

Supporting Information for DOI: 10.1055/s-0034-1378348 © Georg Thieme Verlag KG Stuttgart · New York 2014

Polyfluorinated cyclopentadienones as Lewis acids.

Blanca Inés, Sigrid Holle and Manuel Alcarazo.*

 $\label{lem:max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470-Mülheim an der Ruhr, Germany. \\ Fax: +49 \ 208 \ 306 \ 2428.$

E-mail: alcarazo@mpi-muelheim.mpg.de

Supporting Information

Table of contents

Experimental procedures and characterization.	2
•	
X-Ray studies	6

General procedures: All reactions were carried out in flame-dried glassware under Ar. All the solvents were purified by distillation over the drying agents indicated and were transferred under Ar. CH₂Cl₂ (CaH₂), hexane, toluene (Na/K). Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm⁻¹. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker DPX 300 or AV 400 spectrometer in the solvents indicated; ¹H and ¹³C chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale. All commercially available compounds (Acros, Fluka, Lancaster, Alfa Aesar, Aldrich) were used as received unless stated otherwise.

$$F_3C$$
 CF_3
 F_3C
 CF_3

Compound 6. Tris-terbutylphosphine (304 µL, 1.0 M solution in toluene, 0.304 mmol) was added at -78 °C to a solution of ketone 1 (106.8 mg, 0.303 mmol) in toluene (3 mL) and the resulting slurry allowed to warm to r.t. while it was stirred. The solvent was then removed under vacuum and the crude product washed with MeOH to afford 6 as a white solid (73 mg, 43%). ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 1.69$ (d, J = 15.0 Hz, 27H) ppm; ¹³C NMR (151 MHz, CD_2CI_2) δ = 29.5, 42.9 (d, J = 31.3 Hz), 99.9 (d, J = 39.3 Hz), 107.5, 123.9 (q, J = 269.0 Hz), 124.0 (d, J = 267.9 Hz), 135.8 (d, J = 20.4 Hz); ³¹P NMR (162 MHz, CD₂Cl₂) δ = 113.9 ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ = -46.85, -51.77 ppm; **IR** (neat) v = 665, 802, 922, 1010, 1084, 1105, 1197, 1269, 1401, 1483, 1738, 2901, 2971, 2988, 3675 cm⁻¹; **HRMS** calcd. for C₂₁H₂₇OF₁₂PNa: 577.150013; found: 577.149952.

$$iPr$$
 iPr
 $P(tBu)_2$
 F_3C
 CF_3
 F_3C
 CF_3

Compound 7. tBuXPhos (232 mg, 0.546 mmol) was added in one portion at -78°C to a solution of ketone 1 (192 mg, 0.546 mmol) in CH₂Cl₂ (5mL) and the resulting slurry allowed to warm to r.t. while it was stirred. The solvent was then removed under vacuum and the crude product washed with MeOH to afford 7 as a white solid (321 mg, 76%). ¹H NMR (400 MHz, CD_2Cl_2) δ

= 0.96 (br s, 6H), 1.22 (d, J = 6.6 Hz, 6H), 1.28 (d, J = 6.9 Hz, 6H), 1.32 (br s, 18H),

2.52 (br s, 2H), 2.95 (sep, J = 6.9 Hz, 1H), 7.12 (s, 2H), 7.52 (dd, J = 6.6, 1.5 Hz, 1H), 7.61 (dt, J = 7.9, 1.7 Hz, 1H), 7.73 (dt, J = 7.5, 1.6 Hz, 1H), 8.09 (dd, J = 11.3, 1.1 Hz, 1H) ppm; ¹³C NMR (101 MHz, CD_2Cl_2) δ = 21.8, 24.1, 26.8, 28.2, 31.2, 34.7, 41.9, 99.0 (9, J = 35.8 Hz), 106.2 (br), 121.7, 123.7 (g, J = 266.5 Hz), 124.0 (268.6 Hz), 125.0 (d, J = 65.3 Hz), 127.0 (d, J = 9.8 Hz), 132.2 (d, J = 19.2 Hz), 132.9 (d, J = 3.0 Hz), 136.4, 136.5, 136.8 (d, J = 4.4 Hz), 143.4 (d, J = 10.5 Hz), 148.3,151.6 ppm; ³¹**P NMR** (162 MHz, CD₂Cl₂) δ = 101.0 ppm; ¹⁹**F NMR** (282 MHz, CDCl₃) δ = -51.6, -49.2 ppm; **IR** (neat) v = 666, 772, 938, 1038, 1118, 1200, 1284, 1409, 1463, 1503, 2968; **HRMS** *calcd*. for C₃₈H₄₅OF₁₂PNa: 799.290869; *found*: 799.290480.

