measurement data at this high
sampling rate cannot be transferred to the Earth. Instead,
they are low-pass filtered and then down-sampled to a few
Hz (e.g., 3 Hz). The raw data received on the Earth are at
this sampling rate. For simulation concerns, generating
measurement data at 80 MHz with a total observation time
of a few years is computationally expensive and unneces-
sary. Instead, these measurements are directly simulated at
the down-sampling rate.

It is worth clarifying that, up to this point, the simulation
of the S/C and GWs was done with complete knowledge
of “mother nature”” From the next subsection, pre-data
processing on, comes the simulated processing of the
down-linked data, where we have only the raw data
received on Earth, but other information such as the S/C
status is unknown.

The next step is the so-called pre-data processing [28].
The main task is to synchronize the raw data received at the
Earth station and to determine the arm length accurately. In
addition, pre-data processing aims to establish a convenient
framework to monitor the system performance, to com-
pensate unexpected noise and to deal with unexpected
cases such as when one laser link is broken for a short time
[29]. The arm-length information is contained in the
ranging measurements, that compare the laser transmission
time at the remote S/C and the reception time at the local
S/C. Since these two times are measured by different clocks,
i.e., ultrastable oscillators (USOs), which have different
unknown jitter and biases, the ranging data actually contain
large biases. For instance, high-performance (not necessarily
the best) space-qualified crystal oscillators, such as oven
controlled crystal oscillators [30], have a frequency stability
of about 1077~~8, This would lead to clock biases larger than
one second in three years, which would result in huge biases
in the ranging measurements. In fact, all the measurements
taken in one S/C are labeled with the clock time in that S/C.
This means all the time series contain clock noise. Time
series from different S/C contain different clock noise. These
unsynchronized, dirty and noisy time series need to be
preprocessed in order to become usable for TDI.

The last two steps are after the pre-data-processing stage,
so the preprocessing algorithms do not rely on the
performance of these two steps. In the TDI step, one needs
to construct TDI variables to reduce the otherwise over-
whelming laser-frequency noise [13-20]. In the last step,
the task is to dig out GW signals from the TDI variables and
extract astrophysical information—in short, detection and
parameter estimation. At this stage, we have relatively
clean and synchronized data labeled with UTC time
stamps. Still, the GW signals are weak compared to the

3Effectively, the “mother nature” is the dynamic models and
the noise models that we have chosen in the simulation. In the
end, the outputs of the preprocessing algorithms will be com-
pared with the true values determined by these models, hence
testing the performance of the designed algorithms.
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remaining noise. As a result, one needs to implement
matched filtering techniques to obtain optimal signal-to-
noise ratio (SNR) [23].

III. THE INTERSPACECRAFT MEASUREMENTS

Now, let us look into these interspacecraft measurements
[31,32]. In the middle of Fig. 3, the two peaks are the local
carrier and the weak received carrier. They form a carrier-
to-carrier beat note, which is usually called the science
measurement, denoted by f,

S = fDoppler + faw + froises (1)

where fpoppier 18 the Doppler shift, fgw is the frequency
fluctuation induced by GWS, f.is. 15 the noise term, which
contains various kinds of noise, such as laser-frequency
noise, optical path-length noise, clock noise, etc. Due to the
orbits, fpoppler Can be as large as 15 MHz. However, fgyw is
usually at the yHz level. Among the noise terms, the laser-
frequency noise is the dominating one. The free-running
laser-frequency noise is expected to be above MHz/Hz!/?
at about 10 mHz. After prestabilization, the laser-frequency
noise is somewhere between 30-1000 Hz/Hz'/? at about
10 mHz [32,33].

On the two sides of Fig. 3 are the two clock sidebands.
The clock sideband beat note is given by the following,

fsidebandBN = fDoppler + fGW + fnoise + MAfclockv (2)

where Af . 18 the frequency difference between the local
USO and the remote USO, m is an up-conversion factor.
Except for the intentionally amplified clock term, the clock
sideband beat note contains the same information as the
carrier-to-carrier beat note does.

