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Recent progress in the gyrokinetic theory of stellarator microinstabilities and tur-

bulence simulations is summarised. The simulations have been carried out using two

different gyrokinetic codes, the global particle-in-cell code EUTERPE and the contin-

uum code GENE, which operates in the geometry of a flux tube or a flux surface but

is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron

modes are studied and compared with their counterparts in axisymmetric tokamak ge-

ometry. Several interesting differences emerge. Because of the more complicated struc-

ture of the magnetic field, the fluctuations are much less evenly distributed over each

flux surface in stellarators than in tokamaks. Instead of covering the entire outboard

side of the torus, ITG turbulence is localised to narrow bands along the magnetic field

in regions of unfavourable curvature, and the resulting transport depends on the nor-

malised gyroradius ρ∗ even in radially local simulations. Trapped-electron modes can

be significantly more stable than in typical tokamaks, because of the spatial separation

of regions with trapped particles from those with bad magnetic curvature. Preliminary

nonlinear simulations in flux-tube geometry suggest differences in the turbulence levels

in Wendelstein 7-X and a typical tokamak.
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1 Introduction

Wendelstein 7-X will start operation in 2015 and should relatively quickly be able to

demonstrate how well the magnetic field has been optimised with respect to neoclassical

transport, but the more the latter is suppressed, the more vulnerable the confinement

becomes to turbulence [1]. Since the neoclassical heat flux scales strongly with tem-

perature (as T 9/2 in the typical 1/ν-regime for electrons), it is expected to dominate

over turbulent losses in the centre of high-temperature discharges. However, turbulent

tranport is expected to be important in at least the outer half of the plasma volume,

as consistently observed in the predecessor experiment, Wendelstein 7-AS [2]. It is

therefore of great interest to understand and predict the nature and the level of the

turbulence expected in W7-X.

The present article summarises a number of recent advances made in the under-

standing of gyrokinetic microinstabilities and turbulence simulations in stellarator ge-

ometry. Since the general understanding of turbulence in stellarators is still rudimen-

tary, we restrict our attention to the simplest collisionless and electrostatic instabilities,

but the underlying key question is one of broad interest in plasma physics: how does

the magnetic-field geometry affect plasma stability and turbulence?

We have addressed this question using analytical theory of linear microinstabilities

and gyrokinetic simulations in non-axisymmetric three-dimensional magnetic geometry,

using two gyrokinetic stellarator codes under development for this purpose. The first

code is EUTERPE, a global, electromagnetic particle-in-cell code, which has been used

to calculate linear growth rates with and without electromagnetic effects taken into

account [3]. The other code is the stellarator version of GENE [4, 5], which has been

extended so that it can simulate turbulence not only in a flux tube but on an entire

magnetic surface whilst still employing a local approximation in the radial direction [6].

Thus, the metric elements vary in the poloidal and toroidal directions, but are constant

in the radial direction, and the fluctuations obey periodic boundary conditions in all

these three directions. The GENE code is thus global in the angular directions but local

in the radial direction, whereas EUTERPE is fully global. On the other hand, GENE

is nonlinear and EUTERPE linear when running in stellarator geometry. These two

codes make it possible to compare the properties of microinstabilities and turbulence

in stellarators and tokamaks.
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2 The ITG mode
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Figure 1: ITG instability growth rate in W7-X with Boltzmann electrons computed

by the EUTERPE and GENE codes. The growth rate is shown in units of vT i/a =

(Ti/mi)
1/2/a, and the ion temperature on the s = 1/2 surface is equal to Ti = 1 keV.

