Supporting Information
for DOI: 10.1055/s-0034-1378348
© Georg Thieme Verlag KG Stuttgart • New York 2014

Polyfluorinated cyclopentadienones as Lewis acids.

Blanca Inés, Sigrid Holle and Manuel Alcarazo.*
Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470-Mülheim an der Ruhr, Germany. Fax: +49 2083062428.
E-mail: alcarazo@mpi-muelheim.mpg.de

Supporting Information

Table of contents

Experimental procedures and characterization 2
X-Ray studies. 6

General procedures: All reactions were carried out in flame-dried glassware under Ar. All the solvents were purified by distillation over the drying agents indicated and were transferred under Ar. $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, hexane, toluene $(\mathrm{Na} / \mathrm{K})$. Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker DPX 300 or AV 400 spectrometer in the solvents indicated; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale. All commercially available compounds (Acros, Fluka, Lancaster, Alfa Aesar, Aldrich) were used as received unless stated otherwise.

Compound 6. Tris-terbutylphosphine ($304 \mu \mathrm{~L}, 1.0 \mathrm{M}$ solution in toluene, 0.304 mmol) was added at $-78{ }^{\circ} \mathrm{C}$ to a solution of ketone 1 ($106.8 \mathrm{mg}, 0.303 \mathrm{mmol}$) in toluene (3 mL) and the resulting slurry allowed to warm to r.t. while it was stirred. The solvent was then removed under vacuum and the crude product washed with MeOH to afford 6 as a white solid ($73 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=1.69(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 27 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=29.5$, $42.9(\mathrm{~d}, J=31.3 \mathrm{~Hz}), 99.9(\mathrm{~d}, J=39.3$ $\mathrm{Hz}), 107.5,123.9(\mathrm{q}, J=269.0 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=267.9 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=20.4 \mathrm{~Hz})$; ${ }^{31}$ P NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=113.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-46.85$, 51.77 ppm ; IR (neat) $v=665,802,922,1010,1084,1105,1197,1269,1401,1483$, 1738, 2901, 2971, 2988, $3675 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{OF}_{12} \mathrm{PNa}$: 577.150013; found: 577.149952.

Compound 7. tBuXPhos ($232 \mathrm{mg}, 0.546 \mathrm{mmol}$) was added in one portion at $-78^{\circ} \mathrm{C}$ to a solution of ketone $1(192 \mathrm{mg}, 0.546$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting slurry allowed to warm to r.t. while it was stirred. The solvent was then removed under vacuum and the crude product washed with MeOH to afford 7 as a white solid ($321 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=0.96(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{br} \mathrm{s}, 18 \mathrm{H})$,
2.52 (br s, 2H), 2.95 ($\operatorname{sep}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=6.6,1.5 \mathrm{~Hz}$, 1 H), 7.61 (dt, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (dt, $J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (dd, $J=11.3$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=21.8,24.1,26.8,28.2,31.2,34.7$, 41.9, 99.0 ($9, J=35.8 \mathrm{~Hz}$), $106.2(\mathrm{br}), 121.7,123.7(\mathrm{q}, ~ J=266.5 \mathrm{~Hz}), 124.0(\mathrm{q}, J=$ $268.6 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=65.3 \mathrm{~Hz}), 127.0(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 132.9$ (d, J = 3.0 Hz), 136.4, 136.5, 136.8 (d, J = 4.4 Hz), 143.4 (d, $J=10.5 \mathrm{~Hz}$), 148.3, $151.6 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=101.0 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-51.6,-49.2 \mathrm{ppm}$; IR (neat) $v=666,772,938,1038,1118,1200,1284,1409$, 1463, 1503, 2968; HRMS calcd. for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{OF}_{12} \mathrm{PNa}$: 799.290869; found: 799.290480.

