
Lorenz gauge gravitational self-force calculations of eccentric binaries using a
frequency domain procedure

Thomas Osburn, Erik Forseth, and Charles R. Evans
Department of Physics and Astronomy,

University of North Carolina,
Chapel Hill, North Carolina 27599, USA

Seth Hopper
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

Am Mühlenberg 1, D-14476 Golm, Germany

We present an algorithm for calculating the metric perturbations and gravitational self-force
for extreme-mass-ratio inspirals (EMRIs) with eccentric orbits. The massive black hole is taken
to be Schwarzschild and metric perturbations are computed in Lorenz gauge. The perturbation
equations are solved as coupled systems of ordinary differential equations in the frequency domain.
Accurate local behavior of the metric is attained through use of the method of extended homogeneous
solutions and mode-sum regularization is used to find the self-force. We focus on calculating the
self-force with sufficient accuracy to ensure its error contributions to the phase in a long term orbital
evolution will be δΦ . 10−2 radians. This requires the orbit-averaged force to have fractional errors
. 10−8 and the oscillatory part of the self-force to have errors . 10−3 (a level frequently easily
exceeded). Our code meets this error requirement in the oscillatory part, extending the reach to
EMRIs with eccentricities of e . 0.8, if augmented by use of fluxes for the orbit-averaged force,
or to eccentricities of e . 0.5 when used as a stand-alone code. Further, we demonstrate accurate
calculations up to orbital separations of a ' 100M , beyond that required for EMRI models and
useful for comparison with post-Newtonian theory. Our principal developments include (1) use of
fully constrained field equations, (2) discovery of analytic solutions for even-parity static modes,
(3) finding a pre-conditioning technique for outer homogeneous solutions, (4) adaptive use of quad-
precision and (5) jump conditions to handle near-static modes, and (6) a hybrid scheme for high
eccentricities.

PACS numbers: 04.25.dg, 04.30.-w, 04.25.Nx, 04.30.Db

I. INTRODUCTION

Merging compact binaries are thought to be a promis-
ing source of gravitational waves that may be found by
ground-based or future space-based detectors. Theoret-
ical models play a role in the experimental efforts, both
in assisting detection and in allowing binary parameter
estimation. Three principal theoretical approaches ex-
ist, numerical relativity [1, 2], post-Newtonian (PN) the-
ory [3], and gravitational self-force (GSF) calculations
[4–6], with the effective-one-body formalism providing a
synthesis of the three [7–9]. The GSF approach is rel-
evant when the binary mass ratio ε is sufficiently small
that the motion and field of the smaller mass can be
treated in a perturbation expansion. In this black hole
perturbation theory, the background field is that of the
heavier stationary black hole and the zeroth-order mo-
tion of the small mass is a geodesic in this background.
Then the perturbation in the metric is calculated to first
order in the mass ratio and the action of the field of the
small body back on its own motion is computed (i.e., the
first-order GSF) [10, 11]. In principle the calculation pro-
ceeds to second order [12, 13] and beyond. Over the past
fifteen years a number of key formal developments have
been established [10, 11, 14–17].

Work on the GSF approach has been motivated in part

by prospects of detecting extreme-mass-ratio inspirals
(EMRIs) using a space-based gravitational wave detec-
tor like LISA or eLISA [18–20]. For a LISA-like detector
with fmin ' 10−4 Hz, an EMRI consists of a small com-
pact object of mass µ ' 1−10M� (neutron star or black
hole) in orbit about a supermassive black hole (SMBH)
of mass M ∼ 105 − 107M�. The mass ratio would lie in
the range ε = µ/M ' 10−7−10−4, small enough to allow
a gradual, adiabatic inspiral and provide a natural appli-
cation of perturbation theory. As the EMRI crosses the
detector passband prior to merger its orbital motion ac-
cumulates a total change in phase of order ε−1 ∼ 104−107

radians.

Less extreme mass ratios may also be important. A
class of intermediate mass black holes (IMBHs) may exist
with masses M ∼ 102−104M�. These are suggested [21]
by observations of ultraluminous X-ray sources and by
theoretical simulations of globular cluster dynamical evo-
lution. Stellar mass black holes or neutron stars spiralling
into IMBHs with masses M ∼ 50 − 350M�, referred to
as intermediate-mass-ratio inspirals (IMRIs), would lie
in the passband of Advanced LIGO and are potentially
promising sources [22, 23]. An IMRI might also result
from binaries composed of an IMBH and a SMBH [23],
which would appear as an eLISA source. While IMRIs
execute fewer total orbits (i.e., ε−1 ∼ 102 − 103) than
EMRIs in making, say, a decade of frequency change,
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the theoretical approach is nearly the same. Detection
of E/IMRIs would represent a strong field test of general
relativity and measurement of the primary’s multipole
structure would confirm or not the presence of a Kerr
black hole [22, 24, 25].

In tandem with the more formal GSF developments
have come a host of practical numerical calculations.
The dominant approach to date takes the small body
to be a point mass [5], computes the metric perturbation
(MP) in the time domain (TD) [26–29] or frequency do-
main (FD) [30–32], and obtains a finite self-force from
the divergent retarded field by mode-sum regularization
[14, 27, 30, 32–37]. Work on the gauge dependent GSF
has benefitted from analogous scalar field models [38–40].
Applications to Kerr EMRIs, both with scalar and grav-
itational self-force, have been made [41–48]. Availability
of analytic mode-sum regularization parameters [49, 50]
has been beneficial. Calculations of perturbations and
the GSF have now been made with very high accuracy,
arbitrary precision arithmetic [51–54], allowing detailed
comparison with PN theory (see also [30, 55]). Finally,
alternative means of calculating the self-force, both effec-
tive source calculations [56–58] and direct Green function
calculations [59–61], are being developed.

This paper reports the development of a method and
computer code for accurately calculating the GSF of
Schwarzschild EMRIs with eccentric orbits. We use a
point mass description for the stress-energy tensor of the
small body and work in Lorenz gauge. Tensor spher-
ical harmonic and Fourier decomposition are used and
the MP amplitudes are computed initially in the FD.
These amplitudes are then transferred to the TD us-
ing a generalization of the method of extended homo-
geneous solutions (EHS) [31, 40] for systems of equations
[32, 34, 37, 62, 63]. The GSF is then calculated using
standard mode-sum regularization. Our code was devel-
oped over the past several years and was reported in a
series of talks at the 15th, 16th, and 17th Capra meet-
ings [63]. A similar effort by a group in Southampton,
initiated earlier [32] but developed in part concurrently
with ours, has been reported in full elsewhere [37].

Our use of Lorenz gauge in the FD and generalization
of EHS is in common with [37]. The FD is used to achieve
high accuracy and the method of EHS circumvents the
Gibbs phenomenon in returning to the TD. We calculate
also the “geodesic self-force,” that is the GSF as a func-
tion of time along an undisturbed geodesic orbit. The
intent is to provide GSF curves at points that densely
cover a region of orbital parameter space (parameterized
by eccentricity e and dimensionless semi-latus rectum p).
As shown in [36] these data can then serve as an inter-
polated input to an osculating orbits evolution code.

Our approach is distinguished, however, in several re-
spects. We devise and use here a fully constrained system
of equations for even parity, as well as use the compara-
ble system [37] for odd parity. We have found and use
a set of analytic solutions for even-parity static modes,
which complement published solutions [64] for odd par-
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FIG. 1. Orbital parameter space, resonances, and regions
with near-static modes. Relativistic definitions of semi-latus
rectum p and eccentricity e are adopted [Eqn. (2.5)]. Dotted
curves indicate, as in [37], a closed orbit with the ratio Ωϕ/Ωr
being a rational number. On any such curve there exists a
static mode ωmn = mΩϕ + nΩr = 0 for indicated m and
n. Within the vicinity of these curves these modes will be
nearly static. For near-static modes with frequencies below
|ω| < 10−4M−1 (shaded region) we use 128-bit floating point
arithmetic for part of the mode calculation. Our calculations
are extended to frequencies as small as |ω| < 10−6M−1, which
exist in regions narrower than the dotted curves.

ity. Particular attention is paid to accurately calculating
near-static modes that occur for certain orbital param-
eters that produce a near resonance between the radial
Ωr and azimuthal Ωϕ orbital frequencies (see Fig. 1).
To compute this subset of modes accurately we resort
to occasional (more expensive) use of 128-bit arithmetic
(i.e., quad precision). This has two effects. Firstly, we
are able to trade some computational speed for more
uniform accuracy across e and p space. Secondly, the
technique significantly expands the region of e and p
space within which the GSF can be computed accu-
rately. For a given l and m mode there will exist a har-
monic n that produces the lowest magnitude frequency,
ωmn = mΩϕ + nΩr. When a mode exists with frequency
at or below |ω| < 10−4M−1 we switch the critical parts
of the computation over to quad precision. Furthermore,
there is an added device that can be used for this single
(l,m, n) mode–we can eliminate part of the integration by
using the jump conditions to normalize the mode. This
procedure increases accuracy and restores some compu-
tational speed. With these techniques we are able to
extend the reach of the code in computing the GSF to
wider orbital separations, out to p . 100, and to higher
eccentricities, reaching as high as e . 0.8 with acceptable
errors when all available techniques are used.

The accuracy criteria we adopt in this paper stem from
envisioned use of computed inspirals and resulting wave-
forms in the matched filtering applications of gravita-
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tional wave detectors. A detector like eLISA [4, 23] would
employ template matching to separate individual sources
and extract physical parameters from events buried in
detector noise. To take full advantage of a signal when
doing parameter matching [22, 24, 25], theoretical wave-
form phases must be sufficiently accurate that they not
contribute dephasing errors and thus degrade available
signal-to-noise ratios [6, 25, 65]. The oscillations within
the gravitational waveform will depend upon the orbital
motion. For Schwarzschild EMRIs there are cumulative
radial Φr = χp(T ) and azimuthal Φϕ = ϕp(T ) orbital
phases (here T ∼ M2/µ is the cumulative time in the
inspiral and see Sec. II A for discussion of eccentric or-
bital motion). For schematic purposes, we simply take
here the radial phase as a proxy for the waveform phase.
Further, we assume that theoretical orbital phase uncer-
tainties should be no larger than δΦr ' 0.01 radians over
a cumulative phase in the inspiral of as much as Φr ∼ 106

(for an EMRI) (see discussion in [6]). Thus the GSF and
inspiral calculation should have fractional errors in the
phase of order 10−8.

The GSF is often split into dissipative and conserva-
tive parts [65]. It is useful to also split the dissipative
part into orbit-averaged and oscillatory parts. The orbit-
averaged, dissipative GSF (i.e., energy and angular mo-
mentum fluxes to infinity and down the horizon) pro-
duces secular changes that drive the adiabatic inspiral.
For a small mass ratio ε the inspiral will schematically
accumulate an orbital phase of

Φr = κ0(e, p, η)
1

ε
+κ1(e, p, η)+κ2(e, p, η) ε+ · · · , (1.1)

where e and p are orbital parameters when the EMRI
enters a detector passband and η is the ratio between
ingress frequency fi and egress (or merger) frequency fe.
The κ’s are dimensionless functions of order unity that do
not depend on ε. We are here assuming a Schwarzschild
E/IMRI and absence of Kerr transient resonances [66].
Also beyond our present concern are the recently recog-
nized effects of resonances in Schwarzschild EMRIs [67],
which appear to come in at order ε (i.e., produce con-
tributions to κ2). The orbit-averaged, dissipative part
of the first-order GSF will determine κ0. The rest of
the first-order GSF, the oscillatory part of the dissipa-
tive piece and the (oscillatory) conservative part, con-
tribute to κ1. This term in Φr is of order unity and
represents the post-1-adiabatic correction [65]. The im-
plications for our work are this: if we require δΦr ' 10−2,
we must compute the orbit-averaged first-order GSF with
fractional errors at or below ε0 ' 10−8 . εδΦr and com-
pute the oscillatory parts with fractional errors of order
ε1 ' 10−3 . δΦr or less. The retarded MPs themselves
must be known even more accurately, since mode-sum
regularization is a numerically subtractive procedure.

Ultimately these contributions to κ1 are necessary but
not sufficient. It has long been understood that κ1 also
depends on the orbit-averaged part of the second-order
GSF [12, 17, 65, 68–70], which our code (and the one

described in [37]) does not calculate. Moreover, there
is expected to be an error in computing κ1 by using
FD methods and the “geodesic” GSF. In curved space,
the real GSF will depend upon the entire past history
of the particle’s motion and the self-consistently evolved
retarded field. In the geodesic approximation there is no
encoding of the prior history of an inspiral. For adia-
batic inspiral the discrepancy is expected to appear at
a relative order of ε (thus in κ1) [71]. It was stressed
in [72] that this discrepancy could be assessed by com-
paring a self-consistent TD self-force calculation with an
osculating orbits evolution using a FD-derived geodesic
self-force. Such calculations are now in progress [73, 74],
pitting a scalar field self-consistent TD evolution against
an osculating orbits inspiral driven by a geodesic scalar
self-force calculation. Preliminary results [75] show small
differences that are (so far) nearly indistinguishable from
errors in the TD evolution.

Achievable GSF accuracy will depend on orbital pa-
rameters, particularly the eccentricity. Theoretical stud-
ies suggest that EMRIs may form via several mecha-
nisms [23]. The standard channel involves weak two-body
relaxation within the nuclear star cluster that scatters
a compact object into a high eccentricity orbit about a
SMBH. It is then captured by the SMBH through suc-
cessive bursts of GW emission near pericenter, a pro-
cess referred to as one-body inspiral [76]. These stars
are captured initially in very high eccentricity orbits,
which then proceed to circularize as the orbit shrinks.
For M ' 3 × 106M�, EMRIs formed in this way will
have a distribution of eccentricities peaked about e ' 0.7
(and a maximum of e ' 0.81) as they enter the eLISA
passband (see [76] and their Figure 4). Because of the
likelihood that EMRIs will have high eccentricities, we
have focused on extending the ability of our code to cal-
culate up to e ' 0.8.

An alternative EMRI formation channel posits that
compact binaries may scatter into high eccentricity orbits
about the SMBH, with the binary being subsequently
tidally disrupted. The dissolution of the binary may then
inject a compact object into orbit, which will typically be
less eccentric, about the SMBH. These EMRIs will subse-
quently have nearly circular orbits by the time they enter
the eLISA passband [23]. As Fig. 1 makes clear, there
is less likelihood of encountering troublesome near-static
modes at low eccentricity, and our code correspondingly
has higher accuracy and speed in these cases.

This paper is organized as follows. In Sec. II we re-
view the formalism for calculating the first-order MPs
and the GSF for bound eccentric orbits on Schwarzschild.
There we establish our notation for bound geodesic mo-
tion, our convention for spherical harmonic decomposi-
tion and definition of MP amplitudes, and give the cou-
pled MP equations in Lorenz gauge. We also show in
Sec. II how the size of these systems of coupled equa-
tions can be reduced, from seven down to four equa-
tions for even parity and from three down to two equa-
tions for odd parity, using the gauge conditions. These
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fully constrained equations are the ones we solve numer-
ically, deriving the remaining MP amplitudes from the
gauge conditions. In Sec. III we outline how we apply
the method of EHS to coupled systems of equations. In
Sec. IV, where the heart of our numerical method is pre-
sented, we provide a roadmap and details on how vari-
ous classes of Fourier-harmonic modes are solved. These
include low-order (l = 0, 1) modes, static modes, and
near-static modes. Particularly worth noting is our new
analytic solution for even-parity static modes (Sec. IV C)
and various procedures for coping with near-static modes
(Secs. IV A & IV B). Sec. V gives our numerical results.
There we compare our computed GSF to values given in
[37] for a particular orbit and provide tables of GSF val-
ues, including estimated digits of accuracy, for a broader
set of orbital parameters (see also App. D). We show how
the GSF errors vary smoothly as we range over orbital pa-
rameter space, while the speed of the algorithm changes
more abruptly as it copes with difficult modes. We also
discuss how flux calculations may be combined with the
computed oscillatory part of the GSF to obtain sufficient
accuracy for high eccentricity orbits in long term orbit
integrations, a subject we expect to return to in a later
paper. Finally, we relegate to App. A some details on
expansions that are used to set accurate boundary condi-
tions on mode functions at large r and near the horizon,
to App. B some details on the expansions from which
analytic solutions are derived for static modes, and to
App. C the form of certain force terms used in the mode-
sum regularization procedure.

Throughout this paper we set c = G = 1 and use
metric signature (−+ ++) and sign conventions of Mis-
ner, Thorne, and Wheeler [77]. Our notation for met-
ric perturbation amplitudes and source terms largely fol-
lows that of Martel and Poisson [78] (see also [31]). In
particular, while general coordinate indices are denoted
by Greek letters α, β, µ, ν, . . ., it is useful to consider a
split of the four-dimensional manifold intoM2 ×S2 and
adopt lowercase Latin letters a, b, c, . . . for indices asso-
ciated with coordinates t and r and capital Latin letters
A,B,C, . . . for the angular coordinates θ and ϕ and as-
sociated indices.

