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We present an algorithm for calculating the metric perturbations and gravitational self-force for extreme-
mass-ratio inspirals (EMRIs) with eccentric orbits. The massive black hole is taken to be Schwarzschild,
and metric perturbations are computed in Lorenz gauge. The perturbation equations are solved as coupled
systems of ordinary differential equations in the frequency domain. Accurate local behavior of the metric is
attained through use of the method of extended homogeneous solutions, and mode-sum regularization is
used to find the self-force. We focus on calculating the self-force with sufficient accuracy to ensure its error
contributions to the phase in a long-term orbital evolution will be δΦ≲ 10−2 rad. This requires the
orbit-averaged force to have fractional errors ≲10−8 and the oscillatory part of the self-force to have errors
≲10−3 (a level frequently easily exceeded). Our code meets this error requirement in the oscillatory part,
extending the reach to EMRIs with eccentricities of e ≲ 0.8, if augmented by use of fluxes for the orbit-
averaged force, or to eccentricities of e≲ 0.5 when used as a stand-alone code. Further, we demonstrate
accurate calculations up to orbital separations of a≃ 100M, beyond that required for EMRI models and
useful for comparison with post-Newtonian theory. Our principal developments include (1) use of fully
constrained field equations, (2) discovery of analytic solutions for even-parity static modes, (3) finding a
preconditioning technique for outer homogeneous solutions, (4) adaptive use of quad precision, (5) jump
conditions to handle near-static modes, and (6) a hybrid scheme for high eccentricities.
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I. INTRODUCTION

Merging compact binaries are thought to be a promising
source of gravitational waves that may be found by ground-
based or future space-based detectors. Theoretical models
play a role in the experimental efforts, both in assisting
detection and in allowing binary parameter estimation.
Three principal theoretical approaches exist, numerical
relativity [1,2], post-Newtonian (PN) theory [3], and
gravitational self-force (GSF) calculations [4–6], with
the effective-one-body formalism providing a synthesis
of the three [7–9]. The GSF approach is relevant when the
binary mass ratio ε is sufficiently small that the motion and
field of the smaller mass can be treated in a perturbation
expansion. In this black hole perturbation theory, the
background field is that of the heavier stationary black
hole, and the zeroth-order motion of the small mass is a
geodesic in this background. Then the perturbation in the
metric is calculated to first order in the mass ratio, and the
action of the field of the small body back on its own motion
is computed (i.e., the first-order GSF) [10,11]. In principle,
the calculation proceeds to second order [12,13] and
beyond. Over the past 15 years, a number of key formal
developments have been established [10,11,14–17].

Work on the GSF approach has been motivated in part by
prospects of detecting extreme-mass-ratio inspirals
(EMRIs) using a space-based gravitational wave detector
like LISA or eLISA [18–20]. For a LISA-like detector with
fmin ≃ 10−4 Hz, an EMRI consists of a small compact
object of mass μ≃ 1 − 10M⊙ (neutron star or black hole)
in orbit about a supermassive black hole (SMBH) of mass
M ∼ 105 − 107M⊙. The mass ratio would lie in the range
ε ¼ μ=M ≃ 10−7 − 10−4, small enough to allow a gradual,
adiabatic inspiral and provide a natural application of
perturbation theory. As the EMRI crosses the detector pass
band prior to merger, its orbital motion accumulates a total
change in phase of order ε−1 ∼ 104 − 107 rad.
Less extreme mass ratios may also be important. A class

of intermediate mass black holes (IMBHs) may exist with
masses M ∼ 102 − 104M⊙. These are suggested [21] by
observations of ultraluminous x-ray sources and by theo-
retical simulations of globular cluster dynamical evolution.
Stellar mass black holes or neutron stars spiralling into
IMBHs with masses M ∼ 50 − 350M⊙, referred to as
intermediate-mass-ratio inspirals (IMRIs), would lie in
the pass band of Advanced LIGO and are potentially
promising sources [22,23]. An IMRI might also result
from binaries composed of an IMBH and a SMBH [23],
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which would appear as an eLISA source. While IMRIs
execute fewer total orbits (i.e., ε−1 ∼ 102 − 103) than
EMRIs in making, say, a decade of frequency change,
the theoretical approach is nearly the same. Detection of
E/IMRIs would represent a strong field test of general
relativity, and measurement of the primary’s multipole
structure would confirm or not the presence of a Kerr
black hole [22,24,25].
In tandem with the more formal GSF developments

have come a host of practical numerical calculations. The
dominant approach to date takes the small body to be a
point mass [5], computes the metric perturbation (MP) in
the time domain (TD) [26–29] or frequency domain (FD)
[30–32], and obtains a finite self-force from the divergent
retarded field by mode-sum regularization [14,27,30,32–
37]. Work on the gauge-dependent GSF has benefitted
from analogous scalar field models [38–40]. Applications
to Kerr EMRIs, both with scalar and gravitational self-
force, have been made [41–48]. Availability of analytic
mode-sum regularization parameters [49,50] has been
beneficial. Calculations of perturbations and the GSF have
now been made with very high accuracy, arbitrary precision
arithmetic [51–54], allowing detailed comparison with PN
theory (see also Refs. [30,55]). Finally, alternative means
of calculating the self-force, both effective source calcu-
lations [56–58] and direct Green function calculations
[59–61], are being developed.
This paper reports the development of a method and

computer code for accurately calculating the GSF of
Schwarzschild EMRIs with eccentric orbits. We use a
point mass description for the stress-energy tensor of the
small body and work in Lorenz gauge. Tensor spherical
harmonic and Fourier decomposition are used, and the MP
amplitudes are computed initially in the FD. These ampli-
tudes are then transferred to the TD using a generalization
of the method of extended homogeneous solutions (EHS)
[31,40] for systems of equations [32,34,37,62,63]. The
GSF is then calculated using standard mode-sum regulari-
zation. Our code was developed over the past several years
and was reported in a series of talks at the 15th, 16th, and
17th Capra meetings [63]. A similar effort by a group
in Southampton, initiated earlier [32] but developed in
part concurrently with ours, has been reported in full
elsewhere [37].
Our use of Lorenz gauge in the FD and generalization of

EHS is in common with Ref. [37]. The FD is used to
achieve high accuracy, and the method of EHS circumvents
the Gibbs phenomenon in returning to the TD. We calculate
also the “geodesic self-force;” that is, the GSF as a function
of time along an undisturbed geodesic orbit. The intent is to
provide GSF curves at points that densely cover a region of
orbital parameter space (parametrized by eccentricity e and
dimensionless semilatus rectum p). As shown in Ref. [36],
these data can then serve as an interpolated input to an
osculating orbits evolution code.

Our approach is distinguished, however, in several
respects. We devise and use here a fully constrained system
of equations for even parity, as well as use the comparable
system [37] for odd parity. We have found and use a set of
analytic solutions for even-parity static modes, which
complement published solutions [64] for odd parity.
Particular attention is paid to accurately calculating near-
static modes that occur for certain orbital parameters that
produce a near resonance between the radial Ωr and
azimuthal Ωφ orbital frequencies (see Fig. 1). To compute
this subset of modes accurately, we resort to occasional
(more expensive) use of 128-bit arithmetic (i.e., quad
precision). This has two effects. First, we are able to trade
some computational speed for more uniform accuracy
across e and p space. Second, the technique significantly
expands the region of e and p space within which the GSF
can be computed accurately. For a given l and m mode,
there will exist a harmonic n that produces the lowest
magnitude frequency, ωmn ¼ mΩφ þ nΩr. When a mode
exists with frequency at or below jωj < 10−4M−1, we
switch the critical parts of the computation over to quad
precision. Furthermore, there is an added device that can be
used for this single ðl; m; nÞ mode—we can eliminate part
of the integration by using the jump conditions to normalize
the mode. This procedure increases accuracy and restores
some computational speed. With these techniques we are
able to extend the reach of the code in computing the GSF
to wider orbital separations, out to p≲ 100, and to higher
eccentricities, reaching as high as e≲ 0.8 with acceptable
errors when all available techniques are used.

FIG. 1 (color online). Orbital parameter space, resonances, and
regions with near-static modes. Relativistic definitions of semi-
latus rectum p and eccentricity e are adopted [Eq. (2.5)]. Dotted
curves indicate, as in Ref. [37], a closed orbit with the ratio
Ωφ=Ωr being a rational number. On any such curve, there exists a
static mode ωmn ¼ mΩφ þ nΩr ¼ 0 for indicated m and n.
Within the vicinity of these curves, these modes will be nearly
static. For near-static modes with frequencies below jωj <
10−4M−1 (shaded region), we use 128-bit floating point arith-
metic for part of the mode calculation. Our calculations are
extended to frequencies as small as jωj < 10−6M−1, which exist
in regions narrower than the dotted curves.
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The accuracy criteria we adopt in this paper stem from
envisioned use of computed inspirals and resulting wave-
forms in the matched filtering applications of gravitational
wave detectors. A detector like eLISA [4,23] would employ
template matching to separate individual sources and
extract physical parameters from events buried in detector
noise. To take full advantage of a signal when doing
parameter matching [22,24,25], theoretical waveform
phases must be sufficiently accurate that they do not
contribute dephasing errors and thus degrade available
signal-to-noise ratios [6,25,65]. The oscillations within
the gravitational waveform will depend upon the orbital
motion. For Schwarzschild EMRIs there are cumulative
radial Φr ¼ χpðTÞ and azimuthal Φφ ¼ φpðTÞ orbital
phases (here T ∼M2=μ is the cumulative time in the
inspiral, and see Sec. II A for discussion of eccentric
orbital motion). For schematic purposes, we simply take
here the radial phase as a proxy for the waveform phase.
Further, we assume that theoretical orbital phase uncer-
tainties should be no larger than δΦr ≃ 0.01 rad over a
cumulative phase in the inspiral of as much asΦr ∼ 106 (for
an EMRI) (see the discussion in Ref. [6]). Thus, the GSF
and inspiral calculation should have fractional errors in the
phase of order 10−8.
The GSF is often split into dissipative and conservative

parts [65]. It is useful to also split the dissipative part into
orbit-averaged and oscillatory parts. The orbit-averaged,
dissipative GSF (i.e., energy and angular momentum fluxes
to infinity and down the horizon) produces secular changes
that drive the adiabatic inspiral. For a small mass ratio ε, the
inspiral will schematically accumulate an orbital phase of

Φr ¼ κ0ðe;p;ηÞ
1

ε
þ κ1ðe;p;ηÞþ κ2ðe;p;ηÞεþ� � � ; ð1:1Þ

where e and p are orbital parameters when the EMRI enters
a detector pass band and η is the ratio between ingress
frequency fi and egress (or merger) frequency fe. The κ’s
are dimensionless functions of order unity that do not
depend on ε. We are here assuming a Schwarzschild
E/IMRI and absence of Kerr transient resonances [66].
Also beyond our present concern are the recently recog-
nized effects of resonances in Schwarzschild EMRIs [67],
which appear to come in at order ε (i.e., produce con-
tributions to κ2). The orbit-averaged, dissipative part of the
first-order GSF will determine κ0. The rest of the first-order
GSF, the oscillatory part of the dissipative piece and the
(oscillatory) conservative part, contribute to κ1. This term in
Φr is of order unity and represents the post-1-adiabatic
correction [65]. The implications for our work are this: if
we require δΦr ≃ 10−2, we must compute the orbit-
averaged first-order GSF with fractional errors at or below
ϵ0 ≃ 10−8 ≲ εδΦr and compute the oscillatory parts with
fractional errors of order ϵ1 ≃ 10−3 ≲ δΦr or less. The
retarded MPs themselves must be known even more

accurately, since mode-sum regularization is a numerically
subtractive procedure.
Ultimately these contributions to κ1 are necessary but not

sufficient. It has long been understood that κ1 also depends
on the orbit-averaged part of the second-order GSF
[12,17,65,68–70], which our code (and the one described
in Ref. [37]) does not calculate. Moreover, there is expected
to be an error in computing κ1 by using FDmethods and the
“geodesic” GSF. In curved space, the real GSF will depend
upon the entire past history of the particle’s motion and the
self-consistently evolved retarded field. In the geodesic
approximation, there is no encoding of the prior history of
an inspiral. For adiabatic inspiral the discrepancy is
expected to appear at a relative order of ε (thus in κ1)
[71]. It was stressed in Ref. [72] that this discrepancy could
be assessed by comparing a self-consistent TD self-force
calculation with an osculating orbits evolution using a
FD-derived geodesic self-force. Such calculations are now
in progress [73,74], pitting a scalar field self-consistent TD
evolution against an osculating orbits inspiral driven by a
geodesic scalar self-force calculation. Preliminary results
[75] show small differences that are (so far) nearly
indistinguishable from errors in the TD evolution.
Achievable GSF accuracy will depend on orbital param-

eters, particularly the eccentricity. Theoretical studies
suggest that EMRIs may form via several mechanisms
[23]. The standard channel involves weak two-body relax-
ation within the nuclear star cluster that scatters a compact
object into a high eccentricity orbit about a SMBH. It is
then captured by the SMBH through successive bursts of
GW emission near pericenter, a process referred to as one-
body inspiral [76]. These stars are captured initially in very
high eccentricity orbits, which then proceed to circularize
as the orbit shrinks. For M ≃ 3 × 106M⊙, EMRIs formed
in this way will have a distribution of eccentricities peaked
about e≃ 0.7 (and a maximum of e≃ 0.81) as they enter
the eLISA pass band (see Ref. [76] and its Fig. 4). Because
of the likelihood that EMRIs will have high eccentricities,
we have focused on extending the ability of our code to
calculate up to e≃ 0.8.
An alternative EMRI formation channel posits that

compact binaries may scatter into high eccentricity orbits
about the SMBH, with the binary being subsequently
tidally disrupted. The dissolution of the binary may then
inject a compact object into orbit, which will typically be
less eccentric, about the SMBH. These EMRIs will
subsequently have nearly circular orbits by the time they
enter the eLISA pass band [23]. As Fig. 1 makes clear, there
is less likelihood of encountering troublesome near-static
modes at low eccentricity, and our code correspondingly
has higher accuracy and speed in these cases.
This paper is organized as follows. In Sec. II we review

the formalism for calculating the first-order MPs and the
GSF for bound eccentric orbits on Schwarzschild. There we
establish our notation for bound geodesic motion, our
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convention for spherical harmonic decomposition, and the
definition of MP amplitudes and give the coupled MP
equations in Lorenz gauge. We also show in Sec. II how the
size of these systems of coupled equations can be reduced,
from seven down to four equations for even parity and from
three down to two equations for odd parity, using the gauge
conditions. These fully constrained equations are the ones
we solve numerically, deriving the remaining MP ampli-
tudes from the gauge conditions. In Sec. III we outline how
we apply the method of EHS to coupled systems of
equations. In Sec. IV, where the heart of our numerical
method is presented, we provide a road map and details on
how various classes of Fourier-harmonic modes are solved.
These include low-order (l ¼ 0; 1) modes, static modes,
and near-static modes. Particularly worth noting is our new
analytic solution for even-parity static modes (Sec. IV C)
and various procedures for coping with near-static modes
(Secs. IVA and IV B). Section V gives our numerical
results. There we compare our computed GSF to values
given in Ref. [37] for a particular orbit and provide tables of
GSF values, including estimated digits of accuracy, for a
broader set of orbital parameters (see also Appendix D). We
show how the GSF errors vary smoothly as we range over
orbital parameter space, while the speed of the algorithm
changes more abruptly as it copes with difficult modes. We
also discuss how flux calculations may be combined with
the computed oscillatory part of the GSF to obtain
sufficient accuracy for high eccentricity orbits in long-term
orbit integrations, a subject we expect to return to in a later
paper. Finally, we relegate to Appendix A some details on
expansions that are used to set accurate boundary con-
ditions on mode functions at large r and near the horizon, to
Appendix B some details on the expansions from which
analytic solutions are derived for static modes, and to
Appendix C the form of certain force terms used in the
mode-sum regularization procedure.
Throughout this paper we set c ¼ G ¼ 1 and use metric

signature ð−þþþÞ and sign conventions of Misner,
Thorne, and Wheeler [77]. Our notation for metric pertur-
bation amplitudes and source terms largely follows that of
Martel and Poisson [78] (see also Ref. [31]). In particular,
while general coordinate indices are denoted by greek
letters α; β; μ; ν;…, it is useful to consider a split of the
four-dimensional manifold into M2 × S2 and adopt
lowercase latin letters a; b; c;… for indices associated
with coordinates t and r and capital latin letters
A;B;C;… for the angular coordinates θ and φ and
associated indices.

II. FORMALISM

A. Bound orbits on a Schwarzschild background

We consider in this paper generic bound motion of a
point particle of mass μ around a Schwarzschild black hole
of mass M under the assumption that μ=M ≪ 1. We use

Schwarzschild coordinates xμ ¼ ðt; r; θ;φÞ, in which the
line element takes the standard form

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð2:1Þ

where fðrÞ ¼ 1 − 2M=r.
Let the worldline of the particle be xαpðτÞ ¼

½tpðτÞ; rpðτÞ; θpðτÞ;φpðτÞ�, with proper time τ. In this
paper a subscript p indicates a field evaluated at the
location of the particle. The 4-velocity is uα ¼ dxαp=dτ.
Without loss of generality, the motion is confined to the
equatorial plane, θpðτÞ ¼ π=2. At zeroth order the motion
is geodesic in the static background, and the geodesic
equations yield immediate first integrals. This allows us to
write the 4-velocity as

uα ¼
�
E
fp

; ur; 0;
L
r2p

�
; ð2:2Þ

where E and L are the constant specific energy and specific
angular momentum, respectively. Bound orbits have E < 1

and require at least L > 2
ffiffiffi
3

p
M for two turning points to

exist. The constraint uαuα ¼ −1 yields an expression for
the radial coordinate velocity,

_r2pðtÞ ¼ f2p

�
1 −

U2
p

E2

�
; ð2:3Þ

where

U2ðr;L2Þ≡ fðrÞ
�
1þ L2

r2

�
; ð2:4Þ

and a dot indicates differentiation with respect to coor-
dinate time.
While eccentric orbits on Schwarzschild can be para-

metrized by E and L, alternative pairs of parameters can
be chosen. For example, we can use instead the (dimen-
sionless) semilatus rectum p and the eccentricity e (see
Refs. [34,79]). A third choice is the pericentric and
apocentric radii, rmin and rmax. These various parameters
are related by the following equations:

p ¼ 2rmaxrmin

Mðrmax þ rminÞ
; e ¼ rmax − rmin

rmax þ rmin
; ð2:5Þ

rmax ¼
pM
1 − e

; rmin ¼
pM
1þ e

; ð2:6Þ

and

E2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
: ð2:7Þ
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To avoid a plunging orbit, the inner turning point must lie
outside the maximum of the effective potential U2, which
implies another inequality, p > 6þ 2e. The boundary
p ¼ 6þ 2e of these innermost stable orbits is the separatrix
indicated in Fig. 1.
Numerical integration of the trajectory employs an

alternate curve parameter, χ, in which the radial position
on the orbit is given a Keplerian-appearing form [80],

rpðχÞ ¼
pM

1þ e cos χ
; ð2:8Þ

where χ differs in general from the true anomaly φ. One
radial libration makes a change Δχ ¼ 2π. The orbital
equations then take the form

dtp
dχ

¼ rpðχÞ2
Mðp − 2 − 2e cos χÞ

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1=2

;

dφp

dχ
¼

�
p

p − 6 − 2e cos χ

�
1=2

;

dτp
dχ

¼ Mp3=2

ð1þ e cos χÞ2
�

p − 3 − e2

p − 6 − 2e cos χ

�
1=2

; ð2:9Þ

with the use of χ removing singularities in the differential
equations at the radial turning points (see Ref. [79]).
Integrating the first of these equations provides the
fundamental frequency and period of radial motion,

Ωr ≡ 2π

Tr
; Tr ≡

Z
2π

0

�
dtp
dχ

�
dχ: ð2:10Þ

Integrating the second equation determines the azimuthal
advance. The average angular frequency dφp=dt is found
by integrating over a complete radial oscillation:

Ωφ ≡ 1

Tr

Z
Tr

0

�
dφp

dt

�
dt: ð2:11Þ

In general Ωr ≠ Ωφ, except in the Newtonian limit.

