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LISA Pathfinder (LPF), the precursor mission to a gravitational wave observatory of the European
Space Agency, will measure the degree to which two test masses can be put into free fall, aiming to
demonstrate a suppression of disturbance forces corresponding to a residual relative acceleration with a
power spectral density (PSD) below ð30 fm=s2=

ffiffiffiffiffiffi
Hz

p Þ2 around 1 mHz. In LPF data analysis, the
disturbance forces are obtained as the difference between the acceleration data and a linear combination
of other measured data series. In many circumstances, the coefficients for this linear combination are
obtained by fitting these data series to the acceleration, and the disturbance forces appear then as the
data series of the residuals of the fit. Thus the background noise or, more precisely, its PSD, whose
knowledge is needed to build up the likelihood function in ordinary maximum likelihood fitting, is here
unknown, and its estimate constitutes instead one of the goals of the fit. In this paper we present a
fitting method that does not require the knowledge of the PSD of the background noise. The method is
based on the analytical marginalization of the posterior parameter probability density with respect to the
background noise PSD, and returns an estimate both for the fitting parameters and for the PSD. We
show that both these estimates are unbiased, and that, when using averaged Welch’s periodograms for
the residuals, the estimate of the PSD is consistent, as its error tends to zero with the inverse square root
of the number of averaged periodograms. Additionally, we find that the method is equivalent to some
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implementations of iteratively reweighted least-squares fitting. We have tested the method both on
simulated data of known PSD and on data from several experiments performed with the LISA
Pathfinder end-to-end mission simulator.

DOI: 10.1103/PhysRevD.90.042003 PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.-n

I. INTRODUCTION

LISA Pathfinder (LPF) [1] is the precursor mission to
a gravitational wave (GW) observatory of the European
Space Agency (ESA). Its primary goal is that of
assessing if a set of reference test masses (TMs) can
be put into free motion, with residual accelerations,
relative to the local inertial frame, having a power
spectral density (PSD) less than ð30 fm=s2=

ffiffiffiffiffiffi
Hz

p Þ2, at
frequencies between 1 and 30 mHz. This goal is
pursued by measuring the relative acceleration of two
TMs, separated by a nominal distance of 38 cm, along
the line—whose direction we call x—joining their
centres of mass (Fig. 1). The relative motion between
the TMs, x12, is measured by means of a laser
interferometer, the output of which s12 ¼ x12 þ n12 is
affected by a readout noise n12 with less than
ð6 pm=

ffiffiffiffiffiffi
Hz

p Þ2 PSD at mHz frequencies.
The relative acceleration a is then calculated by numeri-

cally performing the second time derivative [2] of the
interferometer output s12,

a ¼ d2s12
dt2

¼ d2x12
dt2

þ d2n12
dt2

≡ d2x12
dt2

þ ar; ð1Þ

where we have implicitly defined the readout acceleration
noise ar.
The TMs are not both free-falling along x. One TM, the

inertial reference, is indeed following a pure geodesic orbit,
but both the satellite, and the other TM, that we call TM2,
are forced, by some force control loop, to stay nominally at
fixed positions relative to the reference TM. The satellite is
actuated by a set of μN thrusters within a feedback loop
driven by the signal from a dedicated interferometer, which
measures the relative displacement x1 between the satellite
and the reference TM. The second TM is instead subject to
a weak electrostatic force commanded by a feedback loop
driven by the main interferometer signal s12.
The relative motion of the satellite and the TMs, along

degrees of freedom other than x, is also measured, either by
laser interferometers or by capacitive sensing, and con-
trolled by a combination of electrostatic forces and torques
on the TMs, and of μN-thruster-generated forces and
torques acting on the satellite.
In standard operations, control loops keep the relative

motion small enough that the system is expected to behave
linearly, obeying a set of linear dynamical equations [3].
For instance, the equation for a is

a ¼
X
j

Rj⋇ d2sj
dt2

−
X
j

ω2
j⋇sj þ

X
j

Aj⋇gcj þ gþ ar:

ð2Þ

The symbol⋇ indicates time convolution. Rj in Eq. (2) is a
linear operator that represents the unwanted pickup, by
the differential interferometer, of generalized coordinates
other than x12, like for instance x1. These coordinates are
measured by the signals sj, just as s12 measures the
coordinate x12. Ideally Rj should be zero, but imperfections
and misalignments make it nonzero.
In principle Rj acts on coordinates, not on signals.

Substituting coordinates with signals, produces an extra
term, as signals are always affected by some readout
noise. We absorb this term into the overall readout
noise ar.
The readout noise, because of the second time derivation,

raises, in power, with the frequency f as ∼f4, and is
expected to dominate the data above some 30 mHz, thus
setting LPF’s measurement bandwidth.

FIG. 1 (color online). Schematic of LPF. The figure shows
the reference TM, TM2, and the two laser interferometers—
represented by their respective laser beam paths—that measure x1
and x12, respectively. The x axis, shown in the figure, is parallel to
the line joining the centres of mass of the two TMs. The z axis,
normal to the figure, points toward the Sun. Also shown are
the electrodes used to apply the forces to TM2, necessary to keep
it at nominally fixed distance from the reference TM. Similarly,
the picture shows a pair of μN thrusters that are used to force
the satellite to stay at a nominally fixed position relative to the
reference TM. Not shown in the figure are the electrodes and the
μN thrusters used to control TM and satellite along degrees of
freedom other than x.
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The generalized differential forces per unit mass, appear-
ing on the right-hand side of Eq. (2) are split into three
contributions:

(i) The linear operator ω2
j converts the relative motion

of the TMs and the satellite, along any of the degrees
of freedom, into a differential force along x. For
really free-falling TMs, ω2

j should be zero. However
static force gradients within the satellite makes the
diagonal coefficients nonzero, while various kind
of imperfections and misalignments contribute to
nondiagonal terms.

(ii) The forces commanded by the control loops gcj ,
that are converted into true forces by the linear
“calibration” operator Aj. Aj should be just 1 when j
corresponds to the electrostatic force commanded
along x on TM2, and zero for any other value of j,
but deviates from that because of imperfect calibra-
tion, delays and signal cross-talk.

(iii) The random forces g stemming from all remaining
disturbances, and whose measurement is the primary
target of LPF.