II. FORMALISM

A. Bound orbits on a Schwarzschild background

We consider in this paper generic bound motion of a
point particle of mass µ around a Schwarzschild black
hole of mass M under the assumption that µ/M � 1. We
use Schwarzschild coordinates xµ = (t, r, θ, ϕ), in which
the line element takes the standard form

ds2 = −fdt2 + f−1dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (2.1)

where f(r) = 1− 2M/r.
Let the worldline of the particle be xαp (τ) =

[tp(τ), rp(τ), θp(τ), ϕp(τ)], with proper time τ . In this

paper a subscript p indicates a field evaluated at the lo-
cation of the particle. The four-velocity is uα = dxαp /dτ .
Without loss of generality the motion is confined to the
equatorial plane, θp(τ) = π/2. At zeroth order the mo-
tion is geodesic in the static background and the geodesic
equations yield immediate first integrals. This allows us
to write the four-velocity as

uα =

( E
fp
, ur, 0,

L
r2
p

)
, (2.2)

where E and L are the constant specific energy and spe-
cific angular momentum, respectively. Bound orbits have
E < 1 and require at least L > 2

√
3M for two turning

points to exist. The constraint uαuα = −1 yields an
expression for the radial coordinate velocity

ṙ2
p(t) = f2

p

(
1− U2

p

E2

)
, (2.3)

where

U2
(
r,L2

)
≡ f(r)

(
1 +
L2

r2

)
, (2.4)

and a dot indicates differentiation with respect to coor-
dinate time.

While eccentric orbits on Schwarzschild can be param-
eterized by E and L, alternative pairs of parameters can
be chosen. For example, we can use instead the (dimen-
sionless) semi-latus rectum p and the eccentricity e (see
[34, 79]). A third choice is the pericentric and apocen-
tric radii, rmin and rmax. These various parameters are
related by the following equations

p =
2rmaxrmin

M(rmax + rmin)
, e =

rmax − rmin

rmax + rmin
, (2.5)

rmax =
pM

1− e , rmin =
pM

1 + e
, (2.6)

and

E2 =
(p− 2)2 − 4e2

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
. (2.7)

To avoid a plunging orbit the inner turning point must lie
outside the maximum of the effective potential U2, which
implies another inequality, p > 6+2e. The boundary p =
6 + 2e of these innermost stable orbits is the separatrix
indicated in Fig. 1.

Numerical integration of the trajectory employs an al-
ternate curve parameter, χ, in which the radial position
on the orbit is given a Keplerian-appearing form [80]

rp (χ) =
pM

1 + e cosχ
, (2.8)

where χ differs in general from the true anomaly ϕ. One
radial libration makes a change ∆χ = 2π. The orbital
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equations then take the form

dtp
dχ

=
rp (χ)

2

M(p− 2− 2e cosχ)

[
(p− 2)2 − 4e2

p− 6− 2e cosχ

]1/2

,

dϕp
dχ

=

[
p

p− 6− 2e cosχ

]1/2

, (2.9)

dτp
dχ

=
Mp3/2

(1 + e cosχ)2

[
p− 3− e2

p− 6− 2e cosχ

]1/2

,

with the use of χ removing singularities in the differential
equations at the radial turning points (see [79]). Integrat-
ing the first of these equations provides the fundamental
frequency and period of radial motion,

Ωr ≡
2π

Tr
, Tr ≡

∫ 2π

0

(
dtp
dχ

)
dχ. (2.10)

Integrating the second equation determines the az-
imuthal advance. The average angular frequency dϕp/dt
is found by integrating over a complete radial oscillation

Ωϕ ≡
1

Tr

∫ Tr

0

(
dϕp
dt

)
dt. (2.11)

In general Ωr 6= Ωϕ, except in the Newtonian limit.

B. First-order metric perturbation equations in
Lorenz gauge

The finite mass of the small body induces a first-order
perturbation pµν in the background metric gµν : gµν =
gµν + pµν . Using the trace reverse p̄µν = pµν − 1

2gµνp

(with p = pαβ g
αβ), linearizing the Einstein equations,

and imposing the Lorenz gauge condition

p̄µν|ν = 0, (2.12)

yields the first-order field equations for the MPs

42p̄µν + 2Rα β
µ ν p̄αβ = −16πTµν . (2.13)

Here a stroke |µ (or ∇µ) indicates covariant differentia-
tion with respect to gµν and 42 = gµν∇µ∇ν . Addition-
ally, Rαµβν is the Riemann tensor associated with gµν .
Adopting a point particle description, the stress-energy
tensor in Eqn. (2.13) is

Tµν (xα) = µ

∫
uµuν√−g δ

4
[
xα − xαp (τ)

]
dτ. (2.14)

C. Spherical harmonic decomposition

Our convention for tensor spherical harmonics and no-
tation for MP amplitudes follows that of Martel and Pois-
son [78], a modification of the original notation of Regge
and Wheeler [81]. (An alternative notation is found in

[27, 37, 64].) The convention we use leaves all tensor har-
monics orthogonal and clarifies the distinction between
even-parity and odd-parity amplitudes. Odd-parity per-
turbations are expanded in terms of X lm

A and X lm
AB , while

even-parity perturbations use Y lm, Y lmA , and Y lmAB

pab =
∑
lm

hlmab Y
lm,

paB =
∑
lm

(
jlma Y lmB + hlma X lm

B

)
, (2.15)

pAB =
∑
lm

[
r2(KlmΩABY

lm +GlmY lmAB) + hlm2 X lm
AB

]
.

The stress-energy tensor is also decomposed and follow-
ing [78] has even-parity projections

Qablm = 8π

∫
T abȲ lm dΩ,

Qalm =
8πr2

λ+ 1

∫
T aBȲ lmB dΩ, (2.16)

Q[lm = 8πr2

∫
TABΩABȲ

lm dΩ,

Q]lm =
8πr4

λ(λ+ 1)

∫
TABȲ lmAB dΩ,

and odd-parity projections

P alm =
8πr2

λ+ 1

∫
T aBX̄ lm

B dΩ, (2.17)

Plm =
4πr4

λ(λ+ 1)

∫
TABX̄ lm

AB dΩ.

The overbar here indicates the complex conjugate and
λ ≡ (l+2)(l−1)/2. The sharp (]) and flat ([) superscripts
merely distinguish two distinct scalar projections. These
source terms are given explicitly in Sec. V of [31].

D. Lorenz gauge equations for MP amplitudes

Applying these projections to (2.13) yields coupled sets
of field equations in t and r for the MP amplitudes. Like-
wise (2.12) provides a set of Lorenz gauge conditions on
the amplitudes. Lorenz gauge gives each of the ten field
equations a hyperbolic form, and the principal part of
the wave operator in each equation can be compactly
expressed using the 1+1 dimensional d’Alembertian

2 ≡ −∂2
t + f∂r (f∂r) = −∂2

t + ∂2
r∗ , (2.18)

where r∗ is the tortoise coordinate

r∗ = r + 2M ln
( r

2M
− 1
)
. (2.19)

The seven even-parity and three odd-parity Lorenz
gauge field equations are well-posed hyperbolic systems,
but the Lorenz gauge conditions (three even parity and
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one odd parity) force constraints on the initial condi-
tions. These unconstrained field equations, along with
the Bianchi identities, ensure that the gauge conditions, if
fixed initially, are satisfied subsequently. We present the
unconstrained equations first, and then introduce mod-
ified constrained systems. Equations in this subsection
are in TD form but can be converted to FD form as dis-
cussed in Sec. III A. In what follows all l and m indices

on MP and source amplitudes are suppressed for brevity
unless otherwise noted.

1. Unconstrained Lorenz gauge field equations

The seven even-parity unconstrained Lorenz gauge
equations are

2htt +
2(r − 4M)f

r2
∂rhtt +

4Mf

r2
∂thtr +

2M(3M − 2r)f2

r4
hrr

+
4Mf2

r3
K +

2(M2 − r2f)− 2λr2f

r4
htt = −fQrr − f2Q[ − f3Qtt,

2htr +
2f2

r
∂rhtr +

2Mf

r2
∂thrr +

2M

r2f
∂thtt +

4(λ+ 1)f

r3
jt −

4(M − r)2 + 2λr2f

r4
htr = 2fQtr,

2hrr +
2f

r
∂rhrr +

4M

r2f
∂thtr +

2M(3M − 2r)

r4f2
htt +

4(r − 3M)

r3
K

+
8(λ+ 1)f

r3
jr +

2(r −M)(7M − 3r)− 2λr2f

r4
hrr = Q[ − 1

f
Qrr − fQtt,

2jt −
2Mf

r2
∂rjt +

2Mf

r2
∂tjr +

2f2

r
htr −

2f2 + 2λf

r2
jt = f2Qt,

2jr +
2Mf

r2
∂rjr +

2M

r2f
∂tjt +

2f2

r
hrr −

2f

r
K +

2λf

r
G− 4f2 + 2(λ+ 1)f

r2
jr = −Qr,

2K +
2f2

r
∂rK −

2(3M − r)f2

r3
hrr +

2M

r3
htt −

4(λ+ 1)f2

r3
jr −

4f2 + 2λf

r2
K = Qrr − f2Qtt,

2G+
2f2

r
∂rG+

4f2

r3
jr −

2λf

r2
G = − f

r2
Q].

(2.20)

The three odd-parity parts of the field satisfy a separate unconstrained set of equations in Lorenz gauge

2ht −
2Mf

r2
∂rht +

2Mf

r2
∂thr −

2f2 + 2λf

r2
ht = f2P t,

2hr +
2Mf

r2
∂rhr +

2M

r2f
∂tht +

2λf

r3
h2 +

2(4M − 3r)f − 2λrf

r3
hr = −P r,

2h2 −
2f2

r
∂rh2 +

4f2

r
hr +

2f(r − 4M)− 2λrf

r3
h2 = −2fP.

(2.21)

2. Lorenz gauge conditions

The Lorenz gauge conditions (2.12) separate into even- and odd-parity equations when expanded in spherical
harmonics. For even parity there are three coupled gauge conditions

f∂rhtr −
f

2
∂thrr − ∂tK −

1

2f
∂thtt +

2(r −M)

r2
htr −

2(λ+ 1)

r2
jt = 0,

− 1

f
∂thtr +

f

2
∂rhrr − ∂rK +

1

2f
∂rhtt +

2(r −M)

r2
hrr −

2

r
K − 2(λ+ 1)

r2
jr = 0,

f∂rjr −
1

f
∂tjt −

f

2
hrr +

1

2f
htt +

2(r −M)

r2
jr − λG = 0,

(2.22)

while in odd parity there is just one condition

f∂rhr −
1

f
∂tht +

2(r −M)

r2
hr −

λ

r2
h2 = 0. (2.23)
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3. Fully-constrained field equations

While the unconstrained equations (2.20) and (2.21) might be solved numerically, in practice we have found it more
efficient and accurate to use the gauge conditions (2.22) and (2.23) to produce reduced order systems of constrained
equations. To do this we rewrite the gauge conditions (2.22) and (2.23) as expressions for the four amplitudes jt, jr,
G, and h2. These are used, as necessary, to eliminate their appearance in six of the equations in the sets (2.20) and
(2.21)–specifically those equations with wave operators acting on htt, htr, hrr, K, ht, and hr. These six equations,
four even parity and two odd parity, once modified only reference these remaining amplitudes. Once the constrained
equations are solved, the eliminated fields, jt, jr, G, and h2, are recovered via the gauge conditions.

We find the following system of four constrained even-parity equations

2htt +
2(r − 4M)f

r2
∂rhtt +

4Mf

r2
∂thtr +

2M(3M − 2r)f2

r4
hrr

+
4Mf2

r3
K +

2(M2 − r2f)− 2λr2f

r4
htt = −fQrr − f2Q[ − f3Qtt,

2htr +
4f2

r
∂rhtr +

4M − r
r2f

∂thtt +
(4M − r)f

r2
∂thrr −

2f

r
∂tK +

4M(M − r)− 2λr2f

r4
htr = 2fQtr,

2hrr +
4(r −M)f

r2
∂rhrr +

2

r
∂rhtt −

4f

r
∂rK +

4(3M − r)
r2f

∂thtr +
2M(3M − 2r)

r4f2
htt

+
4(M − r)

r3
K +

2(M − r)2 − 2λr2f

r4
hrr = − 1

f
Qrr +Q[ − fQtt,

2K +
4f2

r
∂rK −

f

r
∂rhtt −

f3

r
∂rhrr +

2f

r
∂thtr +

2M

r3
htt −

2(r +M)f2

r3
hrr −

2λf

r2
K = −f2Qtt +Qrr,

(2.24)

and the following system of two constrained odd-parity equations

2ht −
2Mf

r2
∂rht +

2Mf

r2
∂thr −

2f2 + 2λf

r2
ht = f2P t,

2hr +
2(r −M)f

r2
∂rhr −

2(r − 3M)

r2f
∂tht −

2f2 + 2λf

r2
hr = −P r.

(2.25)

These six equations, supplemented with the gauge conditions (2.22) and (2.23), are satisfied by the MPs in Lorenz
gauge. However, as discussed in Sec. III, to find solutions numerically we cast these equations into the FD, reducing
them to large sets of ordinary differential equations. Furthermore, in certain special cases [i.e., low-order (l = 0, 1)
modes and static (ω = 0) modes] some MP amplitudes cease to be defined or the systems of equations reduce further
in size, or both. Sec. IV discusses these special cases, each of which merits unique numerical treatment.

E. Self-force and mode-sum regularization

Once the Lorenz gauge equations in the preceding section are solved using causal boundary conditions (i.e., outgoing
waves at infinity and downgoing waves at the horizon), the MP amplitudes are used to reassemble the retarded field
pret
µν . The full retarded field is divergent at the location of the point mass, precisely where its action back on the

particle’s motion must be determined. Regularization is required, and the mode-sum regularization (MSR) procedure
of Barack and Ori [14] is commonly used (see e.g., early use [38] with a scalar field and for the GSF in Lorenz gauge
[4, 27, 34]). To discuss MSR it is useful to consider the decomposition discovered by Detweiler and Whiting [15] that
splits the retarded MP within a normal neighborhood of the particle [5] into regular (R) and singular (S) parts

pret
µν = pRµν + pSµν . (2.26)

The singular part has a divergence that captures the singular behavior of the retarded field and satisfies the same
inhomogeneous field equations (2.13), but through design (i.e., appropriate boundary conditions) does not contribute
at all to the self-force. The regular part, in contrast, is a solution to the homogeneous first-order field equations
and is entirely responsible for the self-force. Applying the self-force, the corrected motion can be regarded as forced,
non-geodesic motion in the background spacetime. With the Detweiler and Whiting split, the motion can also be
viewed as geodesic in the corrected metric gµν+pRµν . In either viewpoint the self-force becomes a term in the equations
of motion found from calculating

FαR = µkαβγδp̄Rβγ|δ, (2.27)
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which is evaluated at the particle, xα = xαp (τ). Here the trace-reversed MP is used and the projection operator is

kαβγδ (xp) =
1

2
gαδuβuγ − gαβuγuδ − 1

2
uαuβuγuδ +

1

4
uαgβγuδ +

1

4
gαδgβγ . (2.28)

At this point, kαβγδ is defined only at the particle’s location (though below we discuss broadening its definition so it
can be evaluated off the worldline). Its form ensures orthogonality FαRuα = 0. The same operator may be applied to
pret
µν and pSµν to define the retarded and singular self-forces,

Fαret = µkαβγδ p̄ret
βγ|δ, FαS = µkαβγδ p̄Sβγ|δ, (2.29)

both of which diverge at xα = xαp (τ). Formally, the regular part is formed through the subtraction FαR = Fαret − FαS .
However, since both Fαret and FαS are infinite at the location of interest, a straightforward subtraction is not possible.

The central idea of MSR is to decompose the components of Fαret and FαS into sums over scalar multipole modes

Fαl
′

ret and Fαl
′

S , with every mode being finite at the location of the particle. (We use l′ and m′ to distinguish from the
l and m of our tensor spherical harmonic decomposition.) Then the subtraction can be made mode by mode. There
is a subtlety in the decomposition, however, since the operator kαβγδ (and therefore the self-force) is only defined at
this stage at the location of the particle. To generate a spherical harmonic decomposition we must choose a way to
extend kαβγδ off of the worldline. Following Ref. [34] we define kαβγδ(x;xp) at field point x, when the particle is at
xp, to have the value given from Eqn. (2.28) with gµν evaluated at x and uα evaluated at xp. Later, in Eqn. (2.33),
when we re-expand our tensor harmonics as sums of scalar harmonics, this choice ensures a finite coupling of l modes
for each l′.

The mode-sum expansion for FαS can written in the form

FαS =

∞∑
l′=0

[(
l′ +

1

2

)
Fα[−1] + Fα[0] +

Fα[2](
l′ − 1

2

) (
l′ + 3

2

) +
Fα[4](

l′ − 3
2

) (
l′ − 1

2

) (
l′ + 3

2

) (
l′ + 5

2

) + · · ·
]
, (2.30)

where the coefficients Fα[−1], F
α
[0], F

α
[2], . . . are the l′-independent regularization parameters (RPs), which depend only

upon position in the eccentric orbit. (We use the notation of Heffernan et al. [49] for the RPs.) Then, the mode-sum
formula

FαR =

∞∑
l′=0

[
Fαl

′
ret −

(
l′ +

1

2

)
Fα[−1] − Fα[0] −

Fα[2](
l′ − 1

2

) (
l′ + 3

2

) − Fα[4](
l′ − 3

2

) (
l′ − 1

2

) (
l′ + 3

2

) (
l′ + 5

2

) − · · ·], (2.31)

determines the regularized self-force. The first two RPs, Fα[−1] and Fα[0], for the GSF on a Schwarzschild background

were originally given by Barack et al. [82]. Indeed, only these first two parameters are needed to obtain convergence.
From the structure of the l′-dependent denominator terms, all of the succeeding terms each converge to zero as l′ →∞.
However, since the series with only Fα[−1] and Fα[0] converges slowly (∼ 1/l′max), higher-order RPs are important for

hastening convergence when the sum is truncated at some finite l′max. Heffernan et al. [49] have calculated the higher-
order coefficients Fα[2] and Fα[4] for the GSF, and their use (along with numerically fitting to even higher order) greatly

improves convergence.
As described above, MSR requires an expansion of the full retarded self-force Fαret as a sum over scalar spherical

harmonic modes Fαl
′

ret . In contrast, our Lorenz gauge calculation yields a set of MP amplitudes for each l and m in a
tensor spherical harmonic expansion. The former can be derived from the latter by re-expanding each tensor spherical
harmonic in our expression for Fαret as a sum of scalar spherical harmonics. To that end, we take the definition of
kαβγδ(x, xp) given above, along with the tensor spherical harmonic expansion of the retarded MP given in Eqn. (2.15),
and substitute in Eqn. (2.29). Taking the limit r → rp(t) while maintaining θ and ϕ dependence leaves [34]

[Fαret(t, rp(t), θ, ϕ)]± =
µ

r2
p

∞∑
l=0

l∑
m=−l

[
fαlm0 Y lm + fαlm1 sin2 θ Y lm + fαlm2 sin θ cos θ Y lm,θ

+ fαlm3 sin2 θ Y lm,θθ + fαlm4

(
cos θ Y lm − sin θ Y lm,θ

)
+ fαlm5 sin θ Y lm,θ + fαlm6 sin3 θ Y lm,θ + fαlm7 sin2 θ cos θ Y lm,θθ

]
±
, (2.32)

where a comma indicates a partial derivative. The vectors fαlm0 . . . fαlm7 are functions of the MP amplitudes and
their first t and r derivatives. Our tensor harmonic decomposition of the MP differs from [34] and so we provide the
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detailed form of these functions in Appendix C. The MP amplitudes are O(µ), which makes the GSF of order O(µ2).
Each of the functions fαlm0 . . . fαlm7 , as well as Fαret, takes on a pair of values (±) since the limit r → rp(t) can be
applied from the outside or inside of the particle radius rp(t). Differing limits on the two sides also appear in the RP
Fα[−1] and therefore in FαS . The regularized GSF itself, is single-valued though.