B. First-order metric perturbation equations
in Lorenz gauge

The finite mass of the small body induces a first-order
perturbation pμν in the background metric gμν∶ gμν ¼
gμν þ pμν. Using the trace reverse p̄μν ¼ pμν − 1

2
gμνp

(with p ¼ pαβgαβ), linearizing the Einstein equations,
and imposing the Lorenz gauge condition

p̄μνjν ¼ 0 ð2:12Þ

yields the first-order field equations for the MPs:

4
□p̄μν þ 2Rα

μ
β
νp̄αβ ¼ −16πTμν: ð2:13Þ

Here, a stroke jμ (or ∇μ) indicates covariant differentiation
with respect to gμν and 4

□ ¼ gμν∇μ∇ν. Additionally, Rα
μβν

is the Riemann tensor associated with gμν. Adopting a point
particle description, the stress-energy tensor in Eq. (2.13) is

TμνðxαÞ ¼ μ

Z
uμuνffiffiffiffiffiffi−gp δ4½xα − xαpðτÞ�dτ: ð2:14Þ

C. Spherical harmonic decomposition

Our convention for tensor spherical harmonics and
notation for MP amplitudes follows that of Martel and
Poisson [78], a modification of the original notation of
Regge and Wheeler [81]. (An alternative notation is found
in Refs. [27,37,64].) The convention we use leaves all
tensor harmonics orthogonal and clarifies the distinction
between even-parity and odd-parity amplitudes. Odd-parity
perturbations are expanded in terms of Xlm

A and Xlm
AB, while

even-parity perturbations use Ylm, Ylm
A , and Ylm

AB:

pab ¼
X
lm

hlmabY
lm;

paB ¼
X
lm

ðjlma Ylm
B þ hlma Xlm

B Þ;

pAB ¼
X
lm

½r2ðKlmΩABYlm þ GlmYlm
ABÞ þ hlm2 Xlm

AB�: ð2:15Þ

The stress-energy tensor is also decomposed and following
Ref. [78] has even-parity projections

Qab
lm ¼ 8π

Z
TabȲlmdΩ;

Qa
lm ¼ 8πr2

λþ 1

Z
TaBȲlm

B dΩ;

Q♭
lm ¼ 8πr2

Z
TABΩABȲlmdΩ;

Q♯
lm ¼ 8πr4

λðλþ 1Þ
Z

TABȲlm
ABdΩ ð2:16Þ

and odd-parity projections

Pa
lm ¼ 8πr2

λþ 1

Z
TaBX̄lm

B dΩ;

Plm ¼ 4πr4

λðλþ 1Þ
Z

TABX̄lm
ABdΩ: ð2:17Þ

The overbar here indicates the complex conjugate and
λ≡ ðlþ 2Þðl − 1Þ=2. The sharp (♯) and flat (♭) superscripts
merely distinguish two distinct scalar projections. These
source terms are given explicitly in Sec. V of Ref. [31].

D. Lorenz gauge equations for MP amplitudes

Applying these projections to (2.13) yields coupled sets
of field equations in t and r for the MP amplitudes.
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Likewise (2.12) provides a set of Lorenz gauge conditions
on the amplitudes. Lorenz gauge gives each of the ten field
equations a hyperbolic form, and the principal part of the
wave operator in each equation can be compactly expressed
using the 1þ 1 dimensional d’Alembertian

□≡ −∂2
t þ f∂rðf∂rÞ ¼ −∂2

t þ ∂2
r� ; ð2:18Þ

where r� is the tortoise coordinate

r� ¼ rþ 2M ln

�
r
2M

− 1

�
: ð2:19Þ

The seven even-parity and three odd-parity Lorenz gauge
field equations are well-posed hyperbolic systems, but the

Lorenz gauge conditions (three even parity and one odd
parity) force constraints on the initial conditions. These
unconstrained field equations, along with the Bianchi
identities, ensure that the gauge conditions, if fixed initially,
are satisfied subsequently. We present the unconstrained
equations first and then introduce modified constrained
systems. Equations in this subsection are in TD form but can
be converted to FD form as discussed in Sec. III A. In what
follows all l andm indices onMP and source amplitudes are
suppressed for brevity unless otherwise noted.

1. Unconstrained Lorenz gauge field equations

The seven even-parity unconstrained Lorenz gauge
equations are

□httþ
2ðr−4MÞf

r2
∂rhttþ

4Mf
r2

∂thtrþ
2Mð3M−2rÞf2

r4
hrrþ

4Mf2

r3
Kþ2ðM2− r2fÞ−2λr2f

r4
htt ¼−fQrr−f2Q♭−f3Qtt;

□htrþ
2f2

r
∂rhtrþ

2Mf
r2

∂thrrþ
2M
r2f

∂thttþ
4ðλþ1Þf

r3
jt−

4ðM− rÞ2þ2λr2f
r4

htr ¼ 2fQtr;

□hrrþ
2f
r
∂rhrrþ

4M
r2f

∂thtrþ
2Mð3M−2rÞ

r4f2
httþ

4ðr−3MÞ
r3

Kþ8ðλþ1Þf
r3

jrþ
2ðr−MÞð7M−3rÞ−2λr2f

r4
hrr

¼Q♭−
1

f
Qrr−fQtt;

□jt−
2Mf
r2

∂rjtþ
2Mf
r2

∂tjrþ
2f2

r
htr−

2f2þ2λf
r2

jt¼ f2Qt;

□jrþ
2Mf
r2

∂rjrþ
2M
r2f

∂tjtþ
2f2

r
hrr−

2f
r
Kþ2λf

r
G−

4f2þ2ðλþ1Þf
r2

jr¼−Qr;

□Kþ2f2

r
∂rK−

2ð3M− rÞf2
r3

hrrþ
2M
r3

htt−
4ðλþ1Þf2

r3
jr−

4f2þ2λf
r2

K¼Qrr−f2Qtt;

□Gþ2f2

r
∂rGþ4f2

r3
jr−

2λf
r2

G¼−
f
r2
Q♯: ð2:20Þ

The three odd-parity parts of the field satisfy a separate
unconstrained set of equations in Lorenz gauge:

□ht−
2Mf
r2

∂rhtþ
2Mf
r2

∂thr−
2f2þ 2λf

r2
ht ¼ f2Pt;

□hrþ
2Mf
r2

∂rhrþ
2M
r2f

∂thtþ
2λf
r3

h2

þ 2ð4M− 3rÞf− 2λrf
r3

hr ¼−Pr;

□h2−
2f2

r
∂rh2þ

4f2

r
hrþ

2fðr− 4MÞ− 2λrf
r3

h2 ¼−2fP:

ð2:21Þ

2. Lorenz gauge conditions

The Lorenz gauge conditions (2.12) separate into even-
and odd-parity equations when expanded in spherical

harmonics. For even parity there are three coupled gauge
conditions,

f∂rhtr −
f
2
∂thrr − ∂tK −

1

2f
∂thtt þ

2ðr−MÞ
r2

htr

−
2ðλþ 1Þ

r2
jt ¼ 0;

−
1

f
∂thtr þ

f
2
∂rhrr − ∂rK þ 1

2f
∂rhtt þ

2ðr−MÞ
r2

hrr

−
2

r
K −

2ðλþ 1Þ
r2

jr ¼ 0;

f∂rjr −
1

f
∂tjt −

f
2
hrr þ

1

2f
htt þ

2ðr−MÞ
r2

jr − λG ¼ 0;

ð2:22Þ

while in odd parity there is just one condition,
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f∂rhr −
1

f
∂tht þ

2ðr −MÞ
r2

hr −
λ

r2
h2 ¼ 0: ð2:23Þ

3. Fully constrained field equations

While the unconstrained equations (2.20) and (2.21)
might be solved numerically, in practice we have found it
more efficient and accurate to use the gauge conditions
(2.22) and (2.23) to produce reduced order systems of
constrained equations. To do this we rewrite the gauge
conditions (2.22) and (2.23) as expressions for the four

amplitudes jt, jr, G, and h2. These are used, as necessary,
to eliminate their appearance in six of the equations in the
sets (2.20) and (2.21)—specifically those equations with
wave operators acting on htt, htr, hrr, K, ht, and hr. These
six equations, four even parity and two odd parity, once
modified only reference these remaining amplitudes.
Once the constrained equations are solved, the eliminated
fields, jt, jr, G, and h2, are recovered via the gauge
conditions.
We find the system of four constrained even-parity

equations,

□httþ
2ðr−4MÞf

r2
∂rhttþ

4Mf
r2

∂thtrþ
2Mð3M−2rÞf2

r4
hrrþ

4Mf2

r3
Kþ2ðM2− r2fÞ−2λr2f

r4
htt ¼−fQrr−f2Q♭−f3Qtt;

□htrþ
4f2

r
∂rhtrþ

4M− r
r2f

∂thttþ
ð4M− rÞf

r2
∂thrr−

2f
r
∂tKþ4MðM− rÞ−2λr2f

r4
htr ¼ 2fQtr;

□hrrþ
4ðr−MÞf

r2
∂rhrrþ

2

r
∂rhtt−

4f
r
∂rKþ4ð3M− rÞ

r2f
∂thtrþ

2Mð3M−2rÞ
r4f2

httþ
4ðM− rÞ

r3
Kþ2ðM− rÞ2−2λr2f

r4
hrr

¼−
1

f
QrrþQ♭−fQtt;

□Kþ4f2

r
∂rK−

f
r
∂rhtt−

f3

r
∂rhrrþ

2f
r
∂thtrþ

2M
r3

htt−
2ðrþMÞf2

r3
hrr−

2λf
r2

K¼−f2QttþQrr; ð2:24Þ

and the following system of two constrained odd-parity
equations:

□ht −
2Mf
r2

∂rht þ
2Mf
r2

∂thr −
2f2 þ 2λf

r2
ht ¼ f2Pt;

□hr þ
2ðr −MÞf

r2
∂rhr −

2ðr − 3MÞ
r2f

∂tht

−
2f2 þ 2λf

r2
hr ¼ −Pr: ð2:25Þ

These six equations, supplemented with the gauge con-
ditions (2.22) and (2.23), are satisfied by the MPs in Lorenz
gauge. However, as discussed in Sec. III, to find solutions
numerically, we cast these equations into the FD, reducing
them to large sets of ordinary differential equations.
Furthermore, in certain special cases [i.e., low-order
(l ¼ 0; 1) modes and static (ω ¼ 0) modes], some MP
amplitudes cease to be defined or the systems of equations
reduce further in size, or both. Section IV discusses these
special cases, each of which merits unique numerical
treatment.

E. Self-force and mode-sum regularization

Once the Lorenz gauge equations in the preceding
section are solved using causal boundary conditions (i.e.,
outgoing waves at infinity and downgoing waves at the
horizon), the MP amplitudes are used to reassemble the

retarded field pret
μν . The full retarded field is divergent at

the location of the point mass, precisely where its action
back on the particle’s motion must be determined.
Regularization is required, and the mode-sum regulariza-
tion (MSR) procedure of Barack and Ori [14] is commonly
used (see, e.g., early use [38] with a scalar field and for the
GSF in Lorenz gauge [4,27,34]). To discuss MSR it is
useful to consider the decomposition discovered by
Detweiler and Whiting [15] that splits the retarded MP
within a normal neighborhood of the particle [5] into
regular (R) and singular (S) parts:

pret
μν ¼ pR

μν þ pS
μν: ð2:26Þ

The singular part has a divergence that captures the singular
behavior of the retarded field and satisfies the same
inhomogeneous field equations (2.13), but through design
(i.e., appropriate boundary conditions) does not contribute
at all to the self-force. The regular part, in contrast, is a
solution to the homogeneous first-order field equations and
is entirely responsible for the self-force. Applying the self-
force, the corrected motion can be regarded as forced,
nongeodesic motion in the background spacetime. With the
Detweiler and Whiting split, the motion can also be viewed
as geodesic in the corrected metric gμν þ pR

μν. In either
viewpoint the self-force becomes a term in the equations of
motion found from calculating
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Fα
R ¼ μkαβγδp̄R

βγjδ; ð2:27Þ

which is evaluated at the particle, xα ¼ xαpðτÞ. Here, the
trace-reversed MP is used, and the projection operator is

kαβγδðxpÞ ¼
1

2
gαδuβuγ − gαβuγuδ −

1

2
uαuβuγuδ

þ 1

4
uαgβγuδ þ 1

4
gαδgβγ: ð2:28Þ

At this point, kαβγδ is defined only at the particle’s location
(though below we discuss broadening its definition so it can
be evaluated off the worldline). Its form ensures orthogon-
ality Fα

Ruα ¼ 0. The same operator may be applied to pret
μν

and pS
μν to define the retarded and singular self-forces,

Fα
ret ¼ μkαβγδp̄ret

βγjδ; Fα
S ¼ μkαβγδp̄S

βγjδ; ð2:29Þ

both of which diverge at xα ¼ xαpðτÞ. Formally, the regular
part is formed through the subtraction Fα

R ¼ Fα
ret − Fα

S.

However, since both Fα
ret and Fα

S are infinite at the location
of interest, a straightforward subtraction is not possible.
The central idea of MSR is to decompose the compo-

nents of Fα
ret and F

α
S into sums over scalar multipole modes

Fαl0
ret and F

αl0
S , with every mode being finite at the location of

the particle. (We use l0 and m0 to distinguish from the l and
m of our tensor spherical harmonic decomposition.) Then
the subtraction can be made mode by mode. There is a
subtlety in the decomposition, however, since the operator
kαβγδ (and therefore the self-force) is only defined at this
stage at the location of the particle. To generate a spherical
harmonic decomposition, we must choose a way to extend
kαβγδ off of the worldline. Following Ref. [34] we define
kαβγδðx; xpÞ at field point x, when the particle is at xp, to
have the value given from Eq. (2.28) with gμν evaluated at x
and uα evaluated at xp. Later, in Eq. (2.33), when we
reexpand our tensor harmonics as sums of scalar harmon-
ics, this choice ensures a finite coupling of l modes for
each l0.
The mode-sum expansion for Fα

S can be written in
the form

Fα
S ¼

X∞
l0¼0

��
l0 þ 1

2

�
Fα
½−1� þ Fα

½0� þ
Fα
½2�

ðl0 − 1
2
Þðl0 þ 3

2
Þ þ

Fα
½4�

ðl0 − 3
2
Þðl0 − 1

2
Þðl0 þ 3

2
Þðl0 þ 5

2
Þ þ � � �

�
; ð2:30Þ

where the coefficients Fα
½−1�; F

α
½0�; F

α
½2�;… are the l0-independent regularization parameters (RPs), which depend only upon

position in the eccentric orbit. (We use the notation of Heffernan et al. [49] for the RPs.) Then, the mode-sum formula

Fα
R ¼

X∞
l0¼0

�
Fαl0
ret −

�
l0 þ 1

2

�
Fα
½−1� − Fα

½0� −
Fα
½2�

ðl0 − 1
2
Þðl0 þ 3

2
Þ −

Fα
½4�

ðl0 − 3
2
Þðl0 − 1

2
Þðl0 þ 3

2
Þðl0 þ 5

2
Þ − � � �

�
ð2:31Þ

determines the regularized self-force. The first two RPs,
Fα
½−1� and F

α
½0�, for the GSF on a Schwarzschild background

were originally given by Barack et al. [82]. Indeed, only
these first two parameters are needed to obtain conver-
gence. From the structure of the l0-dependent denominator
terms, all of the succeeding terms each converge to zero as
l0 → ∞. However, since the series with only Fα

½−1� and Fα
½0�

converges slowly (∼1=l0max), higher-order RPs are impor-
tant for hastening convergence when the sum is truncated at
some finite l0max. Heffernan et al. [49] have calculated the
higher-order coefficients Fα

½2� and F
α
½4� for the GSF, and their

use (along with numerically fitting to even higher order)
greatly improves convergence.
As described above, MSR requires an expansion of the

full retarded self-force Fα
ret as a sum over scalar spherical

harmonic modes Fαl0
ret . In contrast, our Lorenz gauge

calculation yields a set of MP amplitudes for each l and
m in a tensor spherical harmonic expansion. The former can
be derived from the latter by reexpanding each tensor

spherical harmonic in our expression for Fα
ret as a sum of

scalar spherical harmonics. To that end, we take the
definition of kαβγδðx; xpÞ given above, along with the
tensor spherical harmonic expansion of the retarded MP
given in Eq. (2.15) and substitute in Eq. (2.29). Taking the
limit r → rpðtÞ while maintaining θ and φ dependence
leaves [34]

½Fα
retðt;rpðtÞ;θ;φÞ��

¼ μ

r2p

X∞
l¼0

Xl

m¼−l
½fαlm0 Ylmþfαlm1 sin2θYlmþfαlm2 sinθcosθYlm

;θ

þfαlm3 sin2θYlm
;θθþfαlm4 ðcosθYlm− sinθYlm

;θ Þ
þfαlm5 sinθYlm

;θ þfαlm6 sin3θYlm
;θ þfαlm7 sin2θcosθYlm

;θθ��;
ð2:32Þ

where a comma indicates a partial derivative. The vectors
fαlm0 …fαlm7 are functions of the MP amplitudes and their

OSBURN et al. PHYSICAL REVIEW D 90, 104031 (2014)

104031-8



first t and r derivatives. Our tensor harmonic decomposi-
tion of the MP differs from Ref. [34], and so we provide the
detailed form of these functions in Appendix C. The MP
amplitudes areOðμÞ, which makes the GSF of orderOðμ2Þ.
Each of the functions fαlm0 …fαlm7 , as well as Fα

ret, takes on a
pair of values (�) since the limit r → rpðtÞ can be applied
from the outside or inside of the particle radius rpðtÞ.
Differing limits on the two sides also appear in the RP Fα

½−1�
and therefore in Fα

S. The regularized GSF itself is single
valued, though.
Finally, we obtain Fαl0

ret by expanding the θ-dependent
terms in (2.32) as sums of scalar spherical harmonics. This
yields the following expression:

½Fαl0
ret �� ¼ μ

r2p

Xl0
m¼−l0

Yl0m½F αl0−3;m
ð−3Þ þ F αl0−2;m

ð−2Þ þ F αl0−1;m
ð−1Þ

þ F αl0;m
ð0Þ þ F αl0þ1;m

ðþ1Þ þ F αl0þ2;m
ðþ2Þ þ F αl0þ3;m

ðþ3Þ ��:
ð2:33Þ

The functions F αl;m
ðjÞ , given in Ref. [34], are found to each

be a linear combination of the fαlmn of the same l and m.
Accordingly, a given l0 term used in the MSR formula
couples only to tensor spherical harmonic amplitudes in the
range l0 − 3 ≤ l ≤ l0 þ 3.