Measuring Rj and Aj is one of the tasks of our analysis.
Furthermore, as the coupling of the TMs to the satellite is
expected to be present also in a GWobservatory like eLISA
[4], one of the goals of LPF is to give a measurement of ω2

j
to be compared with the prediction of the physical model of
the system.
The most important goal for LPF though, is that of

measuring the PSD of g, the parasitic forces that act on TMs
and push them away from their geodesic trajectories.
Equation (2) suggests a natural way of achieving both

these goals. Indeed both the sj’s and the gcj ’s are known, as
the first have been measured, and the second have been
commanded by the control loops. Thus a fit of the sj’s and
the gcj ’s to a, returns Rj, ω2

j , and Aj, as best fit parameters,
but also allows the estimation of the PSD of g from the
fit residuals, that is from the difference between the
acceleration data series and the fitting model.
In reality we need to perform such fits on the data from

two different kinds of experiment.
When the target is that of measuring, with comparatively

high precision, the values of Rj, ω2
j and Aj [see Eq. (2)], we

perform dedicated calibration campaigns, where some
proper guidance signals are injected into the appropriate
control loops, so that the sj’s and the gcj ’s undergo large
variations. This way Rj, ω2

j and Aj can be measured with
large signal-to-noise Ratio (SNR).
When the target is instead a higher accuracy measure-

ment of the PSD of the ultimate background acceleration
noise, we do not apply any guidance signal, but just record
acceleration noise data. These data are then fit to the sj’s
and the gcj ’s, with the aim of separating g from the effect of
the other force terms in the right-hand side of Eq. (2).
Indeed g becomes now the residual of the fit, that is, the
difference between the acceleration data and the best fit

model. Actually, also other time series, like thermometer or
magnetometer data, may be fitted to the acceleration data to
detect and separate specific disturbance sources.
It is worth stressing that, the sj’s and the gcj ’s cannot be

turned off at any time so that an independent measurement
of g cannot be performed. A similar situation would also
hold for a GW detector like eLISA, where large signals are
expected to dominate the data at all times so that an
independent measurement of the background noise cannot
be performed.
To perform these fits we could not use a standard least-

squares method, and we had to develop a different fitting
method. Indeed, to perform a least-squares fit on data with
colored background noise, as is certainly the case for LPF,
one needs an a priori knowledge of the background noise
PSD, either to set up a whitening filter, if the fit is performed
in the time domain, or, for the more common case of a fit in
the frequency domain, to assign the statisticalweights to each
fit residual. However, in our case, the PSD is not known
a priori and is actually one of the targeted outputs of the fit.
We have then developed a fitting method that works

without an a priori knowledge of the background noise
PSD. The method returns, besides the value of the fitting
parameters, also an estimate for the background noise PSD.
To achieve a comparatively high precision PSD estimation,
the method preserves the ability of averaging over inde-
pendent data stretches, like with the standard Welch’s
averaged periodogram technique [5]. We use this method
in the framework of Bayesian estimation. However, we
show in the paper that it can also be extended to the
standard “frequentist” fitting approach.
Over the last few years, different authors, in the

framework of GW detection and Bayesian parameter
estimation, have addressed the problem of fitting without
a complete a priori knowledge of the noise PSD [6–8]. The
emphasis of these studies was mostly on minimising
the bias that such a lack of knowledge may induce in
the estimated signal parameters. This is a different target
than the one we are discussing here, where the estimation
of the noise is the main goal of the measurement, but the
essence of the problem is the same.
Two main approaches have been followed in these

studies:
(1) Within the first approach [6,9], the value of the noise

PSD Sk ≡ SðfkÞ, at each discrete frequency
fk ≡ k=NT, with N the length of the data series
and T the sampling time, is assumed to be described
by some relatively smooth function of frequency,
also depending on a vector of some adjustable
parameters ~η, Sk ¼ Sðfk; ~ηÞ.
The likelihood of the fit residuals becomes then a

function both of signal parameters and of ~η.
Appropriate prior probability densities—often

some broad Gaussian or uniform densities—are then
chosen for both the signal parameters and ~η. Finally
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the posterior likelihood for all parameters is numeri-
cally derived by the Markov chain Monte Carlo
(MCMC) technique.
Once the global likelihood has been derived, the

marginal likelihood of the signal parameters alone,
can be derived by numerically marginalizing over
the ~η.

(2) In the second approach [7,8] the values of the PSD at
each discrete frequency Sk, are considered as inde-
pendent parameters of the likelihood, each one
distributed with a prior in the form of a scaled
inverse χ2 density, a family of distributions describ-
ing the statistics of the reciprocal of the square of
Gaussian variables, that depend on two characteristic
parameters [8,10]. This way the posterior density of
both the signal parameters and of the Sk, becomes an
analytical function of the observed residuals and of
the prior parameters. Once the values for these prior
parameters have been chosen for each frequency,
and the authors discuss possible criteria for this
choice, the likelihood can be calculated numerically
by MCMC.

Our approach is close to the one in point 2 above with the

following main differences and/or extensions:
(1) We adopt, for the Sk, a family of priors that are

uniform, either in the logarithm or in some small
power of Sk, over a wide, but finite range of values.
These priors give a realistic representation of our
knowledge on the residual noise of the system (see
sect. II B). The infinite range counterpart of these
uniform priors can be obtained from the scaled
inverse χ2 family for particular values of the prior
parameters.

(2) With this assumption we are able to extend the
method to the very important case where the time
domain data are partitioned into (overlapping)
stretches, so that the standard Welch’s averaged,
and windowed, periodogram of the residuals can be
used for the fit [5].
We show that, by using this approach,

(a) The posterior likelihood can be analytically
marginalized over the Sk’s so that the margin-
alized likelihood of signal parameters, which
takes a very simple form, can be easily
calculated numerically by MCMC, or numeri-
cally maximized within a standard fitting
approach.

(b) Sk can then be estimated analytically, and this
estimate is shown to be consistent, its error
tending to zero as the inverse square root of
the number of averaged periodograms.

(c) The above estimate shows a slight bias that
depends on the specific prior adopted, but this
bias tends to zero linearly with the inverse of the
number of averaged periodograms.

The paper presents such a method and is organized as
follows. In Sec. II we describe the method. In Sec. III we
give a test of the method with synthetic data of known PSD,
and we present a few examples of its application to the
reduction of data from LPF end-to-end mission simulator.
Finally, in Sec. IV we briefly discuss the results and the
possibility of extending the method to signal extraction for
the data of GW detectors.