Compound 9. To a young-key equiped flask charged with $\mathrm{Co}_{2}(\mathrm{CO})_{8} \quad(496.5 \mathrm{mg}, \quad 1.451 \mathrm{mmol})$ and 1,2bis(pentafluorophenyl)acetylene ($500 \mathrm{mg}, 1.396 \mathrm{mmol}$) was added degassed o-xylene (3.9 mL). The flask was then degassed and the deep red suspension was stirred at room temperature overnight and then heated to $160^{\circ} \mathrm{C}$ until the formation of the product was observed by TLC. The reaction crude was then filtered through a plug of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, the solvent was removed under vacuum and the crude product purified by flash cromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$: n-pentane) to afford ketone 1 as red solid ($475.4 \mathrm{mg}, 92 \%$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=104.1$ (td, $J=18.2,3.3 \mathrm{~Hz}), 106.4(\mathrm{t}, \mathrm{J}=17.3 \mathrm{~Hz}), 122.5,138.2(\mathrm{dm}, J=255.7 \mathrm{~Hz}), 138.3$ (dm, $J=253.2 \mathrm{~Hz}), 142.8(\mathrm{dm}, J=257.9 \mathrm{~Hz}), 143.2(\mathrm{dm}, J=259.3 \mathrm{~Hz}), 143.6(\mathrm{dm}, J$ $=249.3 \mathrm{~Hz}$), 144.9 (dm, J = 254.9 Hz), 146.3, $189.3 \mathrm{ppm} ;{ }^{19}$ F NMR (282 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-(159-69-159.54)(\mathrm{m}, 4 \mathrm{~F}),-(158.10-157.95)(\mathrm{m}, 4 \mathrm{~F}),-149.07(\mathrm{t}, \mathrm{J}=21.0$ $\mathrm{Hz}, 2 \mathrm{~F}),-146.89(\mathrm{t}, \mathrm{J}=21.0 \mathrm{~Hz}, 2 \mathrm{~F}),-137.27(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 2 \mathrm{~F}),-136.99(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 2 \mathrm{~F}) \mathrm{ppm}$; IR (neat) $v=931,994,1099,1341,1442,1497,1523,1653,1733$ cm^{-1}; HRMS calcd. for $\mathrm{C}_{29} \mathrm{O}_{1} \mathrm{~F}_{20}$: 743.962986; found: 743.962315.

Compound 11. Triphenylphosphine ($7 \mathrm{mg}, 0.027 \mathrm{mmol}$) was added in one portion at room temperature to a solution of ketone $9(20 \mathrm{mg}, 0.027 \mathrm{mmol})$ in toluene (1 mL) and the resulting slurry was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n-pentane (3×1 mL) to afford 3 as yellow solid ($26.5 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) parcial δ
$=7.34-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.79(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=83.2,96.6,103.7,112.4,114.0,120.5,129.9(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz})$, $131.2(\mathrm{dm}, J=242.2 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 135.5(\mathrm{dm}, J=243.2 \mathrm{~Hz}), 136.2(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}), 137.5(\mathrm{dm}, J=241.3 \mathrm{~Hz}), 144.5(\mathrm{dm}, J=243.2 \mathrm{~Hz}), 145.4(\mathrm{dm}, J=245.6$ $\mathrm{Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=62.3 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=-165.18(\mathrm{t}, \mathrm{J}=18.9 \mathrm{~Hz}, 4 \mathrm{~F})$, -(164.61-164.47) (m, 4F), -160.25 (t, J=21.0 Hz, 2F), 159.37 (t, $J=20.9 \mathrm{~Hz}, 2 \mathrm{~F}$), -140.50 (d, $J=13.6 \mathrm{~Hz}, 4 \mathrm{~F}),-139.54(\mathrm{~d}, J=24.6 \mathrm{~Hz}, 4 \mathrm{~F})$ ppm; IR (neat) $v=657,686,733,748,781,790,875,922,949,984,1050,1088$, 1104, 1122, 1166, 1355, 1399, 1441, 1469, 1494, 1520, 1535, $1592 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C} 47 \mathrm{H} 16 \mathrm{O} 1 \mathrm{~F}_{20} \mathrm{P}_{1}$: 1007.061403; found: 1007.061418.

Compound 12. Tris-terbutylphosphine ($81 \mu \mathrm{~L}, 1.0 \mathrm{M}$ solution in toluene, 0.081 mmol) was added at room temperature to a solution of ketone 9 ($60 \mathrm{mg}, 0.081 \mathrm{mmol}$) in toluene (3 mL) and the resulting slurry was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n pentane ($3 \times 2 \mathrm{~mL}$) to afford 2 as pale yellow solid ($65.9 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=1.40(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 27 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ 29.2, 42.1 ($\mathrm{d}, \mathrm{J}=33.9 \mathrm{~Hz}$), 77.9, 96.1, 104.2, 113.6 (m), 114.0 (m), 137.2 (dm, $J=$ $250.4 \mathrm{~Hz}), 137.9(\mathrm{dm}, J=251.8 \mathrm{~Hz}), 139.6(\mathrm{dm}, J=249.0 \mathrm{~Hz}), 139.9(\mathrm{dm}, J=249.0$ $\mathrm{Hz}), 144.7(\mathrm{dm}, J=246.2 \mathrm{~Hz}), 145.5(\mathrm{dm}, J=243.4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=106.7 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-(165.21-165.02)(\mathrm{m}, 4 \mathrm{~F}),-$ (164.00-163.80) (m, 4F), -(158.86-158.52) (m, 4F), -(140.25-140.14) (m, 4F), -(139.00-138.85) (m, 4F) ppm; IR (neat) $v=742,856,926,991,1053,1093$, 1104, 1347, 1402, 1494, 1504, 1523, $1978 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C}_{41} \mathrm{H}_{27} \mathrm{O}_{1} \mathrm{~F}_{20} \mathrm{P}_{1} \mathrm{Na}$: 969.137244; found: 969.137923.