$$C_6F_5$$
 C_6F_5
 C_6F_5

Compound 9. To a young-key equiped flask charged with $Co_2(CO)_8$ (496.5 mg, 1.451 mmol) 1,2bis(pentafluorophenyl)acetylene (500 mg, 1.396 mmol) was added degassed o-xylene (3.9 mL). The flask was then degassed and

the deep red suspension was stirred at room temperature overnight and then heated to 160 °C until the formation of the product was observed by TLC. The reaction crude was then filtered through a plug of neutral Al₂O₃, the solvent was removed under vacuum and the crude product purified by flash cromatography (Al₂O₃: n-pentane) to afford ketone **1** as red solid (475.4 mg, 92%). ¹³**C NMR** (151 MHz, CD₂Cl₂) δ = 104.1 (td, J = 18.2, 3.3 Hz), 106.4 (t, J = 17.3 Hz), 122.5, 138.2 (dm, J = 255.7 Hz), 138.3(dm, J = 253.2 Hz), 142.8 (dm, J = 257.9 Hz), 143.2 (dm, J = 259.3 Hz), 143.6 (dm, J = 259.3 Hz)= 249.3 Hz), 144.9 (dm, J = 254.9 Hz), 146.3, 189.3 ppm; ¹⁹**F NMR** (282 MHz, CDCl₃) $\delta = -(159-69-159.54)$ (m, 4F), -(158.10-157.95) (m, 4F), -149.07 (t, J = 21.0Hz, 2F), -146.89 (t, J = 21.0 Hz, 2F), -137.27 (d, J = 19.0 Hz, 2F), -136.99 (d, J = 19.15.2 Hz, 2F) ppm; **IR** (neat) v = 931, 994, 1099, 1341, 1442, 1497, 1523, 1653, 1733 cm⁻¹; **HRMS** calcd. for $C_{29}O_1F_{20}$: 743.962986; found: 743.962315.

$$C_6F_5$$
 C_6F_5
 C_6F_5

Compound 11. Triphenylphosphine (7 mg, 0.027 mmol) was added in one portion at room temperature to a solution of ketone 9 (20 mg, 0.027 mmol) in toluene (1 mL) and the resulting slurry was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n-pentane (3 x 1 mL) to afford **3** as yellow solid (26.5 mg, 98%). ¹H NMR (400 MHz, CD₂Cl₂) parcial δ

= 7.34-7.39 (m, 6H), 7.51-7.55 (m, 6H), 7.79 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101) MHz, CD_2Cl_2) $\delta = 83.2$, 96.6, 103.7, 112.4, 114.0, 120.5, 129.9 (d, J = 12.9 Hz), 131.2 (dm, J = 242.2 Hz), 134.2 (d, J = 11.4 Hz), 135.5 (dm, J = 243.2 Hz), 136.2 (d, J = 2.9 Hz), 137.5 (dm, J = 241.3 Hz), 144.5 (dm, J = 243.2 Hz), 145.4 (dm, J = 245.6 Hz) Hz) ppm; ³¹P NMR (162 MHz, CD₂Cl₂) δ = 62.3 ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ = -165.18 (t, J = 18.9 Hz, 4F), -(164.61-164.47) (m, 4F), -160.25 (t, J = 21.0 Hz, 2F), -159.37 (t, J = 20.9 Hz, 2F), -140.50 (d, J = 13.6 Hz, 4F), -139.54 (d, J = 24.6 Hz, 4F) ppm; **IR** (neat) v = 657, 686, 733, 748, 781, 790, 875, 922, 949, 984, 1050, 1088,1104, 1122, 1166, 1355, 1399, 1441, 1469, 1494, 1520, 1535, 1592 cm⁻¹; **HRMS** *calcd.* for C47H16O1F₂₀P₁: 1007.061403; *found*: 1007.061418.