II. MAXIMUM LIKELIHOOD WITH
UNKNOWN COLORED NOISE

Though the method is general, for the sake of clarity we
will continue to refer to the example of LPF. The main
signal for LPF is the relative acceleration data series a½n�.
We assume that the acceleration data series may be
modeled as

a½n� ¼ gm½n; ~θ� þ g½n�: ð3Þ

In Eq. (3) the data series gm½n; ~θ� consists of the samples
of a linear combinations of measured signals, like for
example ω2

jsj or Ajgcj in Eq. (2). gm½n; ~θ� may have been
obtained by processing those signals by some algorithm
that depends on a set of parameters θi that we have arranged
into the vector ~θ. For instance, the force commanded on
TM2 along x is described by Agc2ðt − τ2Þ, where gc2ðtÞ is the
recorded commanded force. Thus ~θ contains in this case the
calibration amplitude A (nominally one) and the delay τ2,
with the effect of the latter calculated by numerical
interpolation of the data.
g½n� represents the residual differential force noise time

series, the main objective of the measurement, though
corrupted by the superposition of the time series of the
readout noise ar½n�. As discussed before, Eq. (3) indicates
that g½n� might be derived from g½n; ~θ�≡ a½n� − gm½n; ~θ�,
the time series of “residuals,” a series that depends para-
metrically on ~θ.
The equality in Eq. (3) is preserved by moving to the

Fourier domain so that one can write

~g½k; ~θ� ¼ ~a½k� − ~gm½k; ~θ�; ð4Þ

where the tilde indicates a discrete Fourier trans-
form (DFT).
We define the DFT of a stretch of N data of any series

y½n� as

~y½k� ¼ 1ffiffiffiffi
N

p
XN−1

n¼0

y½n�w½n�e−i n k2πN : ð5Þ

In the transformation we have already included the
multiplication of data by a properly selected spectral
window w½n�. This is common practice in spectral estima-
tion to avoid excess spectral leakage [11].
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A. Building up the likelihood function

We now want to discuss the joint probability density
function of the residuals ~g½k; ~θ�, conditional to a specific
choice of the values of the θ0s. We will assume here that all
noise sources are Gaussian and zero mean, so that also the
~g½k; ~θ� are zero-mean and Gaussian. Large non-Gaussian
noise in LPF, like glitches and spikes, can satisfactorily be
treated as being constituted of signals and subtracted from
the data with minimal corruption of the data, given the
focus on the lowest frequencies.
The residuals ~g½k� are complex quantities. It is shown in

Appendix A that, for jkj ≥ ko and jk − k0j ≥ k1, where ko
and k1 are integers depending on the adopted spectral
window, Ref~g½k�g, Imf~g½k�g, Ref~g½k0�g, and Imf~g½k�g may
be considered, with good accuracy, as all zero-mean,
independent Gaussian variables. For instance, for the
Blackman-Harris spectral window we commonly use in
LPF data analysis, we show in Appendix A, that a safe
assumption is ko ¼ k1 ¼ 4. The variances of Ref~g½k�g, and
of Imf~g½k�g, are given by (see Appendix A)

σ2Ref~g½k�g ¼ σ2Imf~g½k�g ¼
1

2
Sk; ð6Þ

where Sk is the frequency averaged discrete time PSD of
g½n�, at the frequency fk ¼ k=NT defined as

Sk ¼
1

2π

Z
π

−π
~S~gðϕÞ

����w
�
ϕ − k

2π

N

�����
2

dϕ: ð7Þ

Here wðϕÞ is the discrete-time Fourier transform of w½n�
and ~S~gðϕÞ is the discrete-time power spectral density of the
infinite length g½n� series, from which the set of N data
under analysis has been extracted. Notice that, if aliasing is
avoided, then ~S~gðϕÞ ¼ TSðf ¼ ϕ=2πTÞ, where SðfÞ is the
ordinary PSD of the continuous process gðtÞ of which
g½n� ¼ gðt ¼ nTÞ constitute the series of the samples.
Under the hypotheses above, the joint conditional

probability density function of Ref~g½k�g and Imf~g½k�g is
given by

Pð~gj~θ; ~SÞ ¼
Y
k∈Q

1

πSk
e−

j~g½k;~θ�j2
Sk : ð8Þ

In Eq. (8), Q is the subset Q¼fk0;k0þk1;k0þ2k1;…:g,
of the integer set 0 ≤ k ≤ N=2. In the same equation, and
in the rest of the paper, we have organized the residuals

~g½k; ~θ� and the Sk, with k ∈ Q, into the vectors ~g and ~S,
respectively.
It is standard, in spectral analysis, to partition data series

into shorter stretches, and to average the spectral estimate
over these stretches. Different stretches are treated as
statistically independent, even in the presence of partial
overlap between adjoining stretches, if these have been
tapered at their ends with a proper spectral window.

Assuming that the data series have been partitioned into
Ns independent stretches, the probability density in Eq. (8)
becomes

Pð~̄gj~θ; ~SÞ ¼
Y
k∈Q

1

ðπSkÞNs
e−Ns

j~g½k;~θ�j2
Sk ; ð9Þ

where the bar represents an average over the Ns stretches.
In Eq. (9) we have written the probability density of the

data as also being conditional on ~S. In a standard fitting
procedure, these coefficients are assumed to be known.
On the contrary, here we discuss the case where the

components of ~S are unknown and must be estimated
from the data.
We now write down the posterior probability density

of ~S and ~θ,

Pð~θ; ~Sj~̄gÞ ¼ Pð~̄gj~θ; ~SÞ ×Q
k∈QPðSkÞ × Pð~θÞR

Pð~̄gj~θ; ~SÞ ×Q
k∈QPðSkÞdSk × Pð~θÞd~θ

:

ð10Þ
In Eq. (10) we have made the key assumptions that Si is

independent of Sj if i ≠ j, and that both are independent

of ~θ. This way the joint prior probability density Pð~θ; ~SÞ
splits into the product of the separated prior probability

densities Pð~θÞ and PðSkÞ.
While the independence of ~θ and ~S is rather natural, the

physical basis for the independence of Si and Sj, when
i ≠ j, may need some justification.
Our a priori knowledge of the noise PSD, in the case

of an instrument where the signal cannot be ‘turned off’
and the noise independently measured, is rather limited.
Unexpected lines could be present in the spectrum, such
that nearby coefficients, Si and Si�1, may differ even in
order of magnitude. Thus even the perfect knowledge of Si
would not give us any significant information on the
probability density function of any of the other Sj’s, which
is the very definition of independent random variables.

B. Fitting

We now discuss the use of the likelihood function in
Eq. (10) for the purpose of fitting. As most of our fits
involve nonlinear functions of parameters, our preferred
approach is that of Bayesian parameter estimation with the
MCMC method, but we will also consider a more conven-
tional approach wherein one searches for a maximum of the
likelihood as a function of fitting parameters. We will show
now that, whatever the selected approach, with a proper
choice of the prior probability density of the components of
~S, the parameter space can be reduced to just that of ~θ.
In order to do this, we assume that the prior of Sk is

uniform as a function of either some small power of Sk, or
of logðSkÞ, between two values Sk;a ≪ Sk;b. This is not
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exactly the same as using Jeffrey’s noninformative prior
[12], though it may be approximated by this under some
assumptions that we will make later.
Such a choice for the prior, in particular a uniform

density as a function of logðSkÞ, again closely reflects our
a priori physical knowledge of the noise. Indeed, as said, in
LPF, as in a GWobservatory like eLISA, signals cannot be
turned off and the background noise cannot be independ-
ently measured. Though we may have theoretical models
for the sources of g, unexpected noise sources may lead to a
PSD deviating from theoretical expectations even in order
of magnitude.

