English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effects of tree identity dominate over tree diversity on the soil microbial community structure

Scheibe, A., Steffens, C., Seven, J., Jacob, A., Hertel, D., Leuschner, C., et al. (2015). Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology and Biochemistry, 81, 219-227. doi:10.1016/j.soilbio.2014.11.020.

Item is

Files

show Files
hide Files
:
BGC2188.pdf (Publisher version), 491KB
 
File Permalink:
-
Name:
BGC2188.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Scheibe, Andrea1, Author           
Steffens, Christina, Author
Seven, Jasmin, Author
Jacob, Andreas, Author
Hertel, Dietrich, Author
Leuschner, Christoph, Author
Gleixner, Gerd1, Author           
Affiliations:
1Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497775              

Content

show
hide
Free keywords: -
 Abstract: This study investigated the possible effects of tree species diversity and identity on the soil microbial community in a species-rich temperate broad-leaved forest. For the first time, we separated the effects of tree identity and tree species diversity on the link between above and belowground communities in a near-natural forest. We established 100 tree clusters consisting of each three tree individuals represented by beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), hornbeam (Carpinus betulus L.), maple (Acer pseudoplatanus L.), or lime (Tilia spec.) at two different sites in the Hainich National Park (Thuringia, Germany). The tree clusters included one, two or three species forming a diversity gradient. We investigated the microbial community structure, using phospholipid fatty acid (PLFA) profiles, in mineral soil samples (0–10 cm) collected in the centre of each cluster. The lowest total PLFA amounts were found in the pure beech clusters (79.0 ± 23.5 nmol g−1 soil dw), the highest PLFA amounts existed in the pure ash clusters (287.3 ± 211.3 nmol g−1 soil dw). Using principle components analyses (PCA) and redundancy analyses (RDA), we found only for the variables ‘relative proportion of beech trees’ and ‘living lime fine root tips associated with ectomycorrhiza’ a significant effect on the PLFA composition. The microbial community structure was mainly determined by abiotic environmental parameters such as soil pH or clay content. The different species richness levels in the clusters did not significantly differ in their total PLFA amounts and their PLFA composition. We observed a tendency that the PLFA profiles of the microbial communities in more tree species-rich clusters were less influenced by individual PLFAs (more homogenous) than those from species-poor clusters. We concluded that tree species identity and site conditions were more important factors determining the soil microbial community structure than tree species diversity per se.

Details

show
hide
Language(s):
 Dates: 2014-11-192014-12-022015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC2188
DOI: 10.1016/j.soilbio.2014.11.020
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Soil Biology and Biochemistry
  Other : Soil Biol. Biochem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam [u.a.] : Elsevier
Pages: - Volume / Issue: 81 Sequence Number: - Start / End Page: 219 - 227 Identifier: ISSN: 0038-0717
CoNE: https://pure.mpg.de/cone/journals/resource/954925445690