F. Conservative and dissipative parts of the self-force
and first-order changes in orbital constants

The procedure described in the previous subsection takes
the retarded field and produces the regular (R) force (i.e.,
the self-force). To make the notation clear, we can write this
retarded self-force as Fα

R;ret. It is also conceivable to
calculate the advanced self-force Fα

R;adv, which is obtained
by precisely the same procedure except in replacing p̄ret

μν

with p̄adv
μν . The singular field Fα

S is time symmetric, so the
RPs are unaffected in swapping “ret” for “adv.” Hinderer
and Flanagan [65] show that it is convenient to split the
retarded and advanced self-force into conservative and
dissipative parts,

Fα
R;ret ¼ Fα

cons þ Fα
diss; Fα

R;adv ¼ Fα
cons − Fα

diss; ð2:34Þ

where

Fα
cons ¼

1

2
ðFα

R;ret þ Fα
R;advÞ; Fα

diss ¼
1

2
ðFα

R;ret − Fα
R;advÞ:
ð2:35Þ

See also Ref. [83]. Furthermore, because of the symmetry,
the conservative part actually requires regularization,

Fα
cons ¼

X∞
l0¼0

�
1

2
ðFαl0

ret þ Fαl0
advÞ − Fαl0

S

�
; ð2:36Þ

while the dissipative part does not,

Fα
diss ¼

1

2

X∞
l0¼0

ðFαl0
ret − Fαl0

advÞ: ð2:37Þ

Conveniently, for geodesic motion on Schwarzschild, the
advanced self-force can be obtained from the retarded
self-force using time reversal and symmetry,

Fα
R;advðτÞ ¼ ϵðαÞFα

R;retð−τÞ; ð2:38Þ

where τ ¼ 0 corresponds to periastron passage and the
Schwarzschild components change sign or not according
to ϵðαÞ ¼ ð−1; 1; 1;−1Þ, with no implied sum in the
equation above.
The self-force produces changes in the orbital constants

E ¼ −ut and L ¼ uφ. Using the first-order equations of
motion

μ
Duα
Dτ

¼ gαβF
β
R; ð2:39Þ

the t component Ft
R provides a rate of work, and the φ

component Fφ
R gives a torque such that

_E ¼ fp
μut

Ft
R; _L ¼ r2p

μut
Fφ
R; ð2:40Þ

where the dot refers to derivative with respect to
Schwarzschild time t. While the first-order GSF determines
the leading-order, adiabatic motion and contributes terms to
the post-1-adiabatic corrections [65], the leading-order
adiabatic changes require only the orbit-averaged part of
the dissipative GSF:

h _Ei ¼ 1

Tr

Z
Tr

0

fp
μut

Ft
dissdt; h _Li ¼ 1

Tr

Z
Tr

0

r2p
μut

Fφ
dissdt:

ð2:41Þ

For the geodesic GSF, the first-order rate of work and
torque are balanced by the energy and angular momentum
fluxes (each averaged over the orbital period and summed
over 2-surfaces near infinity and the horizon) calculated
from the first-order MP (see Sec. V B).

III. FREQUENCY DOMAIN TECHNIQUES
FOR SOLVING COUPLED SYSTEMS

Rather than solve directly the TD Lorenz gauge equa-
tions of Sec. II D, we use FD techniques for their speed and
accuracy. Accuracy requirements were discussed in the
Introduction, and these are attained in the FD through
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solution of ordinary differential equations (ODEs). The
TD alternative [34], solving 1þ 1-dimensional partial
differential equations for each l; m, has the compen-
sating advantage of allowing the GSF to be applied self-
consistently [72]. The specific equations we solve are the
FD version of the fully constrained field equations (2.24)
and (2.25) and the gauge conditions (2.22) and (2.23),
obtained by taking ∂t → −iω and replacing amplitudes,
e.g., httðt; rÞ → ~httðrÞ. Subsequently the solution is
returned to the TD, whence the GSF can be calculated.
The Fourier synthesis uses the method of EHS [40], which
circumvents the Gibbs phenomenon encountered with a
distributional source.
Below we set the notation for the Fourier transform, give

a matrix notation for the coupled sets of FD ODEs, and
discuss independent bases of homogeneous solutions that
appear at leading order asymptotically. We then discuss the
use of variation of parameters and how EHS is broadened to
encompass systems of ODEs.

A. Fourier decomposition

As explained in Sec. II A, two fundamental frequencies,
Ωr and Ωφ, exist in the eccentric-orbit Schwarzschild
E/IMRI problem. In the frame that rotates at the mean
azimuthal rate (φ0 ¼ φ − Ωφt), the MP appears nonsinu-
soidal but periodic in t. It can be represented in a Fourier
series in harmonics nΩr. In the inertial frame, the phase of
each multipole with m ≠ 0 advances linearly, giving the
Fourier-harmonic modes a spectrum

ω≡ ωmn ¼ mΩφ þ nΩr: ð3:1Þ

Each MP and source amplitude is replaced by a Fourier
series (with a tilde denoting a FD amplitude). For a generic

amplitude Xlm (not to be confused with the tensor
harmonics Xlm

A and Xlm
AB), we have

~XlmnðrÞ ¼
1

Tr

Z
Tr

0

Xlmðt; rÞeiωmntdt;

Xlmðt; rÞ ¼
X∞
n¼−∞

~XlmnðrÞe−iωmnt: ð3:2Þ

Henceforth, not only will indices l and m be suppressed,
but so will n on FD objects (unless otherwise noted).

B. Matrix notation for coupled ODE systems

It is convenient to place the coupled FD equations in
matrix form. For even and odd parities, respectively, the
fields appearing in the constrained systems are assembled
into the vectors

~EðrÞ ¼ r

2
6664

~htt

f ~htr

f2 ~hrr
~K

3
7775; ~BðrÞ ¼

� ~ht

f ~hr

�
: ð3:3Þ

With this notation the even- and odd-parity FD equations
are compactly expressed in matrix form

~E00 þA ~E0 þB ~E ¼ ~U; ~B00 þ C ~B0 þ D ~B ¼ ~V; ð3:4Þ

with the prime indicating differentiation with respect to
tortoise coordinate r� and where the solution vectors and
source vectors have dimension k ¼ 4 or k ¼ 2 for even or
odd parity, respectively. In the general case, the matrices
that couple the amplitudes and their first derivatives are

A ¼ 1

r2

2
6664
−4M 0 0 0

0 2ðr − 4MÞ 0 0

2rf 0 2ðr − 4MÞ −4rf2

−r 0 −r 2rf

3
7775;

B ¼
�
ω2 −

2ðλþ 1Þf
r2

�
Iþ 1

r4

2
6664

2Mðr −MÞ −4iωMr2 −2Mð2r − 3MÞ 4Mrf2

iωr2ðr − 4MÞ −2fMr iωr2ðr − 4MÞ 2iωr3f2

−2ðr −MÞ2 4iωr2ðr − 3MÞ 2ðr2 − 3Mrþ 3M2Þ −4Mrf2

r2 −2iωr3 −r2 2fMr

3
7775; ð3:5Þ

C ¼ 2

r2

�−M 0

0 r − 3M

�
; D ¼

�
ω2 −

2f2 þ 2λf
r2

�
Iþ 2iω

r2

�
0 −M

r − 3M 0

�
; ð3:6Þ
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where the I’s are relevant-sized identity matrices
(k × k ¼ 4 × 4 or 2 × 2). The source vectors are

~U ¼ r

2
6664
−f ~Qrr − f2 ~Q♭ − f3 ~Qtt

2f2 ~Qtr

−f ~Qrr þ f2 ~Q♭ − f3 ~Qtt

~Qrr − f2 ~Qtt

3
7775; ~V ¼

�
f2 ~Pt

−f ~Pr

�
:

ð3:7Þ

In certain special cases (low-order modes or static modes),
some components of the vectors ~E and ~B identically
vanish, effectively reducing the order of the system, with
concomitant reduction in the source components and
elements of A;…;D. These special cases are detailed in
Sec. IV.

C. Linearly independent sets of
homogeneous solutions

The constrained even-parity equations are a set of four,
coupled, second-order ODEs. As such they have eight
linearly independent homogeneous solutions. We divide
these into four solutions ~Eþ

i (with i ¼ 0; 1; 2; 3) that have
causal, running-wave dependence eiωr� at r� ¼ þ∞ and
four solutions ~E−

i that are downgoing, e−iωr� , at the horizon
(r� ¼ −∞). For odd parity, where the system is a set
of two, coupled, second-order ODEs, there are four
linearly independent homogeneous solutions. In parallel
we denote these by ~B�

i with i ¼ 0; 1. A complete basis
of linearly independent homogeneous solutions is of
dimension 2k.
Upon examining the asymptotic limits of Eq. (3.4) as

r� → �∞, we find the following is one possible repre-
sentation of the leading-order behavior of the even-parity
homogeneous solutions:

ð ~E−
0 Þ⊤ ∼ ð1; 1; 1; 0Þe−iωr� ;

ð ~Eþ
0 Þ⊤ ∼ ð1; 0;−1; 0Þeiωr� ;

ð ~E−
1 Þ⊤ ∼ ð1; 0;−1;−2ð1 − 4iωMÞ−1Þfe−iωr� ;

ð ~Eþ
1 Þ⊤ ∼ ð0; 1;−2; 0Þeiωr� ;

ð ~E−
2 Þ⊤ ∼ ð1;−1; 1; 1Þf2e−iωr� ;

ð ~Eþ
2 Þ⊤ ∼ ð0; 1;−2; 1Þr−1eiωr� ;

ð ~E−
3 Þ⊤ ∼ ð0; 0; 0; 1Þe−iωr� ;

ð ~Eþ
3 Þ⊤ ∼ ð0; 0;−2; 1Þr−2eiωr� ; ð3:8Þ

where ⊤ indicates transpose. We note that, while these
vectors are linearly independent, the MP amplitudes

(components) do not decouple asymptotically. Likewise
the asymptotic limits of the odd-parity equations allow the
following representation of the leading-order behavior of
odd-parity homogeneous solutions:

ð ~B−
0 Þ⊤ ∼ ð1;1Þe−iωr� ; ð ~Bþ

0 Þ⊤∼ ð1;−1Þeiωr� ;
ð ~B−

1 Þ⊤ ∼ ð1;−1Þfe−iωr� ; ð ~Bþ
1 Þ⊤∼ ð0;1Þr−1eiωr� : ð3:9Þ

Here again, while the odd-parity vectors are linearly
independent, the MP amplitudes are still mixed between
them asymptotically.
The limiting behavior for ~E�

i and ~B�
i displayed in (3.8)

and (3.9) is merely one possible choice, and we refer to
these as the simple bases. It is, however, clearly possible to
introduce linear transformations on these sets of eight and
four homogeneous solutions, and we describe in Sec. IVA
clear advantages in doing so at least for the even- and
odd-parity bases on the near-infinity side.

D. Variation of parameters and extended
homogeneous solutions for coupled systems

With the assumption that sets of homogeneous solutions
~E�
i and ~B�

i have been obtained by integrating Eqs. (3.4)
(subject to the boundary conditions of the previous section
or other equivalently independent ones), it is straightfor-
ward to construct solutions to the inhomogeneous equa-
tions using a variation of parameters. Introducing a set of 2k
variable coefficients c�i ðrÞ that multiply the homogeneous
basis elements, the particular solutions are assumed to have
the forms

~EðrÞ ¼
X3
i¼0

ð ~E−
i c

e;−
i ðrÞ þ ~Eþ

i c
e;þ
i ðrÞÞ;

~BðrÞ ¼
X1
i¼0

ð ~B−
i c

o;−
i ðrÞ þ ~Bþ

i c
o;þ
i ðrÞÞ: ð3:10Þ

Variation of parameters then assumes that the first deriva-
tive of (3.10) also depends only on the coefficients c�i ðrÞ,
and not their derivatives, by placing a set of k conditions on
∂r�c

�
i ðrÞ. Differentiating again and substituting into

Eqs. (3.4) yields a second set of k conditions on
∂r�c

�
i ðrÞ. Taken together these conditions form a linear

system with a 2k × 2k matrix M, formed from the
homogeneous basis elements and their first derivative,
that acts on the vector made up of the first derivative
of the coefficients c�i ðrÞ. The matrix M is the Wronksian
matrix. In odd parity (k ¼ 2) these equations have the
form
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M

2
666664

∂r�c
o;−
0

∂r�c
o;−
1

∂r�c
o;þ
0

∂r�c
o;þ
1

3
777775

¼
� ~B−

0
~B−
1

~Bþ
0

~Bþ
1

∂r�
~B−
0 ∂r�

~B−
1 ∂r�

~Bþ
0 ∂r�

~Bþ
1

�
2
666664

∂r�c
o;−
0

∂r�c
o;−
1

∂r�c
o;þ
0

∂r�c
o;þ
1

3
777775

¼
�
0
~V

�
; ð3:11Þ

where bold entries are 2 × 1 column vectors.
The normalization functions are then found by matrix

inversion followed by integration over the source region

ce=o;þi ðrÞ ¼
Z

r

rmin

1

f
We=o;þ

i

We=o dr0;

ce=o;−i ðrÞ ¼ −
Z

rmax

r

1

f
We=o;−

i

We=o dr0: ð3:12Þ

In these integralsWe=o is the determinant of the Wronskian
matrix (even or odd parity). The determinants We=o;�

i are
formed by replacing the column in the Wronskian corre-
sponding to the ith homogeneous solution with the column
vector ð0; ~UÞ⊤ or ð0; ~VÞ⊤ (even or odd parity) in accor-
dance with Cramer’s rule. Again, for odd parity, the
Wronskian and one of the modified Wronskians are

Wo ¼
���� ~B−

0
~B−
1

~Bþ
0

~Bþ
1

∂r�
~B−
0 ∂r�

~B−
1 ∂r�

~Bþ
0 ∂r�

~Bþ
1

����;
Wo;−

0 ¼
���� 0 ~B−

1
~Bþ
0

~Bþ
1

~V ∂r�
~B−
1 ∂r�

~Bþ
0 ∂r�

~Bþ
1

����: ð3:13Þ

Thus, both Wo and Wo;−
0 are determinants of 4 × 4

matrices. In even parity the matrices are 8 × 8, and in
special cases other matrix ranks occur. In this section we
have sketched using Cramer’s rule for the matrix inversion
merely to provide a compact discussion. In reality we use
LU decomposition in the code to provide the numerical
inversion.
Once the normalization functions ce=o;�i ðrÞ are known,

the particular solutions (3.10) can be computed. However,
since the source in the TD problem is distributional, this
standard procedure is fraught with the appearance of Gibbs
behavior in the MP (and GSF) upon returning to the TD. Its
use is now supplanted by the method of EHS, though the
EHS method uses key parts of the standard-approach
machinery.

Barack, Ori, and Sago [40] developed the EHS method
and applied it in computing the scalar field of a charge in
eccentric orbit about a Schwarzschild black hole.
Subsequently, Hopper and Evans [31] employed EHS to
compute the MPs of a small mass in eccentric orbit on
Schwarzschild in the Regge–Wheeler–Zerilli formalism.
EHS was also used [34,62] to compute the low-order
(l ¼ 0; 1) modes in Lorenz gauge, which marked its first
use for a coupled system. EHS then found use in modeling
the scalar self-force on a particle in eccentric equatorial
orbit on a Kerr black hole [84]. In addition, a variant called
the method of extended particular solutions was developed
[85] that is useful for certain problems with noncompact
source terms. It was employed to compute the gauge vector
that generates the odd-parity transformation of the MP from
Regge–Wheeler to Lorenz gauge.
Our application of EHS to general MPs in Lorenz gauge

for eccentric orbital motion on Schwarzschild was devel-
oped contemporaneously with Akcay, Warburton, and
Barack (see talks at the 2012 Capra meeting [63,86,87]).
Their code was applied [36] to long-term inspiral, and their
full method has been published [37].
EHS uses the matrix inversion and integration involved

in computing the normalization functions but extends the
integration over the entire source region to obtain a set of
complex constants. In practice, the integration is done with
respect to χ,

Ce=o;�
i ¼ �

Z
π

0

1

fðrpðχÞÞ
We=o;�

i ðrpðχÞÞ
We=oðrpðχÞÞ

drp
dχ

dχ; ð3:14Þ

providing better numerical behavior at the turning points.
These constants are used to normalize the basis vectors and
to assemble specific linear combinations, referred to as
FD extended homogeneous solutions. They are smooth
functions everywhere outside the horizon (r > 2M),

~E�ðrÞ ¼
X3
i¼0

Ce;�
i

~E�
i ; ~B�ðrÞ ¼

X1
i¼0

Co;�
i

~B�
i : ð3:15Þ

Using these functions, exponentially convergent Fourier
sums then provide the TD extended homogeneous
solutions

E�ðt; rÞ ¼
X∞
n¼−∞

~E�ðrÞe−iωt;

B�ðt; rÞ ¼
X∞
n¼−∞

~B�ðrÞe−iωt; ð3:16Þ

which likewise hold for all r > 2M and are smooth in r and
t. The solutions to Eqs. (2.24) and (2.25) then follow by
abutting theþ and − TD EHS at the location of the particle,
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Eðt; rÞ ¼ Eþθ½r − rpðtÞ� þ E−θ½rpðtÞ − r�;
Bðt; rÞ ¼ Bþθ½r − rpðtÞ� þ B−θ½rpðtÞ − r�: ð3:17Þ

In Lorenz gauge all of the MP amplitudes are C0 at
r ¼ rpðtÞ. The discontinuity in the derivative is encoded
by the presence of the θ functions. While the Lorenz gauge
MP amplitudes must analytically satisfy Eþðt; rpðtÞÞ ¼
E−ðt; rpðtÞÞ and Bþðt; rpðtÞÞ ¼ B−ðt; rpðtÞÞ, the degree to
which this equality is satisfied numerically is a measure of
convergence.

IV. NUMERICAL ALGORITHM

In this section we provide details on our numerical
algorithm. For a geodesic given by p and e, we seek to
compute to sufficient accuracy the MP and the GSF, Fα

R, as
functions of time around the orbit. We first itemize the
principal steps and then follow with detailed discussion on
some aspects of the procedure:
(1) Orbital parameters: For a given p and e, integrate the

orbit equations to find the period of radial motion Tr
and fundamental frequencies Ωr and Ωφ. Determine
also E, L, rmin, and rmax (Sec. II A).

(2) Mode characterization: Fourier-harmonic modes
divide into classes according to l; m; n. Low-
multipole modes l ¼ 0; 1 are handled separately
from l ≥ 2 radiative modes. We further divide modes
into static (m¼n¼0), near-static (0< jωMj<10−4),
or general cases. See Table I for an overlapping
breakdown of modes.