The pseudorandom noise (PRN) modulations
[31,32,34-36] are around the carriers in Fig. 3. The two
PRN modulations shown in the figure in yellow and in red
are orthogonal to each other such that no correlation exists
for any delay time. At the local S/C, one correlates the PRN
code modulated on the remote laser beam with an exact
copy, hence obtaining the delay time between the emission
and the reception. This light travel time tells us the arm-
length information. However, the PRN codes are labelled
by their own clocks at the transmitter and the receiver,
respectively. Thus, the ranging signal 7,0y, also contains
the time difference of the two clocks,

Tranging = L/C + ATclock + Tnoise7 (3)

where L is the arm length, c is the speed of light, AT ;. 1S
the clock time difference, T\, denotes the noise in this
measurement. The ranging measurement noise 7Ty 1S
around 3 ns (or 1 m) rms [32]. However, since the clock is
freely drifting all the time, after one year AT,y could be
quite large. This term makes the knowledge of the arm
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Schematic power spectral density plot of LISA carrier laser beam, clock-sideband modulation and the PRN

modulation. Horizontal direction denotes frequency and vertical direction denotes power. In the middle, the two peaks are the two
beating carriers. Around the carriers are the PRN modulations. On the sides of the figure are the clock sidebands modulation.

lengths much poorer than the ranging measurement
noise 1 m rms, hence violating the requirement of TDI.
Therefore, one needs to decouple this term from the true
arm-length term to a level better than 3 ns.

IV. FORMULATION OF THE MEASUREMENTS

In this section, we try to formulate the exact expressions
of Egs. (1)—(3). Let us first clarify the notation. The
positions of the S/C are denoted by X; = (x;,y;, z;)7, their
velocities are denoted by ?; = (v,;, v,;, v,;)" in the solar
system barycenter (SSB) frame, where i = 1, 2, 3 is the S/C
index. Each S/C has its own USO. The measurements taken
on each S/C are recorded according to their own USO.
Let us denote the nominal frequency of the USO in the ith
S/C as f7°" (the design frequency) and denote its
actual frequency (the true frequency it runs at) as f;.
The difference,

ofi = fi= i (4)

is the frequency error of each USO. The USOs are thought
to be operating at f7°". The actual frequencies f; are
unknown to us. Also, we denote the nominal time of each
USO as T7°™ (the readout time of the clock) and the actual
clock time (the true time at which the clock reads 77°™) as
T;. We have

nom __ ¢i _ ffi(t)dt

Ti - 2ﬂf;1om - f?om ’ (5)
Ti — /dt, (6)
b =2 [ o 7)

where ¢; denotes the readout phase in the ith S/C. The time
difference,

6Tl' — T?Om - Ti’
1
[tri=gremar,

e
/ Sfdt, (8)

1
= fIlOl’n
1
is the clock jitter of each USO. This leads to
_ofi
- fr_lom :
1
The above two equations mean that the clock jitter (or time
jitter) is the accumulative effect of frequency jitters. For the

convenience of numerical simulations, we write the discrete
version of the above formulas as follows,

5T,

©)

k
ST;(k) = Jml()mZ(Sfi(a)Ats +8T,(0), (10)
1 a=1

B 6T;(k) —6T;(k—1)
N At
_ ofi(k)Aty/ from
N Aty
_ of k)
- fr}om ’
l

where k in the parentheses means the value at the kth step
or at time kAt,, 8T;(0) stands for the initial clock bias.

To this point, we try to formulate the ranging measure-
ments. For convenience, we write it in dimensions of length
and denote the arm-length measurements measured by the

laser link from S/C i to S/C j (measured at S/C j) as R;;.
Thus, we have

8T ;(k)

(11)

R;j(k) = L;;(k) + [6T ;(k) — 6T;(k)]c + noise, ~ (12)

where L;;(k) is the true arm length we want to obtain
from the ranging measurements, [6T ;(k) — 6T ;(k)]c is the
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arm- length bias caused by the clock jitter, and “noise”
denotes the effects of other noise sources. Notice that the
step k corresponds to the uniform recording time kAT,
which means the clock errors are not included in the
recording time yet, but only in the measurements. Also
notice that 67 (k) is the clock error of the remote S/C i at
the current time. This is a second approximation we have
made in this paper, since the delay R;;/c is only simulated
as the measurements, but not in the recording time. (See
more discussions in the summary.)