In tokamaks, the two most important electrostatic microinstabilities are the ion-

temperature-gradient (ITG) mode and the trapped-electron mode (TEM). These are

predicted to be present in stellarators, too, but their properties can be different [7,

8, 9, 10, 11, 12, 13]. The curvature-driven ITG mode is affected by the fact that the

temperature gradient is very large in regions where the magnetic surfaces are tightly

spaced, e.g., in the “corners” (the bean-shaped cross sections) of W7-X, where the

plasma cross section is bean-shaped and highly elongated. On the other hand, the

connection length along the magnetic field between regions of good and bad curvature

is significantly shorter than in a typical tokamak, which is stabilising for the toroidal

branch of the ITG mode. Figure 1 shows a comparison of the growth rates found in

linear simulations of the ITG mode assuming Boltzmann-distributed electrons using

EUTERPE and GENE, respectively. (This comparison was carried out as a “blind

test”, where the participants did not exchange information during the course of the

simulations.) The magnetic geometry is that of the “high-mirror” configuration of

W7-X [14], the density gradient is taken to vanish, and the ion temperature gradient

3



employed in EUTERPE is given by the piecewise linear function
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where s = ψ/ψa denotes the toroidal flux normalised to its value at the plasma edge,

whose average minor radius is a = 0.55 m. It is observed in the EUTERPE simulations

that the eigenmode peaks around the surface s = 1/2, where d lnT/ds has its maximum,

and this is the radial location chosen for the GENE simulations. The mode structures

calculated by the two codes on this surface are also very similar. Figure 2 shows the

distribution of potential fluctuations over the s = 1/2 surface calculated by EUTERPE.

The instability peaks close to (but not exactly in) the outboard midplane in the bean-

shaped cross section of the device, where the curvature is particularly unfavourable.

Figure 2: Linear mode structure of an ITG mode on the s = 1/2 magnetic surface in

W7-X. The absolute value of the electrostatic potential is plotted (in arbitrary units

since the simulation is linear), and the lengths used on the axes are expressed in units

of ion gyroradii.

EUTERPE simulations of linear ITG modes in W7-X and LHD geometry indicate

that the growth rate is almost identical in these two devices although the mode structure

is affected by details in the magnetic geometry and therefore different. The growth rate

is shown in Fig. 3 as a function of the normalised temperature gradient a/LT and its

ratio to the density gradient, η = (d lnT/ds)/(d lnn/ds). Here and in the following,

LT is defined by
d lnT

dr
=

1

LT
,

in terms of the radial coordinate r = a
√
s. As usual in simulations without kinetic

electrons, there is no linear instability below a threshold at η ≃ 1. Electromagnetic

4



0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

W7−X ( β=2% ; T
*
=1keV )

η
i

γ 
 (

v T
/a

)

 

 

a/L
n
 = 1.41

a/L
n
 = 2.82

a/L
n
 = 4.23

a/L
n
 = 5.64

a/L
n
 = 7.05

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

LHD ( β=1.5% ; T
*
=1keV )

η
i

γ 
 (

v T
/a

)

 

 

a/L
n
 = 1.41

a/L
n
 = 2.82

a/L
n
 = 4.23

a/L
n
 = 5.64

a/L
n
 = 7.05

Figure 3: ITG instability growth rate in W7-X and LHD as functions of η = d lnT/d lnn

and a/LT on the surface s = 1/2, where T = 1 keV, calculated with the EUTERPE

code. The growth rate is shown in units of vT /a, where vT is the ion thermal speed

and a the minor radius.

effects appear to be modest in all cases investigated so far, and no clear evidence of

kinetic ballooning modes has been encountered.

Nonlinear GENE simulations of saturated ITG turbulence inW7-X with Boltzmann-

distributed electrons show that the turbulent density fluctuations, too, are much less

evenly distributed over the flux surface than in typical tokamak simulations [6, 10].

Instead of covering the entire outboard side of the torus, the turbulence is localised

to narrow bands in regions of bad magnetic curvature, see Fig. 4, much like the linear

mode structure in Fig. 2. Another difference to typical tokamak simulations is that the

range of fluctuation amplitudes is much greater.
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Figure 4: Root-mean-squared potential fluctuations in units of Ti/eρ∗ in a GENE

simulation of ITG turbulence on a flux surface of Wendelstein 7-X with a/LT = 2.5

and ρ∗ = 1/125.