With this choice of the prior, Pð~θ; ~Sj~̄gÞ can be analyti-

cally integrated over the ~S space, to obtain a marginalized

likelihood which is only a function of ~θ. By assuming that

Pð~θÞ is bound to a domain on which j~g½k�j2 ≪ Sk;b, and

that, for any value of ~θ, Sk;a ≪ j~g½k�j2, the integration over
Sk can be extended from zero to infinity:

Pmargð~θj~̄gÞ ¼
Z

∞

0

Pð~θ; ~Sj~̄gÞd~S: ð11Þ

By performing the integration we obtain

Pmargð~θj~̄gÞ ¼
Q

k∈Qðj~g½k; ~θ�j2Þ
m−Ns

R Q
j∈Qðj~g½j; ~θ0�j2Þ

m−Ns
Pð ~θ0Þd~θ0

; ð12Þ

for a uniform prior either in Smk or in logðSkÞ, in which case
one should put m ¼ 0 in the formulas.

In addition, the likelihood Pð~θ; ~Sj~̄gÞ, for any given value

of ~θ, reaches a maximum Pmaxð~θj~̄gÞ for some values Sk;max

of the Sk’s. Both the value of Pmaxð~θj~̄gÞ, and of Sk;max

can be calculated analytically by differentiation of Eq. (9).
We get

Sk;max ¼
Ns

Ns −mþ 1
j~g½k; ~θ�j2; ð13Þ

and

Pmaxð~θj~̄gÞ ¼
e−ðNsþ1ÞðNs þ 1ÞNsþ1−m

NsðNs −m − 1Þ!
Pmargð~θj~̄gÞQ
k∈Q j~g½k; ~θ�j2

:

ð14Þ

We note that Eq. (13), in the limit of large Ns, where all
priors give the same formula, anticipates our result for
the estimate of Sk that we further discuss in detail in
subsection II D.

These results allow us to restrict the fitting to the ~θ
parameter space. In the maximization approach, one can

search for a maximum of Pmaxð~θj~̄gÞ, that will also be a

maximum of Pð~θ; ~Sj~̄gÞ. Within the Bayesian approach,

the likelihood mapping may be performed over just ~θ, by

using Pmargð~θj~̄gÞ.
In both cases, the results in Eqs. (12), (13), and (14)

indicate that, for large enough Ns the logarithm of the
likelihood to be either maximized, or used in MCMC
mapping, is

Λð~θÞ≡ log ðPmargð~θj~̄gÞÞ ¼ −Ns

X
k∈Q

logðj~g½k; ~θ�j2Þ þ C;

ð15Þ

instead of the standard least-squares fitting result with
known Sk,

Λð~θÞ ¼ −Ns

X
k∈Q

j~g½k; ~θ�j2
Sk

þ C0: ð16Þ

Here, C and C0 are just constants. In essence, according to
Eq. (15), in the presence of unknown and unmodeled noise,
any fit must minimize not the mean square residuals, but
rather the sum of their logarithm. This is one of the main
results of the paper.
As already mentioned in the introduction, a likelihood

proportional to that in Eq. (12) has been found for the
special case Ns ¼ 1 and m ¼ 0 by [8]. Our result general-
izes it to the experimentally important case of averaged and
windowed periodograms, and to the case of m ≤ 0.
For the rest of the paper we will call the likelihood in

Eq. (15), the “logarithmic” likelihood (LL).

C. Truly independent DFT coefficients
and spectral resolution

In order to maintain the accuracy of the result in Eq. (15),
one should fulfil the condition jk − k0j ≥ k1, dropping a
great number of DFT coefficients, and thus lowering the
spectral resolution of the fit. This might be undesirable at
the lowest frequencies, where the relative spectral reso-
lution is rather low. The inaccuracy deriving from summing
over all DFT coefficients in Eq. (15) reduces to counting
each independent DFT coefficient more than once. Thus,
using such a likelihood function may overestimate the
number of degrees of freedom of the fit and may lead to an
underestimate of the parameter errors. This effect may be
corrected for by scaling down the likelihood by an
appropriate correction factor γ, that is by using the like-
lihood ~Λð~θÞ≡ γ × Λð~θÞ. This is further discussed in
Sec. III.
As for the coefficients with k < k0, in spectral estimation

these are discarded in any case, because of the strong bias
they suffer from the leakage of spectral power from
frequencies below f ¼ 1=NT.
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D. Summary of fitting procedure and the uncertainty
on parameter estimates

The derivation in the preceding sections leads to a very
simple implementation of the method. The entire machi-
nery of a standard frequency domain fit can be retained,
provided that the usual likelihood function is replaced with
that in Eq. (15).
Thus, for instance, within the framework of Bayesan

estimation, rather than sampling from the joint likelihood
of ~θ and ~S, parameter estimates of ~θ are obtained from the
marginalized LL likelihood, which can be numerically
mapped over the space of the θ’s by standard MCMC.
Such a calculation does not return an estimate for the

Sk and their errors. These however can be estimated as
follows. Let’s write the conditional mean value of any
integer power of Sj, Smj as

hSmj j~̄gi ¼
R
Pð~θÞd~θ R∞

0 Smj Pð~̄gj~θ; ~SÞPð~SÞd~SR
Pð~θÞd~θ R∞

0 Pð~̄gj~θ; ~SÞPð~SÞd~S
: ð17Þ

This integral may be somewhat reduced if one uses
the prior for ~S discussed above. Indeed one can check
(see Appendix B) that

hSjj~̄gi ¼
Ns

Ns −m − 1
hj~g½j�j2i ð18Þ

and that

hS2j j~̄gi ¼
N2

s

ðNs −m − 1ÞðNs −m − 2Þ hj~g½j�j
4i: ð19Þ

Here the mean value hj~g½j�j4i is the value of j~g½j; ~θ�j4
averaged over the total posterior probability density of ~θ.
Thus, once this posterior probability has been calculated as
described above, in principle also the values of Sj and of S2j ,
and then of the variance of Sj, can also be numerically
calculated.
The numerical calculation can be avoided if the param-

eter posterior distribution is symmetric enough around the
mean values, a condition we always find satisfied in our
numerical calculations. In this case the mean values in the
rightmost terms of the Eq. (18) and Eq. (19) will coincide
with the values they take at the mean values ~θ ¼ ~θo where
the likelihood is also a maximum. Then, for Ns ≫ 1, m:

hSjj~̄gi≃ j~g½j; ~θo�j2

σSj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS2j j~̄gi − hSjj~̄gi2

q
≃ j~g½j; ~θo�j2ffiffiffiffiffiffi

Ns
p : ð20Þ

Equation (20) shows that the estimate of the Sj is
consistent, as its error decreases as 1=

ffiffiffiffiffiffi
Ns

p
.