Next, we want to consider Doppler measurements or
science measurements. They are phase measurements
recorded at the phase meter. For convenience, we formulate
them as frequency measurements, since it is trivial to
convert phase measurements to frequency measurements.
First, we take into account only the imperfection of the
USO and ignore other noises. We denote the true frequency
we want to measure as fy, and the frequency actually
measured as feas- The USO is thought to be running at
Sm°m. The recorded frequency f..s 1S compared to it.
However, the frequency at which the USO is really running
is f = f"™ 4 §f. This is what the true frequency fi. is
actually compared to. Thus, we have the following
formula:

f meas f true
fnom -

_ f true
f fnom + S f :

(13)

f;l(k) — |:f;arrier _ f;:arrier <1
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For a normal USO, §f/f™™ is usually a very small number
(< 1078), therefore the second order in it is smaller than
machine accuracy. Thus, we can write the above equation
in linear order of §f/ ™™ for numerical simulation concern
without loss of precision:

S e = firue <1 o > . (14)

Sieas = W - fnom

We denote the average carrier frequency (the average laser
frequency over certain time) as f°“"°" the laser-frequency
noise as d/° and the unit vector pointing from S/C i to S/C j
as 7;;. Let us consider the laser link sent from S/C i to
S/C j. When transmitted at S/C i, the instantaneous carrier
frequency is actually f$¥mr 4 §£¢. When received at S/C j,
this carrier frequency has been Doppler shifted and the GW
signals are encoded. Therefore, the received carrier fre-
quency at S/C j can be written as

» ‘ (B, — ;) - Ay,
(flgamer + 5flc> |:1 _% _ SW (15)
This carrier is then beat with the local carrier f;'fa”ier +6f5

of S/C j. The resulting beat note is the science
measurement,

S

528 -4

" [5f; - 5f,°-(1 —wﬂ <1 Y f'(k)) + noise,

(v;—v

— |:f5arrier _ flgarrier <1 _

where in the last step we have absorbed the laser-
frequency noise into the noise term. In practice, the
carrier frequencies are adjusted occasionally (controlled
by a predetermined frequency plan) to make sure that
the carrier-to-carrier beat note is within a certain fre-
quency range. Hence, f54™ is also a function of
time.

Now, let us consider the clock sidebands. At S/C i, the
clock frequency f7°™ 4 &f; is up-converted by a factor m;,
which is about 40-50, and modulated onto the carrier
through an electro optical modulator (EOM). Therefore, we
have an upper clock sideband and a lower clock sideband as
follows,

JPSB = feamer L §fC 4+ omy(frm +5f,),  (17)

s

f;!Om
l/) +fgW(k)] (1 _icfé—ink)> + noise, (16)
J

f{»‘SB :flqarrier+5fl§_mi(f?°m—|-6fi). (18)

When received by S/C j, both the Doppler effect and
GWs are present. Therefore, the received frequencies (at S/
C j) of the upper and the lower clock sideband are as
follows,

£ 4 85 £ my(f1om + 6 1)]

(5= 5) iy
.{1_ L) o, (19)

The clock sideband beat note is obtained by beating this
frequency with the local clock sideband,
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sideban carrier carrier (E — 171) ) ﬁi' 5f(k)
ijdb BN (k) = [fj = f5 (1 —%> + Sw(k)] <1 - >

f‘l}_lom

C

[ matrem 01,00 = s+ 01,00) (1 - ﬁ)} (1-25) + s

f;}om

carrier carrier (?} — 1-51) ) fll“ 5f(k)
TRt (0

+ [a;0f (k) = a;dfi(k)] + (m;f30" — mif 7o) + m fom

+ noise,

f;lom

(3, ) -
C

’

(20)

where @; and «; are some known constants. Notice that we have neglected some minor terms in the last step. For simulation

purposes, we temporarily ignore the constant term m; 7" —

m;f7°™ and the small Doppler term m; f1°™(v; — v;) - it;;/c.

Furthermore, we write a; and ; as a uniform up-conversion factor m for simplicity. Then, we have the simplified formula,

sideban carrier carrier <T) - %1) SRy 5f(k)
ijd PandBN (k) = {f, - f3 (1 _%> + S'w(k)} (1 - )

f;l()m

+m(8f;(k) — &f(k)) + noise. (21)

Up to now, we have formulated all the interspacecraft measurements in Egs. (12), (16), and (21).