Probably as a consequence of the poloidal localisation of the turbulence, the trans-

port scaling is sensitive to the normalised gyroradius, ρ∗ = ρi/a, and becomes “stiffer”

when ρ∗ is reduced, see Fig. 5 [6]. Flux-tube simulations correspond to the limit ρ∗ → 0,

in which the gyroradius scale decouples from the macroscopic scale, and one would

perhaps expect that full-surface simulations should approach flux-tube ones when ρ∗ is

made very small. It appears that this is indeed the case in the sense that the trans-

port observed in full-surface simulations never exceeds that in simulations of the most

unstable flux tube. In stellarators, different flux tubes (of finite length) on the same

magnetic surface are not equivalent to each other but exhibit different growth rates

in linear simulations as well as different turbulent transport levels in nonlinear ones.

In W7-X, the most unstable flux tube is the one that passes through the horizontal

midplane in the bean-shaped cross section, and this is the tube chosen for all nonlin-

ear simulations presented in this paper. The transport across this tube is shown by

inverted triangles in Fig. 5 and always lies above the full-surface results, with the dif-

ference diminishing as ρ∗ → 0. We speculate that in this limit the transport across the

full surface approaches the corresponding average of all flux tubes within the surface.

Note that the transport is different from that in tokamaks, where flux-tube simulations

usually yield the same results as simulations of entire flux surfaces. In the stellarator,

there is thus a “nonlocality” of the turbulence within the flux surface, in addition to

any radially nonlocal effects. Full-volume turbulence simulations have not yet been
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performed in stellarator geometry, but it is well known that the transport in global

tokamak simulations can depend on ρ∗ due to radially non-local effects [15], and there

is no reason to believe that this should not be the case in stellarators, too.
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Figure 5: The heat flux vs temperature gradient for three different values of the nor-

malised ion gyroradius ρ∗ = ρi/a in radially local ITG turbulence simulations using

GENE with Boltzmann-distributed electrons in W7-X. Results from flux-tube simula-

tions are displayed for comparison.

In order to understand why the turbulence is likely to be affected by the fact the

poloidal width of the unstable region is small, we recall the simplest local dispersion

relation for curvature-driven ITG modes, as found, e.g., in Eq. (12) of Ref. [13],

τω2 + (1− bη)ω∗iω + ηωdiω∗i = 0,

where ω∗i = (Tikα/e)d lnn/dψ denotes the diamagnetic frequency, ωdi = k⊥ ·vdi the ion
drift frequency, τ = Ti/Te the ion-to-electron temperature ratio, and b = k2⊥Ti/miΩ

2

i =

k2⊥ρ
2

i . The wave vector has been written as k⊥ = kψ∇ψ + kα∇α and the magnetic

field as B = ∇ψ ×∇α. The simulations of Fig. 5 were carried out with a temperature

gradient but no density gradient, so that ω∗i0 = 0 but ηω∗i0 = ωT 6= 0, and since τ = 1

the real part of the frequency thus becomes ωr = bωT /2. The group velocity at which
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turbulent fluctuations with kα 6= 0 propagate in the poloidal (α-)direction is thus

vα =
∂ωr
∂kα

=
3bωT
2kα

.

In order for conventional instability-driven plasma turbulence to arise, small fluctua-

tions must have time to grow and saturate nonlinearly before they are convected out

of the bad-curvature region. If the poloidal width of this region is ∆α, the time that a

fluctuation spends there is ∆t = ∆α/vα, and during this time it experiences a growth

of order

exp (γ∆t) = exp

(

2kα∆α

3b

γ

ωT

)

,

Clearly, if ∆α is sufficiently small, this growth factor is not very large and a linear

fluctuation leaves the unstable region before it has experienced much growth. Moreover,

this happens even if ∆α is not very small (i.e., even if this width corresponds to many

ion gyroradii) since the ratio γ/ωT is considerably smaller than unity according to

Fig. 3, because ωT ∼ k⊥ρivT /LT where 1/2 < k⊥ρi < 1 for the fastest growing mode.

In any case, under such circumstances one would expect the turbulence to “notice” the

finite width of the unstable region it lives in, rendering flux-tube simulations insufficient

to faithfully represent the true behaviour of the system. (In principle this could happen

in a tokamak, too. The important point is that the macroscopic length scale set by

the poloidal variation of the drift frequency ωdi may be shorter than that customarily

used in the definition of ρ∗.) A more detailed analysis of this phenomenon, including

the derivation of poloidally non-local dispersion relations, will be published separately.