It is worth noticing that, by increasing Ns, besides
improving the precision of the noise estimate, one also
rapidly suppresses any residual dependance of both the
likelihood in Eq. (12) and the momenta in Eqs. (18) and
(19), on m, the only remaining parameter in our approach
that is still needed to characterize the noise. Indeed
marginalization removes the dependance of the likelihood
on the Sk’s but does not remove its dependence on
parameters, like m, entering in the prior for Sk, whose
value must then be decided in advance (see for instance
Ref. [8]). It appears then that averaging over many
periodograms may be an effective way to remove such a
residual bias.
In this sense, neither the estimate for Sk nor that for ~θ are

biased by noise modeling.
Thus, in summary, the fitting proceeds in two steps: after

having mapped the marginalized likelihood LL to estimate
~θ, ~S and their uncertainties can be evaluated, through

Eq. (20), from the fit residuals evaluated for ~θ ¼ ~θo, where
LL takes its maximum value.

E. Relation to the iteratively reweighted
least-squares (IRLS) method

A popular method to perform least-square fitting
without an a priori knowledge of the expected residual
PSD, is that of performing the fit iteratively. The
procedure starts by performing an ordinary least-squares
fit, maximizing then the likelihood in Eq. (16), by using
some arbitrary initial value for the Sk, like for instance
Sk ¼ 1, or alternatively by using the spectrum of the raw
data before fitting. Once the maximum has been found at

some point ~θo, the square modulus of the residuals of this

first fit, j~g½k; ~θo�j2 are used as the Sk’s in a new run of the
fit. Often the residuals are smoothed over the frequency,
or fitted to some smooth model before using them as
weights in the next iteration of the fit. However the use of
the residuals as they are is unbiased and numerically
lighter, thus we prefer to restrain the discussion to just
this case. The procedure is then iterated until the
residuals of the fit and the Sk do not change anymore
to within some tolerance. The procedure usually con-
verges quite rapidly. We will show here that the param-
eter values that are obtained with this iterative procedure
are the same as those obtained by a LL.
Consider that, at the nth step of the procedure, one wants

to minimize

χ2n ≡ Ns

X
k∈Q

j~g½k; ~θn�j2

j~g½k; ~θn−1�j2
ð21Þ

as function of ~θ. If the method converges, at some point
the sequence becomes stationary and independent of n.
Let us write
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j~g½k; ~θn�j2 ≃ j~g½k; ~θn−1�j2 þ
X
i

∂j~g½k; ~θn−1�j2
∂θi δθi; ð22Þ

and substituting in Eq. (21), we get

χ2n ≃ Ns

X
k∈Q

�
1þ

X
i

∂j~g½k; ~θn−1�j2=∂θi
j~g½k; ~θn−1�j2

δθi

�

¼ NQNs þ
X
i

∂Ns
P

k∈Q logðj~g½k; ~θn−1�j2Þ
∂θi δθi; ð23Þ

where NQ is the number of elements in Q. If the sequence
χ2n must become stationary, then from some value of n on,
the derivatives in the right-hand side of Eq. (23) must

become zero. Then Ns
P

k∈Q logðj~g½k; ~θn−1�j2Þ reaches a
maximum and hence so does the likelihood in Eq. (15).
This shows that IRLS and LL achieve the same estimate

for the best fit parameters. This will be also shown
numerically in Sec. III.
For nonlinear fits, when the maximum of the likelihood

must be searched for numerically, the straightforward
maximization of the likelihood in Eq. (15) is substantially
quicker than the IRLS method, as the maximization with
respect to the parameters must be performed only once. On
the other hand, when the dependence of the likelihood on
the parameters is linear, that is if the θ’s are just amplitude
coefficients, then the maximization, at each step, reduces to
solving a system of linear equations and the IRLS method
may be substantially faster.
A theoretical estimate of parameter errors with the IRLS

method, is not straightforward. For nonlinear fit models,
once the stationary solution has been reached, one can use
the residuals from this solution in place of the Sk in the
least-squares likelihood of Eq. (16) and perform an MCMC
map, from which the parameter errors can be calculated.
If the fit model is linear, one can apply the standard error
propagation, or Fisher matrix technique, to the stationary
solution and derive the errors from that. Though this is an
heuristic approach, we will show in Sec. III, that, at least
in the case of the nonlinear models that we have studied in
the present paper, it gives results consistent with those
obtained with the LL fits.
Finally we want to make a couple of remarks:
(i) The equivalence of the two methods shows that an

IRLS fit that uses the single DFT coefficients from
one fit to weight the next fit—as opposed to taking
some smooth, few parameter model of the spectrum
frequency dependence, such as a polynomial—
implicitly assumes that the Sk are uncorrelated
and uniformly distributed in some logarithmic or
power law space, as our LL method explicitly does.

(ii) The assumption of uncorrelated and uniformly
distributed Sk allows for arbitrary variations of the

PSD from one frequency to the next one and allows
us then to weight neighboring frequencies quite
differently based on the DFT of their residuals.
The impact of this inhomogeneous weighting is
limited in practice by averaging the spectrum over
many time windows, which reduces the fluctuations
in the mean square residuals between neighboring
bins, and by using a small number of disturbance
parameters ~θ. While we see no evidence of anoma-
lies in the results of our analyses, we bear in mind
that any assumption about the Sk can have an impact
on the analysis. Our technique allows for an inho-
mogeneous weighting of points, as is consistent
with our hypothesis of uncorrelated and uniformly
distributed Sk, and, unlike a low-order polynomial
model of the spectrum frequency dependence, al-
lows for lines, bumps, and other unexpected spectral
features.

III. APPLICATION TO DATA

We have tested the method in two ways:
(i) With the aim of verifying its accuracy, we have

performed a noise decomposition exercise on a set of
data generated from a fully known PSD.

(ii) In order to test the practical usability of the method
with nonideal data, we have used it in various data
reduction exercises on the data from the LPF end-to-
end mission simulator.

In the next sections we describe these tests and report on
their results, while in Sec. IV we discuss their significance.

A. Test on data with a known PSD

To perform this test we have generated some data series
with spectral content and dynamic range similar to those
of LPF data. A base data series has been created which is
the sum of two components. The first, a½n�, simulating the
acceleration data, is the numerical second derivative,
obtained as described in [2], of a “red” noise series.
This red series is composed of a 1=f6 PSD low frequency
tail merging, at 10 mHz, into a flat PSD. The second series,
gc½n�, which simulates the feedback force data, consists of a
tail with 1=f4 PSD merging into a flat plateau at 0.3 mHz.
This base series is contaminated by independently super-
posing a series α1;oδa½n� to a½n� before derivation and one
α2;oδg½n� to gc½n�. δa½n� has a 1=f6 PSD, while δg½n� has a
band-pass structure with a broad peak around 2 mHz. Thus
the data consist of

g½n� ¼ a½n� þ gc½n� þ α1;o
d2δa½n�
dt2

þ α2;oδg½n�: ð24Þ

We have then prepared two data series to be used for the
fit and the noise decomposition.
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The first is the double derivative d2δa
dt2 ½n� of δa½n�. The

second is a copy δg½n; τ� of δg½n� but delayed by an
amount τ.
A fit to g½n�was then performed in the frequency domain

with the fitting function

gfit½n� ¼ α1
d2δa
dt2

½n� þ α2δg½n; τ�; ð25Þ

with α1, α2, and τ being the free parameters of the fit.
All data series have been prepared with a sampling time

of 10 Hz, and then, after having applied the appropriate
delays, low-passed and decimated to 1 Hz. In analogy to the
LPF data analysis, we further low-passed and decimated the

data to 0.1 Hz. We only fit the DFT coefficients with
frequencies f ≤ 50 mHz.
Furthermore we have used Ns ¼ 9 data stretches with