V. THE HYBRID EXTENDED KALMAN FILTER

The hybrid extended Kalman filter [37] is designed for a
system with continuous and nonlinear dynamic equations
along with nonlinear measurement equations. First, we
describe the model of such systems as follows,

X =flx0)+w() (22)

Yie = hi(xi, ve) (23)
Elw()w! (t + 7)] = W.5(z) (24)
v~ (0, V), (25)

where both the dynamic function f(x, f) and the measure-
ment function 4, (x;) are nonlinear, w(¢) is the continuous
noise. x, f(x, 1), w, yx, hy(x), v are column vectors. W,
W, are covariance matrices. If we discretize the noise with a
step size At, we have

wi ~ (0, Wy), (26)

where it can be proven that W, = W_(kAt)/At. In order to
fit Egs. (22)—(25) into the standard Kalman filter frame, we
need to linearize and discretize the formulas and solve the
dynamic equation. Equation (22) is expanded to linear
order in x as follows,

of

X f(xo to) + | (x—x0) +w(t)

Xo,to

= f(xo, o) + F(x0, t0)(x = xo) +w(), ~ (27)

where we have defined F(x, 7o) and assumed

=9
 0Ox Ixg,tg°
% < 1. The expectation of this linearized equation (where
E[w(#)] = 0 is used) can be solved exactly as follows,

x(ty) = eFCoto)Aix (1)

+ [eF ot — J1[F~" (xo. 1) f (xo. f0) — Xo).  (28)

where At = 1, — t;, and the matrix exponential is defined as

+0o0
(FAD)"
efar=>%" Pt (29)
n=0 :

Now, let us switch to the standard Kalman filter notation and
denote x(,), x(t;) and F(xg,1to) as %7, %_, and F;_,,
respectively. Equation (28) can be rewritten as

R

+ (e = DFL f(xo. 10) = %) (30)
Notice that x; is a nominal trajectory, around which the

Taylor expansion is made. Based on the above solution, the
propagation equation of the covariance matrices is obtained,

Pp = efdipl eFid W, (31)
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where P~, P are the a priori and a posteriori covariance
matrices as before. Alternatively, Eq. (27) can be solved
approximately by converting the differential equation to a
difference equation. The corresponding formulas are

X = (I + Fra AR, + [f(x0, 1) = FroaxolAr,  (32)
Py = (I + F AP (I + Fu  ADT + Wey.  (33)

The above two equations can also be obtained from the exact
solutions by replacing ef+14" with I + F;_, At. The advan-
tage of these formulas is that they are computationally less
expensive. On the other hand, they are less precise. The
measurement formula can be linearized similarly,

Vi = Hpx + [hi (37, 0) = Hi &y + Mywy, — (34)

Ohy
Tl M =G

be applied w1th0ut much effort. We summarize the hybrid
extended Kalman filter formulas for the model described by
Egs. (22)—(25) as follows:

(1) Initialize the state vector and the covariance matrix,

where H;, = +- Now, the Kalman filter can
k

(2) Calculate the a priori estimate X}, from the a poste-
riori estimate %;_, at the previous step, using the
dynamic equation,

i=flx.1). (36)

Use either of the following two formulas to update
the covariance matrix,

Pp = eP P oL L Wy, (37)
P]: = (I + Fk—lAt>P]-:—1 (I + Fk_lAt)T + Wk—l'
(38)
(3) Calculate the Kalman gain,
K, = P HL(HP H. + M, V,MT)~1, (39)
k kT 5 kY kM
(4) Correct the a priori estimate,
X =&+ Ky — (37, 0)], (40)
Pl =(I-KH)P;,
=(I-KH)P (1=K H )" + K Vi Kp.  (41)

VI. KALMAN FILTER MODEL FOR LISA

In this section, we want to design a hybrid extended
Kalman filter for LISA. First, we define a 24-dimensional
column state vector,

PHYSICAL REVIEW D 90, 064016 (2014)
X = <;C1, ;Cz, }3, 51, T)z, 1_}3, 5T1 s 5T2, 5T3, 5f1 s 5f2, 5f3)T,

where X; = (x;,y;,z;)7 are the S/C positions, 7; =
(Vyis Oyis 0 v,;)T are the S/C velocities, 6T; and 5f; are the
clock jitters and frequency jitters, and i = 1, 2, 3 is the S/C
index. Please note the difference between the state vector
Xy, the measurements y;, and the position components
(xi,vi,2i), since the latter index is the S/C label and can
only take three values 1,2,3. For convenience, we rewrite
the measurement formulas derived. The ranging measure-
ments from S/C i to S/C j are