Compound 13. Tricyclohexylphosphine ($15 \mathrm{mg}, 0.053 \mathrm{mmol}$) was added in one portion to a solution of ketone 9 ($40 \mathrm{mg}, 0.053 \mathrm{mmol}$) in toluene $(1.5 \mathrm{~mL})$ at room temperature and the resulting mixture was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n-pentane (3×1 mL) to afford 5 as brown-yellow solid ($48.7 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=1.00-1.46(\mathrm{~m}, 16 \mathrm{H}), 1.73-2.07(\mathrm{~m}, 17 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ parcial δ
$=25.6(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 26.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 26.8(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 36.2(\mathrm{~d}, J=47.7$ $\mathrm{Hz}), 96.0,103.6,112.8,113.8,137.4(\mathrm{dm}, J=248.4 \mathrm{~Hz}), 138.1(\mathrm{dm}, J=252.2 \mathrm{~Hz})$, $139.5(\mathrm{dm}, J=252.2 \mathrm{~Hz}), 139.9(\mathrm{dm}, J=243.2 \mathrm{~Hz}), 144.6(\mathrm{dm}, J=246.5 \mathrm{~Hz}), 145.5$ (dm, $J=243.7 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=89.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-(165.15-165.02)(\mathrm{m}, 4 \mathrm{~F}),-(163.61-163.42)(\mathrm{m}, 4 \mathrm{~F}),-159.16$ (m, 4F), -(140.43-140.24) (m, 4F), -139.71 (dt, $J=25.3,8.8 \mathrm{~Hz}, 4 \mathrm{~F}) \mathrm{ppm}$; IR (neat) $v=731$, 872, 922, 998, 1056, 1092, 1103, 1356, 1450, 1472, 1492, 1504, 1520, $2491 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C}_{47} \mathrm{H}_{34} \mathrm{O}_{1} \mathrm{~F}_{20} \mathrm{P}_{1}$: 1025.202248; found: 1025.202439 .

Compound 14. (2-Biphenyl)dicyclohexylphosphine (24 mg, 0.067 mmol) was added in one portion at room temperature to a solution of ketone 9 ($50 \mathrm{mg}, 0.067 \mathrm{mmol}$) in toluene (2 mL) and the resulting mixture was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n-pentane ($3 \times 2 \mathrm{~mL}$) to afford 4 as pale yellow solid ($68.3 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=0.83-1.00(\mathrm{~m}, 4 \mathrm{H})$, 1.07-1.27 (m, 6H), 1.38-1.72 (m, 10H), 2.01-2.12 (m, 2H), 7.26-7.29 (m, 1H), 7.32$7.38(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ parcial $\delta=25.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 26.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 26.9(\mathrm{~d}, J=$ 13.3 Hz), $37.2(\mathrm{~d}, \mathrm{~J}=51.9 \mathrm{~Hz})$, 83.2, $95.5,103.5,113.0,114.0,127.7(\mathrm{~d}, J=11.4$ $\mathrm{Hz}), 129.2,129.7,130.3,131.9(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 134.6(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}), 134.7,137.5$ (dm, $J=242.7 \mathrm{~Hz}), 137.9(\mathrm{dm}, J=247.0 \mathrm{~Hz}), 139.5(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 144.7(\mathrm{dm}, J=$ $242.7 \mathrm{~Hz}), 145.5(\mathrm{dm}, J=240.3 \mathrm{~Hz}), 148.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}), \mathrm{ppm} ;{ }^{31}$ P NMR (162 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=80.5 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=-(165.21-165.09)(\mathrm{m}, 4 \mathrm{~F}),-$ (163.99-163.84) (m, 4F), -159.68 (t, $J=21.1 \mathrm{~Hz}, 2 \mathrm{~F}),-159.36(\mathrm{t}, \mathrm{J}=21.0 \mathrm{~Hz}, 2 \mathrm{~F})$, -(140.52-140.34) (m, 4F), -139.77 (dt, $J=25.0,8.7 \mathrm{~Hz}, 4 \mathrm{~F}) \mathrm{ppm}$; IR (neat) $v=696$, 704, 731, 753, 768, 790, 852, 864, 894, 924, 969, 991, 1060, 1094, 1106, 1287, 1358, 1403, 1475, 1490, 1501, 1522, 1535, 2862, 2933; HRMS calcd. for $\mathrm{C}_{53} \mathrm{H}_{31} \mathrm{O}_{1}$ $\mathrm{F}_{20} \mathrm{P}_{1} \mathrm{Na}: 1117.168543$; found: 1117.169092.