(3) Linearly independent, causal homogeneous bases:
For every l; m; n mode, find or compute a complete

set of 2k independent homogeneous solutions. In
general, the solution process begins with providing
causal initial conditions at the boundaries using
Taylor series or asymptotic expansions (AppendixA)
and performing numerical ODE integrations
(Sec. III C) into the source region. On the horizon
side, boundary conditions are set at r� ¼ −6M, and
sufficient Taylor expansion terms are included to
reach a fractional error of ∼10−15. At large radius,
the starting location depends on mode and fre-
quency. Large enough starting radius is taken, and
short integrations are used to confirm the asymptotic
expansions have errors of order 10−14. All of the
homogeneous solutions are then integrated to
r� ¼ rmin� (i.e., the value of r� when r ¼ rmin).
Orthogonality of the initial vectors is carefully
considered to minimize ill conditioning of matrix
inversion (Sec. IVA). For near-static ð0< jωMj<
10−4Þ modes, we employ special techniques to
overcome strong ill conditioning (Secs. IVA and
IV B). Static (zero frequency) modes have exact
analytic homogeneous solutions (Sec. IV C). The
systems of equations change character or reduce in
size for low-multipole modes (Sec. IV D).

(4) FD extended homogeneous solutions: For each
l; m; n the homogeneous solutions are integrated
over the source from rmin to rmax to find normali-
zation constants and the linear combinations that
represent the FD EHS (Sec. III D). Again, for near-
static ð0 < jωMj < 10−4Þmodes, we employ special
techniques to overcome strong ill conditioning
(Sec. IV B). Special consideration occurs again for
low-multipole modes.

TABLE I. Classification of FD modes as functions of lmω. Most modes (i.e., general case) are found by solving the complete fully
constrained systems (2.24) and (2.25) and deriving the remaining fields using the gauge conditions (2.22) and (2.23). Special cases
include static, near-static, and low-multipole (l ¼ 0; 1) modes. For static and low-multipole modes, the system size reduces, and some
MP amplitudes identically vanish. Special cases are discussed in separate sections as noted.

l Parity Frequency No. field eqs. No. constraints
Variables in
reduced eqs.

Variables from
constraints Section

l ≥ 2 Even General 7 3 ~htt, ~htr, ~hrr, ~K ~jt, ~jr, ~G IVA
Near-static 7 3 ~htt, ~htr, ~hrr, ~K ~jt, ~jr, ~G IV B

Static 5 2 ~htt, ~hrr, ~K ~jr, ~G IV C

Odd General 3 1 ~ht, ~hr ~h2 IVA
Near-static 3 1 ~ht, ~hr ~h2 IV B

Static 1 0 ~ht - IV C

l ¼ 1 Even General 6 3 ~htt, ~htr, ~hrr, ~K ~jt, ~jr IVA
Near-static 6 3 ~htt, ~htr, ~hrr, ~K ~jt, ~jr IV B

Odd General 2 1 ~ht, ~hr - IVA
Static 1 0 ~ht - IV D

l ¼ 0 Even General 4 2 ~htt; ~htr; ~hrr; ~K - IVA
Static 3 1 ~htt; ~hrr; ~K - IV D
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(5) TD extended homogeneous solutions: For every l; m
construct the TD EHS (Sec. III D) by summing over
sufficient positive and negative n until the Fourier
series on each side converge to a relative error of
∼10−10. Not only can convergence of the EHS on
each side of rpðtÞ be monitored, but each l; m mode
should approach becoming C0, and the derivative in
r at the particle should satisfy a jump condition.

(6) Assemble l0 contributions to Fαl0
ret : Compute force

terms fαlmn (Appendix C) and linear combinations
F αl;m

ðjÞ (Sec. II E), and sum over m for each l mode.

Only m ≥ 0 modes need be computed, since m < 0
are determined by crossing relations on the spherical
harmonics. Assemble the l0 part of the retarded force
by combining l for l0 − 3 ≤ l ≤ l0 þ 3.

(7) Apply MSR to obtain GSF: Sum over l0 in the MSR
formula until the GSF converges to a prescribed
tolerance or minimum error (Sec. II E). In the process
we use available analytically calculated regulariza-
tion parameters Fα

½−1�, F
α
½0�, F

α
½2�, and Fα

½4� and a least-

squares fit for Fα
½6� and Fα

½8� using the last seven l0

modes. We find that the error (by comparing the
regularized self-force on the two sides of the particle)
minimizes for l0max ≃ 13 for low eccentricities and
several modes lower for high eccentricity. A required
l0max implies that we must compute tensor spherical
harmonic modes up to lmax¼l0maxþ3.

A. General modes

We first consider the general case, encompassing all
modes with l ≥ 2 that are neither static nor near static. The
expressions (3.8) and (3.9) provide leading-order behavior
for the MP amplitudes as r� → �∞. In practice, boundary

conditions are set at finite radii and require expansions with
numerous terms beyond just this leading order. Appendix A
provides details on the asymptotic (r� → þ∞) and Taylor
(r� → −∞) expansions that are used to set accurate
boundary conditions as close to the source region as
possible. Unique numerical issues are encountered on both
the near-horizon and near-infinity sides.

1. Boundary conditions near the horizon and
subdominance instability

On the near-horizon side, using the simple bases of (3.8)
and (3.9) at large negative r� is found to generate a
subdominance instability. There is an undesired, acausal
(upgoing) homogeneous solution that can be excited by
roundoff errors in the numerical boundary condition that
grows exponentially relative to a desired (subdominant)
causal solution. Figure 2 shows the effect of starting the
integration at various initial rH� and integrating to
r� ¼ 10M. Setting the boundary at rH� < −10M generates
substantial growth of this acausal mode. We now explain
briefly why this occurs. We use odd parity as the example,
with even parity following a similar analysis.
A complete set of odd-parity independent homogeneous

solutions at the event horizon has leading behavior

ð ~B−
0 Þ⊤∼ ð1;1Þe−iωr� ; ð ~B−

2 Þ⊤∼ ð1;1Þfeþiωr� ;

ð ~B−
1 Þ⊤∼ ð1;−1Þfe−iωr� ; ð ~B−

3 Þ⊤∼ ð1;−1Þeþiωr� : ð4:1Þ

~B−
0 and ~B−

1 are the desired causal solutions of Eq. (3.9),
representing downgoing modes, while ~B−

2 and ~B−
3 are

acausal, representing radiation coming up from the black
hole. When we attempt to set boundary conditions for ~B−

0

FIG. 2 (color online). Subdominance instability and growth of roundoff errors with starting location. We demonstrate the effects of a
subdominance instability by comparing results of numerical integrations begun at different initial radii rH� near the horizon and ending at
r� ¼ 10M. The chosen modes have l ¼ 2 andMω ¼ 1 (odd parity on the left; even parity on the right). The fiducial, accurate solution is
obtained from a high-order Taylor expansion, with sufficient terms that residuals are at or below roundoff even at a radius of rH� ¼ 0.
Using the Taylor expansion at any −6M < rH� < 0 to begin an integration that then ends at r� ¼ 10M gives results that are consistent
with each other. However, as smaller initial radii are chosen (rH� < −10M), exponentially greater errors are found in comparing at
r� ¼ 10M the integrated mode and the fiducial Taylor expansion. We avoid the instability by beginning all integrations at rH� ¼ −6M
with initial conditions from the high-order Taylor expansion.
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and ~B−
1 , the inherent limitations of our double precision

routines produce instead numerical superpositions

~B−;N
0 ¼ ~B−

0 þ α1 ~B
−
1 þ α2 ~B

−
2 þ α3 ~B

−
3 ;

~B−;N
1 ¼ ~B−

1 þ β0 ~B
−
0 þ β2 ~B

−
2 þ β3 ~B

−
3 ; ð4:2Þ

where all the terms αn ~B
−
n and βn ~B

−
n are of order ∼10−16

(roundoff) times the desired dependence. We must be
concerned with any of these roundoff terms that are acausal
and grow relative to the causal terms as we integrate from
our starting location, rH� . Near the horizon f ∼ er�=2M,
meaning α2 ~B

−
2 , an acausal contribution to ~B−;N

0 , has
precisely this exponential growth relative to ~B−

0 . This
prediction is confirmed numerically, as shown in the left
panel of Fig. 2. On the other hand, ~B−

1 itself grows like
er�=2M, and we see none of the other roundoff terms grow
relative to it. As such, this solution does not display a
subdominance instability.
In the case of even parity, the worst acausal mode has an

f2 radial dependence. Accordingly, its relative growth is
even worse, i.e., ∼er�=M. This is shown in the right panel of
Fig. 2. The figure merely demonstrates the instability. In
practice, we simply set the boundary condition at rH� ¼
−6M using Taylor series with sufficient terms to reach
roundoff. The details of those Taylor series are found in
Appendix A. We note finally that it is not inconceivable that
the instability we discuss here is a result of the particular set
of MP variables, and therefore the form of the Lorenz gauge
equations, that we chose to use.

2. Boundary conditions at large radius
and thin-QR preconditioning

On the near-infinity side, the expansions are asymptotic
and require a large starting radius r∞� , with the radius being
roughly inversely related to mode frequency ω. In what
follows, we use the odd-parity equations as an example.
Even parity follows a similar analysis. After long inward
integration to rmin� , the outer solutions ~Bþ

i can be combined
with the inner solutions ~B−

i to form the Wronskian matrix
M [see Eq. (3.11)]. Unfortunately, especially at low
frequency, we find the Wronskian matrix to be typically
ill conditioned. Generally one can define a condition
number of the matrix as κðMÞ ¼ jλmax=λminj, where λmax
and λmin are the maximal and minimal eigenvalues of M.
Alternatively and conveniently, we may define it as
κðMÞ ¼ σmax=σmin, in terms of the singular values σi of
M in a singular value decomposition (SVD). The condition
number is important since one loses roughly log10ðκÞ digits
of accuracy in operations like matrix inversion [88].
Starting with the leading-order, near-infinity behavior of
the simple basis in Eq. (3.9) leads to condition numbers as
large as κ ∼ 1012 in some cases.

Fortunately, it is possible to use a linear transformation
on the simple basis ~Bþ

i to find a new one ~Bþ
i0 .

Unfortunately, long integration of the altered set of homo-
geneous solutions to rmin� is required in order to combine
them with the inner solutions and calculate κ, making this a
hit-or-miss procedure.
We have instead developed a novel means for determin-

ing a good linear transformation (at r∞� ) that reduces κ by
many orders of magnitude. While the method is most
effective in handling near-static modes (discussed below in
Sec. IV B), we nevertheless use it for all modes and
therefore discuss it here. The technique involves using
just half the information (outer solutions only) that goes
into the Wronskian and calculating a “semicondition
number” ρ. It begins by picking a basis (e.g., the simple
one), taking the right half of the matrixM, and forming the
4 × 2 matrix

V ≡
� ~Bþ

0
~Bþ
1

∂r�
~Bþ
0 ∂r�

~Bþ
1

�
: ð4:3Þ

WhileV is a nonsquare matrix, it has a SVD and yields a set
of non-negative, real singular values σi. In our example
there are two singular values; for even parity there are
four. We call the ratio of the largest to smallest,
ρðVÞ ¼ σmax=σmin, the semicondition number. An advan-
tage of ρðVÞ is that it can be computed immediately once an
outer basis is chosen. However, ρ is not the same as the full
condition number κ, which can only be computed once the
complete set of (inner as well as outer) homogeneous
solutions is compared. Empirically, though, we find that ρ
is typically large to begin with (∼107) and grows by
multiple orders of magnitude as the outer solutions are
integrated inward (see Fig. 3) and that its value at rmin� tends
to be within an order of magnitude of κ. This strongly
suggests that, if ρ could be minimized at the starting radius,
then κ might be greatly reduced in the source region. This
guess turns out to be correct.
A linear transformation on the outer boundary conditions

can be used to mitigate the ill conditioning [i.e., we are free
to choose the starting b’s in (A16) to begin solving the
recurrence relations]. To see how a choice might be made,
we start with the simple basis of (3.9) to form V [see also
Eq. (A20)] and perform a thin-QR decomposition [89]. The
matrix is numerically split into a product V ¼ QR, where
Q is a 4 × 2 unitary matrix and R is a 2 × 2 square, upper-
triangular matrix. Computed at an initial location r∞� , the
columns of Q are an alternative, and in this case orthogo-
nal, basis for beginning an integration for the homogeneous
solutions. In other words ρðQÞ ¼ 1. We see that the square
matrix R multiplies Q from the right to give V and R−1

multiplies V from the right to give Q.
In principle, while the columns of Q (evaluated from V

at finite radius r∞� ) do indeed give a new orthogonal basis
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with unit semicondition number, in practice the use of this
basis for boundary conditions on the homogeneous sol-
utions (i.e., replacing V → V0 ¼ Q) leads to a separate,
serious numerical problem. Because V is ill conditioned,
the numerical construction of Q at finite radius r∞� will be
accompanied by phase and amplitude errors that are well
above roundoff, some of which will be consistent with
undesired acausal modes (see the similar discussion in the
previous subsection). In effect, the numerically derived
new basis could not be obtained (to machine accuracy)
from an integration of purely outgoing wave solutions at
infinity.
Nevertheless, the thin-QR decomposition provides the

route forward. The idea is to use the initial choice for V at
r∞� afforded by the simple basis and its related asymptotic
expansion. Then the thin-QR decomposition is computed
numerically. With this done, we compute fromR its inverse
numerically. After that, we use these values ofR−1 at r∞� to
transform the initial conditions for solving the recurrence
relations, and we solve those again. The resulting set of new
asymptotic expansions has built into them proper causal
behavior and also has ρðV0Þ ¼ 1. In effect, R−1 serves as a
preconditioner on the linear system. (Akcay et al. [37] use
a different means of preconditioning their boundary con-
ditions for the outer solutions.) So we are able to start
inward integrations with ideal linear independence (by this
measure) and obtain greatly reduced ill conditioning (also
by this measure) once the source region is reached (see
Fig. 3 and six orders of magnitude improvement).
Empirically, we then find the full condition number, κ,
is also improved by orders of magnitude.

Since developing this thin-QR preconditioning tech-
nique, we have thus far not been able to find any
comparable discussion in the literature.

3. Numerical integration

Having set the boundary conditions, our C code uses the
Runge–Kutta–Prince–Dormand 7(8) [90] routine rk8pd of
the GNU Scientific Library (GSL) [91] to obtain the
homogeneous solutions [note that GSL documentation
incorrectly labels rk8pd a 8(9) method]. We first integrate
the outer homogeneous solutions from r∞� inward and then
through the source region to rmin� . We then integrate the
inner homogeneous solutions from rH� to rmin� . Next, we
switch to an integration over χ to compute Eqs. (3.14) and
acquire Ce=o;�

i . In practice, we also find it more efficient to
determine the integrands of Eq. (3.14) using an LU
decomposition of the Wronskian matrix. Finally, we form
the TD EHS as described in Sec. III D.
A final comment is warranted on the integration over the

source region and the relative accuracies of various
quantities. In the sweep back over the source region, the
Wronskian matrix elements are recomputed step by step
alongside the normalization functions ce=oi ðrÞ within a
broadened system of ODEs. When the Wronskian matrix
is mildly ill conditioned, it becomes impractical to enforce
the same accuracy criterion on the normalization coeffi-
cients as the homogeneous solutions that make up the
elements of the Wronskian. We instead modify the adaptive
step size routine to demand high accuracy ∼10−15 for the
Wronskian elements while ignoring the fractional errors in
the normalization coefficients unless they exceed ∼10−12.

FIG. 3 (color online). Semicondition number growth of outgoing homogeneous solutions and effect of thin-QR preconditioning. The
left panel uses the even-parity mode ðl;ωÞ ¼ ð5; 5 × 10−3M−1Þ and plots as a function of r� the semicondition number ρ of the matrixV,
which is comprised of (the outer solution) half of the Wronskian matrix. Two initial conditions are compared: the simple basis in red
(dotted) and the thin-QR preconditioned basis in blue (solid). Orthogonalization with the thin-QR preconditioner makes a more than 5
orders of magnitude improvement. The right panel uses an l ¼ 16 even-parity mode and shows the growth of ρ in solutions that start
with thin-QR orthogonalized initial conditions, as functions of frequency. Once the frequency reaches jωMj ≤ 10−4, thin-QR
preconditioning is no longer sufficient to control the condition number in the source region and still allow double precision
computations, and we turn to added techniques.
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This criterion does not really diminish the achievable
accuracy in the coefficients, since the condition number
of the Wronskian may reach or exceed 103 near the low
frequency limit of our double precision code (see Sec. IV B
for use of quad precision). It does, however, prevent the
step size from being driven unreasonably small and halting
the integration.