 C_6F_5

Compound 12. Tris-terbutylphosphine (81 µL, 1.0 M solution in toluene, 0.081 mmol) was added at room temperature to a solution of ketone 9 (60 mg, 0.081 mmol) in toluene (3 mL) and the resulting slurry was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with npentane (3 x 2 mL) to afford 2 as pale yellow solid (65.9 mg, 86%). ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 1.40$ (d, J = 14.7 Hz, 27H) ppm; ¹³C NMR (151 MHz, CD_2Cl_2) $\delta =$ 29.2, 42.1 (d, J = 33.9 Hz), 77.9, 96.1, 104.2, 113.6 (m), 114.0 (m), 137.2 (dm, J =250.4 Hz), 137.9 (dm, J = 251.8 Hz), 139.6 (dm, J = 249.0 Hz), 139.9 (dm, J = 249.0Hz), 144.7 (dm, J = 246.2 Hz), 145.5 (dm, J = 243.4 Hz) ppm; ³¹**P NMR** (162 MHz, CD_2Cl_2) δ = 106.7 ppm; ¹⁹**F NMR** (282 MHz, CDCl₃) δ = -(165.21-165.02) (m, 4F), -(164.00-163.80) (m, 4F), -(158.86-158.52) (m, 4F), -(140.25-140.14) (m, 4F), -(139.00-138.85) (m, 4F) ppm; **IR** (neat) v = 742, 856, 926, 991, 1053, 1093, 1104, 1347, 1402, 1494, 1504, 1523, 1978 cm $^{-1}$; **HRMS** calcd. for $C_{41}H_{27}O_1$ $F_{20}P_1Na$: 969.137244; found: 969.137923.

 C_6F_5

Compound 13. Tricyclohexylphosphine (15 mg, 0.053 mmol) was added in one portion to a solution of ketone **9** (40 mg, 0.053 mmol) in toluene (1.5 mL) at room temperature and the resulting mixture was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n-pentane (3 x 1 mL) to afford **5** as brown-yellow solid (48.7 mg, 89%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 1.00-1.46 (m, 16H), 1.73-2.07 (m, 17H) ppm; 13 C NMR (101 MHz, CD₂Cl₂) parcial δ

= 25.6 (d, J = 1.4 Hz), 26.2 (d, J = 3.3 Hz), 26.8 (d, J = 12.9 Hz), 36.2 (d, J = 47.7 Hz), 96.0, 103.6, 112.8, 113.8, 137.4 (dm, J = 248.4 Hz), 138.1 (dm, J = 252.2 Hz), 139.5 (dm, J = 252.2 Hz), 139.9 (dm, J = 243.2 Hz), 144.6 (dm, J = 246.5 Hz), 145.5 (dm, J = 243.7 Hz) ppm; ³¹**P NMR** (162 MHz, CD₂Cl₂) δ = 89.9 ppm; ¹⁹**F NMR** (282 MHz, CDCl₃) δ = -(165.15-165.02) (m, 4F), -(163.61-163.42) (m, 4F), -159.16 (m, 4F), -(140.43-140.24) (m, 4F), -139.71 (dt, J = 25.3, 8.8 Hz, 4F) ppm; **IR** (neat) ν = 731, 872, 922, 998, 1056, 1092, 1103, 1356, 1450, 1472, 1492, 1504, 1520, 2491 cm⁻¹; **HRMS** *calcd.* for C₄₇H₃₄O₁F₂₀P₁: 1025.202248; *found*: 1025.202439.