= \/X - x;) —-yi)* +(zj—z)*
+ (8T —6T) c+nu, (42)

where n - 1s the ranging measurement noise. The Doppler

measurements are denoted as D;;,

D” |: carrier f(i:arrier (1 _ (Uj — Ui) ) ﬁl’]’) + l(;IW:|
c

of i
X (1 —fnofn) + nu, (43)
j
where n is the Doppler measurement noise. Since the

s1deband measurements contain the same information as
the Doppler measurements, in addition the amplified
differential clock jitters, we take the difference. Then,
we divide both sides of the equation by the up-conversion

factor m and denote it as the clock measurements C;j,

where n - 1s the corresponding measurement noise, and the
up—conversmn factor m has already been absorbed into n¢ e

Altogether, we have 18 measurement formulas, summa-
rized in the 18-dimensional column measurement vector,

y = h(x,v),
= (R31’D3l7C31’R2]7D21’CZI’RIQ’DIZ’CIZv
R35. D33, C33, Ry3, Da3, Ca3, Ry3, D3, Cy3)7,

where v is the measurement noise. The 18-by-24 matrix H,
and the 18-by-18 matrix M; can thus be calculated
analytically. We omit the explicit expressions of the 432
components in H; here. As an example, we show the [1, 1]
component of H; omitting the step index k as follows:
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H[1,1] = ORs _

Oxt \(x =237+ (1 =) + (2 —23)7
(45)

X —X3

As for M, if the dependence of the measurements y; on the
noise is linear and without cross coupling, it is simply an
identity matrix.

Next, we want to construct the dynamic model for the
Kalman filter. Let us consider the solar system dynamics
for a single S/C. To Newtonian order the solar system
dynamics can be written as

GM,; . =
Z 3lri:x, (46)

R

where X is the position of one LISA S/C, M, X; are the mass
and the coordinates of the ith celestial body (the Sun and
the planets) in the solar system, 7; = X; — X is a vector
pointing from that S/C to the ith celestial body, r; =
|X; — X|. The dynamic equation can be written in a different
form,

-

v

%[;] =f(x.7) = {;GM(;@_})/P]. (47)

i
We denote 6 = (x, )7, thus

F_af_{03 13], us)

00 A O

where O3 denotes a 3-by-3 zero matrix, I denotes a 3-by-3
identity matrix, and the 3-by-3 matrix A is defined as
follows,

GM; 3GM; . ... .
A:—Z 313+Z G =X)GE -0 (49)

r r I"‘-5
1 1

The dynamic equation for the clock jitters and frequency
jitters depends on the specific clock and how well we
characterize the clock. A simple dynamic model is shown
as follows,

d [oT ) om
alyl =70 @
dr | 6f 0

where 07T, df denote clock jitters and frequency jitters. For
the whole LISA constellation, the dynamic matrix F' = % |

is 24-by-24. We omit its explicit expression here, since it
can be obtained straightforwardly from the above formulas.

PHYSICAL REVIEW D 90, 064016 (2014)
VII. SIMULATION RESULTS

We simulated LISA measurements of about 1400
seconds with a sampling frequency of 3 Hz. Since there
are only two independent clock biases out of three, we set
one clock bias to be zero, thus defining this clock as
reference. The other two initial clock biases are randomly
drawn from a Gaussian distribution with a standard
deviation of 0.1 s. This would in turn cause a bias of
about 4.2 x 10’ m in the ranging measurements. The
(unknown) initial frequency offset of each USO is ran-
domly drawn from a Gaussian distribution with a standard
deviation of 1 Hz. The frequency jitter of each USO has a
linear spectral density (9.2 x 10~ Hz/f) Hz/+/Hz.
Additionally, we assume the ranging measurement noise
to be white Gaussian with a standard deviation of 1 m. The
linear spectral density of the prestabilized laser is assumed
to be 400 Hz/ \/Hz. The clock measurement noise is white
Gaussian with a standard deviation of 1 Hz.

We show the scatter plots of the measurements R;;, D,
C;; in Figs. 4,5, 6, and 7. Notice that the average of all the
measurements has been removed in the plots for clarity.
Figure 4 is a scatter plot of the clock measurements C;;.
The frequency drifts within 1400 s are much smaller than
the clock measurement noise. Thus, they are buried in the
uncorrelated clock measurement noise in the plot. The
diagonal histograms show that each clock measurement
channel behaves like Gaussian noise during short obser-
vation times. The off-diagonal scatter plots are roughly
circular scattering clouds, showing that different clock
measurement channels are roughly uncorrelated within
short times. Unlike clock measurements, scatter plots of
Doppler measurements in Fig. 5 exhibit elliptical clouds.
This is because the Doppler shift whin 1400 s is sizable,
which leads to the trend in the plot. The slope of the major