Finally, we obtain Fαl
′

ret by expanding the θ-dependent terms in (2.32) as sums of scalar spherical harmonics. This
yields the following expression

[
Fαl

′
ret

]
±

=
µ

r2
p

l′∑
m=−l′

Y l
′m
[
Fαl

′−3,m
(−3) + Fαl

′−2,m
(−2) + Fαl

′−1,m
(−1) + Fαl

′,m
(0) + Fαl

′+1,m
(+1) + Fαl

′+2,m
(+2) + Fαl

′+3,m
(+3)

]
±
. (2.33)

The functions Fαl,m(j) , given in [34], are found to each be a linear combination of the fαlmn of the same l and m.

Accordingly, a given l′ term used in the MSR formula couples only to tensor spherical harmonic amplitudes in the
range l′ − 3 ≤ l ≤ l′ + 3.

F. Conservative and dissipative parts of the self-force and first-order changes in orbital constants

The procedure described in the previous subsection takes the retarded field and produces the regular (R) force (i.e.,
the self-force). To make the notation clear we can write this retarded self-force as FαR,ret. It is also conceivable to

calculate the advanced self-force FαR,adv, which is obtained by precisely the same procedure except in replacing p̄ret
µν

with p̄adv
µν . The singular field FαS is time symmetric, so the RPs are unaffected in swapping ‘ret’ for ‘adv’. Hinderer and

Flanagan [65] show that it is convenient to split the retarded and advanced self-force into conservative and dissipative
parts

FαR,ret = Fαcons + Fαdiss, FαR,adv = Fαcons − Fαdiss, (2.34)

where

Fαcons =
1

2

(
FαR,ret + FαR,adv

)
, Fαdiss =

1

2

(
FαR,ret − FαR,adv

)
. (2.35)

See also [83]. Furthermore, because of the symmetry, the conservative part actually requires regularization

Fαcons =

∞∑
l′=0

[
1

2

(
Fαl

′
ret + Fαl

′
adv

)
− Fαl′S

]
, (2.36)

while the dissipative part does not

Fαdiss =
1

2

∞∑
l′=0

(
Fαl

′
ret − Fαl

′
adv

)
. (2.37)

Conveniently, for geodesic motion on Schwarzschild the advanced self-force can be obtained from the retarded self-force
using time reversal and symmetry

FαR,adv(τ) = ε(α) F
α
R,ret(−τ), (2.38)

where τ = 0 corresponds to periastron passage and the Schwarzschild components change sign or not according to
ε(α) = (−1, 1, 1,−1), with no implied sum in the equation above.

The self-force produces changes in the orbital constants E = −ut and L = uϕ. Using the first-order equations of
motion

µ
Duα
Dτ

= gαβF
β
R, (2.39)

the t component F tR provides a rate of work and the ϕ component FϕR gives a torque such that

Ė =
fp
µut

F tR, L̇ =
r2
p

µut
FϕR , (2.40)
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where dot refers to derivative with respect to Schwarzschild time t. While the first-order GSF determines the leading
order, adiabatic motion and contributes terms to the post-1-adiabatic corrections [65], the leading-order adiabatic
changes require only the orbit-averaged part of the dissipative GSF

〈Ė〉 =
1

Tr

∫ Tr

0

fp
µut

F tdiss dt, 〈L̇〉 =
1

Tr

∫ Tr

0

r2
p

µut
Fϕdiss dt. (2.41)

For the geodesic GSF, the first-order rate of work and torque are balanced by the energy and angular momentum
fluxes (each averaged over the orbital period and summed over two-surfaces near infinity and the horizon) calculated
from the first-order MP (see Sec. V B).

III. FREQUENCY DOMAIN TECHNIQUES FOR SOLVING COUPLED SYSTEMS

Rather than solve directly the TD Lorenz gauge equations of Sec. II D, we use FD techniques for their speed and
accuracy. Accuracy requirements were discussed in the Introduction and these are attained in the FD through solution
of ordinary differential equations (ODEs). The TD alternative [34], solving 1+1 dimensional partial differential
equations for each l,m, has the compensating advantage of allowing the GSF to be applied self-consistently [72].
The specific equations we solve are the FD version of the fully-constrained field equations (2.24) and (2.25) and the

gauge conditions (2.22) and (2.23), obtained by taking ∂t → −iω and replacing amplitudes, e.g., htt(t, r) → h̃tt(r).
Subsequently the solution is returned to the TD, whence the GSF can be calculated. The Fourier synthesis uses the
method of EHS [40], which circumvents the Gibbs phenomenon encountered with a distributional source.

Below we set the notation for the Fourier transform, give a matrix notation for the coupled sets of FD ODEs, and
discuss independent bases of homogeneous solutions that appear at leading order asymptotically. We then discuss the
use of variation of parameters and how EHS is broadened to encompass systems of ODEs.

A. Fourier decomposition

As explained in Sec. II A, two fundamental frequencies, Ωr and Ωϕ, exist in the eccentric-orbit Schwarzschild E/IMRI
problem. In the frame that rotates at the mean azimuthal rate (ϕ′ = ϕ − Ωϕt) the MP appears non-sinusoidal but
periodic in t. It can be represented in a Fourier series in harmonics nΩr. In the inertial frame, the phase of each
multipole with m 6= 0 advances linearly, giving the Fourier-harmonic modes a spectrum

ω ≡ ωmn = mΩϕ + nΩr. (3.1)

Each MP and source amplitude is replaced by a Fourier series (with a tilde denoting a FD amplitude). For a generic
amplitude Xlm (not to be confused with the tensor harmonics X lm

A and X lm
AB) we have

X̃lmn(r) =
1

Tr

∫ Tr

0

Xlm(t, r)eiωmnt dt, Xlm(t, r) =

∞∑
n=−∞

X̃lmn(r)e−iωmnt (3.2)

Henceforth, not only will indices l and m be suppressed but so will n on FD objects (unless otherwise noted).

B. Matrix notation for coupled ODE systems

It is convenient to place the coupled FD equations in matrix form. For even and odd parities, respectively, the
fields appearing in the constrained systems are assembled into the vectors

Ẽ(r) = r


h̃tt

fh̃tr

f2h̃rr

K̃

 , B̃(r) =

[
h̃t

fh̃r

]
. (3.3)

With this notation the even- and odd-parity FD equations are compactly expressed in matrix form

Ẽ ′′ + A Ẽ ′ + B Ẽ = Ũ , B̃′′ + C B̃′ + D B̃ = Ṽ , (3.4)
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with prime indicating differentiation with respect to tortoise coordinate r∗ and where the solution vectors and source
vectors have dimension k = 4 or k = 2 for even or odd parity, respectively. In the general case the matrices that
couple the amplitudes and their first derivatives are

A =
1

r2


−4M 0 0 0

0 2(r − 4M) 0 0

2rf 0 2(r − 4M) −4rf2

−r 0 −r 2rf

 ,

B =

(
ω2 − 2(λ+ 1)f

r2

)
I +

1

r4


2M(r −M) −4iωMr2 −2M(2r − 3M) 4Mrf2

iωr2(r − 4M) −2fMr iωr2(r − 4M) 2iωr3f2

−2(r −M)2 4iωr2(r − 3M) 2(r2 − 3Mr + 3M2) −4Mrf2

r2 −2iωr3 −r2 2fMr

 ,
(3.5)

C =
2

r2

[
−M 0

0 r − 3M

]
, D =

(
ω2 − 2f2 + 2λf

r2

)
I +

2iω

r2

[
0 −M

r − 3M 0

]
. (3.6)

where the I’s are relevant-sized identity matrices (k × k = 4× 4 or 2× 2). The source vectors are

Ũ = r


−fQ̃rr − f2Q̃[ − f3Q̃tt

2f2Q̃tr

−fQ̃rr + f2Q̃[ − f3Q̃tt

Q̃rr − f2Q̃tt

 , Ṽ =

[
f2P̃ t

−fP̃ r

]
. (3.7)

In certain special cases (low-order modes or static modes) some components of the vectors Ẽ and B̃ identically vanish,
effectively reducing the order of the system, with concomitant reduction in the source components and elements of
A, . . . ,D. These special cases are detailed in Sec. IV.

C. Linearly independent sets of homogeneous solutions

The constrained even-parity equations are a set of four, coupled, second-order ODEs. As such they have eight

linearly independent homogeneous solutions. We divide these into four solutions Ẽ+

i (with i = 0, 1, 2, 3) that have

causal, running-wave dependence eiωr∗ at r∗ = +∞ and four solutions Ẽ−i that are downgoing, e−iωr∗ , at the horizon
(r∗ = −∞). For odd parity, where the system is a set of two, coupled, second-order ODEs, there are four linearly

independent homogeneous solutions. In parallel we denote these by B̃±i with i = 0, 1. A complete basis of linearly
independent homogeneous solutions is of dimension 2k.

Upon examining the asymptotic limits of Eqn. (3.4) as r∗ → ±∞, we find the following is one possible representation
of the leading-order behavior of the even-parity homogeneous solutions(

Ẽ−0
)>
∼ (1, 1, 1, 0) e−iωr∗ ,

(
Ẽ+

0

)>
∼ (1, 0,−1, 0) eiωr∗ ,(

Ẽ−1
)>
∼
(
1, 0,−1,−2(1− 4iωM)−1

)
fe−iωr∗ ,

(
Ẽ+

1

)>
∼ (0, 1,−2, 0) eiωr∗ , (3.8)(

Ẽ−2
)>
∼ (1,−1, 1, 1) f2e−iωr∗ ,

(
Ẽ+

2

)>
∼ (0, 1,−2, 1) r−1eiωr∗ ,(

Ẽ−3
)>
∼ (0, 0, 0, 1) e−iωr∗ ,

(
Ẽ+

3

)>
∼ (0, 0,−2, 1) r−2eiωr∗ ,

where > indicates transpose. We note that, while these vectors are linearly independent, the MP amplitudes (compo-
nents) do not decouple asymptotically. Likewise the asymptotic limits of the odd-parity equations allow the following
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representation of the leading-order behavior of odd-parity homogeneous solutions(
B̃−0
)>
∼ (1, 1) e−iωr∗ ,

(
B̃+

0

)>
∼ (1,−1) eiωr∗ , (3.9)(

B̃−1
)>
∼ (1,−1) fe−iωr∗ ,

(
B̃+

1

)>
∼ (0, 1) r−1eiωr∗ .

Here again, while the odd-parity vectors are linearly independent, the MP amplitudes are still mixed between them
asymptotically.

The limiting behavior for Ẽ±i and B̃±i displayed in (3.8) and (3.9) is merely one possible choice and we refer to these
as the simple bases. It is however clearly possible to introduce linear transformations on these sets of eight and four
homogeneous solutions, and we describe in Sec. IV A clear advantages in doing so at least for the even- and odd-parity
bases on the near-infinity side.

D. Variation of parameters and extended homogeneous solutions for coupled systems

With the assumption that sets of homogeneous solutions Ẽ±i and B̃±i have been obtained by integrating Eqns. (3.4)
(subject to the boundary conditions of the previous section or other equivalently-independent ones), it is straightfor-
ward to construct solutions to the inhomogeneous equations using variation of parameters. Introducing a set of 2k
variable coefficients c±i (r) that multiply the homogeneous basis elements, the particular solutions are assumed to have
the forms

Ẽ(r) =

3∑
i=0

(
Ẽ−i ce,−i (r) + Ẽ+

i c
e,+
i (r)

)
, B̃(r) =

1∑
i=0

(
B̃−i co,−i (r) + B̃+

i c
o,+
i (r)

)
. (3.10)

Variation of parameters then assumes that the first derivative of (3.10) also depends only on the coefficients c±i (r),
and not their derivatives, by placing a set of k conditions on ∂r∗c

±
i (r). Differentiating again and substituting into

Eqns. (3.4) yields a second set of k conditions on ∂r∗c
±
i (r). Taken together these conditions form a linear system

with a 2k × 2k matrix M, formed from the homogeneous basis elements and their first derivative, that acts on the
vector made up of the first derivative of the coefficients c±i (r). The matrix M is the Wronksian matrix. In odd parity
(k = 2) these equations have the form

M


∂r∗c

o,−
0

∂r∗c
o,−
1

∂r∗c
o,+
0

∂r∗c
o,+
1

 =

[
B̃−0 B̃−1 B̃+

0 B̃+

1

∂r∗B̃
−
0 ∂r∗B̃

−
1 ∂r∗B̃

+

0 ∂r∗B̃
+

1

]
∂r∗c

o,−
0

∂r∗c
o,−
1

∂r∗c
o,+
0

∂r∗c
o,+
1

 =

[
0

Ṽ

]
, (3.11)

where bold entries are 2× 1 column vectors.
The normalization functions are then found by matrix inversion followed by integration over the source region

c
e/o,+
i (r) =

∫ r

rmin

1

f

W
e/o,+
i

W e/o
dr′, c

e/o,−
i (r) = −

∫ rmax

r

1

f

W
e/o,−
i

W e/o
dr′. (3.12)

In these integrals W e/o is the determinant of the Wronskian matrix (even or odd parity). The determinants W
e/o,±
i

are formed by replacing the column in the Wronskian corresponding to the ith homogeneous solution with the column

vector
(
0, Ũ)> or

(
0, Ṽ)> (even or odd parity) in accordance with Cramer’s rule. Again, for odd parity, the Wronskian

and one of the modified Wronskians are

W o =

∣∣∣∣∣ B̃−0 B̃−1 B̃+

0 B̃+

1

∂r∗B̃
−
0 ∂r∗B̃

−
1 ∂r∗B̃

+

0 ∂r∗B̃
+

1

∣∣∣∣∣ , W o,−
0 =

∣∣∣∣∣ 0 B̃−1 B̃+

0 B̃+

1

Ṽ ∂r∗B̃
−
1 ∂r∗B̃

+

0 ∂r∗B̃
+

1

∣∣∣∣∣ . (3.13)

Thus, both W o and W o,−
0 are determinants of 4 × 4 matrices. In even parity the matrices are 8 × 8 and in special

cases other matrix ranks occur. In this section we have sketched using Cramer’s rule for the matrix inversion merely
to provide a compact discussion. In reality we use LU decomposition in the code to provide the numerical inversion.
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Once the normalization functions c
e/o,±
i (r) are known, the particular solutions (3.10) can be computed. However,

since the source in the TD problem is distributional, this standard procedure is fraught with the appearance of Gibbs
behavior in the MP (and GSF) upon returning to the TD. Its use is now supplanted by the method of EHS, though
the EHS method uses key parts of the standard-approach machinery.

Barack, Ori, and Sago [40] developed the EHS method and applied it in computing the scalar field of a charge in
eccentric orbit about a Schwarzschild black hole. Subsequently, Hopper and Evans [31] employed EHS to compute the
MPs of a small mass in eccentric orbit on Schwarzschild in the Regge-Wheeler-Zerilli formalism. EHS was also used
[34, 62] to compute the low-order (l = 0, 1) modes in Lorenz gauge, which marked its first use for a coupled system.
EHS then found use in modeling the scalar self-force on a particle in eccentric equatorial orbit on a Kerr black hole
[84]. In addition, a variant called the method of extended particular solutions was developed [85] that is useful for
certain problems with non-compact source terms. It was employed to compute the gauge vector that generates the
odd-parity transformation of the MP from Regge-Wheeler to Lorenz gauge.

Our application of EHS to general MPs in Lorenz gauge for eccentric orbital motion on Schwarzschild was developed
contemporaneously with Akcay, Warburton, and Barack (see talks at the 2012 Capra meeting [63, 86, 87]). Their
code was applied [36] to long term inspiral and their full method has been published [37].