$$C_{6}F_{5}$$
 $C_{6}F_{5}$
 $C_{6}F_{5}$

Compound 14. (2-Biphenyl)dicyclohexylphosphine (24 mg, 0.067 mmol) was added in one portion at room temperature to a solution of ketone **9** (50 mg, 0.067 mmol) in toluene (2 mL) and the resulting mixture was stirred at the same temperature overnight. The solvent was then removed under vacuum and the crude product washed with n-pentane (3 x 2 mL) to afford **4** as pale

yellow solid (68.3 mg, 93%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 0.83-1.00 (m, 4H), 1.07-1.27 (m, 6H), 1.38-1.72 (m, 10H), 2.01-2.12 (m, 2H), 7.26-7.29 (m, 1H), 7.32-7.38 (m, 3H), 7.44-7.48 (m, 1H), 7.55-7.57 (m, 3H), 7.70-7.74 (m, 1H) ppm; ¹³C NMR (101 MHz, CD₂Cl₂) parcial δ = 25.7 (d, J = 1.4 Hz), 26.3 (d, J = 3.8 Hz), 26.9 (d, J = 13.3 Hz), 37.2 (d, J = 51.9 Hz), 83.2, 95.5, 103.5, 113.0, 114.0, 127.7 (d, J = 11.4 Hz), 129.2, 129.7, 130.3, 131.9 (d, J = 10.0 Hz), 134.6 (d, J = 14.3 Hz), 134.7, 137.5 (dm, J = 242.7 Hz), 137.9 (dm, J = 247.0 Hz), 139.5 (d, J = 2.4 Hz), 144.7 (dm, J = 242.7 Hz), 145.5 (dm, J = 240.3 Hz), 148.5 (d, J = 8.6 Hz), ppm; ³¹P NMR (162 MHz, CD₂Cl₂) δ = 80.5 ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ = -(165.21-165.09) (m, 4F), -(163.99-163.84) (m, 4F), -159.68 (t, J = 21.1 Hz, 2F), -159.36 (t, J = 21.0 Hz, 2F), -(140.52-140.34) (m, 4F), -139.77 (dt, J = 25.0, 8.7 Hz, 4F) ppm; IR (neat) ν = 696, 704, 731, 753, 768, 790, 852, 864, 894, 924, 969, 991, 1060, 1094, 1106, 1287, 1358, 1403, 1475, 1490, 1501, 1522, 1535, 2862, 2933; HRMS calcd. for C₅₃H₃₁O₁ F₂₀P₁Na: 1117.168543; found: 1117.169092.

X-ray structures

Compound 6:

Largest diff. peak and hole

Empirical formula	$C_{21} H_{27} F_{12} O P$	
Color	colorless	
Formula weight	554.40 g · mol ⁻¹	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	MONOCLINIC	
Space group	P2 ₁ /n, (no. 14)	
Unit cell dimensions	a = 12.6772(15) Å	α= 90°.
	b = 10.2913(12) Å	β = 106.058(2)°.
	c = 18.812(2) Å	$\gamma = 90^{\circ}$.
Volume	2358.6(5) Å ³	
Z	4	
Density (calculated)	$1.561 \text{ Mg} \cdot \text{m}^{-3}$	
Absorption coefficient	0.224 mm^{-1}	
F(000)	1136 e	
Crystal size	$0.50 \times 0.44 \times 0.26 \text{ mm}^3$	
θ range for data collection	1.74 to 33.80°.	
Index ranges	$-19 \le h \le 19, -15 \le k \le 15, -29 \le 1$	≤ 29
Reflections collected	75377	
Independent reflections	$9402 [R_{int} = 0.0509]$	
Reflections with $I > 2\sigma(I)$	8290	
Completeness to $\theta = 27.50^{\circ}$	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.95 and 0.91	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9402 / 0 / 343	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2 σ (I)]	$R_1 = 0.0539$	$wR^2 = 0.1415$
R indices (all data)	$R_1 = 0.0608$	$wR^2 = 0.1482$
	_	

1.052 and -1.099 e · Å^{-3}

Compound 7:

Largest diff. peak and hole

Empirical formula Color	C ₇₆ H ₈₉ F ₂₄ O ₂ P ₂ yellow	
Formula weight Temperature Wavelength	1552.41 g·mol ⁻¹ 100 K 1.54178 Å	
Crystal system Space group	MONOCLINIC P2 ₁ /c, (no. 14)	
Unit cell dimensions	a = 19.2158(10) Å	α= 90°.
	b = 12.5485(6) Å c = 32.3281(16) Å	β = 102.368(2)°. γ = 90°.
Volume Z	7614.3(7) Å ³	
Density (calculated)	$1.354 \text{ Mg} \cdot \text{m}^{-3}$	
Absorption coefficient F(000)	1.429 mm ⁻¹ 3228 e	
Crystal size	$0.25 \times 0.25 \times 0.24 \text{ mm}^3$	
θ range for data collection	2.35 to 67.32°.	~ 20
Index ranges Reflections collected	$-22 \le h \le 20$, $-14 \le k \le 15$, $-38 \le 1$: 170666	≥ 36
Independent reflections	$13525 [R_{int} = 0.0550]$	
Reflections with $I > 2\sigma(I)$	12380	
Completeness to $\theta = 67.32^{\circ}$	99.0 %	
Absorption correction Max. and min. transmission	Gaussian 0.79 and 0.69	
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 13525 / 0 / 960	
Goodness-of-fit on F ²	1.017	
Final R indices [I>2 σ (I)]	$R_1 = 0.0418$	$wR^2 = 0.1084$
R indices (all data)	$R_1 = 0.0451$	$wR^2 = 0.1115$

1.102 and -0.557 e \cdot Å $^{-3}$

Compound 8:

Empirical formula Color	C ₄₂ H ₅₄ F ₁₂ O P colourless	
Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	833.82 g·mol ⁻¹ 100 K 0.71073 Å MONOCLINIC P2₁/c, (no. 14) a = 11.1478(13) Å b = 20.897(3) Å c = 17.374(4) Å	
Volume Z	3963.4(12) Å ³	
Density (calculated)	$1.397 \text{ Mg} \cdot \text{m}^{-3}$	
Absorption coefficient F(000)	0.159 mm ⁻¹ 1748 e	
Crystal size θ range for data collection Index ranges Reflections collected Independent reflections	0.35 x 0.24 x 0.16 mm ³ 2.60 to 27.50°. -14 \leq h \leq 14, -27 \leq k \leq 27, -22 \leq 1 \leq 76323 9107 [R _{int} = 0.0843]	≤ 22
Reflections with I>2 σ (I) Completeness to θ = 27.50° Absorption correction Max. and min. transmission	6916 99.9 % Gaussian 0.98 and 0.95	
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 9107 / 0 / 533	
Goodness-of-fit on F ²	1.059	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0574$ wh	
R indices (all data)	$R_1 = 0.0817$	$wR^2 = 0.1491$
Largest diff. peak and hole	$0.726 \text{ and } -0.813 \text{ e} \cdot \text{Å}^{-3}$	

Compound 11:

R indices (all data)

Largest diff. peak and hole

Empirical formula $C_{47} H_{15} F_{20} O P$ Color yellow 1006.56 g · mol⁻¹ Formula weight 100 K Temperature Wavelength $0.71073~\textrm{\AA}$ ORTHORHOMBIC Crystal system Space group Pbca, (no. 61) Unit cell dimensions a = 20.950(2) Å α = 90°. b = 17.1156(16) Å β = 90°. c = 22.707(3) Å $\gamma = 90^{\circ}$. 8142.2(16) Å³ Volume $1.642 \text{ Mg} \cdot \text{m}^{-3}$ Density (calculated) 0.199 mm⁻¹ Absorption coefficient 4000 e F(000) $0.35 \times 0.2 \times 0.06 \text{ mm}^3$ Crystal size θ range for data collection 2.65 to 29.98°. $-28 \le h \le 29$, $-24 \le k \le 23$, $-31 \le l \le 31$ Index ranges Reflections collected 139035 Independent reflections $11830 [R_{int} = 0.0742]$ Reflections with $I > 2\sigma(I)$ 8468 Completeness to $\theta = 27.50^{\circ}$ 99.9 % Absorption correction Gaussian 0.99 and 0.95 Max. and min. transmission Full-matrix least-squares on F² Refinement method Data / restraints / parameters 11830 / 0 / 622 Goodness-of-fit on F² 1.084 $wR^2 = 0.0943$ Final R indices $[I>2\sigma(I)]$ $R_1 = 0.0487$