3 Trapped-electron modes

Trapped-electron modes can be very different in tokamaks and stellarators, because

these instabilities are excited by trapped electrons in regions of unfavourable magnetic

curvature. Tokamaks and stellarators are fundamentally different in the sense that

the regions of trapping and bad curvature overlap in tokamaks – both being on the

outboard side of the torus – whereas in stellarators they can be located in different

places. In particular, quasi-isodynamic stellarators can have the property that the

bounce-averaged curvature is favourable for the great majority of all trapped particles.
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trapped particles

bad curvature

Figure 6: In W7-X, the magnetic-field strength is largest in the “corners” of the de-

vice (the bean-shaped cross sections), where the curvature is particularly large and

unfavourable. Therefore, the regions of magnetic trapping and bad curvature do not

overlap to the same extent as in a tokamak.

In a quasi-isodynamic stellarator, the parallel adiabatic invariant, defined as

J(ψ, α, λ) = mav

∫

√

1− λB(l) dl,

taken between two consecutive bounce points, where λB = 1, is independent of α [16].

Here v denotes the speed and ma the mass. On a bounce average (denoted by an

overbar), the magnetic drift is equal to

vda · ∇ψ =
1

eaτba

∂J

∂α
, vda · ∇α = − 1

eaτba

∂J

∂ψ
,

where ea is the charge and τba the bounce time of species a. The sign of ∂J/∂ψ thus

governs the direction of the poloidal precession, which is opposite to the diamagnetic

flow if ∂J/∂ψ is negative. In such, so-called maximum-J configurations [17], it can be

shown analytically that collisionless TEMs are stable in large parts of parameter space
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[11, 18]. The physical reason is that the interaction between the electrons and any

instability with a frequency far below the electron bounce frequency has to conserve

J for all participating electrons [10]. Suppose that such an instability taps into the

free energy of the density gradient, dn/dr < 0, by moving an electron radially a small

distance ∆r > 0. The change in J is then

∆J =
∂J

∂r
∆r +

∂J

∂E
∆E = 0,

where E = mev
2/2, and the electron thus gains the energy

∆E = − ∂J/∂r

∂J/∂E
∆r,

at the expense of the instability. Since ∂J/∂E > 0, it follows that the condition

∂J/∂r < 0 promotes stability.

This argument can be made precise by considering the energy budget of the gyroki-

netic equation [11, 18].

iv‖∇‖ga + (ω − ωda)ga =
eaφ

Ta
J0

(

k⊥v⊥
Ωa

)

(

ω − ωT∗a

)

fa0, (1)

for the distribution function fa = fa0 + fa1 + · · ·. Here, its nonadiabatic component is

denoted by ga = fa1 + (eaφ/Ta)fa0, and we have written

ωT∗e = −Tekα
e

d lnn

dψ

[

1 + ηe

(

mev
2

2Te
− 3

2

)]

,

with ηe = d lnTe/d lnne. The work done by the electric field of an electrostatic insta-

bility, E = −∇φ, on the guiding centers of an arbitrary particle species a is

Pa = −ea
{

fa1(v‖b+ vda) · ∇φ
}

= ea
{

φ(v‖b+ vda) · ∇fa1
}

,

where b = B/B and we have introduced the notation

{· · ·} =

∫ ∞

−∞

dl

B

∫

(· · ·) d3v,

for an integral over velocity space and along the entire field line in ballooning space. In

the usual drift-wave approximation, ω ≪ k‖vTe, where vTe denotes the electron thermal

speed, the linear gyrokinetic equation can be solved analytically,

gtre0 = −ω − ωT∗e
ω − ωde

eφ

Te
feo, (2)
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where overbars again denote bounce averages. The transfer rate of electrostatic energy

from the instability to the electron population is thus found to be given by [13, 18]

Pe = − e
2

Te

{

|φ|2 γ

(ωr − ωde))2 + γ2
ωde(ω

T
∗e − ωde)fe0

}

.