B. Near-static modes

As mentioned in our step-by-step procedure, near-static
modes (0 < jωMj < 10−4) are a special case subject to
separate numerical handling. This problem has also been
discussed in Ref. [37]. The ill conditioning associated with
the outer homogeneous solutions continues to grow as
ω → 0, despite the application of the orthogonalization
technique described in the previous section. To compute
modes with 10−6 ≲ jωMj≲ 10−4, we make use of three
procedures. First, the thin-QR preconditioning discussed in
Sec. IVA, which is used for all modes, helps to minimize
the semicondition number as much as possible. Second,
when a mode with frequency as low as this is encountered,
we switch to the use of quad-precision routines to handle
integration of the homogeneous solutions and source
integrations (i.e., steps 3 and 4). Third, for a given l; m,
we identify the lowest frequency mode n ¼ n0, and for it we
bypass the source integration and instead use the jump
conditions to provide its normalization.
The semicondition number scales roughly as

ρ ∼ 102ðMωÞ−2, as can be seen in Fig. 3. Once the
condition number of the Wronskian matrix reaches
∼1010, too many digits (∼10) are being lost to make
double precision calculations viable. Resorting to 128-bit
floating point arithmetic is a computationally costly but
effective way of proceeding. At quad precision, much
higher condition numbers (≲1022) can be tolerated. Our
quad-precision implementation is based on modified
Numerical Recipes in C [92] routines. We switch to the

Runge–Kutta–Cash–Karp 4(5) method for these calcula-
tions. While C compiler support for quad precision is
available, its use is computationally costly on 64-bit
hardware. Fortunately, for broad regions of orbital param-
eter space, these modes are few enough that growth in CPU
time is manageable (see Fig. 4).
The third element of the procedure focuses on the fact

that for a given l; m there is always one n ¼ n0 that gives
the lowest magnitude frequency, ω0. If ω0 is small enough
(and there are others like it for enough other l and m), the
quad precision integrations over the source might overly
dominate the run time of the code. This is particularly a
concern for wide separations and large eccentricities.
Fortunately, for each l and m, there is a way of bypassing
the source integration for this one n0 mode and obtaining its
normalization coefficients more efficiently.
We use odd parity to illustrate the method. For a given

l; m, the jump conditions in the TD for the MP amplitudes
and their derivatives can be written in vector form:

⟦B⟧pðtÞ≡ Bþðt; rpÞ − B−ðt; rpÞ ¼
�
⟦ht⟧p
⟦fhr⟧p

�
;

⟦∂rB⟧pðtÞ≡ ∂rB
þðt; rpÞ − ∂rB

−ðt; rpÞ ¼
�

⟦∂rht⟧p
⟦∂rðfhrÞ⟧p

�
:

ð4:4Þ

These jump conditions can be obtained analytically from
the field equations and the projections of the stress-energy
tensor. They are known to imply that the MP is C0 and the
radial derivative jump is some function of time, J ðtÞ. The
jump conditions can be written as the difference between
the TD EHS or using Eq. (3.16) as the difference of the
Fourier sums over FD EHS,

FIG. 4 (color online). Plots of CPU time for GSF calculations as a function of orbital parameter space location. In the left panel, labels
give the log10 of CPU time in seconds for each contour. The crosses indicate where models were computed. Every orbit on the right of
the solid curve utilizes quad precision. Some orbits on the left lie near resonances, as indicated by local peaks in the contour plot caused
by quad precision computing. Slices of CPU time vs e are shown in the right panel. GSF models require single-processor CPU times that
range from 4 min to 1 day.
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�
0

J ðtÞ

�
¼

�
⟦B⟧pðtÞ
⟦∂rB⟧pðtÞ

�

¼
X
ω

�� ~BþðrpÞ
∂r

~BþðrpÞ

�
−
� ~B−ðrpÞ
∂r

~B−ðrpÞ

�	
e−iωt:

ð4:5Þ

Normally these conditions are used to check the conver-
gence of the Fourier sums. In the case of a near-static
mode, we first normalize all of the other n ≠ n0 modes in
the usual way. Then the near-static mode is split out of
the sum in (4.5) and written explicitly in terms of its
individual homogeneous solutions and their normalization
coefficients,

e−iω
0t
� ~Bþ

0
~Bþ
1 − ~B−

0 − ~B−
1

∂r
~Bþ
0 ∂r

~Bþ
1 −∂r

~B−
0 −∂r

~B−
1

�26664
Co;þ
0

Co;þ
1

Co;−
0

Co;−
1

3
7775

¼
�

0

J ðtÞ

�
−
X
ω≠ω0

��
~Bþ

∂r
~Bþ

�
−
�

~B−

∂r
~B−

�	
e−iωt: ð4:6Þ

In this expression, the function J ðtÞ is known analytically,
and all of the terms in the sum on the right have been
computed by the standard procedure. On the left, the
homogeneous solutions for ω0 that make up the matrix
are computed with quad precision, and what remains are
the four unknowns Co;�

0=1 . This matrix equation is solved at
an arbitrary time t, and in doing so we have obtained the
normalization coefficients for the troublesome mode with-
out integrating over the source region. It can be applied for
frequencies as small as jωj ∼ 10−6M−1.
An objection might be raised that this “spends” the

ability to use the jump conditions as a convergence check.
But in fact it remains possible to check the jumps at any
other time within the radial period Tr. Ultimately, the
techniques presented in this section can be overwhelmed,
since as Tr becomes large the frequency Ωr can become
smaller than 10−4M−1, which results in numerous near-
static modes per multipole (see Fig. 4).

C. Static modes with l ≥ 2

Static modes are another special case and occur when
m ¼ n ¼ 0. At zero frequency, some of the field ampli-
tudes vanish identically and spur a reduction of order in the
constrained field equations and gauge equations. We
discuss odd and even parity in turn.

1. Odd-parity static modes

Analytic homogeneous solutions to the static odd-parity
Lorenz gauge field equations were first derived by Barack

and Lousto [64]. They showed that ~hr ¼ ~h2 ¼ 0 and wrote
down the inner and outer solutions for ~ht in terms of finite
power series. Here, we express the solution in slightly
different form:

~h−t ¼ r2

M

Xl−1
k¼0

aoddk

�
r
M

�
k
;

~hþt ¼ ~h−t ln f þM2

r

Xlþ2

k¼0

boddk

�
r
M

�
k
: ð4:7Þ

The determination of the power series coefficients is
described in detail in Appendix B 1.

2. Even-parity static modes

In this paper, we present for the first time analytic
solutions for static even-parity modes in Lorenz gauge. (We
understand that equivalent analytic solutions have been
derived recently by others [93] also.) For static modes in
even parity, the reduction ~htr ¼ ~jt ¼ 0 occurs. The reduced
constrained equations are sixth order and involve ~htt, ~hrr,
and ~K. We had a novel, if circuitous, route to discovering
these analytic solutions, which we now present step by step.
(1) Even-l solution to odd-parity equations: For static

modes m ¼ n ¼ 0, Eqs. (4.7) are used with odd l to
provide a necessary part of the MP. There is,
however, nothing to bar us from using an even l
in Eqs. (4.7); these, too, are solutions to the odd-
parity Lorenz gauge equations even if they serve no
purpose in decomposing the MP.

(2) Solution to the Regge–Wheeler equation: Armed
with this “even-l solution to the odd-parity Lorenz
gauge equations,” we next form the gauge-invariant
Cunningham–Price–Moncrief (CPM) [94] function

~ΨoddðrÞ ¼ r
λ

�
d ~ht
dr

−
2

r
~ht

�
: ð4:8Þ

Recall that λ ¼ ðlþ 2Þðl − 1Þ=2. This master func-
tion satisfies the homogeneous Regge–Wheeler
(RW) equation. See also Refs. [31,78].

(3) CPM master function to Zerilli master function:
Next use the Detweiler–Chandrasekhar transforma-
tion [95–97] to obtain from the CPM function a
solution to the homogeneous Zerilli equation,

~ΨevenðrÞ ¼ 1

λðλþ 1Þ
��

λðλþ 1Þ þ 9M2f
3Mrþ λr2

�
~Ψodd

þ 3Mf
d ~Ψodd

dr

�
: ð4:9Þ

(4) MP amplitudes in RW gauge: Use ~Ψeven to recon-
struct the nonzero even-parity MP amplitudes in RW
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gauge. For purposes of presentation, the expressions
(see, e.g., Ref. [31]) simplify greatly by using
Eqs. (4.8) and (4.9) to write the MP amplitudes in
terms of ~ht,

~KRW ¼ 2M
r2λ

~ht þ
�
1þ 2M

rλ

�
d ~ht
dr

;

~hRWrr ¼ −
2M
r2f2

~ht þ
1

f
d ~ht
dr

;

~hRWtt ¼ −
2M
r2

~ht þ f
d ~ht
dr

; ð4:10Þ

where we have used the homogeneous field equa-
tions to remove higher derivatives of ~ht. Given
analytic expressions for the even-l solutions for ~ht
in step 1, we have obtained even-l static solutions for
the MP in RW gauge.

(5) Gauge vector for RW to Lorenz transformation: We
next seek a gauge vector to map the even-parity
static MPs from RW to Lorenz gauge. The gauge
vector will satisfy the wave equation

∇ν∇νΞμ ¼ ∇νp̄RW
μν : ð4:11Þ

The generator Ξμ can be decomposed [85] akin to
that shown in Sec. II C, and its even-parity part is

Ξa ¼
X
l;m

½δatξlmt ðt; rÞ þ δa
rξlmr ðt; rÞ�Ylm;

ΞA ¼
X
l;m

ξlme ðt; rÞYlm
A : ð4:12Þ

We insert these into Eq. (4.11) and transform to the
FD. Then we specialize to the static case (where
~ξt ¼ 0) and are left with two coupled equations
(after again dropping lmn indices),

d2 ~ξe
dr2

þ 2M
r2f

d~ξe
dr

−
2ðλþ 1Þ

r2f
~ξe þ

2

r
~ξr ¼ 0; ð4:13Þ

d2 ~ξr
dr2

þ 2

rf
d~ξr
dr

−
2ðλþ 1Þ þ 2f

r2f
~ξr þ

4ðλþ 1Þ
r3f

~ξe

¼ 2

rf
~hRWrr −

2

rf
~KRW þ d ~hRWrr

dr
−
1

f
d ~KRW

dr
;

ð4:14Þ

where we have used the homogeneous relation
~hRWtt ¼ f2 ~hRWrr . Solving Eq. (4.13) for ~ξr and
inserting into Eq. (4.14) yields a single fourth-order
equation. Further, we use Eq. (4.10) and the ~ht field

equation to write the source term as a function of ~ht
and its first derivative:

d4 ~ξe
dr4

þ 4r − 2M
r2f

d3 ~ξe
dr3

−
4rðλþ 1Þ − 4M

r3f
d2 ~ξe
dr2

þ 8M2 − 4rMðλþ 2Þ
r5f2

d~ξe
dr

þ 4ðλþ 1Þð2M þ rλÞ
r5f2

~ξe ¼ Sξ;

Sξ ≡ 8Mðλþ fÞ
λf2r4

~ht þ
8M
λfr3

d ~ht
dr

: ð4:15Þ

Equation (4.15) has four independent homogeneous
solutions denoted by ~ξ�e;H0 and ~ξ�e;H1 and two
independent inhomogeneous solutions (since the
source has inner and outer instances) denoted by
~ξ�e;I . Here, the superscript � indicates the solution
that is regular at r ¼ ∞ (þ) or the horizon (−).

(6) Transformation to six independent Lorenz gauge
homogeneous solutions: Once the six solutions for
the gauge generator have been obtained, we can use
them to transform the even-parity static MP to
Lorenz gauge and derive a complete set of homo-
geneous solutions. The transformation is [78]

~htt ¼ ~hRWtt þ2Mf
r2

~ξr; ~hrr ¼ ~hRWrr −
2M
r2f

~ξr−2
d~ξr
dr

;

~K¼ ~KRW−
2f
r
~ξrþ

2ðλþ1Þ
r2

~ξe: ð4:16Þ

Note that ~ξr is recovered using Eq. (4.13). We can
now switch to the vector notation of Sec. III B and
write

~E ¼ ~ERW þ Δ~ξ; ð4:17Þ
with components

~E ¼ r

2
6664

~htt
0

f2 ~hrr
~K

3
7775; Δ~ξ≡

2
6664

2Mf
r

~ξr

0

− 2Mf
r

~ξr − 2rf2 d~ξr
dr

−2f~ξr þ 2ðλþ1Þ
r

~ξe

3
7775;

ð4:18Þ

and with ~ERW being obvious. The zeros in the
second row follow from ~htr vanishing in both Lorenz
and RW gauges when ω ¼ 0. We denote the six
Lorenz gauge homogeneous solutions by ~E�

0 , ~E�
1 ,

and ~E�
2 (recall Sec. III C). The first four Lorenz

gauge homogeneous solutions derive from the
homogeneous solutions to Eq. (4.15),
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~E�
0 ¼ Δ~ξ�H0; ~E�

1 ¼ Δ~ξ�H1: ð4:19Þ

The final two are found by transforming from the
RW gauge MP amplitudes of step 4 with the
inhomogeneous solutions to Eq. (4.15),

~E�
2 ¼ ~ERW;� þ Δ~ξ�I : ð4:20Þ

The extensive expressions for ~ξ�e;H0, ~ξ
�
e;H1, and ~ξ�e;I

can be found in Appendix B 2.

D. Low-multipole modes

The low-multipole (l ¼ 0; 1) components of the MP are
as essential to the GSF as the radiative modes. Solutions
were first given by Zerilli [98]. These solutions, specialized
to circular orbits, were then transformed to Lorenz gauge
by Detweiler and Poisson [99]. Low-multipole mode
calculations for circular orbits were considered in
Refs. [27,64]. Their solution was extended to eccentric
orbits in Refs. [34,37] using the method of EHS.

1. Even-parity dipole mode

In the case of the even-parity dipole mode l ¼ 1, m ¼ 1,
the amplitude ~G is not defined [see Eq. (2.15) and note that
YAB is not defined for l < 2]. The fully constrained field
equations (3.4) are unaffected, however. The vanishing of
~G does add the subtlety that the individual homogeneous
solutions to Eq. (3.4) will not, in general, satisfy the Lorenz
gauge conditions, Eq. (2.22).
Numerically, the even-parity dipole mode requires no

special treatment. As usual, we use Eq. (3.14) to integrate
through the source region and find Ce;�

i . We then find that

the solution that results from linear superposition of the
normalized modes in Eq. (3.15) does satisfy the gauge
conditions, a byproduct of the source terms being con-
sistent with the Bianchi identities.

2. Odd-parity dipole mode

In the case of the odd-parity dipole mode l ¼ 1, m ¼ 0,
the amplitude ~h2 is not defined [see Eq. (2.15) and note that
XAB is not defined for l < 2]. As with the even-parity case,
this does not affect the fully constrained field equations.
When ω ≠ 0, this mode requires no special treatment. We
find that after normalization and superposition the solution
does satisfy the gauge condition.
The static mode, l ¼ 1, m ¼ 0, n ¼ 0, must be handled

separately. In this case we use the analytic homogeneous
solutions [99]

~h−t ¼ r2

M
; ~hþt ¼ M2

r
ð4:21Þ

and proceed as usual to obtain the FD EHS.

3. Monopole mode

In the case of the monopole mode, l ¼ m ¼ 0, the
amplitudes ~jt, ~jr, and ~G are not defined [see Eq. (2.15)
and note that YA and YAB are not defined for l ¼ 0]. Again,
the fully constrained field equations are unaffected, and no
special treatment is required to obtain the particular
solution as long as n ≠ 0.
However, the monopole static mode l ¼ m ¼ n ¼ 0 is

exceptional. The system is fourth order and has four
independent homogeneous solutions [100], which also
satisfy the Lorenz gauge conditions,

~E−
0 ¼ 1

fr3

2
6664

−Mf2ðr2 þ 2Mrþ 4M2Þ
0

r3 −Mr2 − 2M2rþ 12M3

f2rðr2 þ 2Mrþ 4M2Þ

3
7775; ~Eþ

0 ¼ 1

f2r

2
6664
f2ð3M − rÞ

0

M

0

3
7775; ~Eþ

1 ¼ 1

f2r4

2
6664

f2M4

0

M3ð2r − 3MÞ
−rf2M3

3
7775;

~Eþ
2 ¼ 1

f2r4

2
666664

Mf2½rð4M − 3rÞðM þ rÞ þ ð8M3 − r3Þ ln f þ 8M3 lnð rMÞ�
0

frðr3 −Mr2 − 2M2rþ 12M3Þ ln f þ 8M3ð2r − 3MÞ lnð rMÞ −Mrðr2 − 5Mrþ 12M2Þ
f2r½ðr3 − 8M3Þ ln f − 8M3 lnð rMÞ −Mrðrþ 4MÞ�

3
777775: ð4:22Þ

Recall from Sec. IV C that ~htr vanishes for static modes, as
indicated by the zeros in the second rows of these
expressions.
We have made a particular choice with this basis. The

solutions ~Eþ
1 and ~Eþ

2 are the only independent ones that are
regular at r ¼ ∞. Then, ~E−

0 is the only solution that is

regular at the horizon and does not perturb the mass energy
of the black hole [46] (at the horizon). This leaves ~Eþ

0 .
Ordinarily, we would expect two homogeneous solutions
on the horizon side and two on the infinity side. But all that
is really required are four independent solutions and
regularity. This last solution is independent, and its only
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irregularity at r ¼ ∞ is the well-known property of Lorenz
gauge that ~htt approaches a constant as r → ∞ [64]. This
behavior leads to a rescaling of the time coordinate
[34,37,46,101]], which is necessary for the solution to
have the correct mass perturbation M → M þ μE in the
region exterior to the particle orbit [99]. With this complete
set of homogeneous solutions, we form the FD EHS.
Rather than using the expression in Eq. (3.15), for this
special case the normalization is

~E−ðrÞ ¼ Ce;−
0

~E−
0 ; ~EþðrÞ ¼

X2
i¼0

Ce;þ
i

~Eþ
i : ð4:23Þ

Our route to the solution for this mode differs from that of
Akcay et al. [37], but of course the two approaches are
ultimately equivalent.

V. ADDITIONAL NUMERICAL RESULTS

We give in this section a sampling of added numerical
results from computing the GSF and discuss the range of
applicability of the code. As mentioned in the Introduction,
astrophysical EMRI sources are expected to have eccen-
tricities as high as e≃ 0.8. This expectation has motivated
our effort to develop an efficient and accurate code capable
of widely spanning p and e space.

A. GSF results and their accuracies

We first compare our code to results from Ref. [37] for a
mildly eccentric orbit (e ¼ 0.2, p ¼ 7.0). Table II shows
values of the t and r components of both the conservative
and dissipative parts of the GSF for a set of locations on the
orbit. Our values match closely those of Akcay et al. Our
results are presented with the number of digits we believe
are significant. Their values were presented with uncer-
tainties in the least significant digit, so we have rounded
their values and present in the table only fully significant
digits for comparison. The two codes agree for this orbit to

within four to seven digits but do differ in many cases in the
least significant figure. We estimate errors in our calcu-
lation by examining sensitivity in Fourier convergence and
in truncating the MSR. The discrepancy between our two
codes likely reflects the difficulty in determining absolute
error when truncating a Fourier sum or power series.
In terms of speed, our code generates GSF data rapidly
(∼15 minutes) for an orbit with an eccentricity as low as
this. CPU run times can be nearly 2 orders of magnitude
greater for high-eccentricity wide-separation orbits (see
Fig. 4) where the code begins to switch on intermittent use
of quad precision.
We next give in Table III a set of numerical values for the

t and r components of the GSF for eccentricity e ¼ 0.1 and
a range of orbital separations. The full regularized GSF is
given at points all around one radial libration. The
dissipative and conservative parts can be reconstructed
through averaging and differencing values across conjugate
points on the orbit using expressions in Sec. II E. The φ
component of the GSF can be obtained from orthogonality.
We list only significant digits. It is clear that for low
eccentricity our code generally achieves accuracies of
seven to ten decimal places. As we discussed in the
Introduction, accuracy of eight or more decimal places is
required to keep dephasing errors below δΦr ≃ 10−2 when
ε ¼ 10−6. The requirement is obviously eased if ε ¼ 10−5.
The results in Table III indicate that our error criterion is
attained for e ¼ 0.1. Additional results are provided in
Appendix D.
Remarkably, the accuracy of our code improves as the

orbital separation increases, as can be seen in Fig. 5. This
trend emerges fromconflicting aspects of the algorithm.One
aspect, as Fig. 3 shows, is that integration from large r� to the
libration region is accompanied by growth in the semi-
condition number of the outgoing homogeneous solutions.
In integrating from r� ∼ 102M to r� ∼ 10M, the semicondi-
tion number grows by 2 orders of magnitude. For larger p,
many modes will thus have smaller ρ in the libration region,

TABLE II. Comparison of GSF data from two different codes. We give self-force values for an orbit with p ¼ 7.0 and e ¼ 0.2 and
present only significant figures for the data from our code (rows without parentheses). Our results are compared to those of Akcay et al.
[37] (parentheses), where we have rounded the last digit from values in their table to retain only fully significant digits. Our code took
approximately 15 min on a single core to generate all of the GSF data in this table.