50% overlap, and a Blackman-Harris spectral window with
ko ¼ 4. Finally we have used k1 ¼ 1.
Fig. 2 shows a typical result of the fit.
The fit has been performed with the MCMC method

and the Metropolis-Hastings algorithm with the LL. The
parameter values used for the plot in Fig. 2 correspond to
the maximum of the likelihood for that specific realization
of the data. An example of the marginalized MCMC
distributions of the different fitting parameters is reported
in Fig. 3.
The simulation has been repeated Nrep ¼ 40 times. Each

time we have generated a new data series to which we have
applied the MCMC fit. For each repetition we have
recorded the mean values and the standard deviations of
the MCMC distributions of the three fitting parameters.
For comparison we have also performed similar simu-

lations for the following cases:
(i) k1 ¼ 4 instead of k1 ¼ 1.
(ii) k1 ¼ 1 and γ ¼ 1=2.
(iii) k1 ¼ 1 and γ ¼ 1=3.
(iv) k1 ¼ 1, but with the IRLS method. In this case, in

each simulation, the IRLS fit has been performed
with a numerical minimization routine until a sta-
tionary solution has been reached. Then an MCMC
sequence has been generated by using the likelihood
in Eq. (16), with the Sk equal to residuals of the
stationary solution.

The results are summarized in Table I.
It is worth pointing out the following facts that can be

observed in Table I:
(i) For all fitting parameters, the average values result-

ing from the different fitting methods, agree with
each other and, with the true values, within their

FIG. 2 (color online). Result of noise projection with simulated
data. Upper noisy red line: the square root PSD of the base data
series g½n�. Lower noisy black line: the square root PSD of the
residuals after fitting g½n�, with α1

d2δa
dt2 ½n� þ α2δg½n; τ�. The solid

blue line represents the theoretical value of the expected PSD.

FIG. 3. Marginalized histograms for the three fitting parameters, obtained with the MCMC method and the LL.
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respective errors σsample=
ffiffiffiffiffiffiffiffiffi
Nrep

p
, with the exception

of the results of IRLS simulation. These results
however agree with the rest at worst to within
1.8σsample=

ffiffiffiffiffiffiffiffiffi
Nrep

p
. In particular this confirms that

the LL method produces an unbiased estimate of the
parameters.

(ii) On the contrary, for γ ¼ 1, σsample and σMCMC agree
for all parameters, within their relative uncertainties,
only for the case k1 ¼ 4. In this last case however,
both σsample and σMCMC are somewhat larger than
those obtained with k1 ¼ 1, both for case of the LL
and for that of IRLS.

(iii) The agreement between σsample and σMCMC may be
recovered also for k1 ¼ 1, if 1

3
< γ < 1

2
.

(iv) The IRLS procedure followed by the MCMC like-
lihood map, takes approximately 4 times the time
needed by the straightforward LL, MCMC map.

B. Application to LPF simulator data analysis

As is customary with space missions, an end-to-end
mission simulator of LPF has been set up by industry [13].
The simulator includes not only the linear dynamics of
satellite and TMs translation, but also realistic, nonlinear
models of the critical parts of the system, like the
electrostatic actuation system, the rotational dynamics of
both the TMs and the satellite, the interferometers, etc.
These nonlinearities are not expected to play a significant
role, as all displacements, velocities, etc. are expected to be
very small during science operations. We expect then to be
able to understand the largest part of LPF results within a
linear model, and to have to deal with nonlinearities only
as occasional small deviations from the linear regime.
The simulator is proving extremely useful for testing
this approach and the related data analysis algorithms
and tools [14].
In this section we illustrate the application of the method

described in Sec. II, to some selected cases, taken from the
extensive simulation campaigns that have been performed
in preparation for the mission operations. Specifically, we
first discuss a simulated instrument calibration, where large
calibration guidance signals are injected in the proper

control loops. We then give an example of true noise
decomposition performed to hunt for the source of some
extra noise found in the simulated data.

1. Extraction of calibration signals

As explained in Sec. I, TM2 is forced, by a weak
electrostatic force control loop driven by the main inter-
ferometer signal s12, to stay nominally at a fixed distance
from the reference TM.
This loop compensates most of the low frequency

(< 10 mHz) forces g by applying commanded forces gc.
Thus, accurate subtraction of these applied forces, includ-
ing calibration of the actuator, is needed to extract the
disturbance forces. Our analysis subtracts the commanded
force series multiplied by a calibration factor, Agc2. A is
extracted with a dedicated “system identification” experi-
ment in which a comparatively large modulated guidance
signal is added to the measured displacement signal, s12,
in the control loop. The injected signal has the effect of
modulating the distance between the TMs by exerting
forces much larger that those exerted by the loop in the
presence of just the background noise.
Our technique to calibrate the transfer function consists

of fitting the pre-processed commanded force series
Agc2½n; ~θ� to a½n�. As already mentioned, by ‘pre-processed’
we mean here that the series are filtered via an algorithm
that depends on some set of parameters, ~θ, that become free
fitting parameters. Commonly for the gc2½n; ~θ� series, ~θ only
includes the amplitude, A, and a delay, τ, but single pole
filters that simulate the response of the actuators have also
been tested in the past [14–17]. In addition to the feedback
force removal, we also subtract, from the acceleration data,
the forces due to the motion of both TMs within the static
force gradient in the satellite [see Eq. (2)]. This is predicted
to be dominated by the electric gradient due to various
voltages applied between the TMs and their surroundings,
and by the gravitational gradient. As already explained,
these forces are proportional to the TM displacements
relative to the satellite, measured by s1 and s12. In the
calibration experiment these displacements are also large,
so that the effect of the respective forces may have

TABLE I. Results from simulations. The meaning of the columns is the following. True: parameter values used in the simulation.
Columns under the header “LL” refer to fits performed with the LL method. Columns under the header ‘IRLS’ refer to fits performed
with the IRLS method. Av.: average of the 40 mean values of the MCMC distributions obtained in the 40 independent simulations.
σsample: standard deviation of the 40 mean values. σMCMC: root mean square of the standard deviations of the MCMC distributions of the
40 independent simulations.