It is evident from this result that Pe > 0 if the product

ω∗eωde = −k
2
αTe
e2τbe

d lnne
dψ

(

∂J

∂ψ
− kψ
kα

∂J

∂α

)

is negative. In a quasi-isodynamic stellarator (∂J/∂α = 0) with the maximum-J prop-

erty (which in practice can be approached at high β), we conclude that Pe > 0, so

that the electrons exert a stabilising influence on any electrostatic modes as long as

0 < ηe < 2/3. One would thus not expect any conventional, density-gradient driven,

collisionless TEMs in this situation. In practice, it is not possible to achieve either of

the conditions ∂J/∂α = 0 and ∂J/∂ψ < 0 for all trapped orbits, but this idealised limit

is approached in well-optimised stellarator designs such as W7-X.
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Figure 7: Growth rate of the fastest growing mode on the flux surface s = 1/2 in W7-X

and DIII-D, calculated with GENE, as functions of the density and temperature gradi-

ent scale lengths normalised to the minor radius. The electron and ion temperatures,

and their gradients, are taken to be equal. The geometry is that of a flux tube, passing

through the outer midplane in the bean-shaped cross section of W7-X.

To test these analytical predictions, a series of systematic flux-tube simulations

have been carried out comparing TEMs in a typical tokamak (DIII-D), NCSX, W7-

X and a more quasi-isodynamic stellarator configuration, using the GENE code. In
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the tokamaks, all flux tubes on the same flux surface are equivalent, but this is not

the case in stellarator geometry. The simulations presented here were done for the

flux tube that crosses the horizontal midplane in the bean-shaped cross section. This

flux tube is expected to be the most unstable one, because of the large unfavourable

curvature in this cross section, and this expectation was confirmed by comparison with

simulations in the other up-down symmetric flux tube of the stellarators in question.

More importantly, the results show that TEMs are more stable the farther the regions

of bad curvature and magnetic trapping are separated from each other [12], and that

the energy flow from the electrons is indeed as predicted by the theory. Figure 7

shows a comparison between the fastest growing modes in DIII-D and W7-X. In these

simulations, the electron and ion temperatures, and their gradients, were taken to be

equal, so there is potential for both ITG modes and TEMs. At zero density gradient,

where ITG modes dominate, the growth rates are similar, but a finite density gradient is

far less destabilising in the stellarator. Not only is the growth rate lower, but the most

unstable mode has a shorter perpendicular wavelength. The traditional quasilinear

estimate for the diffusion coefficient D ∼ γ/k2⊥ thus suggests much lower transport in

the stellarator when the density gradient is large. Strictly speaking, the best estimate is

obtained by maximising γ/k2⊥ over k⊥ rather than by first maximising γ(k⊥) and then

dividing by k2⊥, but these estimates tend, of course, to be correlated to one another.

4 Turbulent transport

This expectation is supported by the first nonlinear GENE simulations with kinetic

electrons in flux-tube geometry. These results have not yet been verified by any other

code, but show interesting differences between the turbulent transport in the two de-

vices. Figure 8 shows the evolution of the heat flux normalised to the gyro-Bohm

value

Qgb =
ρ2i vT ipi
a2

,

where pi = niTi is the ion pressure, vT i = (Ti/mi)
1/2 the thermal speed and ρi = vT i/Ωi

the gyroradius of the ions. The simulations are done with normalised ion temperature

and density gradients of a/LTi = 3 and a/Ln = 1, respectively, and without an electron

temperature gradient. When normalised to the gyro-Bohm value in this way, the heat
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flux density is an order of magnitude smaller in W7-X than in DIII-D. The difference

is even larger if the density gradient is increased and the ion temperature gradient is

suppressed, so that ITG modes are eliminated, as in Fig. 9, where a/LTe = 1 and

a/Ln = 2.
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Figure 8: Turbulent heat flux in flux-tube simulations of DIII-D and W7-X. The gra-

dients are a/Ln = 1, a/LTi = 3, and a/LTe = 0.