χ ðM=μÞ2Ft
cons ðM=μÞ2Ft

diss ðM=μÞ2Fr
cons ðM=μÞ2Fr

diss

0 0 −4.06328 × 10−3 3.35760 × 10−2 0
(0) (−4.063302 × 10−3) (3.357606 × 10−2) (0)

π=4 8.6473 × 10−4 −2.15691 × 10−3 2.909881 × 10−2 4.734956 × 10−3

(8.6472 × 10−4) (−2.156923 × 10−3) (2.909881 × 10−2) (4.734956 × 10−3)
π=2 8.28613 × 10−4 −2.5168 × 10−4 2.125032 × 10−2 3.204189 × 10−3

(8.28611 × 10−4) (−2.516803 × 10−4) (2.125034 × 10−2) (3.204190 × 10−3)
3π=4 4.60749 × 10−4 −1.1241 × 10−5 1.590147 × 10−2 9.63378 × 10−4

(4.60750 × 10−4) (−1.124092 × 10−5) (1.590149 × 10−2) (9.633734 × 10−4)
π 0 −3.4613 × 10−5 1.40888 × 10−2 0

(0) (−3.461416 × 10−5) (1.408877 × 10−2) (0)
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leading generally to more accurate GSF values. In contrast,
larger radius orbits aremore likely to yield near-staticmodes
(see the Mω ¼ 10−4 curve in Fig. 4). Yet, as explained in
Sec. IV B, when this occurs the algorithm switches on quad-
precision routines for these modes. We posit that the clear
benefit of lower semicondition numbers at large p out-
weighs difficulties induced by added near-static modes,
especially as the algorithm adapts to the presence of these
modes. The price to be paid is a significant increase in CPU
time as larger p orbits are computed.
The situation changes as we consider higher eccen-

tricities. Table IV shows equivalent information for orbits
with e ¼ 0.5. At this eccentricity the GSF values have
between five and seven decimal places of accuracy. As

before, accuracies improve with wider separations. In
Appendix D we provide two more tables, with e ¼ 0.3
and e ¼ 0.7. At e ¼ 0.3 accuracies are intermediate, with
six to nine decimal places, but at e ¼ 0.7 accuracies drop to
three to five significant figures. The trend in accuracy is
best displayed semiquantitatively in Fig. 5, where labeled
contours trace the isosurfaces of relative error in the GSF.
The general trend of improvement in accuracy (in our code)
with increasing p is evident, as is the more severe falloff
with increasing e. It is worth noting how uniform the trends
in accuracy are. This uniformity is in contrast to CPU run
times seen in Fig. 4, evidence that the code trades speed for
accuracy when necessary. With an error goal of 10−7

(useful if we consider ε≳ 10−5 or are willing to relax to

FIG. 5 (color online). Contours of relative errors in the GSF. A grid of orbital parameters is chosen (crosses), and the GSF is calculated.
Resulting relative errors are used to generate contour levels of relative accuracy. Numerical labels indicate the log10 of the relative error
of each contour.

TABLE III. GSF results for e ¼ 0.1 and a range of p. We present the t and r components of the full regularized self-force at a set of
points around a complete radial libration. Dissipative and conservative parts can be obtained by addition or subtraction across conjugate
points on the orbit according to Eqs. (2.35). The φ component can be recovered from the orthogonality relation Fαuα ¼ 0. Results for
additional eccentricities are found in Table IV and in Appendix D.

χ p ¼ 10 p ¼ 20 p ¼ 30 p ¼ 60 p ¼ 90

Ft 0 −2.262915 × 10−4 −5.259858 × 10−6 −6.4546731 × 10−7 −1.919788169 × 10−8 −2.504370129 × 10−9

π=4 1.198168 × 10−4 6.729545 × 10−5 2.7706691 × 10−5 5.382433506 × 10−6 2.00678099 × 10−6

π=2 2.767753 × 10−4 8.716476 × 10−5 3.4907828 × 10−5 6.689040469 × 10−6 2.486733999 × 10−6

3π=4 1.810961 × 10−4 5.416762 × 10−5 2.1556094 × 10−5 4.107340582 × 10−6 1.524147563 × 10−6

π −3.133613 × 10−5 −8.374829 × 10−7 −1.0622118 × 10−7 −3.201044762 × 10−9 −4.156911071 × 10−10

5π=4 −2.601123 × 10−4 −5.626206 × 10−5 −2.1821319 × 10−5 −4.115331358 × 10−6 −1.525185847 × 10−6

3π=2 −4.334752 × 10−4 −9.111977 × 10−5 −3.5403737 × 10−5 −6.703942473 × 10−6 −2.488674896 × 10−6

7π=4 −4.52304 × 10−4 −7.519925 × 10−5 −2.8683093 × 10−5 −5.411581273 × 10−6 −2.010582879 × 10−6

Fr 0 1.606774 × 10−2 4.972162 × 10−3 2.3630073 × 10−3 6.306313760 × 10−4 2.863538695 × 10−4

π=4 1.544991 × 10−2 4.734491 × 10−3 2.2459999 × 10−3 5.984342621 × 10−4 2.71591791 × 10−4

π=2 1.360189 × 10−2 4.167538 × 10−3 1.9721189 × 10−3 5.238329929 × 10−4 2.374664601 × 10−4

3π=4 1.180704 × 10−2 3.628645 × 10−3 1.7134645 × 10−3 4.538465637 × 10−4 2.055245423 × 10−4

π 1.105404 × 10−2 3.413109 × 10−3 1.6107881 × 10−3 4.262250069 × 10−4 1.929393281 × 10−4

5π=4 1.163054 × 10−2 3.622782 × 10−3 1.712561 × 10−3 4.538069014 × 10−4 2.055180646 × 10−4

3π=2 1.322747 × 10−2 4.155439 × 10−3 1.9702746 × 10−3 5.237528164 × 10−4 2.374533990 × 10−4

7π=4 1.506292 × 10−2 4.722305 × 10−3 2.244163 × 10−3 5.983551871 × 10−4 2.71578943 × 10−4
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δΦr ≃ 10−1), our code can directly supply the GSF for
long-term orbit integrations for e≲ 0.4–0.5 over most of
the range of p.
For eccentricities above e ¼ 0.5 (or in fact above e ¼

0.25 for p≲ 10), computing the full GSF accurately is
more problematic, and the code, by itself, is not able to
meet the goal of δΦr ¼ 0.01 if ε ¼ 10−6. (For an IMRI,
though, with ε ¼ 10−3 we might compute inspirals with
eccentricities as high as e≲ 0.5–0.6.) One recourse would
be to switch over much of the computation to 128-bit
arithmetic, but doing so on 64-bit architecture would be
expensive. So, can eccentricities of ≃0.8 be reached and
still maintain the required error tolerance? We believe the
answer is yes and propose a hybrid approach.
The present difficulty stems from asking too much of a

single numerical method. Recall that the first-order GSF
determines both the adiabatic inspiral and its part of the
post-1-adiabatic corrections (with additional correction
coming eventually from the orbit-averaged part of the
second-order GSF). Hence, we need the code to provide
the orbit-averaged part of the first-order GSF to a fractional
accuracy ϵ0 that is OðεÞ better than the accuracy ϵ1 it
provides in the oscillatory part of the GSF [see the
argument centered around Eq. (1.1)]. This viewpoint
suggests splitting the task, with a separate code providing
the gravitational wave fluxes that drive the inspiral (i.e.,
post-0-adiabatic) and the Lorenz gauge code providing the
conservative and oscillatory part of the dissipative GSF
(post-1-adiabatic). In such a hybrid scheme, the present
code needs only provide the oscillatory GSF with relative
errors of, say, ϵ1 ≃ 10−4–10−3. The flux code would need
to give the orbit-averaged force to an accuracy of
ϵ0 ≲ 10−8. A Regge–Wheeler–Zerilli (RWZ) code can
achieve this latter accuracy and would not add significant
computational burden.

B. Improving the GSF with energy and angular
momentum fluxes and a hybrid approach

To assess how this hybrid scheme might work, we first
discuss how fluxes are extracted from the Lorenz gauge
code and compare them to computed local rate of change of
work and torque. Energy and angular momentum fluxes
can be read off if the asymptotic values of the Zerilli–
Moncrief (ZM), Ψeven

lm , and CPM, Ψodd
lm , master functions

[31,78] are available. When lþm is even, we use
Ψlm¼Ψeven

lm , and when lþm is odd, we use Ψlm ¼ Ψodd
lm .

Functions are evaluated at both asymptotic limits, withΨþ
lm

being the amplitude at r ¼ ∞ and Ψ−
lm being the one

at r ¼ 2M. See Ref. [31] and its Sec. IV B for flux
expressions in terms of Ψþ

lm and Ψ−
lm.

Expressed in terms of FD amplitudes, the ZM and
CPM master functions are related to Lorenz gauge
amplitudes by

~Ψeven
lmn ðrÞ ¼

r
λþ 1

�
~K þ f

Λ
ðf ~hrr − r∂r

~KÞ
�
−
2f
Λ

~jr þ r ~G;

~Ψodd
lmnðrÞ ¼

r
λ

�
∂r

~ht þ iω ~hr −
2

r
~ht

�
; ð5:1Þ

where we defineΛ≡ λþ 3M=r. The master functions have
asymptotic running wave behavior ~Ψ�

lmnðr� → �∞Þ ¼
C�
lmne

�iωr� and the coefficients can be obtained from the
asymptotic behavior of the Lorenz gauge amplitudes.
[Note, the C�

lmn here are not the same as those in
Eq. (3.14).] Having made these connections to Lorenz
gauge, we use standard expressions for the fluxes:

TABLE IV. Same as Table III but with e ¼ 0.5.

χ p ¼ 10 p ¼ 20 p ¼ 30 p ¼ 60 p ¼ 90

Ft 0 −3.6577 × 10−3 −7.31834 × 10−5 −8.45794 × 10−6 −2.403093 × 10−7 −3.110084 × 10−8

π=4 2.3230 × 10−3 5.49789 × 10−4 2.18176 × 10−4 4.230920 × 10−5 1.583867 × 10−5

π=2 2.1668 × 10−3 4.64492 × 10−4 1.79705 × 10−4 3.379164 × 10−5 1.251105 × 10−5

3π=4 6.5637 × 10−4 1.45139 × 10−4 5.53475 × 10−5 1.020907 × 10−5 3.752960 × 10−6

π 1.0093 × 10−6 1.68029 × 10−8 1.87076 × 10−9 5.493613 × 10−11 7.802583 × 10−12

5π=4 −6.2100 × 10−4 −1.44416 × 10−4 −5.52583 × 10−5 −1.020630 × 10−5 −3.752584 × 10−6

3π=2 −1.6155 × 10−3 −4.54743 × 10−4 −1.78586 × 10−4 −3.375934 × 10−5 −1.250680 × 10−5

7π=4 −3.3431 × 10−3 −5.74637 × 10−4 −2.21391 × 10−4 −4.240869 × 10−5 −1.585176 × 10−5

Fr 0 3.3855 × 10−2 9.08159 × 10−3 4.29527 × 10−3 1.154902 × 10−3 5.267282 × 10−4

π=4 3.0193 × 10−2 7.61709 × 10−3 3.56654 × 10−3 9.498506 × 10−4 4.317999 × 10−4

π=2 1.5020 × 10−2 4.30288 × 10−3 2.00992 × 10−3 5.283582 × 10−4 2.387940 × 10−4

3π=4 6.3892 × 10−3 1.86095 × 10−3 8.61808 × 10−4 2.238814 × 10−4 1.007354 × 10−4

π 3.9352 × 10−3 1.12769 × 10−3 5.19946 × 10−4 1.345001 × 10−4 6.043324 × 10−5

5π=4 6.2762 × 10−3 1.85640 × 10−3 8.61052 × 10−4 2.238461 × 10−4 1.007295 × 10−4

3π=2 1.3115 × 10−2 4.24160 × 10−3 2.00050 × 10−3 5.279454 × 10−4 2.387264 × 10−4

7π=4 2.2613 × 10−2 7.40405 × 10−3 3.53587 × 10−3 9.485827 × 10−4 4.315958 × 10−4
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h _Ei ¼
X
lmn

ω2
mn

64π

ðlþ 2Þ!
ðl − 2Þ! ðjC

þ
lmnj2 þ jC−

lmnj2Þ;

h _Li ¼
X
lmn

mωmn

64π

ðlþ 2Þ!
ðl − 2Þ! ðjC

þ
lmnj2 þ jC−

lmnj2Þ: ð5:2Þ

In a geodesic GSF code, the fluxes should match the
orbit-averaged rate of work and torque that are computed
locally at the particle via Eq. (2.41). The dissipative GSF
can be split into sums over tensor spherical harmonic and
FD contributions, each of which can be taken to be a
function of χ,

Fα
dissðχÞ ¼

X
lmn

Fα;diss
lmn ðχÞ: ð5:3Þ

This decomposition of Fα
diss can be substituted into the

integrals in Eq. (2.41) to yield the orbit-averaged rates of
change of energy and angular momentum. It is possible
though to reverse the order of sum and integration and
derive individual l; m contributions to the rate of work and
torque:

h _Ei ¼
X
lm

h _Eilm ¼ 2

Tr

X
lmn

�Z
π

0

fp
μut

dt
dχ

Ft;diss
lmn dχ

�
;

h _Li ¼
X
lm

h _Lilm ¼ 2

Tr

X
lmn

�Z
π

0

r2p
μut

dt
dχ

Fφ;diss
lmn dχ

�
: ð5:4Þ

Moreover, the force can be evaluated on either side of the
particle and should yield the same rates of change (up to
numerical errors). Balance between fluxes and local dis-
sipation occurs mode by mode, i.e., h _Eilm ¼ −μh _Eilm and
h _Lilm ¼ −μh _Lilm. Alternatively, we can compare them
after summing over all modes.

Table V compares the balance between fluxes and local
dissipation for several p ¼ 10 orbits with different eccen-
tricities. For low eccentricity (e ¼ 0.1) we see a high degree
of fidelity between the local dissipation, computed on both
sides of the particle, and the fluxes derived from the Lorenz
gauge fields. The comparison continues to hold, but the
accuracy drops markedly as orbits with e ¼ 0.5 and
e ¼ 0.7 are considered. We also then show the results of
computing the fluxes with a RWZ code [31] and a
Teukolsky code [102]. Much smaller fractional errors,
≃10−10–10−9, are typically obtained, a result due at least
in part to computing more l; m modes.
A hybrid method would make use of the substantially

smaller relative error ϵ0 ≃ 10−10–10−9 of a RWZ code to
provide the orbit-averaged first-order GSF. A question
arises, however, as to what exactly orbit-averaged means.
Pound and Poisson [103] discuss various secular and
radiative approximations. As they point out, an average
hFα

Riχ over χ is not the same as, for example, the average
hFα

Rit over t. A hybrid method would use a very specific
average. A glance at (2.41) shows that the net fluxes will be
balanced by integrals over proper time τ of the relevant
covariant components of the dissipative part, Fdiss

α , of the
GSF. These averages are then related to fluxes by

h _Eiflux ¼ −μh _Eidiss ¼
1

Tr

Z
T r

0

Fdiss
t dτ ¼ T r

Tr
hFdiss

t iτ;

h _Liflux ¼ −μh _Lidiss ¼ −
1

Tr

Z
T r

0

Fdiss
φ dτ ¼ −

T r

Tr
hFdiss

φ iτ;

ð5:5Þ

where T r is the lapse of proper time in one radial orbit. If
we assume that the fluxes are computed with a RWZ code,
we can infer from them an orbit-averaged dissipative force

TABLE V. Comparisons between energy and angular momentum fluxes and locally computed dissipation. Several orbits with p ¼ 10
and differing eccentricities are considered. Local changes in energy and angular momentum (computed with the GSF on both sides of
the particle) are compared to total fluxes radiated to infinity and down the horizon. One set of fluxes is calculated using the present GSF
code by extracting asymptotic values of the Lorenz gauge amplitudes. These results are then compared to published values that were
computed using RWZ and Teukolsky codes. The changes in energy are measured in units of M2=μ2, while the changes in angular
momentum are measured in units of M=μ2.

e ¼ 0.1 e ¼ 0.5 e ¼ 0.7

−μh _Eþi This paper 6.3190584052 × 10−5 9.2871 × 10−5 9.49 × 10−5

−μh _E−i This paper 6.3190584053 × 10−5 9.2871 × 10−5 9.49 × 10−5

h _Ei This paper 6.319058405374 × 10−5 9.287477 × 10−5 9.5052 × 10−5

h _Ei Hopper and Evans 6.319058405375 × 10−5 9.287480002 × 10−5 9.505332849 × 10−5

h _Ei Fujita et al. 6.3190584054 × 10−5 9.287480001 × 10−5 9.505332847 × 10−5

−μh _Lþi This paper 1.9531904845 × 10−3 1.9765 × 10−3 1.63 × 10−3

−μh _L−i This paper 1.9531904845 × 10−3 1.9765 × 10−3 1.63 × 10−3

h _Li This paper 1.953190484551 × 10−3 1.976807 × 10−3 1.6348 × 10−3

h _Li Hopper and Evans 1.953190484552 × 10−3 1.976807667 × 10−3 1.634854630 × 10−3
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hFdiss
t iRWZ ¼ Tr

T r
h _EiRWZ; hFdiss

φ iRWZ ¼ −
Tr

T r
h _LiRWZ;

ð5:6Þ

with vanishing r component. The process of constructing
the hybrid force involves first taking the GSF from the
Lorenz gauge code and constructing the oscillatory part

Fosc
α ¼ Fcons

α þ Fdiss
α − hFdiss

α iτ; ð5:7Þ

by computing the τ average of the full force (the
conservative part has zero mean) and subtracting it off.
The hybrid GSF is then the sum of the dissipative term from
a RWZ code and the oscillatory part from the Lorenz gauge
code

Fhybrid
α ¼ hFdiss

α iRWZ þ Fosc
α : ð5:8Þ

If the Lorenz gauge code and the RWZ codewere to have
comparable accuracies, this construction would have little
value. But circumstances are different if the RWZ code can
provide the average force, which drives secular changes,
with relative errors as small as ϵ0 ≃ 10−10–10−9, while the
Lorenz code supplies the oscillatory part of the GSF with
relative errors of ϵ1 ∼ 10−10–10−3 (depending on eccen-
tricity). Substantially tighter tolerance, and hence smaller
ϵ0, is required on the former because the secular changes
drive a large accumulation in the orbital phase Φr ≃ 1=ε in
a long-term evolution. The oscillatory part contributes to
κ1, and its fractional errors ϵ1 need only be ≲10−3 ≲ δΦr,
consistent with the criterion outlined in the Introduction.