EHS uses the matrix inversion and integration involved in computing the normalization functions, but extends the
integration over the entire source region to obtain a set of complex constants. In practice, the integration is done
with respect to χ

C
e/o,±
i = ±

∫ π

0

1

f(rp(χ))

W
e/o,±
i (rp(χ))

W e/o(rp(χ))

drp
dχ

dχ, (3.14)

providing better numerical behavior at the turning points. These constants are used to normalize the basis vectors
and to assemble specific linear combinations, referred to as FD extended homogeneous solutions. They are smooth
functions everywhere outside the horizon (r > 2M),

Ẽ±(r) =

3∑
i=0

Ce,±i Ẽ±i , B̃±(r) =

1∑
i=0

Co,±i B̃±i . (3.15)

Using these functions, exponentially-convergent Fourier sums then provide the TD extended homogeneous solutions

E±(t, r) =

∞∑
n=−∞

Ẽ±(r) e−iωt, B±(t, r) =

∞∑
n=−∞

B̃±(r) e−iωt, (3.16)

which likewise hold for all r > 2M and are smooth in r and t. The solutions to Eqn. (2.24) and (2.25) then follow by
abutting the + and − TD EHS at the location of the particle,

E(t, r) = E+θ [r − rp(t)] + E−θ [rp(t)− r] , B(t, r) = B+θ [r − rp(t)] + B−θ [rp(t)− r] . (3.17)

In Lorenz gauge all of the MP amplitudes are C0 at r = rp(t). The discontinuity in the derivative is encoded by

the presence of the θ functions. While the Lorenz gauge MP amplitudes must analytically satisfy E+(t, rp(t)) =

E−(t, rp(t)) and B+(t, rp(t)) = B−(t, rp(t)), the degree to which this equality is satisfied numerically is a measure of
convergence.

IV. NUMERICAL ALGORITHM

In this section we provide details on our numerical algorithm. For a geodesic given by p and e, we seek to compute
to sufficient accuracy the MP and the GSF, FαR , as functions of time around the orbit. We first itemize the principal
steps and then follow with detailed discussion on some aspects of the procedure.

1. Orbital parameters: For a given p and e, integrate the orbit equations to find the period of radial motion Tr,
and fundamental frequencies Ωr and Ωϕ. Determine also E , L, rmin, and rmax (Sec. II A).

2. Mode characterization: Fourier-harmonic modes divide into classes according to l,m, n. Low-multipole modes
l = 0, 1 are handled separately from l ≥ 2 radiative modes. We further divide modes into static (m = n = 0),
near-static (0 < |ωM | < 10−4), or general cases. See Table I for overlapping breakdown of modes.
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TABLE I. Classification of FD modes as functions of lmω. Most modes (i.e., general case) are found by solving the complete
fully-constrained systems (2.24) and (2.25) and deriving the remaining fields using the gauge conditions (2.22) and (2.23).
Special cases include static, near-static, and low-multipole (l = 0, 1) modes. For static and low-multipole modes the system
size reduces and some MP amplitudes identically vanish. Special cases are discussed in separate sections as noted.

l Parity Frequency No. Field Eqns. No. Constrs. Variables in Reduced Eqns. Variables from Constrs. Section

l ≥ 2

Even

General 7 3 h̃tt, h̃tr, h̃rr, K̃ j̃t, j̃r, G̃ IV A

Near-static 7 3 h̃tt, h̃tr, h̃rr, K̃ j̃t, j̃r, G̃ IV B

Static 5 2 h̃tt, h̃rr, K̃ j̃r, G̃ IV C

Odd

General 3 1 h̃t, h̃r h̃2 IV A

Near-static 3 1 h̃t, h̃r h̃2 IV B

Static 1 0 h̃t - IV C

l = 1

Even
General 6 3 h̃tt, h̃tr, h̃rr, K̃ j̃t, j̃r IV A

Near-static 6 3 h̃tt, h̃tr, h̃rr, K̃ j̃t, j̃r IV B

Odd
General 2 1 h̃t, h̃r - IV A

Static 1 0 h̃t - IV D

l = 0 Even
General 4 2 h̃tt, h̃tr, h̃rr, K̃ - IV A

Static 3 1 h̃tt, h̃rr, K̃ - IV D

3. Linearly independent, causal homogeneous bases: For every l,m, n mode find or compute a complete set of
2k independent homogeneous solutions. In general, the solution process begins with providing causal initial
conditions at the boundaries using Taylor series or asymptotic expansions (App. A) and performing numerical
ODE integrations (Sec. III C) into the source region. On the horizon side, boundary conditions are set at
r∗ = −6M and sufficient Taylor expansion terms are included to reach a fractional error of ∼ 10−15. At
large radius, the starting location depends on mode and frequency. Large enough starting radius is taken
and short integrations are used to confirm the asymptotic expansions have errors of order 10−14. All of the
homogeneous solutions are then integrated to r∗ = rmin

∗ (i.e. the value of r∗ when r = rmin). Orthogonality of
the initial vectors is carefully considered to minimize ill-conditioning of matrix inversion (Sec. IV A). For near-
static (0 < |ωM | < 10−4) modes we employ special techniques to overcome strong ill-conditioning (Secs. IV A,
IV B). Static (zero frequency) modes have exact analytic homogeneous solutions (Sec. IV C). The systems of
equations change character or reduce in size for low-multipole modes (Sec. IV D).

4. FD extended homogeneous solutions: For each l,m, n the homogeneous solutions are integrated over the source
from rmin to rmax to find normalization constants and the linear combinations that represent the FD EHS
(Sec. III D). Again, for near-static (0 < |ωM | < 10−4) modes we employ special techniques to overcome strong
ill-conditioning (Sec. IV B). Special consideration occurs again for low-multipole modes.

5. TD extended homogeneous solutions: For every l,m construct the TD EHS (Sec. III D) by summing over sufficient
positive and negative n until the Fourier series on each side converge to a relative error of ∼ 10−10. Not only
can convergence of the EHS on each side of rp(t) be monitored, but each l,m mode should approach becoming
C0 and the derivative in r at the particle should satisfy a jump condition.

6. Assemble l′ contributions to Fαl
′

ret : Compute force terms fαlmn (App. C) and linear combinations Fαl,m(j) (Sec. II E)

and sum over m for each l mode. Only m ≥ 0 modes need be computed, since m < 0 are determined by
crossing relations on the spherical harmonics. Assemble the l′ part of the retarded force by combining l for
l′ − 3 ≤ l ≤ l′ + 3.

7. Apply MSR to obtain GSF: Sum over l′ in the MSR formula until the GSF converges to a prescribed tolerance
or minimum error (Sec. II E). In the process we use available analytically-calculated regularization parameters
Fα[−1], F

α
[0], F

α
[2], and Fα[4] and least-squares fit for Fα[6] and Fα[8] using the last seven l′ modes. We find that

the error (by comparing the regularized self-force on the two sides of the particle) minimizes for l′max ' 13 for
low eccentricities and several modes lower for high eccentricity. A required l′max implies that we must compute
tensor spherical harmonic modes up to lmax = l′max + 3.



15

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
102

-80 -70 -60 -50 -40 -30 -20 -10 0

B− 0
R
el
at
iv
e
er
ro
r

rH∗ /M

10−16e−rH∗ /(2M)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
102

-40 -35 -30 -25 -20 -15 -10 -5 0

E− 0
R
el
at
iv
e
er
ro
r

rH∗ /M

10−16e−rH∗ /M

FIG. 2. Subdominance instability and growth of roundoff errors with starting location. We demonstrate the effects of a
subdominance instability by comparing results of numerical integrations begun at different initial radii rH∗ near the horizon
and ending at r∗ = 10M . The chosen modes have l = 2 and Mω = 1 (odd parity on the left; even parity on the right). The
fiducial, accurate solution is obtained from a high-order Taylor expansion, with sufficient terms that residuals are at or below
roundoff even at a radius of rH∗ = 0. Using the Taylor expansion at any −6M < rH∗ < 0 to begin an integration that then
ends at r∗ = 10M gives results that are consistent with each other. However, as smaller initial radii are chosen (rH∗ < −10M),
exponentially greater errors are found in comparing at r∗ = 10M the integrated mode and the fiducial Taylor expansion. We
avoid the instability by beginning all integrations at rH∗ = −6M with initial conditions from the high-order Taylor expansion.

A. General modes

We first consider the general case, encompassing all modes with l ≥ 2 that are neither static nor near-static. The
expressions (3.8) and (3.9) provide leading-order behavior for the MP amplitudes as r∗ → ±∞. In practice boundary
conditions are set at finite radii and require expansions with numerous terms beyond just this leading order. Appendix
A provides details on the asymptotic (r∗ → +∞) and Taylor (r∗ → −∞) expansions that are used to set accurate
boundary conditions as close to the source region as possible. Unique numerical issues are encountered on both the
near-horizon and near-infinity sides.

1. Boundary conditions near the horizon and subdominance instability

On the near-horizon side, using the simple bases of (3.8) and (3.9) at large negative r∗ is found to generate a
subdominance instability. There is an undesired, acausal (up-going) homogeneous solution that can be excited by
roundoff errors in the numerical boundary condition that grows exponentially relative to a desired (subdominant)
causal solution. Fig. 2 shows the effect of starting the integration at various initial rH∗ and integrating to r∗ = 10M .
Setting the boundary at rH∗ < −10M generates substantial growth of this acausal mode. We now explain briefly why
this occurs. We use odd parity as the example, with even parity following a similar analysis.

A complete set of odd-parity independent homogeneous solutions at the event horizon has leading behavior(
B̃−0
)>
∼ (1, 1) e−iωr∗ ,

(
B̃−2
)>
∼ (1, 1) fe+iωr∗ ,(

B̃−1
)>
∼ (1,−1) fe−iωr∗ ,

(
B̃−3
)>
∼ (1,−1) e+iωr∗ .

(4.1)

B̃−0 and B̃−1 are the desired causal solutions of Eqn. (3.9), representing downgoing modes, while B̃−2 and B̃−3 are

acausal, representing radiation coming up from the black hole. When we attempt to set boundary conditions for B̃−0
and B̃−1 , the inherent limitations of our double precision routines produce instead numerical superpositions

B̃−,N0 = B̃−0 + α1B̃
−
1 + α2B̃

−
2 + α3B̃

−
3 , B̃−,N1 = B̃−1 + β0B̃

−
0 + β2B̃

−
2 + β3B̃

−
3 , (4.2)
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where all the terms αnB̃
−
n and βnB̃

−
n are of order ∼ 10−16 (roundoff) times the desired dependence. We must be

concerned with any of these roundoff terms that are acausal and grow relative to the causal terms as we integrate

from our starting location, rH∗ . Near the horizon f ∼ er∗/2M , meaning α2B̃
−
2 , an acausal contribution to B̃−,N0 , has

precisely this exponential growth relative to B̃−0 . This prediction is confirmed numerically, as shown in the left panel

of Fig. 2. On the other hand, B̃−1 itself grows like er∗/2M , and we see none of the other roundoff terms grow relative
to it. As such, this solution does not display a subdominance instability.

In the case of even parity, the worst acausal mode has an f2 radial dependence. Accordingly, its relative growth is
even worse, i.e. ∼ er∗/M . This is shown in the right panel of Fig. 2. The figure merely demonstrates the instability.
In practice, we simply set the boundary condition at rH∗ = −6M using Taylor series with sufficient terms to reach
roundoff. The details of those Taylor series are found in Appendix A. We note finally that it is not inconceivable that
the instability we discuss here is a result of the particular set of MP variables, and therefore the form of the Lorenz
gauge equations, that we chose to use.

2. Boundary conditions at large radius and thin-QR pre-conditioning

On the near-infinity side the expansions are asymptotic and require a large starting radius r∞∗ , with the radius being
roughly inversely related to mode frequency ω. In what follows, we use the odd-parity equations as an example. Even

parity follows similar analysis. After long inward integration to rmin
∗ the outer solutions B̃+

i can be combined with

the inner solutions B̃−i to form the Wronskian matrix M [see Eqn. (3.11)]. Unfortunately, especially at low frequency,
we find the Wronskian matrix to be typically ill-conditioned. Generally one can define a condition number of the
matrix as κ(M) = |λmax/λmin|, where λmax and λmin are the maximal and minimal eigenvalues of M. Alternatively
and conveniently, we may define it as κ(M) = σmax/σmin, in terms of the singular values σi of M in a singular
value decomposition (SVD). The condition number is important since one loses roughly log10(κ) digits of accuracy
in operations like matrix inversion [88]. Starting with the leading-order, near-infinity behavior of the simple basis in
Eqn. (3.9) leads to condition numbers as large as κ ∼ 1012 in some cases.

Fortunately, it is possible to use a linear transformation on the simple basis B̃+

i to find a new one B̃+

i′ . Unfortunately,
long integration of the altered set of homogeneous solutions to rmin

∗ is required in order to combine them with the
inner solutions and calculate κ, making this a hit-or-miss procedure.

We have instead developed a novel means for determining a good linear transformation (at r∞∗ ) that reduces κ by
many orders of magnitude. While the method is most effective in handling near-static modes (discussed below in
Sec. IV B), we nevertheless use it for all modes and therefore discuss it here. The technique involves using just half
the information (outer solutions only) that goes into the Wronskian and calculating a “semi-condition number” ρ. It
begins by picking a basis (e.g., the simple one), taking the right half of the matrix M, and forming the 4× 2 matrix

V ≡
[

B̃+

0 B̃+

1

∂r∗B̃
+

0 ∂r∗B̃
+

1

]
. (4.3)

While V is a non-square matrix, it has a SVD and yields a set of non-negative, real singular values σi. In our
example there are two singular values; for even parity there are four. We call the ratio of the largest to smallest,
ρ(V) = σmax/σmin, the semi-condition number. An advantage of ρ(V) is that it can be computed immediately once
an outer basis is chosen. However, ρ is not the same as the full condition number κ, which can only be computed
once the complete set of (inner as well as outer) homogeneous solutions are compared. Empirically, though, we find
that ρ is typically large to begin with (∼ 107) and grows by multiple orders of magnitude as the outer solutions are
integrated inward (see Fig. 3), and that its value at rmin

∗ tends to be within an order of magnitude of κ. This strongly
suggested that, if ρ could be minimized at the starting radius, then κ might be greatly reduced in the source region.
This guess turned out to be correct.

A linear transformation on the outer boundary conditions can be used to mitigate the ill-conditioning [i.e., we are
free to choose the starting b’s in (A16) to begin solving the recurrence relations]. To see how a choice might be made,
we start with the simple basis of (3.9) to form V [see also Eqn. (A20)] and perform a thin-QR decomposition [89].
The matrix is numerically split into a product V = QR, where Q is a 4× 2 unitary matrix and R is a 2× 2 square,
upper-triangular matrix. Computed at an initial location r∞∗ , the columns of Q are an alternative, and in this case
orthogonal, basis for beginning an integration for the homogeneous solutions. In other words ρ(Q) = 1. We see that
the square matrix R multiplies Q from the right to give V and R−1 multiplies V from the right to give Q.

In principle, while the columns of Q (evaluated from V at finite radius r∞∗ ) do indeed give a new orthogonal
basis with unit semi-condition number, in practice the use of this basis for boundary conditions on the homogeneous
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FIG. 3. Semi-condition number growth of outgoing homogeneous solutions and effect of thin-QR pre-conditioning. The left
panel uses the even-parity mode (l, ω) = (5, 5 × 10−3M−1) and plots as a function of r∗ the semi-condition number ρ of the
matrix V, which is comprised of (the outer solution) half of the Wronskian matrix. Two initial conditions are compared:
the simple basis in red (dotted) and the thin-QR pre-conditioned basis in blue (solid). Orthogonalization with the thin-QR
pre-conditioner makes a more than five orders of magnitude improvement. The right panel uses an l = 16 even-parity mode
and shows the growth of ρ in solutions that start with thin-QR orthogonalized initial conditions, as functions of frequency.
Once the frequency reaches |ωM | ≤ 10−4, thin-QR pre-conditioning is no longer sufficient to control the condition number in
the source region and still allow double precision computations, and we turn to added techniques.

solutions (i.e., replacing V → V′ = Q) leads to a separate, serious numerical problem. Because V is ill-conditioned,
the numerical construction of Q at finite radius r∞∗ will be accompanied by phase and amplitude errors that are
well above roundoff, some of which will be consistent with undesired acausal modes (see the similar discussion in the
previous subsection). In effect, the numerically derived new basis could not be obtained (to machine accuracy) from
an integration of purely outgoing wave solutions at infinity.

Nevertheless, the thin-QR decomposition provides the route forward. The idea is to use the initial choice for V at
r∞∗ afforded by the simple basis and its related asymptotic expansion. Then the thin-QR decomposition is computed
numerically. With this done, we compute from R its inverse numerically. After that, we use these values of R−1 at r∞∗
to transform the initial conditions for solving the recurrence relations, and we solve those again. The resulting set of
new asymptotic expansions have built into them proper causal behavior and also have ρ(V′) = 1. In effect, R−1 serves
as a pre-conditioner on the linear system. (Akcay et al. [37] use a different means of pre-conditioning their boundary
conditions for the outer solutions.) So we are able to start inward integrations with ideal linear independence (by
this measure) and obtain greatly reduced ill-conditioning (also by this measure) once the source region is reached
(see Fig. 3 and six orders of magnitude improvement). Empirically, we then find the full condition number, κ, is also
improved by orders of magnitude.

Since developing this thin-QR pre-conditioning technique, we have thus far not been able to find any comparable
discussion in the literature.

3. Numerical integration

Having set the boundary conditions, our C code uses the Runge-Kutta-Prince-Dormand 7(8) [90] routine rk8pd of
the GNU Scientific Library (GSL) [91] to obtain the homogeneous solutions (note that GSL documentation incorrectly
labels rk8pd a 8(9) method). We first integrate the outer homogeneous solutions from r∞∗ inward and then through
the source region to rmin

∗ . We then integrate the inner homogeneous solutions from rH∗ to rmin
∗ . Next, we switch to an

integration over χ to compute Eqns. (3.14) and acquire C
e/o,±
i . In practice we also find it more efficient to determine

the integrands of Eqn. (3.14) using an LU decomposition of the Wronskian matrix. Finally, we form the TD EHS as
described in Sec. III D.