LL IRLS

k1 ¼ 1,γ ¼ 1 k1 ¼ 4, γ ¼ 1 k1 ¼ 1, γ ¼ 1=2 k1 ¼ 1, γ ¼ 1=3 k1 ¼ 1, γ ¼ 1

Param. True Av. σsample σMCMC Av. σsample σMCMC Av. σsample σMCMC Av. σsample σMCMC Av. σsample σMCMC

α1 300 300 7.9 5.8 300 12 12 302 10 8.4 301 8.9 10 297 9.8 5.5
α2 2 2.005 0.026 0.014 2.004 0.029 0.027 2.005 0.021 0.019 2.001 0.026 0.023 2.000 0.025 0.013
τ½s� 0.8 0.84 0.29 0.18 0.70 0.42 0.36 0.79 0.34 0.26 0.77 0.37 0.31 0.90 0.33 0.17
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appreciable SNR. As a consequence, we include in the
fitting model two terms proportional to s1 and to s12,
respectively. In conclusion we fit the acceleration data
series assuming the following model,

~a½k� ¼ A~gc2½k; τ� − ω2
2 ~s12½k� − ðω2

1 − ω2
2Þ~s1½k� þ ~g½k�; ð26Þ

with the amplitudes A, ω2
2, ðω2

1 − ω2
2Þ, and the delay τ as

free fitting parameters.
For all the fits, we have used the Blackman-Harris

spectral window, taken Ns ¼ 5 and limited the frequency
range to f ≤ 50 mHz.
For the sake of comparison, the fit has been performed

with both the LL and the IRLS methods. In this last case,
the convergence of the best-fit parameter values to those
obtained with the LL method has been verified and the
results are reported in Fig. 4.
Furthermore, Fig. 5 shows the PSD of the residuals of the

two different fits.
Finally, in Table II we report, for the same fits, the

parameter values and their uncertainties.

In the case of the IRLS fit, as before, we have first run
the reweighted iteration, performing, at each step, just a
numerical maximization of the likelihood in Eq. (16). After
obtaining the stationary solution for the Sk, we have
inserted these values back in the likelihood of Eq. (16)
and performed an MCMC map to estimate the parameter
errors reported in II. As expected, the results of the two
methods are indistinguishable.
It must be stressed that, unfortunately, we cannot

straightforwardly compare the results of Table II with
the “true” parameter values used in the simulator. Only
the parameter A ¼ 1.05 has a fixed and traceable value,
while both ω2

2 and ω2
1 are heuristic single-parameter

approximations of a complicated model where the electrical
fields, one of the major sources of force gradient, are
dynamically calculated as part of the overall three body
dynamics of the TMs and the satellite. This is also the case
for τ that results from the combination of various propa-
gation delays within the system. All that said, the values
resulting from the fit agree with the expectation, within
their respective uncertainties.

FIG. 4 (color online). Deviation of the best fit parameter
obtained at each step of the IRLS procedure, from those obtained
with the MCMC mapping of the LL. Deviations are divided by
the standard deviation obtained from the MCMC chain of the LL.
Colors mark the different parameters. Red circles: A. Blue
triangles: −ω2

2. Black diamonds: −ðω2
1 − ω2

2Þ. Brown stars: τ.

FIG. 5 (color online). PSD of various data series. The upper,
blue, noisy continuous line is the PSD of a½n� before the fit. The
lower, black, noisy continuous line, barely visible behind the red
dashed line, is the PSD of the residuals of the fit with the LL. The
red dashed line is the PSD of the residuals of the IRLS fit.

TABLE II. Parameter values from the various fits of Fig. 5. “LL” refers to the fit performed with the LL. “IRLS” to
the fit done with the IRLS method. “Mean” indicates the mean of the MCMC parameter distribution. σ represents its
standard deviation.

LL IRLS

Parameter Mean σ Mean σ

−ω2
2½s−2� 2.259 × 10−6 1 × 10−9 2.259 × 10−6 1 × 10−9

ðω2
2 − ω2

1Þ½s−2� 7.2 × 10−7 1.2 × 10−7 7.1 × 10−7 1.2 × 10−7

A 1.04998 1.2 × 10−5 1.04998 1.2 × 10−5

τ½s� −4.002 × 10−1 3 × 10−4 −4.002 × 10−1 3 × 10−4
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2. Decomposition of low-frequency noise

The second case of study deals with a typical case of
noise hunting and decomposition. We started by forming a
time series for g½n�, subtracting the commanded force and
stiffness effects as calibrated in the previous section. The
PSD of g½n� at frequencies below 1 mHz was found in
excess of what was expected from the physical model at the
basis of the simulator. However calculating the expected
PSD is not straightforward, given the complexity of the
simulator model, so that no firm conclusion could be made
about this noise being a real property of the system or rather
a software artefact.
To help in identifying the source, we performed an

extensive campaign of decomposition, fitting all available
data series to g½n� in an attempt to identify the source. Not
knowing what to expect as a background noise, we were
forced to develop the methods we are discussing here. Only
three data series were observed to significantly reduce the
noise when subtracted from g½n�. The first and most
important series was the difference ΔFz between the forces
applied by the control system to the two different TMs
along the z axis (see Fig. 1 for the definition of the axes).
We also found a smaller but significant contribution of
ΔFy, the corresponding difference of force along y. We
finally found another small contribution from the torque Nx
applied to the inertial reference TM along the x axis.
Figure 6 shows the effect of subtraction.
In the simulator model, these forces should leak into x

via some linear coupling coefficients, the values of which
are known simulator input parameters. We found that the
values of the coupling coefficients resulting from the fit are
in quantitative agreement with those in the simulator, for
ΔFy and Nx (see Table III). The Table also shows that, on
the contrary, the coupling coefficient for ΔFz is ∼8 times

larger than the corresponding one used in the simulator
and, in addition also has the wrong sign.
The named forces and torques are commanded by a

controller in charge of stabilizing the absolute orientation
of the satellite. Explaining how this controller works goes
beyond the scope of the present paper. For the sake of the
discussion it is only useful to mention that the controller
is driven by the signals from a set of Autonomous Star
Trackers, so that our finding allowed us to trace the
problem back to an erroneous coupling of these devices.

IV. DISCUSSION AND CONCLUSIONS

The results of the tests reported in Secs. III A and III B 1
show that

(i) The PSD of the residuals of the fit is in quantitative
agreement with the expected spectrum for the back-
ground noise.

(ii) The LL is well behaved and produces unbiased
results when used in a MCMC fit.

(iii) The LL MCMC fit, and the IRLS fit followed by a
MCMC likelihood mapping, give the same results,
this last one being substantially slower in the case of
nonlinear fitting.

(iv) The estimate of the parameter errors, from the fit
performed with k1 ¼ 1, seems indeed to be moder-
ately affected by the correlation between nearby
DFT coefficients. This bias, as expected, is common
both to LL and IRLS fitting.