VI. CONCLUSIONS AND FUTURE WORK

We have described in this paper the key elements in our
development of a FD method to compute the gravitational
self-force in Lorenz gauge. With this method we have
extended the region in p and e of orbital parameter space
within which accurate GSF results can be obtained. The
GSF can be calculated out to p≃ 100 and up to e≃ 0.5
(with this code alone). New features in our approach
include (1) use of fully constrained Lorenz gauge equations
for both odd and even parity, (2) discovery of analytic
solutions for arbitrary-l even-parity static modes, (3) devel-
opment of a thin-QR preconditioning technique for ortho-
gonalizing outer homogeneous solutions and reducing
condition number, (4) adaptive use of quad-precision
arithmetic to maintain accuracy of near-static modes,
(5) an application of the jump conditions to avoid source
integration for the lowest frequency mode, and (6) outlining
a proposal for a novel hybrid approach to combine the
Lorenz gauge code with a RWZ code to allow GSF
calculation up to e≃ 0.8.
This last proposal is an important idea to explore next

and should be done in the context of using our code with a

separate osculating orbits code to revisit long-term orbit
evolutions [36]. Our existing Lorenz gauge code, with
minor tightening of tolerances, should be able to push to
inspirals of orbits that start with e≃ 0.5. By including
parallel computation of radiative modes with an existing,
separate RWZ code, we should be able to reach initial orbits
with e≃ 0.8, near the peak in the expected EMRI
distribution.
An ambitious downstream effort would involve finding

some way to include the orbit-averaged second-order
GSF (i.e., second-order fluxes). Preliminary work is under-
way [104] with applications to circular orbits on a
Schwarzschild background [74,105]. If it proves possible
to find and implement such a scheme, we would be able to
compute inspirals accurately enough for matched filtering
and detector applications (within the restrictions of a
Schwarzschild background and no spin in the secon-
dary body).
A more immediate next application might involve the

inclusion of spin in the small body and calculating not just
the regularized perturbation of the spin precession for
circular orbits [106] but for eccentric orbits also. More
generally, the code might be used as a laboratory to explore
other self-interaction effects, like tidal moments [107], with
attention to their behavior in eccentric orbits. We anticipate
also using the code to explore overlap with a newly
developed MST code that uses analytic function expan-
sions to find the GSF for eccentric orbits [54].
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APPENDIX A: ASYMPTOTIC
BOUNDARY CONDITIONS

We give here the recurrence relations for asymptotic and
Taylor expansions that provide boundary conditions for
mode integrations. Expansions about r� ¼ �∞ for homo-
geneous Lorenz gauge solutions were first given by Akcay
[32] but with a different initial basis and for a larger,
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partially constrained even-parity system. The fully con-
strained even-parity system we use makes the generic
recurrence relations valid for l ¼ 0; 1 modes when
ω ≠ 0. Throughout this section we use σ ¼ Mω for brevity.

1. Near-horizon even-parity Taylor expansions

The even-parity homogeneous solutions can be
expanded around r ¼ 2M in a Taylor series in powers of
fðrÞ:

~E− ¼ r

2
6664

~htt

f ~htr

f2 ~hrr
~K

3
7775 ¼ Me−iωr�

X∞
k¼0

2
666664

aðttÞk

aðtrÞk

aðrrÞk

aðKÞk

3
777775f

k: ðA1Þ

Recurrence relations for the coefficients can be found via
the method of Frobenius:

2
6664
1þ 8iσþ 2kðk− 2− 4iσÞ −8iσ −1 0

−2iσ kðk− 2Þ− 4iσðk− 1Þ −2iσ 0

−1 −8iσ 1þ 8iσþ 2kðk− 2− 4iσÞ 0

−kþ 1þ 2iσ −4iσ −k− 1þ 2iσ kðk−4iσÞ

3
7775

2
666664

aðttÞk

aðtrÞk

aðrrÞk

aðKÞk

3
777775¼

2
666664

AðttÞ
k

AðtrÞ
k

AðrrÞ
k

AðKÞ
k

3
777775: ðA2Þ

The rhs contains only lower-order coefficients in the expansion

AðttÞ
k ≡ ½−4iðk− 4Þσþ 2kð5k− 34Þ þ 3lðlþ 1Þ þ 113�2aðttÞk−3 − 2½2kð5k− 6iσ − 26Þ þ 3lðlþ 1Þ þ 36iσþ 65�aðttÞk−2

þ ½2kð5k− 12iσ − 18Þ þ 2lðlþ 1Þ þ 48iσþ 29�aðttÞk−1 þ ½2ð42− 5kÞk− 2lðlþ 1Þ− 173�aðttÞk−4 − 8iσaðtrÞk−3

þ 24iσaðtrÞk−2 − 24iσaðtrÞk−1 þ ð2ðk− 5Þ2 − 1ÞaðttÞk−5 þ 3aðrrÞk−5 − 11aðrrÞk−4 þ 14aðrrÞk−3 − 6aðrrÞk−2 − aðrrÞk−1 − 4aðKÞk−6

þ 16aðKÞk−5 − 24aðKÞk−4 þ 16aðKÞk−3 − 4aðKÞk−2;

AðtrÞ
k ≡ ½5k2 − 4ið3k− 7Þσ − 20kþ l2 þ lþ 16�aðtrÞk−1 þ ½2kð5k− 2iσ − 40Þ þ 3ðl2 þ lþ 52Þ þ 20iσ�aðtrÞk−3

þ ½2kð−5kþ 6iσ þ 30Þ− 3lðlþ 1Þ− 44iσ − 84�aðtrÞk−2 þ ½−5ðk− 10Þk− lðlþ 1Þ− 124�aðtrÞk−4 − 4iσaðttÞk−3

þ 10iσaðttÞk−2 − 8iσaðttÞk−1 − 4iσaðrrÞk−3 þ 10iσaðrrÞk−2 − 8iσaðrrÞk−1 − 4iσaðKÞk−4 þ 8iσaðKÞk−3 − 4iσaðKÞk−2 þ ðk− 6Þ2aðtrÞk−5;

AðrrÞ
k ≡ 2½−4iðk− 5Þσþ 10ðk− 8Þkþ 3lðlþ 1Þ þ 155�aðrrÞk−3 − 2½2kð5k− 6iσ − 30Þ þ 3lðlþ 1Þ þ 44iσþ 83�aðrrÞk−2

þ ½2kð5k− 12iσ − 20Þ þ 2lðlþ 1Þ þ 56iσþ 33�aðrrÞk−1 þ ½−10ðk− 10Þk− 2lðlþ 1Þ− 249�aðrrÞk−4

þ ð−24kþ 8iσþ 74ÞaðttÞk−3 þ 2ð8k− 8iσ − 17ÞaðttÞk−2 þ ð−4kþ 8iσþ 3ÞaðttÞk−1 − 24iσaðtrÞk−3 þ 56iσaðtrÞk−2

− 40iσaðtrÞk−1 þ 8ð6k− 2iσ − 21ÞaðKÞk−4 þ ð−32kþ 32iσ þ 80ÞaðKÞk−3 þ 4ð2k− 4iσ − 3ÞaðKÞ
k−2 þ ð19− 4kÞaðttÞk−5

þ ð16k− 63ÞaðttÞk−4 þ ð2ðk− 12Þkþ 73ÞaðrrÞk−5 þ ð8k− 44ÞaðKÞk−6 þ ð144− 32kÞaðKÞk−5;

AðKÞ
k ≡ ½5k2 − 2kð5þ 6iσÞ þ l2 þ lþ 16iσþ 4�aðKÞk−1 þ ½2kð−5kþ 6iσþ 20Þ− 3ðl2 þ lþ 12Þ− 32iσ�aðKÞk−2

þ ½2kð5k− 2iσ − 30Þ þ 3lðlþ 1Þ þ 16iσþ 84�aðKÞk−3 þ ½−5ðk− 8Þk− lðlþ 1Þ− 76�aðKÞk−4

þ ð6k− 2iσ − 15ÞaðttÞk−2 þ ð−4kþ 4iσþ 7ÞaðttÞk−1 þ 4iσaðtrÞk−2 − 8iσaðtrÞk−1 þ ð6k− 2iσ − 9ÞaðrrÞk−2

þ ð4iσ − 4kþ 1ÞaðrrÞk−1 þ ðk− 4ÞaðttÞk−4 þ ð13− 4kÞaðttÞk−3 þ ðk− 4ÞaðrrÞk−4 þ ð11− 4kÞaðrrÞk−3 þ ðk− 6Þðk− 4ÞaðKÞk−5: ðA3Þ

In these recurrence relations, a coefficient vanishes any time a negative index appears. Because the matrix is singular when
k ≤ 2, the first few terms are evaluated separately:
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aðtrÞ0 ¼ aðttÞ0 ; aðrrÞ0 ¼ aðttÞ0 ; aðtrÞ1 ¼ −
lðlþ 1Þ þ 1

1þ 4iσ
aðttÞ0 ; aðrrÞ1 ¼ −

2ðlðlþ 1Þ þ 1Þ
1þ 4iσ

aðttÞ0 − aðttÞ1 ;

aðKÞ1 ¼ −
4ðlðlþ 1Þ þ 1Þ

1þ 16σ2
aðttÞ0 þ

�
lðlþ 1Þ
1 − 4iσ

− 1

�
aðKÞ0 −

2

1 − 4iσ
aðttÞ1 ;

aðtrÞ2 ¼ l2ðlþ 1Þ2 − 8iσðlðlþ 1Þ þ 1Þ þ 16σ2

4iσð1þ 16σ2Þ aðttÞ0 −
1

1 − 4iσ
aðKÞ0 þ lðlþ 1Þ − 1

1 − 4iσ
aðttÞ1 − aðttÞ2 ;

aðrrÞ2 ¼ −
2ðlðlþ 1Þ þ 1Þðlðlþ 1Þ − 3Þ

1þ 16σ2
aðttÞ0 þ 2

�
1þ 1

1 − 4iσ

�
aðKÞ
0 −

2ðlðlþ 1Þ − 1Þ
1 − 4iσ

aðttÞ1 þ aðttÞ2 ;

aðKÞ2 ¼ −4ðlðlþ 1Þ − 11Þðlðlþ 1Þ þ 1Þσ − ið3lðlð3lðlþ 2Þ þ 1Þ − 2Þ − 16Þ þ 16iσ2

8σð1þ 8σð2σ þ iÞÞ þ 4i
aðttÞ0

−
ðlðlþ 1Þ þ 4iσÞ2 − 36iσ þ 12

4ð8σ2 þ 6iσ − 1Þ aðKÞ0 þ 2lðlþ 1Þð1 − iσÞ þ 4iσ − 1

8σ2 þ 6iσ − 1
aðttÞ1 þ aðttÞ2 : ðA4Þ

The freely chosen coefficients aðttÞ0 , aðttÞ1 , aðttÞ2 , and aðKÞ0 control the boundary conditions. For example, at leading order we
can choose the simple basis

ðaðttÞ0 ; aðttÞ1 ; aðttÞ2 ; aðKÞ0 Þ ¼ ð1; 0; 0; 0Þ → ð ~E−
0 Þ⊤ ∼ ð1; 1; 1; 0Þe−iωr�

ðaðttÞ0 ; aðttÞ1 ; aðttÞ2 ; aðKÞ0 Þ ¼ ð0; 1; 0; 0Þ → ð ~E−
1 Þ⊤ ∼ ð1; 0;−1;−2ð1 − 4iσÞ−1Þfe−iωr� ;

ðaðttÞ0 ; aðttÞ1 ; aðttÞ2 ; aðKÞ0 Þ ¼ ð0; 0; 1; 0Þ → ð ~E−
2 Þ⊤ ∼ ð1;−1; 1; 1Þf2e−iωr� ;

ðaðttÞ0 ; aðttÞ1 ; aðttÞ2 ; aðKÞ0 Þ ¼ ð0; 0; 0; 1Þ → ð ~E−
3 Þ⊤ ∼ ð0; 0; 0; 1Þe−iωr� : ðA5Þ

2. Near-horizon odd-parity Taylor expansions

The odd-parity homogeneous solutions can also be
expanded around r ¼ 2M in powers of fðrÞ:

~B− ¼
� ~ht

f ~hr

�
¼ Me−iωr�

X∞
k¼0

"
aðtÞk

aðrÞk

#
fk: ðA6Þ

Recurrence relations for the coefficients are again found via
the method of Frobenius:

�
kðk − 1 − 4iσÞ þ 2iσ −2iσ

−2iσ kðk − 1 − 4iσÞ þ 2iσ

�"
aðtÞk

aðrÞk

#

¼
"
AðtÞ
k

AðrÞ
k

#
: ðA7Þ

Once again these result in a linear system to be solved, and
the rhs has only lower-order coefficients:

AðtÞ
k ≡ ð4k2 − 22kþ l2 þ lþ 24ÞaðtÞk−3

− 2½kð3k − 2iσ − 12Þ þ l2 þ lþ 5iσ þ 9�aðtÞk−2
þ ½2kð2k − 4iσ − 5Þ þ l2 þ lþ 12iσ þ 4�aðtÞk−1
þ 2iσaðrÞk−2 − 4iσaðrÞk−1 − ðk − 5Þðk − 2ÞaðtÞk−4;

AðrÞ
k ≡ −2½kð3k − 2iσ − 15Þ þ l2 þ lþ 7iσ þ 15�aðrÞk−2

þ ½4kðk − 2iσ − 3Þ þ l2 þ lþ 16iσ þ 6�aðrÞk−1

þ ½4ðk − 7Þkþ l2 þ lþ 42�aðrÞk−3 þ 6iσaðtÞk−2

− 8iσaðtÞk−1 − ðk − 6Þðk − 3ÞaðrÞk−4: ðA8Þ

Any negative-index coefficients vanish. This linear system
is singular for k ≤ 1, and starting conditions for the
recursion are calculated separately:

aðrÞ0 ¼ aðtÞ0 ; aðrÞ1 ¼ −
ðlþ 2Þðl − 1Þ

2iσ
aðtÞ0 − aðtÞ1 : ðA9Þ

The freely chosen coefficients aðtÞ0 and aðtÞ1 control the
boundary conditions. We can choose a simple basis, which
at leading order has the form
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ðaðtÞ0 ; aðtÞ1 Þ ¼ ð1; 0Þ → ð ~B−
0 Þ⊤ ∼ ð1; 1Þe−iωr� ;

ðaðtÞ0 ; aðtÞ1 Þ ¼ ð0; 1Þ → ð ~B−
1 Þ⊤ ∼ ð1;−1Þfe−iωr� : ðA10Þ

In practical applications, we evaluate these expansions at
r� ¼ −6M and add terms in the series until the relative size
of the last term drops below machine precision.

3. Near-infinity even-parity asymptotic expansions

The even-parity homogeneous solutions can be
expanded about r ¼ ∞ as

~Eþ ¼ r

2
6664

~htt

f ~htr

f2 ~hrr
~K

3
7775 ¼ Meiωr�

Xkmax

k¼0

2
666664

bðttÞk

bðtrÞk

bðrrÞk

bðKÞk

3
777775
�
M
r

�
k
: ðA11Þ

Recurrence relations for the coefficients are a linear system
of equations:

2
6664
−2iσk 0 0 0

−iσ 2iσðk− 1Þ −iσ −2iσ
2iσ 4iσ −2iσðk− 1Þ −4iσ
−iσ −2iσ −iσ −2iσðk− 1Þ

3
7775

2
666664

bðttÞk

bðtrÞk

bðrrÞk

bðKÞk

3
777775

¼

2
666664

BðttÞ
k

BðtrÞ
k

BðrrÞ
k

BðKÞ
k

3
777775: ðA12Þ

As with the horizon-side expansions, the rhs groups all of
the lower-order coefficients

BðttÞ
k ≡ ½−k2 − 4iðk − 2Þσ þ kþ l2 þ l�bðttÞk−1 − 2½ð7 − 2kÞkþ l2 þ l − 5�bðttÞk−2 þ 4iσbðtrÞk−1

− 2½2ðk − 6Þkþ 17�bðttÞk−3 − 6bðrrÞk−3 þ 4bðrrÞk−2 − 16bðKÞk−4 þ 16bðKÞk−3 − 4bðKÞk−2;

BðtrÞ
k ≡ 2½ð11 − 2kÞkþ l2 þ l − 15�bðtrÞk−2 þ ½kðkþ 4iσ − 3Þ − lðlþ 1Þ − 12iσ þ 2�bðtrÞk−1

− 4iσbðttÞk−1 − 4iσbðrrÞk−1 þ 8iσbðKÞk−2 − 8iσbðKÞk−1 þ 4ðk − 4Þ2bðtrÞk−3;

BðrrÞ
k ≡ ½−k2 − 4iðk − 3Þσ þ 3kþ l2 þ l − 4�bðrrÞk−1 − 2½ð11 − 2kÞkþ l2 þ l − 17�bðrrÞk−2

þ 2ðkþ 2iσÞbðttÞk−1 þ 12iσbðtrÞk−1 þ 4ð6kþ 4iσ − 11ÞbðKÞk−2 − 4ðkþ 4iσ − 1ÞbðKÞk−1 þ ð8k − 22ÞbðttÞk−3

þ ð12 − 8kÞbðttÞk−2 þ ð−4ðk − 8Þk − 66ÞbðrrÞk−3 þ 16ð2k − 7ÞbðKÞk−4 þ ð128 − 48kÞbðKÞk−3;

BðKÞ
k ≡ ½−kðkþ 4iσ − 3Þ þ l2 þ lþ 8iσ − 2�bðKÞk−1 − 2½ð9 − 2kÞkþ l2 þ l − 9�bðKÞk−2

þ 2ðk − 2ÞbðttÞk−2 − kbðttÞk−1 þ 2ðk − 2ÞbðrrÞk−2 þ ð2 − kÞbðrrÞk−1 − 4ðk − 4Þðk − 2ÞbðKÞk−3: ðA13Þ

All appearances of a negative index imply a vanishing coefficient. The linear system is singular here when k ≤ 2 and
starting coefficients are obtained from the reduced equations

bðrrÞ0 ¼ −bðttÞ0 − 2bðtrÞ0 ; bðKÞ0 ¼ 0; bðttÞ1 ¼ −
lðlþ 1Þ þ 4iσ

2iσ
bðttÞ0 − 2bðtrÞ0 ;

bðrrÞ1 ¼ lðlþ 1Þ þ 4ð1þ iσÞ
2iσ

bðttÞ0 þ 2

�
1þ 1

iσ

�
bðtrÞ0 − 2bðtrÞ1 ; bðKÞ1 ¼ −

1

iσ
bðttÞ0 þ ðlþ 2Þðl − 1Þ

2iσ
bðtrÞ0 þ bðtrÞ1 ;

bðttÞ2 ¼ −
lðlþ 1Þððlþ 2Þðl − 1Þ þ 8iσÞ þ 4iσ

8σ2
bðttÞ0 þ lðlþ 1Þ þ 2

2iσ
bðtrÞ0 − bðtrÞ1 ;

bðtrÞ2 ¼ −
1

iσ
bðttÞ0 þ lðlþ 1Þðlþ 2Þðl − 1Þ þ 4iσðlðlþ 1Þ þ 3Þ

8σ2
bðtrÞ0 −

�
1þ lðlþ 1Þ

2iσ

�
bðtrÞ1 ;

bðrrÞ2 ¼ lðlþ 1Þððlþ 2Þðl − 1Þ þ 8iσÞ þ 20iσ
8σ2

bðttÞ0 þ lðlþ 1Þððlþ 2Þðl − 1Þ − 2iσÞ þ 8iσ
4σ2

bðtrÞ0 þ 3bðtrÞ1 − 2bðKÞ2 : ðA14Þ

The freely chosen coefficients bðttÞ0 , bðtrÞ0 , bðtrÞ1 , and bðKÞ2 control the boundary conditions, and a simple choice for the basis
gives the following lowest-order form:
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ðbðttÞ0 ; bðtrÞ0 ; bðtrÞ1 ; bðKÞ2 Þ ¼ ð1; 0; 0; 0Þ → ð ~Eþ
0 Þ⊤ ∼ ð1; 0;−1; 0Þeiωr� ;

ðbðttÞ0 ; bðtrÞ0 ; bðtrÞ1 ; bðKÞ2 Þ ¼ ð0; 1; 0; 0Þ → ð ~Eþ
1 Þ⊤ ∼ ð0; 1;−2; 0Þeiωr� ;

ðbðttÞ0 ; bðtrÞ0 ; bðtrÞ1 ; bðKÞ2 Þ ¼ ð0; 0; 1; 0Þ → ð ~Eþ
2 Þ⊤ ∼ ð0; 1;−2; 1Þr−1eiωr� ;

ðbðttÞ0 ; bðtrÞ0 ; bðtrÞ1 ; bðKÞ2 Þ ¼ ð0; 0; 0; 1Þ → ð ~Eþ
3 Þ⊤ ∼ ð0; 0;−2; 1Þr−2eiωr� : ðA15Þ

Note though that, as described in Sec. IVA, we take this
simple basis and apply a linear transformation called thin-
QR preconditioning.