 $R_1 = 0.0814$

 $0.379 \text{ and } -0.367 \text{ e} \cdot \text{Å}^{-3}$

 $wR^2 = 0.1086$

Compound 12:

Empirical formula Color	C_{42} H_{29} Cl_2 F_{20} O P yellow	
Formula weight	1031.52 g·mol ⁻¹	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	MONOCLINIC	
Space group Unit cell dimensions	$P2_1/c$, (no. 14) a = 12.4613(7) Å	α= 90°.
Onit cen unitensions	a = 12.4013(7) A b = 21.0904(19) Å	$\beta = 91.457(4)^{\circ}$.
	c = 16.0828(9) Å	$\gamma = 90^{\circ}$.
Volume	4225.4(5) Å ³	, , , ,
Z	4225.4(3) A 4	
Density (calculated)	1.622 Mg·m ⁻³	
Absorption coefficient	0.315 mm ⁻¹	
F(000)	2072 e	
Crystal size	$0.26 \times 0.18 \times 0.05 \text{ mm}^3$	
θ range for data collection	2.71 to 30.07°.	
Index ranges	$-17 \le h \le 17, -29 \le k \le 29, -22 \le 1$	≤ 22
Reflections collected Independent reflections	102917 12396 [R _{int} = 0.0635]	
	8928	
Reflections with I>2 σ (I) Completeness to $\theta = 27.50^{\circ}$	8928 99.9 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.99 and 0.95	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12396 / 0 / 599	
Goodness-of-fit on F ²	1.072	2
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0552$	$wR^2 = 0.1254$
R indices (all data)	$R_1 = 0.0867$	$wR^2 = 0.1419$

Largest diff. peak and hole 1.056 and -1.265 e \cdot Å⁻³

Compound 14:

C ₅₈ H ₄₃ F ₂₀ O P yellow	
1166.89 g·mol ⁻¹	
MONOCLINIC	
$P2_1/n$, (no. 14)	
	$\alpha = 90^{\circ}$.
	β = 97.003(11)°. γ = 90°.
* /	7 00.
4	
$1.517 \text{ Mg} \cdot \text{m}^{-3}$	
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 24
45838	<u> </u>
11709 [$R_{int} = 0.0535$]	
8163	
0.99 and 0.96	
Full-matrix least-squares on F ²	
11709 / 0 / 723	
1.087	
$R_1 = 0.0507$	$wR^2 = 0.0945$
$R_1 = 0.0872$	$wR^2 = 0.1102$
$0.820 \text{ and } -0.351 \text{ e} \cdot \text{Å}^{-3}$	
	yellow $1166.89 \text{ g} \cdot \text{mol}^{-1}$ 100 K 0.71073 Å $MONOCLINIC$ $P2_1/n, \text{ (no. 14)}$ $a = 14.423(2) \text{ Å}$ $b = 19.032(3) \text{ Å}$ $c = 18.747(2) \text{ Å}$ $5107.8(12) \text{ Å}^3$ 4 $1.517 \text{ Mg} \cdot \text{m}^{-3}$ 0.170 mm^{-1} 2376 e $0.21 \text{ x } 0.16 \text{ x } 0.10 \text{ mm}^3$ $2.68 \text{ to } 27.50^\circ.$ $-18 \le \text{h} \le 18, -24 \le \text{k} \le 23, -24 \le 1$ 45838 $11709 \text{ [R}_{\text{int}} = 0.0535]$ 8163 99.8% $Gaussian$ $0.99 \text{ and } 0.96$ $Full-matrix least-squares on F2 11709 / 0 / 723 1.087 R_1 = 0.0507 R_1 = 0.0872$