X-ray structures

Compound 6:

Empirical formula
 Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{12} \mathrm{OP}$
colorless
$554.40 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 ${ }_{1} / \mathbf{n}$, (no. 14)
$a=12.6772(15) \AA \quad \alpha=90^{\circ}$.
$b=10.2913(12) \AA \quad \beta=106.058(2)^{\circ}$.
$c=18.812(2) \AA \quad \gamma=90^{\circ}$.
$2358.6(5) \AA^{3}$
4
$1.561 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.224 \mathrm{~mm}^{-1}$
1136 e
$0.50 \times 0.44 \times 0.26 \mathrm{~mm}^{3}$
1.74 to 33.80°
$-19 \leq \mathrm{h} \leq 19,-15 \leq \mathrm{k} \leq 15,-29 \leq 1 \leq 29$
75377
$9402\left[\mathrm{R}_{\text {int }}=0.0509\right]$
8290
100.0 \%

Gaussian
0.95 and 0.91

Full-matrix least-squares on F^{2}
9402 / 0 / 343
1.042
$\mathrm{R}_{1}=0.0539 \quad \mathrm{wR}^{2}=0.1415$
$\mathrm{R}_{1}=0.0608$
$w R^{2}=0.1482$
1.052 and $-1.099 \mathrm{e} \cdot \AA^{-3}$

Compound 7:

Empirical formula

Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=67.32^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{76} \mathrm{H}_{89} \mathrm{~F}_{24} \mathrm{O}_{2} \mathrm{P}_{2}$
yellow
$1552.41 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$1.54178 \AA$
MONOCLINIC
P2 ${ }_{1} / \mathbf{c}$, (no. 14)
$\begin{array}{ll}\mathrm{a}=19.2158(10) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=12.5485(6) \AA & \beta=102.368(2)^{\circ} . \\ \mathrm{c}=32.3281(16) \AA & \gamma=90^{\circ} .\end{array}$
7614.3(7) \AA^{3}

4
$1.354 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$1.429 \mathrm{~mm}^{-1}$
3228 e
$0.25 \times 0.25 \times 0.24 \mathrm{~mm}^{3}$
2.35 to 67.32°
$-22 \leq \mathrm{h} \leq 20,-14 \leq \mathrm{k} \leq 15,-38 \leq 1 \leq 38$
170666
$13525\left[\mathrm{R}_{\mathrm{int}}=0.0550\right]$
12380
99.0 \%

Gaussian
0.79 and 0.69

Full-matrix least-squares on F^{2}
13525 / 0 / 960
1.017
$\mathrm{R}_{1}=0.0418 \quad \mathrm{wR}^{2}=0.1084$
$\mathrm{R}_{1}=0.0451$
$w R^{2}=0.1115$

Compound 8:

Empirical formula
 Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~F}_{12} \mathrm{OP}$
colourless
$833.82 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 ${ }_{1} / \mathrm{c}$, (no. 14)
$a=11.1478(13) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=20.897(3) \AA \quad \beta=101.691(16)^{\circ}$.
$c=17.374(4) \AA \quad \gamma=90^{\circ}$.
$3963.4(12) \AA^{3}$
4
$1.397 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.159 \mathrm{~mm}^{-1}$
1748 e
$0.35 \times 0.24 \times 0.16 \mathrm{~mm}^{3}$
2.60 to 27.50°.
$-14 \leq \mathrm{h} \leq 14,-27 \leq \mathrm{k} \leq 27,-22 \leq 1 \leq 22$
76323
$9107\left[\mathrm{R}_{\mathrm{int}}=0.0843\right]$
6916
99.9 \%