Covariance of clock side band measurements
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FIG. 4 (color online).  Scatter plot of clock measurements C;;.
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Covariance of Doppler measurements
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FIG. 5 (color online). Scatter plot of Doppler measurements
D;j. Unlike clock measurements, scatter plots of Doppler
measurements exhibit elliptical clouds.

axis of the ellipse indicates whether the two Doppler
measurement channels are positively correlated or anti-
correlated. The real arm- length variation is much larger
than the ranging measurement noise. Therefore, we see
only lines in the off-diagonal plots in Fig. 6, which mainly
show the arm-length changes. The ranging measurement
noise is too small compared to the arm-length change to be
visible in the plot. Figure 7 shows scatter plots of different

measurements C;;, D;;, R;;. It is seen from the plot that

" Covariance of ranging measurements

Ry, [m]
o

/N
VAN 1%
N
NI/ IR

Ry, [m]
)

Ry,[m]
)

Ry,[m]
)

e VRN ENYE
m/ |\

N

o 14 0 14 0 1-20 0 20020 0 204 0 1
Rylmly10*  Rylmlx10®  Rymixqo'  Ry,lml RysIm] Ryglmly 10*

FIG. 6 (color online). ~ Scatter plot of ranging measurements R;;.
The arm-length variation is much larger than the ranging
measurement noise. Therefore, we see only lines in the off-
diagonal plots, which mainly show the arm-length changes. The
ranging measurement noise is too small compared to the arm-
length change to be visible in the plot.
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. 1(‘I,pvariance of ranging, Doppler and clock side band measurements
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FIG. 7 (color online). Scatter plot of different measurements
Cij, Djj, R;;. Ranging measurements are correlated with Doppler
measurements, but neither of them are correlated with clock
measurements.

FIG. 8 (color online). A prioricovariance matrices P atdifferent
steps. The absolute value of each component of the covariance matrix
is represented by a color. The color map indicates the magnitude of
each component in logarithmic scale In(|P;|).
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5 10 15 20

(e) P

FIG. 9 (color online). A posteriori matrices P} at different
steps. The absolute value of each component of the covariance
matrix is represented by a color. The color map indicates the
magnitude of each component in logarithmic scale.

ranging measurements are correlated with Doppler mea-
surements, but neither of them are correlated with clock
measurements.

We then apply our previously designed hybrid extended
Kalman filter to these measurements. The progress of the
Kalman filter can be characterized by looking at the
uncertainty propagation. Figure 8 shows a priori covari-
ance matrices at different steps k = {1,2,5,10,50}. The
absolute value of each component of the covariance matrix
is represented by a color. The color map indicates the
magnitude of each component in logarithmic scale. The
first covariance matrix P} is diagonal, since we do not
assume prior knowledge of the off-diagonal components.
As the filter runs, the off-diagonal components emerge
automatically from the system model, which can be seen
from Fig. 8. The initial uncertainties are relatively large. In
fact, the initial positions are known only to about 20 km
through the deep space network (DSN). The uncertainties
are significantly reduced after taking into account the
precise interspacecraft measurements. However, the uncer-
tainties are not being reduced continuously. Instead, they
stay roughly at the same level. This is because there are

PHYSICAL REVIEW D 90, 064016 (2014)

(e) Step 50.

FIG. 10 (color online). The estimation error of the measure-
ments, H kP;er at different steps. The absolute value of each
component is represented by a color. The color map indicates the
magnitude of each component in logarithmic scale.

histogram of arm length deviation
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FIG. 11 (color online). Histograms of errors of raw arm-length
measurements and Kalman filter estimates, where the deviations of
both raw arm-length measurements (excluding the initial clock bias)
and the Kalman filter estimates from the true arm lengths are shown.
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FIG. 12 (color online). Plots of relative clock jitter and biases.
Figure (a) shows typical results of estimates of relative clock
jitters and biases. Figure (b) shows the deviations of the raw
measurements and the Kalman filter estimates from the true
values in histograms. Notice that the standard deviations in the
legend have been converted to equivalent lengths.

only 18 measurements at each step, whereas there are 24
variables in the state vector to be determined. There is not
enough information to precisely determine every variable in
the state vector.