A final comment is warranted on the integration over the source region and the relative accuracies of various
quantities. In the sweep back over the source region, the Wronskian matrix elements are recomputed step-by-step

alongside the normalization functions c
e/o
i (r) within a broadened system of ODEs. When the Wronskian matrix is
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FIG. 4. Plots of CPU time for GSF calculations as a function of orbital parameter space location. In the left panel labels
give the log10 of CPU time in seconds for each contour. The crosses indicate where models were computed. Every orbit on
the right of the solid curve utilizes quad precision. Some orbits on the left lie near resonances, as indicated by local peaks in
the contour plot caused by quad precision computing. Slices of CPU time versus e are shown in the right panel. GSF models
require single-processor CPU times that range from 4 minutes to 1 day.

mildly ill-conditioned it becomes impractical to enforce the same accuracy criterion on the normalization coefficients
as the homogeneous solutions that make up the elements of the Wronskian. We instead modify the adaptive step
size routine to demand high accuracy ∼ 10−15 for the Wronskian elements while ignoring the fractional errors in the
normalization coefficients unless they exceed ∼ 10−12. This criterion does not really diminish the achievable accuracy
in the coefficients, since the condition number of the Wronskian may reach or exceed 103 near the low frequency limit
of our double precision code (see Sec. IV B for use of quad precision). It does, however, prevent the stepsize from
being driven unreasonably small and halting the integration.

B. Near-static modes

As mentioned in our step-by-step procedure, near-static modes (0 < |ωM | < 10−4) are a special case subject to
separate numerical handling. This problem has also been discussed in [37]. The ill-conditioning associated with the
outer homogeneous solutions continues to grow as ω → 0, despite the application of the orthogonalization technique
described in the previous section. To compute modes with 10−6 . |ωM | . 10−4, we make use of three procedures.
Firstly, the thin-QR pre-conditioning discussed in Sec. IV A, which is used for all modes, helps to minimize the semi-
condition number as much as possible. Secondly, when a mode with frequency as low as this is encountered, we switch
to the use of quad-precision routines to handle integration of the homogeneous solutions and source integrations (i.e.,
steps 3 and 4). Thirdly, for a given l,m, we identify the lowest frequency mode n = n′ and for it we bypass the source
integration and instead use the jump conditions to provide its normalization.

The semi-condition number scales roughly as ρ ∼ 102 (Mω)−2, as can be seen in Fig. 3. Once the condition number
of the Wronskian matrix reaches ∼ 1010, too many digits (∼ 10) are being lost to make double precision calculations
viable. Resorting to 128-bit floating point arithmetic is a computationally costly but effective way of proceeding.
At quad precision, much higher condition numbers (. 1022) can be tolerated. Our quad-precision implementation
is based on modified Numerical Recipes in C [92] routines. We switch to the Runge-Kutta-Cash-Karp 4(5) method
for these calculations. While C compiler support for quad precision is available, its use is computationally costly on
64-bit hardware. Fortunately, for broad regions of orbital parameter space these modes are few enough that growth
in CPU time is manageable (see Fig. 4).

The third element of the procedure focuses on the fact that for a given l,m there is always one n = n′ that gives
the lowest magnitude frequency, ω′. If ω′ is small enough (and there are others like it for enough other l and m),
the quad precision integrations over the source might overly dominate the runtime of the code. This is particularly a
concern for wide separations and large eccentricities. Fortunately, for each l and m there is a way of bypassing the
source integration for this one n′ mode and obtaining its normalization coefficients more efficiently.

We use odd parity to illustrate the method. For a given l,m, the jump conditions in the TD for the MP amplitudes
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and their derivatives can be written in vector form

JBKp (t) ≡ B+(t, rp)−B−(t, rp) =

[
JhtKp

JfhrKp

]
, J∂rBKp (t) ≡ ∂rB+(t, rp)− ∂rB−(t, rp) =

[
J∂rhtKp

J∂r (fhr)Kp

]
. (4.4)

These jump conditions can be obtained analytically from the field equations and the projections of the stress-energy
tensor. They are known to imply that the MP is C0 and the radial derivative jump is some function of time, J (t).
The jump conditions can be written as the difference between the TD EHS or using Eqn. (3.16) as the difference of
the Fourier sums over FD EHS[

0

J (t)

]
=

[
JBKp (t)

J∂rBKp (t)

]
=
∑
ω

{[
B̃+

(rp)

∂rB̃
+

(rp)

]
−
[

B̃−(rp)

∂rB̃
−

(rp)

]}
e−iωt. (4.5)

Normally these conditions are used to check the convergence of the Fourier sums. In the case of a near-static mode
we first normalize all of the other n 6= n′ modes in the usual way. Then the near-static mode is split out of the sum
in (4.5) and written explicitly in terms of its individual homogeneous solutions and their normalization coefficients

e−iω
′t

[
B̃+

0 B̃+

1 −B̃−0 −B̃−1
∂rB̃

+

0 ∂rB̃
+

1 −∂rB̃
−
0 −∂rB̃

−
1

]
Co,+0

Co,+1

Co,−0

Co,−1

 =

[
0

J (t)

]
−
∑
ω 6=ω′

{[
B̃+

∂rB̃
+

]
−
[

B̃−

∂rB̃
−

]}
e−iωt. (4.6)

In this expression, the function J (t) is known analytically and all of the terms in the sum on the right have been
computed by the standard procedure. On the left, the homogeneous solutions for ω′ that make up the matrix are
computed with quad precision and what remains are the four unknowns Co,±0/1 . This matrix equation is solved at an

arbitrary time t and in doing so we have obtained the normalization coefficients for the troublesome mode without
integrating over the source region. It can be applied for frequencies as small as |ω| ∼ 10−6M−1.

An objection might be raised that this “spends” the ability to use the jump conditions as a convergence check.
But in fact it remains possible to check the jumps at any other time within the radial period Tr. Ultimately, the
techniques presented in this section can be overwhelmed, since as Tr becomes large the frequency Ωr can become
smaller than 10−4M−1, which results in numerous near-static modes per multipole (see Fig. 4).

C. Static modes with l ≥ 2

Static modes are another special case and occur when m = n = 0. At zero frequency, some of the field amplitudes
vanish identically, and spur a reduction of order in the constrained field equations and gauge equations. We discuss
odd and even parity in turn.

1. Odd-parity static modes

Analytic homogeneous solutions to the static odd-parity Lorenz gauge field equations were first derived by Barack
and Lousto [64]. They showed that h̃r = h̃2 = 0 and wrote down the inner and outer solutions for h̃t in terms of finite
power series. Here we express the solution in slightly different form

h̃−t =
r2

M

l−1∑
k=0

aodd
k

( r

M

)k
, h̃+

t = h̃−t ln f +
M2

r

l+2∑
k=0

bodd
k

( r

M

)k
. (4.7)

The determination of the power series coefficients is described in detail in Appendix B 1.

2. Even-parity static modes

In this paper, we present for the first time analytic solutions for static even-parity modes in Lorenz gauge. (We
understand that equivalent analytic solutions have been derived recently by others [93] also.) For static modes in even

parity the reduction h̃tr = j̃t = 0 occurs. The reduced constrained equations are sixth order and involve h̃tt, h̃rr, and
K̃. We had a novel, if circuitous, route to discovering these analytic solutions, which we now present step-by-step.
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1. Even-l solution to odd-parity equations: For static modes m = n = 0, Eqns. (4.7) are used with odd l to provide
a necessary part of the MP. There is however nothing to bar us from using an even l in Eqns. (4.7); these too
are solutions to the odd-parity Lorenz gauge equations even if they serve no purpose in decomposing the MP.

2. Solution to the Regge-Wheeler equation: Armed with this “even-l solution to the odd-parity Lorenz gauge
equations,” we next form the gauge-invariant Cunningham-Price-Moncrief (CPM) [94] function

Ψ̃odd(r) =
r

λ

(
dh̃t
dr
− 2

r
h̃t

)
. (4.8)

Recall that λ = (l+ 2)(l− 1)/2. This master function satisfies the homogeneous Regge-Wheeler (RW) equation.
See also [31, 78].

3. CPM master function to Zerilli master function: Next use the Detweiler-Chandrasekhar transformation [95–97]
to obtain from the CPM function a solution to the homogeneous Zerilli equation

Ψ̃even(r) =
1

λ(λ+ 1)

[(
λ(λ+ 1) +

9M2f

3Mr + λr2

)
Ψ̃odd + 3Mf

dΨ̃odd

dr

]
. (4.9)

4. MP amplitudes in RW gauge: Use Ψ̃even to reconstruct the non-zero even-parity MP amplitudes in RW gauge.
For purposes of presentation, the expressions (see e.g. [31]) simplify greatly by using Eqns. (4.8) and (4.9) to

write the MP amplitudes in terms of h̃t,

K̃RW =
2M

r2λ
h̃t +

(
1 +

2M

rλ

)
dh̃t
dr

, h̃RW
rr = − 2M

r2f2
h̃t +

1

f

dh̃t
dr

, h̃RW
tt = −2M

r2
h̃t + f

dh̃t
dr

, (4.10)

where we have used the homogeneous field equations to remove higher derivatives of h̃t. Given analytic ex-
pressions for the even-l solutions for h̃t in step 1, we have obtained even-l static solutions for the MP in RW
gauge.

5. Gauge vector for RW to Lorenz transformation: We next seek a gauge vector to map the even-parity static MPs
from RW to Lorenz gauge. The gauge vector will satisfy the wave equation

∇ν∇νΞµ = ∇ν p̄RW
µν . (4.11)

The generator Ξµ can be decomposed [85] akin to that shown in Sec. II C, and its even-parity part is

Ξa =
∑
l,m

[
δa
tξlmt (t, r) + δa

rξlmr (t, r)
]
Ylm, ΞA =

∑
l,m

ξlme (t, r)Y lmA . (4.12)

We insert these into Eqn. (4.11) and transform to the FD. Then we specialize to the static case (where ξ̃t = 0),
and are left with two coupled equations (after again dropping lmn indices)

d2ξ̃e
dr2

+
2M

r2f

dξ̃e
dr
− 2(λ+ 1)

r2f
ξ̃e +

2

r
ξ̃r = 0, (4.13)

d2ξ̃r
dr2

+
2

rf

dξ̃r
dr
− 2(λ+ 1) + 2f

r2f
ξ̃r +

4(λ+ 1)

r3f
ξ̃e =

2

rf
h̃RW
rr −

2

rf
K̃RW +

dh̃RW
rr

dr
− 1

f

dK̃RW

dr
, (4.14)

where we have used the homogeneous relation h̃RW
tt = f2h̃RW

rr . Solving Eqn. (4.13) for ξ̃r and inserting into

Eqn. (4.14) yields a single fourth-order equation. Further, we use Eqn. (4.10) and the h̃t field equation to write

the source term as a function of h̃t and its first derivative

d4ξ̃e
dr4

+
4r − 2M

r2f

d3ξ̃e
dr3
− 4r(λ+ 1)− 4M

r3f

d2ξ̃e
dr2

+
8M2 − 4rM(λ+ 2)

r5f2

dξ̃e
dr

+
4(λ+ 1)(2M + rλ)

r5f2
ξ̃e = Sξ,

Sξ ≡
8M(λ+ f)

λf2r4
h̃t +

8M

λfr3

dh̃t
dr

.

(4.15)

Eqn. (4.15) has four independent homogeneous solutions denoted by ξ̃±e,H0 and ξ̃±e,H1 and two independent

inhomogeneous solutions (since the source has inner and outer instances) denoted by ξ̃±e,I . Here the superscript

± indicates the solution that is regular at r =∞ (+) or the horizon (−).
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6. Transformation to six independent Lorenz gauge homogeneous solutions: Once the six solutions for the gauge
generator have been obtained, we can use them to transform the even-parity static MP to Lorenz gauge and
derive a complete set of homogeneous solutions. The transformation is [78]

h̃tt = h̃RW
tt +

2Mf

r2
ξ̃r, h̃rr = h̃RW

rr −
2M

r2f
ξ̃r − 2

dξ̃r
dr

, K̃ = K̃RW − 2f

r
ξ̃r +

2(λ+ 1)

r2
ξ̃e. (4.16)

Note that ξ̃r is recovered using Eqn. (4.13). We can now switch to the vector notation of Sec. III B and write

Ẽ = ẼRW
+ ∆ξ̃, (4.17)

with components

Ẽ = r


h̃tt

0

f2h̃rr

K̃

 , ∆ξ̃ ≡



2Mf

r
ξ̃r

0

−2Mf

r
ξ̃r − 2rf2 dξ̃r

dr

−2f ξ̃r +
2(λ+ 1)

r
ξ̃e


, (4.18)

and with ẼRW
being obvious. The zeros in the second row follow from h̃tr vanishing in both Lorenz and

RW gauges when ω = 0. We denote the six Lorenz gauge homogeneous solutions by Ẽ±0 , Ẽ±1 , and Ẽ±2 (re-
call Sec. III C). The first four Lorenz gauge homogeneous solutions derive from the homogeneous solutions to
Eqn. (4.15),

Ẽ±0 = ∆ξ̃±H0, Ẽ±1 = ∆ξ̃±H1. (4.19)

The final two are found by transforming from the RW gauge MP amplitudes of step 4 with the inhomogeneous
solutions to Eqn. (4.15),

Ẽ±2 = ẼRW,±
+ ∆ξ̃±I . (4.20)

The extensive expressions for ξ̃±e,H0, ξ̃±e,H1, and ξ̃±e,I can be found in Appendix B 2.

D. Low-multipole modes

The low-multipole (l = 0, 1) components of the MP are as essential to the GSF as the radiative modes. Solutions
were first given by Zerilli [98]. These solutions, specialized to circular orbits, were then transformed to Lorenz gauge
by Detweiler and Poisson [99]. Low-multipole mode calculations for circular orbits were considered in [27, 64]. Their
solution was extended to eccentric orbits in [34, 37] using the method of EHS.

1. Even-parity dipole mode

In the case of the even-parity dipole mode l = 1, m = 1, the amplitude G̃ is not defined [see Eqn. (2.15) and note
that YAB is not defined for l < 2]. The fully constrained field equations (3.4) are unaffected however. The vanishing

of G̃ does add the subtlety that the individual homogeneous solutions to Eqn. (3.4) will not, in general, satisfy the
Lorenz gauge conditions, Eqn. (2.22).

Numerically, the even-parity dipole mode requires no special treatment. As usual, we use Eqn. (3.14) to integrate

through the source region and find Ce,±i . We then find that the solution that results from linear superposition of the
normalized modes in Eqn. (3.15) does satisfy the gauge conditions, a byproduct of the source terms being consistent
with the Bianchi identities.
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2. Odd-parity dipole mode

In the case of the odd-parity dipole mode l = 1, m = 0, the amplitude h̃2 is not defined [see Eqn. (2.15) and
note that XAB is not defined for l < 2]. As with the even-parity case, this does not affect the fully constrained field
equations. When ω 6= 0, this mode requires no special treatment. We find that after normalization and superposition,
the solution does satisfy the gauge condition.

The static mode, l = 1, m = 0, n = 0, must be handled separately. In this case we use the analytic homogeneous
solutions [99]

h̃−t =
r2

M
, h̃+

t =
M2

r
, (4.21)

and proceed as usual to obtain the FD EHS.

3. Monopole mode

In the case of the monopole mode, l = m = 0, the amplitudes j̃t, j̃r, and G̃ are not defined [see Eqn. (2.15) and
note that YA and YAB are not defined for l = 0]. Again, the fully constrained field equations are unaffected and no
special treatment is required to obtain the particular solution as long as n 6= 0.

However, the monopole static mode l = m = n = 0 is exceptional. The system is fourth order and has four
independent homogeneous solutions [100], which also satisfy the Lorenz gauge conditions

Ẽ−0 =
1

fr3


−Mf2(r2 + 2Mr + 4M2)

0

r3 −Mr2 − 2M2r + 12M3

f2r(r2 + 2Mr + 4M2)

 , Ẽ+

0 =
1

f2r


f2(3M − r)

0

M

0

 , Ẽ+

1 =
1

f2r4


f2M4

0

M3(2r − 3M)

−rf2M3

 ,

Ẽ+

2 =
1

f2r4


Mf2

[
r(4M − 3r)(M + r) + (8M3 − r3) ln f + 8M3 ln

( r

M

)]
0

fr(r3 −Mr2 − 2M2r + 12M3) ln f + 8M3(2r − 3M) ln
( r

M

)
−Mr(r2 − 5Mr + 12M2)

f2r
[
(r3 − 8M3) ln f − 8M3 ln

( r

M

)
−Mr(r + 4M)

]

 .
(4.22)

Recall from Sec. IV C that h̃tr vanishes for static modes, as indicated by the zeros in the second rows of these
expressions.

We have made a particular choice with this basis. The solutions Ẽ+

1 and Ẽ+

2 are the only independent ones that are

regular at r =∞. Then, Ẽ−0 is the only solution that is regular at the horizon and does not perturb the mass-energy

of the black hole [46] (at the horizon). This leaves Ẽ+

0 . Ordinarily, we would expect two homogeneous solutions
on the horizon side and two on the infinity side. But all that is really required are four independent solutions and
regularity. This last solution is independent and its only irregularity at r =∞ is the well-known property of Lorenz
gauge that h̃tt approaches a constant as r →∞ [64]. This behavior leads to a required rescaling of the time coordinate
[34, 37, 46, 101]. It is precisely what is necessary that the solution perturb the mass M →M + µE of the spacetime
in the region exterior to the particle orbit [99]. With this complete set of homogeneous solutions, we form the FD
EHS. Rather than using the expression in Eqn. (3.15), for this special case the normalization is

Ẽ−(r) = Ce,−0 Ẽ−0 , Ẽ+
(r) =

2∑
i=0

Ce,+i Ẽ+

i . (4.23)

Our route to the solution for this mode differs from that of Akcay et al. [37] but of course the two approaches are
ultimately equivalent.