(v) The bias can indeed be made negligible by taking
properly spaced coefficients, or by correcting the
likelihood with the proper factor γ.

We believe then that the LL fitting presented here is of
general use and solves the problem of the lack of a priori
knowledge of the target noise in frequency domain fits.
From the point of view of the computational load, for
multiparameter nonlinear fitting, the method is faster than
IRLS. However the method is intrinsically nonlinear, and
fitting would not reduce to a set of algebraic equations, as
IRLS does, when the fitting parameters are just multipli-
cative amplitudes. Given that the final results of the two
method coincide, the IRLS method is preferable in the
linear model case.
We think that the LL approach is numerically lighter than

the methods [6,18] that employ a parametric model for the

TABLE III. Parameter values from LL noise decomposition.
Mean and σ are the mean and standard deviation from the MCMC
chain. “Expected” refer to the values in the simulator.

Coupling coefficients

Disturbance Mean σ Expected

ΔFz −8.03 × 10−3 6 × 10−5 1.1 × 10−3

ΔFy 1.3 × 10−3 2 × 10−4 1.1 × 10−3

Nx 7.9 × 10−5m−1 9 × 10−6m−1 7.7 × 10−5m−1

FIG. 6. The effect of subtraction of ΔFz, ΔFy, and Nx. The
dotted line represents the PSD of the data series before sub-
traction. The solid line represents the PSD of the data series after
subtraction, i.e. the series of the fit residuals.
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noise in the likelihood in Eq. (8), and then sample the
likelihood with MCMC over a parameter space that also
includes the noise model parameters. Indeed, with that
method the likelihood function contains more terms, the
sum of the squares and the sum of the logarithm of the Sk,
and the parameter space to be searched numerically
is wider.
We think that the method used here, including the

partitioning of the data in stretches and the average over
the stretches, could be usefully extended also to case of
signal extraction from GW detectors. This is particularly
true in the case of a space borne detector like eLISA, which
is expected to be signal dominated at all times, so that a
direct measurement of the instrument noise is difficult. An
unbiased estimator of the noise could then help in avoiding
the introduction of unwanted bias in the signal parameter
estimation.
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APPENDIX A: PROPERTIES OF
DFT COEFFICIENTS

It is a well-known result [11] that

hj~g½k�j2i ¼ Sk: ðA1Þ

With the same kind of calculations that lead to Eq. (A1),
one can easily calculate that

hRef~g½k�g2i ¼ 1

2π

Z
π
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dϕ ~S~gðϕÞ
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hImf~g½k�g2i ¼ 1
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dϕ:

ðA3Þ

The consequence of Eqs. (A2) and (A3) is that if k is
large enough so that wðϕ − k 2π

N Þ has no overlap with
wðϕþ k 2π

N Þ, then

hRef~g½k�g2i ¼ hImf~g½k�g2i ¼ 1

2
hj~g½k�j2i ¼ 1

2
Sk: ðA4Þ

In addition one can calculate that

hRef~g½k�gImf~g½k�gi

¼ 1

2π

Z
π

−π
dϕ ~S~gðϕÞ

1

2
Im

�
w

�
ϕþ k

2π

N

�
w�

�
ϕ − k

2π

N

��
:

ðA5Þ

So that again, if k is large enough, then

hRef~g½k�gImf~g½k�gi ¼ 0: ðA6Þ

Finally it is also straightforward to get that

h~g½k�~g�½k0�i ¼ 1

2π

Z
π

−π
dϕ ~S~gðϕÞ

× w�
�
ϕ − k

2π

N

�
w

�
ϕ − k0

2π

N

�
; ðA7Þ

h~g½k�~g½k0�i ¼ 1

2π

Z
π

−π
dϕ ~S~gðϕÞ

× w

�
ϕ − k

2π

N

�
w

�
ϕ − k0

2π

N

�
: ðA8Þ

Thus, if k and k0 are spaced enough that wðϕ − k 2π
N Þ

has no overlap with wðϕ − k0 2πN Þ, then ~g½k� and ~g½k0� are
independent random variables.
The amount of spacing needed for all the conditions

above to hold depends on the selected spectral window

FIG. 7. The spectral window for the Blackman-Harris plotted
for different values of k, spaced by ko ¼ 8.
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w½n�. In general there exists a common value ko for which,
with good accuracy, Eq. (A4) holds if jkj ≥ ko

2
, and ~g½k� are

independent random variables if jk − k0j ≥ ko. With the
Blackman-Harris window used in the numerical calcula-
tions of the present paper, ko ¼ 8 (see Fig. 7).
The correlation coefficients resulting from Eq. (A7),

may be calculated explicitly, for nearby DFT coefficients,
assuming the noise is white. In Fig. 8 we report the values
for

jρðΔkÞj ¼ jhRef~g½k�gRef~g½kþ Δk�gijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjRef~g½k�gj2ihjRef~g½kþ Δk�gj2i

p

¼ jhImf~g½k�gImf~g½kþ Δk�gijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjImf~g½k�gj2ihjImf~g½kþ Δk�gj2i

p : ðA9Þ

For the first few values of Δk. In addition one can
calculate that

jhRef~g½k�gImf~g½kþ Δk�gijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjImf~g½k�gj2ihjRef~g½kþ Δk�gj2i

p ∼ 0: ðA10Þ

Thus if noise does not vary too much over a range of order
of ko, a reduced spacing among coefficients may also be
considered. In the case of the Blackman-Harris window,
Fig. 8 suggests that coefficients could be taken every
Δk ∼ 4 and still be treated as basically independent, and
that even for Δk ∼ 2–3 the effect of the correlation may still
be negligible.

APPENDIX B: ADDITIONAL FORMULAS

To get the result in Eqs. (18), and (19), it is sufficient to
substitute Pð~gj~θ; ~SÞ taken from Eq. (9) into Eq. (17) and
perform the integral over Sj. We get

hSjj~̄gi

¼ Ns

Ns −m − 1

R j~g½j; ~θ�j2Qk∈Q ðj~g½k; ~θ�j−2Þ−ðNs−mÞ
Pð~θÞd~θR Q

k∈Qðj~g½k; ~θ�j−2Þ
−ðNs−mÞ

Pð~θÞd~θ

¼ Ns

Ns −m − 1
hj~g½j�j2i; ðB1Þ

hS2j j~̄gi ¼
N2

s

ðNs −m − 1ÞðNs −m − 2Þ

×

R j~g½j; ~θ�j4Qk∈Q ðj~g½k; ~θ�j−2Þ−ðNs−mÞ
Pð~θÞd~θR Q

k∈Qðj~g½k; ~θ�j−2Þ
−ðNs−mÞ

Pð~θÞd~θ

¼ N2
s

ðNs −m − 1ÞðNs −m − 2Þ hj~g½j�j
4i: ðB2Þ
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