It is however too early to draw any conclusions about the overall turbulent trans-

port and confinement properties of stellarators compared with tokamaks. Firstly, these

simulations ignore collisions, the radial electric field and electromagnetic effects, and

are only possible in flux-tube geometry at the moment. Furthermore, they are per-

formed far above the stability threshold and cannot be considered sufficiently realistic.

Secondly, it must be borne in mind that W7-X has a larger surface-to-volume ratio than

DIII-D, which adversely affects the confinement. In a fusion experiment, what counts

in practice is the heating power P and magnetic-field energy W required to achieve

some desired plasma parameters. When comparing two devices, it is thus natural to

scale them to the same volume and field strength to make W the same [1]. In a global

simulation, one could then apply the same heating power to the two devices, run the

simulation for several confinement times, and measure the resulting fusion triple prod-
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uct nTτ . This would be a fair way to compare the confinement of two fusion devices

with different geometry.
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Figure 9: Turbulent heat flux in flux-tube simulations of DIII-D and W7-X. The gradi-

ents are a/Ln = 2, a/LTi = 0, and a/LTe = 1. The DIII-D simulation saturated earlier

and was therefore interrupted.

It is not as straightforward to compare two devices on the basis of a local turbulence

simulation results, such as those of Figs. 8 and 9, but one can proceed as follows. The

total power crossing the flux surface in question is equal to the surface integral

P =

∫

Q · ∇r
|∇r| dS = A 〈Q · ∇r〉 ,

where angular brackets denote the conventional flux-surface average and A = V ′(r) is

the radial derivative of the volume enclosed by the surface. A thus has the dimension

of area, and P is equal to

P = ρ2i vT ipi
AQ̂

a2
,

where Q̂ = 〈Q · ∇r〉 /Qgb is the heat flux density normalised to the gyro-Bohm value.

If the local plasma parameters are assumed to be the same in the two devices, it is clear

that the severity of the turbulent losses is characterised not by Q̂ but by AQ̂/a2. The

dimensionless factor A/a2 is about five times larger larger in W7-X than in DIII-D, so
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Q̂ needs to be at least five times smaller to ensure the same confinement. This is indeed

the case in Figs. 8 and 9. In these particular, very idealised, simulations, the turbulent

transport thus appears to be smaller in W7-X. It should perhaps be remarked that

the heat flux plotted in Figs. 8 and 9 is not the flux-surface-averaged one, but that

across the flux tube used in the simulations, which is the one that intersects the outer

midplane in the bean-shaped cross section of W7-X. Since this flux tube is particularly

unstable linearly, one would expect that it overestimates the transport.

5 Conclusions

Both ITG modes and TEMs are present in gyrokinetic stellarator simulations, but

exhibit interesting differences from their tokamak counterparts. The “bad” magnetic

curvature is very unevenly distributed over each flux surface in a stellarator such as

W7-X, and the flux surfaces are tightly spaced in some regions but far removed from one

another elsewhere. The result is that the density and potential fluctuations associated

with both the linear eigenmodes and saturated turbulence form thin structures along

the magnetic field, whose narrow width appears to affect the transport. However, the

growth rates of ITG modes in W7-X, both with Boltzmann-distributed and kinetic

electrons, appear to be comparable to those in a typical tokamak at similar values

of a/LT , and the difference is even less if the tokamak is chosen to have a similar

connection length between good and bad curvature [13].

Trapped-electron-modes display even greater differences, particularly in stellarators

where the maximum-J condition is approximately satisfied and most trapped orbits

therefore enjoy good average curvature. In such configurations, these electrons precess

poloidally in the direction opposite to that in which drift waves propagate, and there-

fore cannot cause resonant destabilisation of such waves. (This is otherwise how the

collisionless TEM arises.) Moreover, as predicted by the analytical theory, the flow

of electrostatic energy is such that the electrons are mostly stabilising and, indeed,

no traditional TEMs are observed in the simulations. Other instabilities are present,

but these are driven by the ions rather than the electrons. When the density gradient

is large, the maximum growth rate is found to be significantly lower than in typical

tokamaks, and the corresponding wavelength shorter.
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Although it remains to be seen how large the corresponding effect is on the transport

in systematic studies of saturated turbulence, the first nonlinear simulations indicate

that the turbulent transport is significantly lower in W7-X than in a typical tokamak,

when measured in gyro-Bohm units. This difference is partly offset by the greater

surface-to-volume ratio of W7-X. The simulations neglect a range of potentially impor-

tant effects and cannot be considered to be sufficiently realistic, but may nevertheless

be indicative of different turbulence properties in stellarators and tokamaks.