V. ADDITIONAL NUMERICAL RESULTS

We give in this section a sampling of added numerical results from computing the GSF and discuss the range
of applicability of the code. As mentioned in the Introduction, astrophysical EMRI sources are expected to have
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TABLE II. Comparison of GSF data from two different codes. We give self-force values for an orbit with p = 7.0 and e = 0.2
and present only significant figures for the data from our code (rows without parentheses). Our results are compared to those
of Akcay et al. [37] (parentheses), where we have rounded the last digit from values in their table to retain only fully significant
digits. Our code took approximately 15 minutes on a single core to generate all of the GSF data in this table.

χ (M/µ)2F tcons (M/µ)2F tdiss (M/µ)2F rcons (M/µ)2F rdiss

0
0 −4.06328× 10−3 3.35760× 10−2 0

(0) (−4.063302× 10−3) (3.357606× 10−2) (0)

π/4
8.6473× 10−4 −2.15691× 10−3 2.909881× 10−2 4.734956× 10−3

(8.6472× 10−4) (−2.156923× 10−3) (2.909881× 10−2) (4.734956× 10−3)

π/2
8.28613× 10−4 −2.5168× 10−4 2.125032× 10−2 3.204189× 10−3

(8.28611× 10−4) (−2.516803× 10−4) (2.125034× 10−2) (3.204190× 10−3)

3π/4
4.60749× 10−4 −1.1241× 10−5 1.590147× 10−2 9.63378× 10−4

(4.60750× 10−4) (−1.124092× 10−5) (1.590149× 10−2) (9.633734× 10−4)

π
0 −3.4613× 10−5 1.40888× 10−2 0

(0) (−3.461416× 10−5) (1.408877× 10−2) (0)

eccentricities as high as e ' 0.8. This expectation has motivated our effort to develop an efficient and accurate code
capable of widely spanning p and e space.

A. GSF results and their accuracies

We first compare our code to results from [37] for a mildly eccentric orbit (e = 0.2, p = 7.0). Table II shows values
of the t and r components of both the conservative and dissipative parts of the GSF for a set of locations on the
orbit. Our values match closely those of Akcay et al. Our results are presented with the number of digits we believe
are significant. Their values were presented with uncertainties in the least significant digit, so we have rounded their
values and present in the table only fully significant digits for comparison. The two codes agree for this orbit to within
four to seven digits, but do differ in many cases in the least significant figure. We estimate errors in our calculation
by examining sensitivity in Fourier convergence and in truncating the MSR. The discrepancy between our two codes
likely reflects the difficulty in determining absolute error when truncating a Fourier sum or power series. In terms
of speed, our code generates GSF data rapidly (∼ 15 minutes) for an orbit with an eccentricity as low as this. CPU
runtimes can be nearly two orders of magnitude greater for high-eccentricity wide-separation orbits (see Fig. 4) where
the code begins to switch on intermittent use of quad precision.

We next give in Table III a set of numerical values for the t and r components of the GSF for eccentricity e = 0.1
and a range of orbital separations. The full regularized GSF is given at points all around one radial libration. The
dissipative and conservative parts can be reconstructed through averaging and differencing values across conjugate
points on the orbit using expressions in Sec. II E. The ϕ component of the GSF can be obtained from orthogonality.
We list only significant digits. It is clear that for low eccentricity our code generally achieves accuracies of 7 to
10 decimal places. As we discussed in the Introduction, accuracy of 8 or more decimal places is required to keep
dephasing errors below δΦr ' 10−2 when ε = 10−6. The requirement is obviously eased if ε = 10−5. The results in
Table III indicate that our error criterion is attained for e = 0.1.

Remarkably, the accuracy of our code improves as the orbital separation increases, as can be seen in Fig. 5. This
trend emerges from conflicting aspects of the algorithm. One aspect, as Fig. 3 shows, is that integration from large r∗
to the libration region is accompanied by growth in the semi-condition number of the outgoing homogeneous solutions.
In integrating from r∗ ∼ 102M to r∗ ∼ 10M , the semi-condition number grows by two orders of magnitude. For larger
p, many modes will thus have smaller ρ in the libration region, leading generally to more accurate GSF values. In
contrast, larger radius orbits are more likely to yield near-static modes (see the Mω = 10−4 curve in Fig. 4). Yet, as
explained in Sec. IV B, when this occurs the algorithm switches on quad-precision routines for these modes. We posit
that the clear benefit of lower semi-condition numbers at large p outweighs difficulties induced by added near-static
modes, especially as the algorithm adapts to the presence of these modes. The price to be paid is significant increase
in CPU time as larger p orbits are computed.

The situation changes as we consider higher eccentricities. Table IV shows equivalent information for orbits with
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FIG. 5. Contours of relative errors in the GSF. A grid of orbital parameters is chosen (crosses) and the GSF is calculated.
Resulting relative errors are used to generate contour levels of relative accuracy. Numerical labels indicate the log10 of the
relative error of each contour.

e = 0.5. At this eccentricity the GSF values have between 5 and 7 decimal places of accuracy. As before, accuracies
improve with wider separations. In App. D we provide two more tables, with e = 0.3 and e = 0.7. At e = 0.3
accuracies are intermediate, with 6 to 9 decimal places, but at e = 0.7 accuracies drop to 3 to 5 significant figures.
The trend in accuracy is best displayed semi-quantitatively in Fig. 5, where labeled contours trace the iso-surfaces of
relative error in the GSF. The general trend of improvement in accuracy (in our code) with increasing p is evident,
as is the more severe fall-off with increasing e. It is worth noting how uniform the trends in accuracy are. This
uniformity is in contrast to CPU runtimes seen in Fig. 4, evidence that the code trades speed for accuracy when
necessary. With an error goal of 10−7 (useful if we consider ε & 10−5 or are willing to relax to δΦr ' 10−1), our code
can directly supply the GSF for long-term orbit integrations for e . 0.4-0.5 over most of the range of p.

For eccentricities above e = 0.5 (or in fact above e = 0.25 for p . 10) computing the full GSF accurately is more
problematic, and the code, by itself, is not able to meet the goal of δΦr = 0.01 if ε = 10−6. (For an IMRI, though,
with ε = 10−3 we might compute inspirals with eccentricities as high as e . 0.5-0.6.) One recourse would be to switch
over much of the computation to 128-bit arithmetic, but doing so on 64-bit architecture would be expensive. So, can
eccentricities of ' 0.8 be reached and still maintain the required error tolerance? We believe the answer is yes and
propose a hybrid approach.

The present difficulty stems from asking too much of a single numerical method. Recall that the first-order GSF
determines both the adiabatic inspiral and its part of the post-1-adiabatic corrections (with additional correction
coming eventually from the orbit-averaged part of the second-order GSF). Hence, we need the code to provide the
orbit-averaged part of the first-order GSF to a fractional accuracy ε0 that isO(ε) better than the accuracy ε1 it provides
in the oscillatory part of the GSF [see the argument centered around Eqn. (1.1)]. This viewpoint suggests splitting the
task, with a separate code providing the gravitational wave fluxes that drive the inspiral (i.e., post-0-adiabatic) and the
Lorenz gauge code providing the conservative and oscillatory part of the dissipative GSF (post-1-adiabatic). In such
a hybrid scheme, the present code must needs only provide the oscillatory GSF with relative errors of, say, ε1 ' 10−4-
10−3. The flux code would need to give the orbit-averaged force to accuracy of ε0 . 10−8. A Regge-Wheeler-Zerilli
(RWZ) code can achieve this latter accuracy and would not add significant computational burden.

B. Improving the GSF with energy and angular momentum fluxes and a hybrid approach

To assess how this hybrid scheme might work, we first discuss how fluxes are extracted from the Lorenz gauge code
and compare them to computed local rate of change of work and torque. Energy and angular momentum fluxes can
be read off if the asymptotic values of the Zerilli-Moncrief (ZM), Ψeven

lm , and CPM, Ψodd
lm , master functions [31, 78]

are available. When l + m is even we use Ψlm = Ψeven
lm and when l + m is odd we use Ψlm = Ψodd

lm . Functions are
evaluated at both asymptotic limits, with Ψ+

lm being the amplitude at r =∞ and Ψ−lm being the one at r = 2M . See

[31] and their Sec. IV B for flux expressions in terms of Ψ+
lm and Ψ−lm.

Expressed in terms of FD amplitudes, the ZM and CPM master functions are related to Lorenz gauge amplitudes
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TABLE III. GSF results for e = 0.1 and a range of p. We present the t and r components of the full regularized self-force at a
set of points around a complete radial libration. Dissipative and conservative parts can be obtained by addition or subtraction
across conjugate points on the orbit according to Eqns. (2.35). The ϕ component can be recovered from the orthogonality
relation Fαuα = 0. Results for additional eccentricities are found in Table IV and in Appendix D.

χ p = 10 p = 20 p = 30 p = 60 p = 90

F t

0 −2.262915× 10−4 −5.259858× 10−6 −6.4546731× 10−7 −1.919788169× 10−8 −2.504370129× 10−9

π/4 1.198168× 10−4 6.729545× 10−5 2.7706691× 10−5 5.382433506× 10−6 2.00678099× 10−6

π/2 2.767753× 10−4 8.716476× 10−5 3.4907828× 10−5 6.689040469× 10−6 2.486733999× 10−6

3π/4 1.810961× 10−4 5.416762× 10−5 2.1556094× 10−5 4.107340582× 10−6 1.524147563× 10−6

π −3.133613× 10−5 −8.374829× 10−7 −1.0622118× 10−7 −3.201044762× 10−9 −4.156911071× 10−10

5π/4 −2.601123× 10−4 −5.626206× 10−5 −2.1821319× 10−5 −4.115331358× 10−6 −1.525185847× 10−6

3π/2 −4.334752× 10−4 −9.111977× 10−5 −3.5403737× 10−5 −6.703942473× 10−6 −2.488674896× 10−6

7π/4 −4.52304× 10−4 −7.519925× 10−5 −2.8683093× 10−5 −5.411581273× 10−6 −2.010582879× 10−6

F r

0 1.606774× 10−2 4.972162× 10−3 2.3630073× 10−3 6.306313760× 10−4 2.863538695× 10−4

π/4 1.544991× 10−2 4.734491× 10−3 2.2459999× 10−3 5.984342621× 10−4 2.71591791× 10−4

π/2 1.360189× 10−2 4.167538× 10−3 1.9721189× 10−3 5.238329929× 10−4 2.374664601× 10−4

3π/4 1.180704× 10−2 3.628645× 10−3 1.7134645× 10−3 4.538465637× 10−4 2.055245423× 10−4

π 1.105404× 10−2 3.413109× 10−3 1.6107881× 10−3 4.262250069× 10−4 1.929393281× 10−4

5π/4 1.163054× 10−2 3.622782× 10−3 1.712561× 10−3 4.538069014× 10−4 2.055180646× 10−4

3π/2 1.322747× 10−2 4.155439× 10−3 1.9702746× 10−3 5.237528164× 10−4 2.374533990× 10−4

7π/4 1.506292× 10−2 4.722305× 10−3 2.244163× 10−3 5.983551871× 10−4 2.71578943× 10−4

TABLE IV. Same as Table III but with e = 0.5.

χ p = 10 p = 20 p = 30 p = 60 p = 90

F t

0 −3.6577× 10−3 −7.31834× 10−5 −8.45794× 10−6 −2.403093× 10−7 −3.110084× 10−8

π/4 2.3230× 10−3 5.49789× 10−4 2.18176× 10−4 4.230920× 10−5 1.583867× 10−5

π/2 2.1668× 10−3 4.64492× 10−4 1.79705× 10−4 3.379164× 10−5 1.251105× 10−5

3π/4 6.5637× 10−4 1.45139× 10−4 5.53475× 10−5 1.020907× 10−5 3.752960× 10−6

π 1.0093× 10−6 1.68029× 10−8 1.87076× 10−9 5.493613× 10−11 7.802583× 10−12

5π/4 −6.2100× 10−4 −1.44416× 10−4 −5.52583× 10−5 −1.020630× 10−5 −3.752584× 10−6

3π/2 −1.6155× 10−3 −4.54743× 10−4 −1.78586× 10−4 −3.375934× 10−5 −1.250680× 10−5

7π/4 −3.3431× 10−3 −5.74637× 10−4 −2.21391× 10−4 −4.240869× 10−5 −1.585176× 10−5

F r

0 3.3855× 10−2 9.08159× 10−3 4.29527× 10−3 1.154902× 10−3 5.267282× 10−4

π/4 3.0193× 10−2 7.61709× 10−3 3.56654× 10−3 9.498506× 10−4 4.317999× 10−4

π/2 1.5020× 10−2 4.30288× 10−3 2.00992× 10−3 5.283582× 10−4 2.387940× 10−4

3π/4 6.3892× 10−3 1.86095× 10−3 8.61808× 10−4 2.238814× 10−4 1.007354× 10−4

π 3.9352× 10−3 1.12769× 10−3 5.19946× 10−4 1.345001× 10−4 6.043324× 10−5

5π/4 6.2762× 10−3 1.85640× 10−3 8.61052× 10−4 2.238461× 10−4 1.007295× 10−4

3π/2 1.3115× 10−2 4.24160× 10−3 2.00050× 10−3 5.279454× 10−4 2.387264× 10−4

7π/4 2.2613× 10−2 7.40405× 10−3 3.53587× 10−3 9.485827× 10−4 4.315958× 10−4
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by

Ψ̃even
lmn (r) =

r

λ+ 1

[
K̃ +

f

Λ

(
fh̃rr − r∂rK̃

)]
− 2f

Λ
j̃r + rG̃, Ψ̃odd

lmn(r) =
r

λ

(
∂rh̃t + iωh̃r −

2

r
h̃t

)
, (5.1)

where we define Λ ≡ λ + 3M/r. The master functions have asymptotic running wave behavior Ψ̃±lmn (r∗ → ±∞) =

C±lmne
±iωr∗ and the coefficients can be obtained from the asymptotic behavior of the Lorenz gauge amplitudes. [Note,

the C±lmn here are not the same as those in Eqn. (3.14).] Having made these connections to Lorenz gauge, we use
standard expressions for the fluxes

〈Ė〉 =
∑
lmn

ω2
mn

64π

(l + 2)!

(l − 2)!

(
|C+
lmn|2 + |C−lmn|2

)
, 〈L̇〉 =

∑
lmn

mωmn
64π

(l + 2)!

(l − 2)!

(
|C+
lmn|2 + |C−lmn|2

)
. (5.2)

In a geodesic GSF code, the fluxes should match the orbit-averaged rate of work and torque that are computed
locally at the particle via Eqn. (2.41). The dissipative GSF can be split into sums over tensor spherical harmonic and
FD contributions, each of which can be taken to be a function of χ

Fαdiss(χ) =
∑
lmn

Fα,diss
lmn (χ). (5.3)

This decomposition of Fαdiss can be substituted into the integrals in Eqn. (2.41) to yield the orbit-averaged rates of
change of energy and angular momentum. It is possible though to reverse the order of sum and integration, and derive
individual l,m contributions to the rate of work and torque

〈Ė〉 =
∑
lm

〈Ė〉lm =
2

Tr

∑
lmn

(∫ π

0

fp
µut

dt

dχ
F t,diss
lmn dχ

)
, 〈L̇〉 =

∑
lm

〈L̇〉lm =
2

Tr

∑
lmn

(∫ π

0

r2
p

µut
dt

dχ
Fϕ,diss
lmn dχ

)
. (5.4)

Moreover, the force can be evaluated on either side of the particle and should yield the same rates of change (up to

numerical errors). Balance between fluxes and local dissipation occurs mode by mode, i.e., 〈Ė〉lm = −µ〈Ė〉lm and

〈L̇〉lm = −µ〈L̇〉lm. Alternatively, we can compare them after summing over all modes.
Table V compares the balance between fluxes and local dissipation for several p = 10 orbits with different eccen-

tricities. For low eccentricity (e = 0.1) we see a high degree of fidelity between the local dissipation, computed on
both sides of the particle, and the fluxes derived from the Lorenz gauge fields. The comparison continues to hold but
the accuracy drops markedly as orbits with e = 0.5 and e = 0.7 are considered. We also then show the results of
computing the fluxes with a RWZ code [31] and a Teukolsky code [102]. Much smaller fractional errors, ' 10−10-10−9,
are typically obtained, a result due at least in part to computing more l,m modes.