Gaussian
0.98 and 0.95

Full-matrix least-squares on F^{2}
9107 / 0 / 533
1.059
$\mathrm{R}_{1}=0.0574 \quad \mathrm{wR}^{2}=0.1300$
$\mathrm{R}_{1}=0.0817$

$$
w R^{2}=0.1491
$$

0.726 and $-0.813 \mathrm{e} \cdot \AA^{-3}$

Compound 11:

Empirical formula
 Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient F(000)

Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[I>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{47} \mathrm{H}_{15} \mathrm{~F}_{20} \mathrm{OP}$
yellow
$1006.56 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
ORTHORHOMBIC
Pbca, (no. 61)
$a=20.950(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=17.1156(16) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=22.707(3) \AA \quad \gamma=90^{\circ}$.
8142.2(16) \AA^{3}

8
$1.642 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.199 \mathrm{~mm}^{-1}$
4000 e
$0.35 \times 0.2 \times 0.06 \mathrm{~mm}^{3}$
2.65 to 29.98°.
$-28 \leq \mathrm{h} \leq 29,-24 \leq \mathrm{k} \leq 23,-31 \leq 1 \leq 31$
139035
$11830\left[\mathrm{R}_{\text {int }}=0.0742\right]$
8468
99.9 \%

Gaussian
0.99 and 0.95

Full-matrix least-squares on F^{2}
11830 / 0 / 622
1.084
$\mathrm{R}_{1}=0.0487$
$w R^{2}=0.0943$
$\mathrm{R}_{1}=0.0814$
$w R^{2}=0.1086$
0.379 and $-0.367 \mathrm{e} \cdot \AA^{-3}$

Compound 12:

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
$\mathrm{C}_{42} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~F}_{20} \mathrm{OP}$
yellow
$1031.52 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 A

MONOCLINIC
P2 ${ }_{1} / \mathrm{c}$, (no. 14)

$\mathrm{a}=12.4613(7) \AA$	$\alpha=90^{\circ}$.
$\mathrm{b}=21.0904(19) \AA$	$\beta=91.457(4)^{\circ}$.
$\mathrm{c}=16.0828(9) \AA$	$\gamma=90^{\circ}$.

$\mathrm{c}=16.0828(9) \AA$
$\gamma=90^{\circ}$.
$4225.4(5) \AA^{3}$
4
$1.622 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.315 \mathrm{~mm}^{-1}$
2072 e
$0.26 \times 0.18 \times 0.05 \mathrm{~mm}^{3}$
2.71 to 30.07°.
$-17 \leq \mathrm{h} \leq 17,-29 \leq \mathrm{k} \leq 29,-22 \leq 1 \leq 22$
102917
$12396\left[\mathrm{R}_{\mathrm{int}}=0.0635\right]$
8928
99.9 \%

Gaussian
0.99 and 0.95

Full-matrix least-squares on F^{2}
12396 / 0 / 599
1.072
$\mathrm{R}_{1}=0.0552$
$w R^{2}=0.1254$
$\mathrm{R}_{1}=0.0867$

Largest diff. peak and hole 1.056 and $-1.265 \mathrm{e} \cdot \AA^{-3}$

Compound 14:

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{58} \mathrm{H}_{43} \mathrm{~F}_{20} \mathrm{OP}$
yellow
$1166.89 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
$P 2_{1} / n$, (no. 14)
$\mathrm{a}=14.423(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=19.032(3) \AA \quad \beta=97.003(11)^{\circ}$.
$\mathrm{c}=18.747(2) \AA \quad \gamma=90^{\circ}$.
5107.8(12) \AA^{3}

4
$1.517 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.170 \mathrm{~mm}^{-1}$
2376 e
$0.21 \times 0.16 \times 0.10 \mathrm{~mm}^{3}$
2.68 to 27.50°.
$-18 \leq \mathrm{h} \leq 18,-24 \leq \mathrm{k} \leq 23,-24 \leq 1 \leq 24$
45838
$11709\left[\mathrm{R}_{\text {int }}=0.0535\right]$
8163
99.8 \%

Gaussian
0.99 and 0.96

Full-matrix least-squares on F^{2}
11709 / 0 / 723
1.087
$\mathrm{R}_{1}=0.0507 \quad \mathrm{wR}^{2}=0.0945$
$\mathrm{R}_{1}=0.0872$
$w R^{2}=0.1102$