Similar behavior can be observed from the a posteriori
covariance matrices in Fig. 9, where the uncertainties also
roughly stay at the same level. By comparing Fig. 9 with
Fig. 8, we find that the uncertainties are only slightly
reduced from P; to P} with the help of the measurements
vi. This is again because there are fewer measurements
than variables in the state vector. Seemingly, this hybrid
extended Kalman filter does not work well. However, our
aim is actually to reduce the noise in the measurements. Let
us denote the Kalman filter estimate of the measurements

PHYSICAL REVIEW D 90, 064016 (2014)
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FIG. 13 (color online). The raw measurements, Kalman filter
estimates and the true values of frequency differences between the
USO in S/C 1 and the USO in S/C 2. The Kalman filter estimates
are so good that they overlap with the true values in the figure.

Vi as ¥y, which can be calculated from the a posteriori state
vector as follows:

It is easy to show that the estimation error of y, can be
expressed as H,P;”H?, which is shown in Fig. 10. Notice
that the color bar shrinks with steps. It is apparent that
estimation errors of the measurements are significantly
reduced by the hybrid-extended Kalman filter. This is what
is expected, since the number of the measurements y; is
now the same as the number of variables J; to be estimated
in this case.

Detailed simulation results are shown in Figs. 11, 12, 13,
14 and 15. Figure 11 exhibits histograms of errors of raw
arm-length measurements and Kalman filter estimates,
where the deviations of both raw arm-length measurements
(excluding the initial clock bias) and the Kalman filter
estimates from the true arm lengths are shown. The
designed Kalman filter has not only decoupled the arm
lengths from the clock biases better than 1 m rms, but also
reduced the measurement noise by more than one order of
magnitude to the centimeter level. This precise arm-length
knowledge is necessary to allow excellent performance of
TDI techniques, which subsequently permits optimal
extractions of the science information from the measure-
ment data.

Figure 12(a) shows typical results of estimates of relative
clock jitters and biases, where the blue curve stands for the
raw measurements, the green curve exhibits the true time
difference between the clock in S/C 1 and S/C 2, the red
curve plots the Kalman filter estimates of the clock time
differences. It is clear from the figure that the Kalman filter
estimates resemble the true values quit well. Figure 12(b)
shows the deviations of the raw measurements and the
Kalman filter estimates from the true values in histograms.
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FIG. 14 (color online). A zoomed-in plot of Fig. 13. The true

USO frequency differences and the Kalman filter estimates can
clearly be seen in this figure.
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FIG. 15 (color online). The histograms of the deviations of the
raw measurements and the Kalman filter estimates from the true
values.

Notice that the standard deviations in the legend have been
converted to equivalent lengths. It is apparent that the
designed Kalman filter has reduced the measurement noise
by about an order of magnitude. These accurate clock jitter
estimates enable us to correct the clock jitters in the
postprocessing step. Hence, it potentially allows us to
use slightly poorer clocks, yet still achieving the same
sensitivity. This would potentially help reduce the cost of
the mission.

Figure 13 shows the raw measurements, Kalman filter
estimates and the true values of frequency differences
between the USO in S/C 1 and the USO in S/C 2. The
Kalman filter estimates are so good that they overlap with
the true values. Figure 14 is a zoomed-in plot of Fig. 13.
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The true USO frequency differences and the Kalman filter
estimates can clearly be seen in this figure. Figure 15 shows
the histograms of the deviations of the raw measurements
and the Kalman filter estimates from the true values. With
the help of the designed Kalman filter, the measurement
noise has been reduced by 3-4 orders of magnitude.
Frequency jitters are directly related to the first differential
of the clock drifts. Therefore, such precise estimates of the
USO frequency differences will allow a very accurate
tracking of the relative clock drifts.

VIII. SUMMARY

We have modeled LISA interspacecraft measurements
and designed a hybrid-extended Kalman filter to process
the raw measurement data. In the designed Kalman filter
model, there are 24 variables in the state vector and 18
variables in the measurement vector. Therefore, (i) the
state vector, in principle, cannot be fully determined from
the measurements, which is one of the major differences
from the global positioning system (GPS) [38,39] tracking
problem, where the number of measurements is larger
than the number of unknowns in the state vector. (ii) The
position and the time of the emitter S/C are unknown
(more specifically, they are also to be estimated).
Therefore, the measurements associated with each laser
link are functions of the receiver S/C at the current time
and the emitter S/C at a previous time. This gives rise to
the “causality” problem that the inference of current S/C
depends also on future measurements. (iii) Also, the
measurements recorded on different S/C are unsynchron-
ized and contaminated by different unknown clock jitter.
These differences make the first stage of LISA data
processing much more challenging.