A hybrid method would make use of the substantially smaller relative error ε0 ' 10−10-10−9 of a RWZ code to
provide the orbit-averaged first-order GSF. A question arises, however, as to what exactly orbit-averaged means.
Pound and Poisson [103] discuss various secular and radiative approximations. As they point out, an average 〈FαR〉χ
over χ is not the same as, for example, the average 〈FαR〉t over t. A hybrid method would use a very specific average.
A glance at (2.41) shows that the net fluxes will be balanced by integrals over proper time τ of the relevant covariant
components of the dissipative part, F diss

α , of the GSF. These averages are then related to fluxes by

〈Ė〉flux = −µ〈Ė〉diss =
1

Tr

∫ Tr
0

F diss
t dτ =

Tr
Tr
〈F diss
t 〉τ ,

〈L̇〉flux = −µ〈L̇〉diss = − 1

Tr

∫ Tr
0

F diss
ϕ dτ = −Tr

Tr
〈F diss
ϕ 〉τ ,

(5.5)

where Tr is the lapse of proper time in one radial orbit. If we assume that the fluxes are computed with a RWZ code,
we can infer from them an orbit-averaged dissipative force

〈F diss
t 〉RWZ =

Tr
Tr
〈Ė〉RWZ, 〈F diss

ϕ 〉RWZ = −TrTr
〈L̇〉RWZ, (5.6)

with vanishing r component. The process of constructing the hybrid force involves first taking the GSF from the
Lorenz gauge code and constructing the oscillatory part

F osc
α = F cons

α + F diss
α − 〈F diss

α 〉τ , (5.7)
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TABLE V. Comparisons between energy and angular momentum fluxes and locally computed dissipation. Several orbits with
p = 10 and differing eccentricities are considered. Local changes in energy and angular momentum (computed with the GSF on
both sides of the particle) are compared to total fluxes radiated to infinity and down the horizon. One set of fluxes is calculated
using the present GSF code by extracting asymptotic values of the Lorenz gauge amplitudes. These results are then compared
to published values that were computed using RWZ and Teukolsky codes. The changes in energy are measured in units of
M2/µ2 while the changes in angular momentum are measured in units of M/µ2.

e = 0.1 e = 0.5 e = 0.7

−µ〈Ė+〉 This paper 6.3190584052× 10−5 9.2871× 10−5 9.49× 10−5

−µ〈Ė−〉 This paper 6.3190584053× 10−5 9.2871× 10−5 9.49× 10−5

〈Ė〉 This paper 6.319058405374× 10−5 9.287477× 10−5 9.5052× 10−5

〈Ė〉 Hopper and Evans 6.319058405375× 10−5 9.287480002× 10−5 9.505332849× 10−5

〈Ė〉 Fujita et al. 6.3190584054× 10−5 9.287480001× 10−5 9.505332847× 10−5

−µ〈L̇+〉 This paper 1.9531904845× 10−3 1.9765× 10−3 1.63× 10−3

−µ〈L̇−〉 This paper 1.9531904845× 10−3 1.9765× 10−3 1.63× 10−3

〈L̇〉 This paper 1.953190484551× 10−3 1.976807× 10−3 1.6348× 10−3

〈L̇〉 Hopper and Evans 1.953190484552× 10−3 1.976807667× 10−3 1.634854630× 10−3

by computing the τ -average of the full force (the conservative part has zero mean) and subtracting it off. The hybrid
GSF is then the sum of the dissipative term from a RWZ code and the oscillatory part from the Lorenz gauge code

F hybrid
α = 〈F diss

α 〉RWZ + F osc
α . (5.8)

If the Lorenz gauge code and the RWZ code had comparable accuracies, this construction would have little value.
But circumstances are different if the RWZ code can provide the average force, which drives secular changes, with
relative errors as small as ε0 ' 10−10-10−9, while the Lorenz code supplies the oscillatory part of the GSF with
relative errors of ε1 ∼ 10−10-10−3 (depending on eccentricity). Substantially tighter tolerance, and hence smaller ε0,
is required on the former because the secular changes drive a large accumulation in the orbital phase Φr ' 1/ε in a
long-term evolution. The oscillatory part contributes to κ1 and its fractional errors ε1 need only be . 10−3 . δΦr,
consistent with the criterion outlined in the Introduction.

VI. CONCLUSIONS AND FUTURE WORK

We have described in this paper the key elements in our development of a FD method to compute the gravitational
self-force in Lorenz gauge. With this method we have extended the region in p and e of orbital parameter space within
which accurate GSF results can be obtained. The GSF can be calculated out to p ' 100 and up to e ' 0.5 (with
this code alone). New features in our approach include: (1) use of fully constrained Lorenz gauge equations for both
odd and even parity; (2) discovery of analytic solutions for arbitrary-l even-parity static modes; (3) development of a
thin-QR pre-conditioning technique for orthogonalizing outer homogeneous solutions and reducing condition number;
(4) adaptive use of quad-precision arithmetic to maintain accuracy of near-static modes; (5) an application of the
jump conditions to avoid source integration for the lowest frequency mode; and (6) outlining a proposal for a novel
hybrid approach to combine the Lorenz gauge code with a RWZ code to allow GSF calculation up to e ' 0.8.

This last proposal is an important idea to explore next and should be done in the context of using our code with a
separate osculating orbits code to revisit long-term orbit evolutions [36]. Our existing Lorenz gauge code, with minor
tightening of tolerances, should be able to push to inspirals of orbits that start with e ' 0.5. By including parallel
computation of radiative modes with an existing, separate RWZ code, we should be able to reach initial orbits with
e ' 0.8, near the peak in the expected EMRI distribution.

An ambitious downstream effort would involve finding some way to include the orbit-averaged second-order GSF
(i.e., second-order fluxes). Preliminary work is underway [104] with applications to circular orbits on a Schwarzschild
background [74, 105]. If it proves possible to find and implement such a scheme, we would be able to compute
inspirals accurately enough for matched filtering and detector applications (within the restrictions of a Schwarzschild
background and no spin in the secondary body).

A more immediate next application might involve the inclusion of spin in the small body and calculating not just
the regularized perturbation of the spin precession for circular orbits [106] but for eccentric orbits also. More generally,
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the code might be used as a laboratory to explore other self-interaction effects, like tidal moments [107], with attention
to their behavior in eccentric orbits. We anticipate also using the code to explore overlap with a newly developed
MST code that uses analytic function expansions to find the GSF for eccentric orbits [54].
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Appendix A: Asymptotic boundary conditions

We give here the recurrence relations for asymptotic and Taylor expansions that provide boundary conditions for
mode integrations. Expansions about r∗ = ±∞ for homogeneous Lorenz gauge solutions were first given by Akcay
[32] but with a different initial basis and for a larger, partially-constrained even-parity system. The fully constrained
even-parity system we use makes the generic recurrence relations valid for l = 0, 1 modes when ω 6= 0. Throughout
this section we use σ = Mω for brevity.

1. Near-horizon even-parity Taylor expansions

The even-parity homogeneous solutions can be expanded around r = 2M in a Taylor series in powers of f(r)

Ẽ− = r


h̃tt

fh̃tr

f2h̃rr

K̃

 = Me−iωr∗
∞∑
k=0


a

(tt)
k

a
(tr)
k

a
(rr)
k

a
(K)
k

 fk. (A1)

Recurrence relations for the coefficients can be found via the method of Frobenius


1 + 8iσ + 2k(k − 2− 4iσ) −8iσ −1 0

−2iσ k(k − 2)− 4iσ(k − 1) −2iσ 0

−1 −8iσ 1 + 8iσ + 2k(k − 2− 4iσ) 0

−k + 1 + 2iσ −4iσ −k − 1 + 2iσ k(k − 4iσ)



a

(tt)
k

a
(tr)
k

a
(rr)
k

a
(K)
k

 =


A

(tt)
k

A
(tr)
k

A
(rr)
k

A
(K)
k

 . (A2)
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The RHS contains only lower order coefficients in the expansion

A
(tt)
k ≡[−4i(k − 4)σ + 2k(5k − 34) + 3l(l + 1) + 113]2a

(tt)
k−3 − 2[2k(5k − 6iσ − 26) + 3l(l + 1) + 36iσ + 65]a
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k−2
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(tt)
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+ 24iσa
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In these recurrence relations, a coefficient vanishes anytime a negative index appears. Because the matrix is singular
when k ≤ 2 the first few terms are evaluated separately
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The freely chosen coefficients a
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2 , and a
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0 control the boundary conditions. For example, at leading
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2. Near-horizon odd-parity Taylor expansions

The odd-parity homogeneous solutions can also be expanded around r = 2M in powers of f(r)
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Recurrence relations for the coefficients are again found via the method of Frobenius,[
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Once again these result in a linear system to be solved and the RHS has only lower order coefficients
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Any negative-index coefficients vanish. This linear system is singular for k ≤ 1 and starting conditions for the recursion
are calculated separately
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In practical applications, we evaluate these expansions at r∗ = −6M and add terms in the series until the relative
size of the last term drops below machine precision.

3. Near-infinity even-parity asymptotic expansions

The even-parity homogeneous solutions can be expanded about r =∞ as
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Recurrence relations for the coefficients are a linear system of equations
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As with the horizon-side expansions, the RHS groups all of the lower order coefficients
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k ≡[−k2 − 4i(k − 2)σ + k + l2 + l]b

(tt)
k−1 − 2[(7− 2k)k + l2 + l − 5]b

(tt)
k−2 + 4iσb

(tr)
k−1

− 2[2(k − 6)k + 17]b
(tt)
k−3 − 6b

(rr)
k−3 + 4b

(rr)
k−2 − 16b

(K)
k−4 + 16b

(K)
k−3 − 4b

(K)
k−2,

B
(tr)
k ≡2[(11− 2k)k + l2 + l − 15]b

(tr)
k−2 + [k(k + 4iσ − 3)− l(l + 1)− 12iσ + 2]b

(tr)
k−1

− 4iσb
(tt)
k−1 − 4iσb

(rr)
k−1 + 8iσb

(K)
k−2 − 8iσb

(K)
k−1 + 4(k − 4)2b

(tr)
k−3,

B
(rr)
k ≡[−k2 − 4i(k − 3)σ + 3k + l2 + l − 4]b

(rr)
k−1 − 2[(11− 2k)k + l2 + l − 17]b

(rr)
k−2

+ 2(k + 2iσ)b
(tt)
k−1 + 12iσb

(tr)
k−1 + 4(6k + 4iσ − 11)b

(K)
k−2 − 4(k + 4iσ − 1)b

(K)
k−1 + (8k − 22)b

(tt)
k−3

+ (12− 8k)b
(tt)
k−2 + (−4(k − 8)k − 66)b

(rr)
k−3 + 16(2k − 7)b

(K)
k−4 + (128− 48k)b

(K)
k−3,

B
(K)
k ≡[−k(k + 4iσ − 3) + l2 + l + 8iσ − 2]b

(K)
k−1 − 2[(9− 2k)k + l2 + l − 9]b

(K)
k−2

+ 2(k − 2)b
(tt)
k−2 − kb

(tt)
k−1 + 2(k − 2)b

(rr)
k−2 + (2− k)b

(rr)
k−1 − 4(k − 4)(k − 2)b

(K)
k−3.

(A13)

All appearances of a negative index imply a vanishing coefficient. The linear system is singular here when k ≤ 2 and
starting coefficients are obtained from the reduced equations

b
(rr)
0 = −b(tt)0 − 2b

(tr)
0 , b

(K)
0 = 0, b

(tt)
1 = − l(l + 1) + 4iσ

2iσ
b
(tt)
0 − 2b

(tr)
0 ,

b
(rr)
1 =

l(l + 1) + 4(1 + iσ)

2iσ
b
(tt)
0 + 2

(
1 +

1

iσ

)
b
(tr)
0 − 2b

(tr)
1 , b

(K)
1 = − 1

iσ
b
(tt)
0 +

(l + 2)(l − 1)

2iσ
b
(tr)
0 + b

(tr)
1 ,

b
(tt)
2 = − l(l + 1)((l + 2)(l − 1) + 8iσ) + 4iσ

8σ2
b
(tt)
0 +

l(l + 1) + 2

2iσ
b
(tr)
0 − b(tr)1 ,

b
(tr)
2 = − 1

iσ
b
(tt)
0 +

l(l + 1)(l + 2)(l − 1) + 4iσ(l(l + 1) + 3)

8σ2
b
(tr)
0 −

(
1 +

l(l + 1)

2iσ

)
b
(tr)
1 ,

b
(rr)
2 =

l(l + 1)((l + 2)(l − 1) + 8iσ) + 20iσ

8σ2
b
(tt)
0 +

l(l + 1)((l + 2)(l − 1)− 2iσ) + 8iσ

4σ2
b
(tr)
0 + 3b

(tr)
1 − 2b

(K)
2 .

(A14)

The freely chosen coefficients b
(tt)
0 , b

(tr)
0 , b

(tr)
1 , and b

(K)
2 control the boundary conditions and a simple choice for the

basis gives the following lowest-order form(
b
(tt)
0 , b

(tr)
0 , b

(tr)
1 , b

(K)
2

)
= (1, 0, 0, 0) →

(
Ẽ+

0

)>
∼ (1, 0,−1, 0) eiωr∗ ,(

b
(tt)
0 , b

(tr)
0 , b

(tr)
1 , b

(K)
2

)
= (0, 1, 0, 0) →

(
Ẽ+

1

)>
∼ (0, 1,−2, 0) eiωr∗ ,(

b
(tt)
0 , b

(tr)
0 , b

(tr)
1 , b

(K)
2

)
= (0, 0, 1, 0) →

(
Ẽ+

2

)>
∼ (0, 1,−2, 1) r−1eiωr∗ ,(

b
(tt)
0 , b

(tr)
0 , b

(tr)
1 , b

(K)
2

)
= (0, 0, 0, 1) →

(
Ẽ+

3

)>
∼ (0, 0,−2, 1) r−2eiωr∗ .

(A15)

Note though, that as described in Sec. IV A, we take this simple basis and apply a linear transformation called thin-QR
pre-conditioning.

4. Near-infinity odd-parity asymptotic expansions

The odd-parity homogeneous solutions can be expanded about r =∞ as

B̃+
=

[
h̃t

fh̃r

]
= Meiωr∗

kmax∑
k=0

[
b
(t)
k

b
(r)
k

](
M

r

)k
. (A16)

Again, the recurrence relations are found to satisfy a linear system[
−2ikσ 0

−2iσ 2iσ(k − 1)

][
b
(t)
k

b
(r)
k

]
=

[
B

(t)
k

B
(r)
k

]
, (A17)
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where again the RHS contains all lower order coefficients

B
(t)
k ≡[l(l + 1)− k(k + 4iσ − 1) + 6iσ]b

(t)
k−1 − 2[l(l + 1)− 2(k − 3)k − 2]b

(t)
k−2 + 2iσb

(r)
k−1 − 4(k − 4)(k − 1)b

(t)
k−3,

B
(r)
k ≡[k(k + 4iσ − 3)− l(l + 1)− 10iσ + 2]b

(r)
k−1 − 2[2(k − 5)k − l(l + 1) + 10]b

(r)
k−2

− 6iσb
(t)
k−1 + 4(k − 5)(k − 2)b

(r)
k−3,

(A18)

and any negative index that appears implies a vanishing coefficient. This linear system is singular for k ≤ 1 and
starting conditions are evaluated individually

b
(r)
0 = −b(t)0 , b

(t)
1 = − l(l + 1)

2iσ
b
(t)
0 . (A19)

The freely chosen coefficients b
(t)
0 and b

(r)
1 determine the boundary conditions and a simple choice for the basis yields

the following lowest-order form(
b
(t)
0 , b

(r)
1

)
= (1, 0) →

(
B̃+

0

)>
∼ (1,−1) eiωr∗(

b
(t)
0 , b

(r)
1

)
= (0, 1) →

(
B̃+

1

)>
∼ (0, 1) r−1eiωr∗ .

(A20)

As with even parity, the method described in Sec. IV A transforms this simple basis to a more orthogonal one using
thin-QR pre-conditioning.

With these asymptotic series care must be exercised with the number of terms and the starting radius r∞∗ . The
test for convergence is whether a numerical integration through a distance ∼ ω−1 starting with an initial evaluation
of the asymptotic expansion agrees with a second evaluation of the expansion at the end point of the trial. If the test
fails, we increase r∞∗ by some factor (say ∼ 1.5) and repeat.

Appendix B: Homogeneous static modes

Here we provide the details of the power series used to construct exact analytic homogeneous solutions for static
modes when l ≥ 2, as were discussed in Sec. IV C. Throughout this section we set ρ = r/M . Regularity at ρ = 2 and
ρ =∞ governs our choice for inner and outer solutions.

1. Odd-parity

In Sec. IV C we gave expressions for h̃−t and h̃+
t as finite sums. The coefficients in those sums are

aodd
k =

3(−1)k21−k(l + k + 1)!

l(l + 1)k!(k + 3)!(l − k − 1)!
, (B1)

bodd
0 =

96

l2(l + 1)2(l + 2)(l − 1)
, bodd

1 =
24

l2(l + 1)2
, bodd

2 =
6

l(l + 1)
, bodd

3 =
1

l(l + 1)
+

11

6
− 2Hl,

bodd
k =

1

−4k(k − 3)

[
4(k − 3)aodd

k−4 + (12− 8k)aodd
k−3 (B2)

+ (12− 7k + k2 − l(l + 1))bodd
k−2 + 2(10k − 2k2 − 10 + l(l + 1))bodd

k−1

]
,

where Hk is the kth harmonic number defined as

Hk ≡
{

0 , k = 0∑k
j=1 j−1 , k ≥ 1

. (B3)

We have found the expression for h̃+
t in Eqn. (4.7) to be impractical to use numerically for large r because of a large

number of cancellations between the two sums. We instead re-expand the solution as an infinite series

h̃+
t =

M

ρl

∞∑
k=0

dodd
k

ρk
, dodd

k =
22l+k+1(l + k + 1)!(l + k − 2)!Γ(l + 3/2)

k!(l + 1)(l − 2)!(2l + k + 1)!
√
π

, (B4)

which agrees with the expression in Eqn. (4.7) up to a constant factor. This is a convergent Taylor series if ρ > 2.
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2. Even-parity

As summarized in Sec. IV C, we find the even-parity static modes through a series of steps. We give here the
complete expressions for the gauge variables ξ̃±e,H0, ξ̃±e,H1 and ξ̃±e,I that are defined in that section. We construct power
series expansions and we seek series that are exact solutions with finite numbers of terms. This condition imposes
constraints on otherwise freely chosen coefficients. The variables ξ̃±e,H0 are found from the finite sums

ξ̃−H0 = M2
l∑

k=0

aH0
k ρk, ξ̃+

H0 = ξ̃−H0 ln f +M2
l−1∑
k=0

bH0
k ρk, (B5)

where the coefficients aH0
k and bH0

k are given by the closed-form expressions

aH0
k =

(−1)k(l + k)!