Appendix: Free-energy balance

In the main text, we used the electrostatic energy balance to draw conclusions about

stability. Specifically, the electrons were considered to be stabilizing or destabilizing

depending on whether or not they perform work on the fluctuations. However, it

should also be mentioned that stability can also be analyzed in a different way, using

the entropy (by some authors called the “free energy”) budget of the system [19, 20, 21].

This is done by multiplying the gyrokinetic equation (1) by g∗a/(fa0B) and integrat-

ing over velocity space and along the field line. The first term,
{

ig∗av‖∇ga
fa0

}

= i

∫ ∞

0

πv3dv

fa0

∫

1/Bmin

0

dλ
∑

σ,j

σ

∫

g∗a∇‖ga dl,

where σ = v‖/|v‖| and the sum over j runs over all trapping wells along the field line

[11], then becomes purely real, and the imaginary part of the other terms imply

γ

{

|ga|2
fa0

}

= Im
ea
Ta

{

J0φg
∗
a(ω − ωT∗a)

}

.

Multiplying this equation by Ta, summing over all species, and using the quasineutrality

condition,
∑

a

nae
2
a

Ta
φ =

∑

a

ea

∫

gaJ0d
3v,

gives the following expression for the growth rate,

γ = −Im
∑

a

ea
{

J0φg
∗
aω

T
∗a

}

/

∑

a

{

Ta|ga|2
fa0

− e2afa0|φ|2
Ta

}

, (3)

where the denominator is positive definite since it can be written in terms of the total

perturbed distribution function as

∑

a

{

Ta|ga|2
fa0

− e2afa0|φ|2
Ta

}

=
∑

a

Ta

{

|fa1|2
fa0

}

.
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Hence and from the expression for the entropy density,

−fa ln fa = −fa0 ln fa0 − (1 + ln fa0)fa1 −
f2a1
2fa0

+O(f3a1),

it is clear that Eq. (3) is related to the entropy balance (or, perhaps more accurately,

the Helmholtz free energy) of the system. It is tempting to use this equation to make

statements about the stabilizing or destabilizing effect of various particle species. If

the quantity

Q̃a(ω) = −Im
{

eaJ0φg
∗
aω

T
∗a

}

,

is positive for a particular species, then the latter apparently gives off free energy to

the fluctuations and acts destabilizing in terms of the free-energy budget.

However, for our present purposes this treatment of the stability problem is not

entirely straightforward. One difficulty is that a certain species may be stabilizing in

terms of electrostatic energy but destabilizing in terms of free energy. Another, and

more serious, problem is that the sum of the quantities Q̃a(ω), i.e., the numerator in

Eq. (3) does not, in general, vanish at the point of marginal stability. This circumstance

can be proved generally, but is perhaps more easily seen from a simple example. Let

us consider an instability with ω ≪ k‖vTe in a plasma with ηi = 0, so that

Q̃i(ω) = −Im {eω∗iJ0φg
∗
e} ,

because of quasineutrality. Substituting Eq. (2) in the expression

Q̃i(ω) + Q̃e(ω) = −Im
{

e(ω∗i − ωT∗e)φg
∗
e

}

,

and using Eq. (3) then gives

γ
∑

a

Ta

{

|fa1|2
2fa0

}

=
γe2

Te

{

(ωde − ωT∗e)(ω∗i − ωT∗e)

(ωr − ωde)2 + γ2
|φ|2fe0

}

,

where we have written ω = ωr + iγ. The right-hand side does not vanish as γ → 0,

which implies that the rate of entropy production is finite at the marginal stability

point (if |φ| is finite), because the integral on the left of the equation diverges in this

limit.
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