This paper presents a major step towards a high fidelity
end-to-end simulation of the entire LISA data processing
chain. We have identified the problems, established the
framework and formulated interspacecraft measurements
that are crucial to the first stage data processing. Two
important effects have not yet been included in the current
simulation. (i) The time delay is only partly simulated. In the
simulation, the ranging measurements consist of the time
delay and other noise. However, the dependence of inter-
spacecraft measurements on the emitter S/C at a delayed time
is simulated as that at the current time. Therefore, the effects
of the ‘causality’ problem and the Sagnac differential delay
do not present in this simulation. These issues are being
investigated in our follow-on work [29], where we find out
that it is more appropriate to simulate these effects in the full-
relativistic framework. (ii) The clock jitter is not included in
the recording time yet, but only in the measurements. This
effect is included in our follow-on work [29].

The current simulation shows that the hybrid-extended
Kalman filter can well decouple the arm lengths from the
clock biases and significantly improve the relative mea-
surements, such as arm lengths, relative clock jitters and
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relative frequency jitters etc. However, the absolute vari-
ables in the state vector cannot be determined accurately.
These variables include the absolute positions and veloc-
ities of the spacecraft, the absolute clock drifts and the
absolute frequency drifts. This is mainly due to the fact that
only the differences are measured and the number of
measurements is lower than the number of variables in
the state vector.

It can be better understood by taking a closer look at the
measurement equations (42), (43) and (44). In fact, only the
relative  positions \/(xj —x)?+ =)+ (zj—z)?
and the relative longitudinal velocities (; — v;) - f1;; appear
in the measurements. Neither absolute positions nor abso-
lute velocities are directly measured. Thus, it is impossible
to fully constrain the entire LISA configuration only with
these interspacecraft measurements. The clock jitters only
appear in Eq. (42) in the form of 6T ; — 6T';, which means
the common clock drifts are undetermined. The relative
USO frequency jitters 5f; — 6f; are measured in Eq. (44).
The absolute USO frequency jitters 6f; appear in Eq. (43).
However, 5f; / f;?om is far less than 1; hence, Eq. (43) can
provide only very limited information about 6f;. As a
result, the absolute USO frequency jitters 5f; are poorly
determined. |

Oltr(Hy Py H )]

a[tr(HZHkP,f)] o 8{tr[H£Hk(I—Kka)P;<I - Kka)T +H£HkKkaKk]}
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APPENDIX: A PROOF OF THE OPTIMALITY

In the Kalman filter derivation, the Kalman gain K is
chosen such that the estimation error tr(P}) in the state
vector is minimized. However, in the LISA case we are
interested in reducing the noise in the measured variables
rather than reducing the uncertainties in the state vector;
hence, the optimal filter in this case should minimize the
estimation error in the measurements yy.

In this appendix, we prove that minimizing the estima-
tion error in the state vector x; is equivalent to minimizing
the estimation error in y; to the linear order. As shown in
previous sections, the estimation error in y; is tr(H; P HY)
in the linearized model. To minimize the trace of this
covariance matrix, we have

9K, 9K,

T =0. (Al

To be concise, we omit the step index k and use the subscripts for the component indices,

o{u[H"H(I - KH)P~ (I — KH)"|} _ 0{u[H};H;(I; — KjHy) Py, (I - KH);, ]}

Im

9K oK,
_ a{tr[I{inI_Iij(Ijl - Kijkl)P;n(Inm - Knchm)]}

OK 4

= H;,H;j(=6,0pcH ) Pr (L — Ko H o) + HiHij (1) — K jiH ) Pry (=6000pc H e )

= —HH;, (I - KH)

J

P;THY, — HUH, (I - KH) P}, H

nm* ml

= —2HTH(I — KH)P~HT,

Im~"mb

(A2)

where we have adopted Einstein summation convention and used the fact that P* is symmetric. Similarly, we have

o{tr(HTHKVK
ftr( ' onruky. (A3)
0K
By putting back the step index k, we have
Oltr(H, P HT

0= B o7 i v, — (1~ K P (a49)

The Kalman gain is then solved as follows,
Kk - [’;I‘I{([‘I](P;I'Iz~ + Vk)_l, (AS)

which is the same as what we have used.
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