2k(k!)2(l − k)!
, bH0

k = 2aH0
k (Hk −Hl). (B6)

In practice we find the above expression for ξ̃+
H0 to be impractical to use numerically due to a large number of

cancellations between the two sums. Instead we use the following equivalent Taylor series, which converges for all
ρ > 2

ξ̃+
H0 =

M2

ρl+1

∞∑
k=0

dH0
k

ρk
, dH0

k =
(−1)l+12l+k+1[(l + k)!]2

k!(2l + k + 1)!
. (B7)

The variables ξ̃±e,H1 are given by

ξ̃−H1 = ξ̃−H0 ln ρ+M2
l+2∑
k=0

aH1
k ρk,

ξ̃+
H1 = ξ̃−H0

[
Li2(f)− 1

2
ln
(ρ

4

)
ln f − π2

6
− aH1

l+2 + aH1
l+1 + bH1

l

aH0
l

]
+

1

2
ξ̃+
H0 ln ρ− 1

2
ξ̃−H1 ln f +M2

l+1∑
k=0

bH1
k ρk,

(B8)

where we have introduced the dilogarithm function Li2(f) ≡ −
∫ f

0
x−1 ln(1 − x)dx, and the coefficients follow from

the recurrences

aH1
0 = 0, aH1

1 = l(l + 1) +
1

2
, aH1

2 =
1

16
(2− l(−2 + l(1 + 3l(2 + l)))),

aH1
3 = −1

8
− 1

12
l +

539

864
l2 +

91

288
l3 − 7

216
l4 +

11

288
l5 +

11

864
l6,

8(−3 + k)(−2 + k)k2aH1
k =

2(−7 + 2k)(11 + (−7 + k)k − l(1 + l))aH0
k−3

− 2(−99k2 + 12k3 − 4k(−65 + 2l(1 + l)) + 3(−72 + 7l(1 + l)))aH0
k−2

+ 4(−68 + 2k(65 + 6(−6 + k)k) + 7l − 4kl + (7− 4k)l2)aH0
k−1

− 8k(12 + k(−15 + 4k))aH0
k + (−5 + k − l)(−3 + k − l)(−4 + k + l)(−2 + k + l)aH1

k−3

− 2(128− 33k3 + 3k4 + (−5 + l)l(1 + l)(6 + l)− 2k2(−65 + 2l(1 + l)) + 3k(−72 + 7l(1 + l)))aH1
k−2

+ 4(24 + (−4 + k)k(17 + 3(−4 + k)k)− 7l + (7− 2k)kl + (−7 + (7− 2k)k)l2)aH1
k−1,

(B9)
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bH1
0 = 0, bH1

1 = −1

2
(1 +Hl(2 l(l + 1) + 1)) ,

bH1
2 =

1

16

(
6 + l − 27l2 − 16l3

l(l + 1)
+Hl(−2 + l(−2 + l(1 + 3 l(2 + l))))

)
,

bH1
3 =

216 + l(216 + l(−656 + l(−1229 + l(−1279 + l(−463 + 27 l)))))

1728 l(l + 1)

+
Hl

864
(−180 + l(−120 + l(613 + l(495 + l(28− 11 l(3 + l)))))),

8(−3 + k)(−2 + k)k2bH1
k =

− 4(−3 + k)aH0
k−2 + 2(−7 + 4k)aH0

k−1 − 4(−3 + k)(8 + (−6 + k)k − l(1 + l))aH1
k−2

+ 2(−51k2 + 8k3 + 7(−8 + l + l2) + k(99− 4l(1 + l)))aH1
k−1 − 4k(12 + k(−15 + 4k))aH1

k

+ (−7 + 2k)(11 + (−7 + k)k − l(1 + l))bH0
k−3

+ (99k2 − 12k3 + 4k(−65 + 2l(1 + l))− 3(−72 + 7l(1 + l)))bH0
k−2

+ 2(−68 + 2k(65 + 6(−6 + k)k) + 7l − 4kl + (7− 4k)l2)bH0
k−1 − 4k(12 + k(−15 + 4k))bH0

k

+ (−5 + k − l)(−3 + k − l)(−4 + k + l)(−2 + k + l)bH1
k−3

− 2(128− 33k3 + 3k4 + (−5 + l)l(1 + l)(6 + l)− 2k2(−65 + 2l(1 + l)) + 3k(−72 + 7l(1 + l)))bH1
k−2

+ 4(24 + (−4 + k)k(17 + 3(−4 + k)k)− 7l + (7− 2k)kl + (−7 + (7− 2k)k)l2)bH1
k−1.

(B10)

As with ξ̃+
H0, we find the expression for ξ̃+

H1 to be impractical for numerical use at large radius and replace it with a

convergent Taylor series [this expression for ξ̃+
H1 is equivalent to that in Eqn. (B8) up to a linear combination with

ξ̃+
H0]

ξ̃+
H1 =

1

2
ξ̃+
H0 ln ρ+

M2

ρl−1

∞∑
k=0

dH1
k

ρk
,

dH1
0 =

3 + 8l + 4l2

4l
dH0

0 , dH1
1 =

l2 + l − 1

l
dH1

0 , dH1
2 = 0,

(−2 + k)k(−1 + k + 2l)(1 + k + 2l)dH1
k =

2(−3 + k + l)(3 + 4k2 + l(−9 + 4l) + k(−9 + 8l))dH0
k−4

− (−2 + 8k3 + 3k2(−9 + 8l) + l(27− 26l + 4l2) + k(22− 58l + 20l2))dH0
k−3

+ (−1 + 2k + 2l)(−1− 2l + k(−1 + k + 2l))dH0
k−2 − 4(−3 + k + l)2(−1 + k + l)(k + l)dH1

k−2

+ 2((−2 + k)k(1 + k(−5 + 2k))− 6l + k(27 + k(−29 + 8k))l + 2(−2 + k)(−3 + 5k)l2 + 2(−3 + 2k)l3)dH1
k−1.

(B11)

The remaining unknown gauge variables are ξ̃±e,I , which satisfy the inhomogeneous ODE Eqn. (4.15). In order to
find expressions for them we must first write the source term of that equation as a power series. The source term that
is regular at the horizon is

S−ξ =
1

M2ρ3f2

l∑
k=0

y−k ρ
k, y−k =


− 96

(l + 2)(l − 1)
k = 0

8aodd
k−1(2(k + 1) + l(l + 1))− 32(k + 3)aodd

k

(l + 2)(l − 1)
0 < k < l

8(l + 1)

l − 1
aodd
l−1 k = l

. (B12)
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The corresponding term that is regular at infinity is

S+
ξ = S−ξ ln f +

1

M2ρ5f2

l+2∑
k=0

y+
k ρ

k,

y+
k =



8(l(l + 1) + 2(k − 1))bodd
k − 32(k + 1)bodd

k+1

(l + 2)(l − 1)
k = 0, 1

8(l(l + 1) + 2(k − 1))bodd
k − 32(k + 1)bodd

k+1 + 32aodd
k−2

(l + 2)(l − 1)
1 < k < l + 2

8(l + 1)

l − 1
bodd
l+2 k = l + 2

.

(B13)

With these in hand, we can write power series for ξ̃±e,I .

ξ̃−e,I = M2ρ2
l∑

k=0

aIkρ
k, ξ̃+

e,I = ξ̃−e,I ln f + βξ̃−H0 ln f +M2
l+1∑
k=0

bIkρ
k, (B14)

where β ≡ −3072(l(l + 1)− 7)/[l4(l + 1)4(l + 7)(l + 2)(l − 1)]. The coefficients follow from the recurrences

aI0 = − 12

(l + 2)(l + 1)l(l − 1)
, aI1 = − 2

l(l + 1)
,

4k(k − 1)(k + 2)2aIk = y−k−1 − (k − l − 2)(k − l)(k + l − 1)(k + l + 1)aIk−2

− 2(l + l2 − 2− k3 − 2k4 + k(1 + l + l2) + 2k2(2 + l + l2))aIk−1,

(B15)

bI0 =

l∑
k=0

2k+2

k + 2
aIk + β

l∑
k=1

2k

k
aH0
k , bI1 =

1

4
(−3l(l + 1)β + 2βaH0

1 − 2l(l + 1)bI0) +
1

8
y+

0 ,

bI2 = β
[ 3

32
(2− 3l − 2l2 + 2l3 + l4) +

1

2l(l + 1)

(
− 2− 3l − 2l2 + 2l3 + l4

8
aH0

1 +
2 + 5l + 5l2

2
aH0

2 + 9aH0
3

)]
+
l(l + 1)(l + 2)(l − 1)

16
bI0 +

1

2l(l + 1)

(2 + 5l + 5l2

2
aI0 + 9aI1 −

2− 3l − 2l2 + 2l3 + l4

32
y+

0 −
1

8
y+

1 +
1

4
y+

2

)
,

bI3 =

l∑
k=2

2k−1

k − 1
aIk + β

l∑
k=4

2k−3

k − 3
aH0
k ,

8k2(k − 2)(k − 3)bIk =

2y+
k−1 − y+

k−2 + 8(−3 + k)[8 + (−6 + k)k − l(1 + l)]aIk−4

+ 4[51k2 − 8k3 − 7(−8 + l + l2) + k(−99 + 4l(1 + l))]aIk−3 + 8k[−4 + 4(−2 + k)2 + k]aIk−2

− 2[128− 33k3 + 3k4 + (−5 + l)l(1 + l)(6 + l)− 2k2(−65 + 2l(1 + l)) + 3k(−72 + 7l(1 + l))]bIk−2

+ 4[24 + (−4 + k)k(17 + 3(−4 + k)k)− 7l + (7− 2k)kl + (−7 + (7− 2k)k)l2]bIk−1

+ (−5 + k − l)(−3 + k − l)(−4 + k + l)(−2 + k + l)bIk−3 + 8β(−3 + k)[8 + (−6 + k)k − l(1 + l)]aH0
k−2

+ 4β[51k2 − 8k3 − 7(−8 + l + l2) + k(−99 + 4l(1 + l))]aH0
k−1 + 8βk[12 + k(−15 + 4k)]aH0

k .

(B16)

We have found the expressions for S+
ξ and ξ̃+

e,I in Eqns. (B13) and (B14) to also be impractical for numerical use at
large r. Again, we replace them with infinite series. For the source term we have

S+
ξ =

1

M2ρl+4f2

∞∑
k=0

vk
ρk
, vk =

22l+k+4l(l + k)[(l + k − 1)!]2Γ(l + 3/2)

(l + 2)k!(l − 1)!(2l + k + 1)!
√
π

, (B17)
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while for ξ̃+
e,I we use

ξ̃+
e,I =

M2

ρl−1

∞∑
k=0

dIk
1

ρk
,

dI0 =
2− l2

4l(l + 1)
v0 +

1

4l
v1, dI1 = − l

3 − 3l + 2

4l2
v0 +

l(l + 1)− 1

4l2
v1, dI2 = 0,

k(k − 2)(−1 + k + 2l)(1 + k + 2l)dIk =

vk−1 − 4(−3 + k + l)2(−1 + k + l)(k + l)dIk−2

+ 2[(k − 2)k(1 + k(2k − 5)) + (−1 + k)(6 + k(−21 + 8k))l + 2(−2 + k)(−3 + 5k)l2 + 2(−3 + 2k)l3]dIk−1,

(B18)

which agrees with (B14) up to a constant factor and linear combination with ξ̃+
H0. It is important when constructing

the “plus-side” solutions to use either Eqns. (4.7), (B8), and (B14) or Eqns. (B4), (B11), and (B18). Mixing these
sets of equations will introduce an inconsistency.

Appendix C: Explicit form of the force terms fαn

Here we give the explicit form of the various force terms fαn defined in Sec. II E. Only the t and r components
are necessary. The θ component vanishes and the ϕ component can be derived from the other two. These functions
depend upon the position on the orbit, the constants of motion, and the MP amplitudes and their first derivatives.
There is implied dependence on l and m.

f t0 =

[
imEL

(
3fp + U2

p − 2E2
)

4f3
p

− ME2
(
3fp + U2

p − 4E2
)
ṙp

2f5
p

]
htt +

r2
p

(
fp
(
U2
p + E2

)
− f2

p + E2
(
U2
p − 2E2

))
4f4
p

∂thtt

+
r2
pE2

(
3fp + U2

p − 2E2
)
ṙp

4f4
p

∂rhtt +

[
imEL

(
fp + U2

p − 2E2
)

4fp
+
ME2

(
fp + U2

p

)
ṙp

2f3
p

]
hrr

+
r2
p

(
fp + E2

) (
fp + U2

p − 2E2
)

4f2
p

∂thrr +
r2
pE2

(
fp + U2

p − 2E2
)
ṙp

4f2
p

∂rhrr

+

[
−M

(
fpU

2
p + E2U2

p − 2E4
)

f3
p

+
imEL

(
fp − E2

)
ṙp

f3
p

]
htr −

r2
pE4ṙp

f4
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ṙp

rpf4
p

ht −
E3L
f3
p

∂tht +
EL
(
fp − E2

)
ṙp
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2r4
pfp

h2, (C14)

fr6 = −EL
3ṙp
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Appendix D: Additional self-force values

The following two tables (Tables VI and VII) provide GSF data that compliments that presented in Tables III and
IV.

TABLE VI. Same as Table III with e = 0.3.

χ p = 10 p = 20 p = 30 p = 60 p = 90

F t

0 −1.02425× 10−3 −2.195889× 10−5 −2.619956× 10−6 −7.6424003× 10−8 −9.94261928× 10−9

π/4 7.93725× 10−4 2.611011× 10−4 1.056357× 10−4 2.0516060× 10−5 7.66603327× 10−6

π/2 1.12072× 10−3 2.704049× 10−4 1.061464× 10−4 2.0147891× 10−5 7.47715975× 10−6

3π/4 5.23325× 10−4 1.237182× 10−4 4.795782× 10−5 8.9766821× 10−6 3.31514100× 10−6

π 2.83617× 10−7 −3.146284× 10−8 −4.916581× 10−9 −1.5203069× 10−10 −1.85477251× 10−11

5π/4 −5.01242× 10−4 −1.234054× 10−4 −4.792378× 10−5 −8.9756562× 10−6 −3.31499843× 10−6

3π/2 −1.05385× 10−3 −2.698687× 10−4 −1.061119× 10−4 −2.0147281× 10−5 −7.47706856× 10−6

7π/4 −1.52944× 10−3 −2.782552× 10−4 −1.077562× 10−4 −2.0579481× 10−5 −7.67431383× 10−6

F r

0 2.30316× 10−2 6.836866× 10−3 3.254304× 10−3 8.7346506× 10−4 3.97631238× 10−4

π/4 2.10318× 10−2 6.042486× 10−3 2.859673× 10−3 7.6346290× 10−4 3.46940757× 10−4

π/2 1.41875× 10−2 4.215713× 10−3 1.985131× 10−3 5.2535511× 10−4 2.37910729× 10−4

3π/4 8.91644× 10−3 2.676966× 10−3 1.253239× 10−3 3.2907620× 10−4 1.48590757× 10−4

π 7.11090× 10−3 2.131279× 10−3 9.953187× 10−4 2.6059554× 10−4 1.17547270× 10−4

5π/4 8.70369× 10−3 2.669408× 10−3 1.252041× 10−3 3.2902233× 10−4 1.48581907× 10−4

3π/2 1.30565× 10−2 4.179240× 10−3 1.979557× 10−3 5.2511220× 10−4 2.37871148× 10−4

7π/4 1.86761× 10−2 5.972195× 10−3 2.849306× 10−3 7.6302517× 10−4 3.46870034× 10−4
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TABLE VII. Same as Table III with e = 0.7.

χ p = 10 p = 20 p = 30 p = 60 p = 90

F t

0 −1.12× 10−2 −2.101× 10−4 −2.3435× 10−5 −6.4473× 10−7 −1.97× 10−7

π/4 6.33× 10−3 9.829× 10−4 3.7436× 10−4 7.1857× 10−5 2.68× 10−5

π/2 3.53× 10−3 6.765× 10−4 2.5715× 10−4 4.7747× 10−5 1.76× 10−5

3π/4 6.28× 10−4 1.300× 10−4 4.8732× 10−5 8.8491× 10−6 3.24× 10−6

π 9.81× 10−8 1.933× 10−9 2.2050× 10−10 6.4536× 10−12 −3.01× 10−11

5π/4 −6.10× 10−4 −1.296× 10−4 −4.8678× 10−5 −8.8474× 10−6 −3.24× 10−6

3π/2 −2.15× 10−3 −6.524× 10−4 −2.5435× 10−4 −4.7665× 10−5 −1.76× 10−5

7π/4 −6.48× 10−3 −9.957× 10−4 −3.7692× 10−4 −7.1956× 10−5 −2.68× 10−5

F r

0 5.24× 10−2 1.185× 10−2 5.5084× 10−3 1.4758× 10−3 6.74× 10−4

π/4 4.66× 10−2 9.581× 10−3 4.3877× 10−3 1.1591× 10−3 5.27× 10−4

π/2 1.62× 10−2 4.435× 10−3 2.0476× 10−3 5.3292× 10−4 2.40× 10−4

3π/4 4.22× 10−3 1.180× 10−3 5.3937× 10−4 1.3833× 10−4 6.20× 10−5

π 1.55× 10−3 4.224× 10−4 1.9202× 10−4 4.9022× 10−5 2.19× 10−5

5π/4 4.19× 10−3 1.179× 10−3 5.3905× 10−4 1.3832× 10−4 6.20× 10−5

3π/2 1.35× 10−2 4.348× 10−3 2.0342× 10−3 5.3232× 10−4 2.40× 10−4

7π/4 2.68× 10−2 9.061× 10−3 4.3148× 10−3 1.1561× 10−3 5.26× 10−4
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