4. Near-infinity odd-parity asymptotic expansions

The odd-parity homogeneous solutions can be expanded
about r ¼ ∞ as

~Bþ ¼
"

~ht

f ~hr

#
¼ Meiωr�

Xkmax

k¼0

"
bðtÞk

bðrÞk

#�
M
r

�
k
: ðA16Þ

Again, the recurrence relations are found to satisfy a linear
system,

"
−2ikσ 0

−2iσ 2iσðk − 1Þ

#"
bðtÞk

bðrÞk

#
¼

"
BðtÞ
k

BðrÞ
k

#
; ðA17Þ

where again the rhs contains all lower-order coefficients,

BðtÞ
k ≡ ½lðlþ 1Þ − kðkþ 4iσ − 1Þ þ 6iσ�bðtÞk−1

− 2½lðlþ 1Þ − 2ðk − 3Þk − 2�bðtÞk−2 þ 2iσbðrÞk−1

− 4ðk − 4Þðk − 1ÞbðtÞk−3;
BðrÞ
k ≡ ½kðkþ 4iσ − 3Þ − lðlþ 1Þ − 10iσ þ 2�bðrÞk−1

− 2½2ðk − 5Þk − lðlþ 1Þ þ 10�bðrÞk−2

− 6iσbðtÞk−1 þ 4ðk − 5Þðk − 2ÞbðrÞk−3; ðA18Þ

and any negative index that appears implies a vanishing
coefficient. This linear system is singular for k ≤ 1, and
starting conditions are evaluated individually:

bðrÞ0 ¼ −bðtÞ0 ; bðtÞ1 ¼ −
lðlþ 1Þ
2iσ

bðtÞ0 : ðA19Þ

The freely chosen coefficients bðtÞ0 and bðrÞ1 determine the
boundary conditions, and a simple choice for the basis
yields the following lowest-order form:

ðbðtÞ0 ; bðrÞ1 Þ ¼ ð1; 0Þ → ð ~Bþ
0 Þ⊤ ∼ ð1;−1Þeiωr�

ðbðtÞ0 ; bðrÞ1 Þ ¼ ð0; 1Þ → ð ~Bþ
1 Þ⊤ ∼ ð0; 1Þr−1eiωr� : ðA20Þ

As with even parity, the method described in Sec. IVA
transforms this simple basis to a more orthogonal one using
thin-QR preconditioning.
With these asymptotic series, care must be exercised

with the number of terms and the starting radius r∞� . The
test for convergence is whether a numerical integration
through a distance ∼ω−1 starting with an initial evaluation
of the asymptotic expansion agrees with a second evalu-
ation of the expansion at the end point of the trial. If the test
fails, we increase r∞� by some factor (say ∼1.5) and repeat.

APPENDIX B: HOMOGENEOUS STATIC MODES

Here, we provide the details of the power series used to
construct exact analytic homogeneous solutions for static
modes when l ≥ 2, as were discussed in Sec. IV C.
Throughout this section we set ρ¼r=M. Regularity at
ρ¼2 and ρ ¼ ∞ governs our choice for inner and outer
solutions.

1. Odd parity

In Sec. IV C we gave expressions for ~h−t and ~hþt as finite
sums. The coefficients in those sums are

aoddk ¼ 3ð−1Þk21−kðlþ kþ 1Þ!
lðlþ 1Þk!ðkþ 3Þ!ðl − k − 1Þ! ; ðB1Þ

bodd0 ¼ 96

l2ðlþ 1Þ2ðlþ 2Þðl − 1Þ ;

bodd1 ¼ 24

l2ðlþ 1Þ2 ; bodd2 ¼ 6

lðlþ 1Þ ;

bodd3 ¼ 1

lðlþ 1Þ þ
11

6
− 2Hl;

boddk ¼ 1

−4kðk − 3Þ ½4ðk − 3Þaoddk−4 þ ð12 − 8kÞaoddk−3

þ ð12 − 7kþ k2 − lðlþ 1ÞÞboddk−2

þ 2ð10k − 2k2 − 10þ lðlþ 1ÞÞboddk−1�; ðB2Þ

where Hk is the kth harmonic number defined as

Hk ≡
�
0; k ¼ 0P

k
j¼1 j

−1; k ≥ 1
: ðB3Þ

We have found the expression for ~hþt in Eq. (4.7) to be
impractical to use numerically for large r because of a large
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number of cancellations between the two sums. We instead
reexpand the solution as an infinite series,

~hþt ¼ M
ρl

X∞
k¼0

doddk

ρk
;

doddk ¼ 22lþkþ1ðlþ kþ 1Þ!ðlþ k − 2Þ!Γðlþ 3=2Þ
k!ðlþ 1Þðl − 2Þ!ð2lþ kþ 1Þ! ffiffiffi

π
p ; ðB4Þ

which agrees with the expression in Eq. (4.7) up to a
constant factor. This is a convergent Taylor series if ρ > 2.

2. Even parity

As summarized in Sec. IV C, we find the even-parity
static modes through a series of steps. We give here the
complete expressions for the gauge variables ~ξ�e;H0, ~ξ

�
e;H1,

and ~ξ�e;I that are defined in that section. We construct power
series expansions, and we seek series that are exact
solutions with finite numbers of terms. This condition
imposes constraints on otherwise freely chosen coeffi-
cients. The variables ~ξ�e;H0 are found from the finite sums

~ξ−H0 ¼ M2
Xl

k¼0

aH0
k ρk; ~ξþH0 ¼ ~ξ−H0 ln f þM2

Xl−1
k¼0

bH0
k ρk;

ðB5Þ

where the coefficients aH0
k and bH0

k are given by the closed-
form expressions

aH0
k ¼ ð−1Þkðlþ kÞ!

2kðk!Þ2ðl − kÞ! ; bH0
k ¼ 2aH0

k ðHk −HlÞ: ðB6Þ

In practice, we find the above expression for ~ξþH0 to be
impractical to use numerically due to a large number of
cancellations between the two sums. Instead we use the
following equivalent Taylor series, which converges for all
ρ > 2:

~ξþH0 ¼
M2

ρlþ1

X∞
k¼0

dH0
k

ρk
; dH0

k ¼ ð−1Þlþ12lþkþ1½ðlþ kÞ!�2
k!ð2lþ kþ 1Þ! :

ðB7Þ
The variables ~ξ�e;H1 are given by

~ξ−H1 ¼ ~ξ−H0 ln ρþM2
Xlþ2

k¼0

aH1
k ρk;

~ξþH1 ¼ ~ξ−H0

�
Li2ðfÞ −

1

2
ln

�
ρ

4

�
ln f −

π2

6
−
aH1
lþ2 þ aH1

lþ1 þ bH1
l

aH0
l

�
þ 1

2
~ξþH0 ln ρ −

1

2
~ξ−H1 ln f þM2

Xlþ1

k¼0

bH1
k ρk; ðB8Þ

where we have introduced the dilogarithm function Li2ðfÞ≡ −
R f
0 x−1 lnð1 − xÞdx, and the coefficients follow from the

recurrences

aH1
0 ¼0; aH1

1 ¼ lðlþ1Þþ1

2
; aH1

2 ¼ 1

16
ð2− lð−2þ lð1þ3lð2þ lÞÞÞÞ;

aH1
3 ¼−

1

8
−

1

12
lþ539

864
l2þ 91

288
l3−

7

216
l4þ 11

288
l5þ 11

864
l6;

8ð−3þkÞð−2þkÞk2aH1
k ¼2ð−7þ2kÞð11þð−7þkÞk− lð1þ lÞÞaH0

k−3

−2ð−99k2þ12k3−4kð−65þ2lð1þ lÞÞþ3ð−72þ7lð1þ lÞÞÞaH0
k−2

þ4ð−68þ2kð65þ6ð−6þkÞkÞþ7l−4klþð7−4kÞl2ÞaH0
k−1

−8kð12þkð−15þ4kÞÞaH0
k þð−5þk− lÞð−3þk− lÞð−4þkþ lÞð−2þkþ lÞaH1

k−3

−2ð128−33k3þ3k4þð−5þ lÞlð1þ lÞð6þ lÞ−2k2ð−65þ2lð1þ lÞÞþ3kð−72þ7lð1þ lÞÞÞaH1
k−2

þ4ð24þð−4þkÞkð17þ3ð−4þkÞkÞ−7lþð7−2kÞklþð−7þð7−2kÞkÞl2ÞaH1
k−1;

bH1
0 ¼0; bH1

1 ¼−
1

2
ð1þHlð2lðlþ1Þþ1ÞÞ;

bH1
2 ¼ 1

16

�
6þ l−27l2−16l3

lðlþ1Þ þHlð−2þ lð−2þ lð1þ3lð2þ lÞÞÞÞ
�
;

bH1
3 ¼216þ lð216þ lð−656þ lð−1229þ lð−1279þ lð−463þ27lÞÞÞÞÞ

1728lðlþ1Þ
þ Hl

864
ð−180þ lð−120þ lð613þ lð495þ lð28−11lð3þ lÞÞÞÞÞÞ; ðB9Þ
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8ð−3þkÞð−2þkÞk2bH1
k ¼−4ð−3þkÞaH0

k−2þ2ð−7þ4kÞaH0
k−1−4ð−3þkÞð8þð−6þkÞk− lð1þ lÞÞaH1

k−2

þ2ð−51k2þ8k3þ7ð−8þ lþ l2Þþkð99−4lð1þ lÞÞÞaH1
k−1−4kð12þkð−15þ4kÞÞaH1

k

þð−7þ2kÞð11þð−7þkÞk− lð1þ lÞÞbH0
k−3

þð99k2−12k3þ4kð−65þ2lð1þ lÞÞ−3ð−72þ7lð1þ lÞÞÞbH0
k−2

þ2ð−68þ2kð65þ6ð−6þkÞkÞþ7l−4klþð7−4kÞl2ÞbH0
k−1−4kð12þkð−15þ4kÞÞbH0

k

þð−5þk− lÞð−3þk− lÞð−4þkþ lÞð−2þkþ lÞbH1
k−3

−2ð128−33k3þ3k4þð−5þ lÞlð1þ lÞð6þ lÞ−2k2ð−65þ2lð1þ lÞÞþ3kð−72þ7lð1þ lÞÞÞbH1
k−2

þ4ð24þð−4þkÞkð17þ3ð−4þkÞkÞ−7lþð7−2kÞklþð−7þð7−2kÞkÞl2ÞbH1
k−1: ðB10Þ

As with ~ξþH0, we find the expression for ~ξþH1 to be impractical for numerical use at large radius and replace it with a
convergent Taylor series [this expression for ~ξþH1 is equivalent to that in Eq. (B8) up to a linear combination with ~ξþH0]:

~ξþH1 ¼
1

2
~ξþH0 ln ρþ

M2

ρl−1
X∞
k¼0

dH1
k

ρk
;

dH1
0 ¼ 3þ 8lþ 4l2

4l
dH0
0 ; dH1

1 ¼ l2 þ l − 1

l
dH1
0 ; dH1

2 ¼ 0;

ð−2þ kÞkð−1þ kþ 2lÞð1þ kþ 2lÞdH1
k ¼ 2ð−3þ kþ lÞð3þ 4k2 þ lð−9þ 4lÞ þ kð−9þ 8lÞÞdH0

k−4

− ð−2þ 8k3 þ 3k2ð−9þ 8lÞ þ lð27 − 26lþ 4l2Þ þ kð22 − 58lþ 20l2ÞÞdH0
k−3

þ ð−1þ 2kþ 2lÞð−1 − 2lþ kð−1þ kþ 2lÞÞdH0
k−2 − 4ð−3þ kþ lÞ2ð−1þ kþ lÞðkþ lÞdH1

k−2

þ 2ðð−2þ kÞkð1þ kð−5þ 2kÞÞ − 6lþ kð27þ kð−29þ 8kÞÞlþ 2ð−2þ kÞð−3þ 5kÞl2 þ 2ð−3þ 2kÞl3ÞdH1
k−1:

ðB11Þ

The remaining unknown gauge variables are ~ξ�e;I , which satisfy the inhomogeneous ODE, Eq. (4.15). To find expressions
for them, we must first write the source term of that equation as a power series. The source term that is regular at the
horizon is

S−ξ ¼ 1

M2ρ3f2
Xl

k¼0

y−k ρ
k; y−k ¼

8>>>><
>>>>:

− 96
ðlþ2Þðl−1Þ k ¼ 0

8aoddk−1ð2ðkþ1Þþlðlþ1ÞÞ−32ðkþ3Þaoddk
ðlþ2Þðl−1Þ 0 < k < l

8ðlþ1Þ
l−1 aoddl−1 k ¼ l

: ðB12Þ

The corresponding term that is regular at infinity is

Sþξ ¼ S−ξ ln f þ 1

M2ρ5f2
Xlþ2

k¼0

yþk ρ
k; yþk ¼

8>>>><
>>>>:

8ðlðlþ1Þþ2ðk−1ÞÞboddk −32ðkþ1Þboddkþ1

ðlþ2Þðl−1Þ k ¼ 0; 1

8ðlðlþ1Þþ2ðk−1ÞÞboddk −32ðkþ1Þboddkþ1
þ32aoddk−2

ðlþ2Þðl−1Þ 1 < k < lþ 2

8ðlþ1Þ
l−1 boddlþ2 k ¼ lþ 2

: ðB13Þ

With these in hand, we can write power series for ~ξ�e;I,

~ξ−e;I ¼ M2ρ2
Xl

k¼0

aIkρ
k; ~ξþe;I ¼ ~ξ−e;I ln f þ β~ξ−H0 ln f þM2

Xlþ1

k¼0

bIkρ
k; ðB14Þ

where β≡ −3072ðlðlþ 1Þ − 7Þ=½l4ðlþ 1Þ4ðlþ 7Þðlþ 2Þðl − 1Þ�. The coefficients follow from the recurrences
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aI0 ¼ −
12

ðlþ 2Þðlþ 1Þlðl − 1Þ ; aI1 ¼ −
2

lðlþ 1Þ ;

4kðk − 1Þðkþ 2Þ2aIk ¼ y−k−1 − ðk − l − 2Þðk − lÞðkþ l − 1Þðkþ lþ 1ÞaIk−2 − 2ðlþ l2 − 2 − k3 − 2k4 þ kð1þ lþ l2Þ
þ 2k2ð2þ lþ l2ÞÞaIk−1; ðB15Þ

bI0 ¼
Xl

k¼0

2kþ2

kþ 2
aIk þ β

Xl

k¼1

2k

k
aH0
k ; bI1 ¼

1

4
ð−3lðlþ 1Þβ þ 2βaH0

1 − 2lðlþ 1ÞbI0Þ þ
1

8
yþ0 ;

bI2 ¼ β

�
3

32
ð2 − 3l − 2l2 þ 2l3 þ l4Þ þ 1

2lðlþ 1Þ
�
−
2 − 3l − 2l2 þ 2l3 þ l4

8
aH0
1 þ 2þ 5lþ 5l2

2
aH0
2 þ 9aH0

3

��

þ lðlþ 1Þðlþ 2Þðl − 1Þ
16

bI0 þ
1

2lðlþ 1Þ
�
2þ 5lþ 5l2

2
aI0 þ 9aI1 −

2 − 3l − 2l2 þ 2l3 þ l4

32
yþ0 −

1

8
yþ1 þ 1

4
yþ2

�
;

bI3 ¼
Xl

k¼2

2k−1

k − 1
aIk þ β

Xl

k¼4

2k−3

k − 3
aH0
k ;

8k2ðk − 2Þðk − 3ÞbIk
¼ 2yþk−1 − yþk−2 þ 8ð−3þ kÞ½8þ ð−6þ kÞk − lð1þ lÞ�aIk−4

þ 4½51k2 − 8k3 − 7ð−8þ lþ l2Þ þ kð−99þ 4lð1þ lÞÞ�aIk−3 þ 8k½−4þ 4ð−2þ kÞ2 þ k�aIk−2
− 2½128 − 33k3 þ 3k4 þ ð−5þ lÞlð1þ lÞð6þ lÞ − 2k2ð−65þ 2lð1þ lÞÞ þ 3kð−72þ 7lð1þ lÞÞ�bIk−2
þ 4½24þ ð−4þ kÞkð17þ 3ð−4þ kÞkÞ − 7lþ ð7 − 2kÞklþ ð−7þ ð7 − 2kÞkÞl2�bIk−1
þ ð−5þ k − lÞð−3þ k − lÞð−4þ kþ lÞð−2þ kþ lÞbIk−3 þ 8βð−3þ kÞ½8þ ð−6þ kÞk − lð1þ lÞ�aH0

k−2

þ 4β½51k2 − 8k3 − 7ð−8þ lþ l2Þ þ kð−99þ 4lð1þ lÞÞ�aH0
k−1 þ 8βk½12þ kð−15þ 4kÞ�aH0

k : ðB16Þ

We have found the expressions for Sþξ and ~ξþe;I in Eqs. (B13) and (B14) to also be impractical for numerical use at large r.
Again, we replace them with infinite series. For the source term, we have

Sþξ ¼ 1

M2ρlþ4f2
X∞
k¼0

vk
ρk

; vk ¼
22lþkþ4lðlþ kÞ½ðlþ k − 1Þ!�2Γðlþ 3=2Þ

ðlþ 2Þk!ðl − 1Þ!ð2lþ kþ 1Þ! ffiffiffi
π

p ; ðB17Þ

while for ~ξþe;I we use

~ξþe;I ¼
M2

ρl−1
X∞
k¼0

dIk
1

ρk
;

dI0 ¼
2 − l2

4lðlþ 1Þ v0 þ
1

4l
v1; dI1 ¼ −

l3 − 3lþ 2

4l2
v0 þ

lðlþ 1Þ − 1

4l2
v1; dI2 ¼ 0;

kðk − 2Þð−1þ kþ 2lÞð1þ kþ 2lÞdIk ¼ vk−1 − 4ð−3þ kþ lÞ2ð−1þ kþ lÞðkþ lÞdIk−2
þ 2½ðk − 2Þkð1þ kð2k − 5ÞÞ þ ð−1þ kÞð6þ kð−21þ 8kÞÞlþ 2ð−2þ kÞð−3þ 5kÞl2 þ 2ð−3þ 2kÞl3�dIk−1; ðB18Þ

which agrees with (B14) up to a constant factor and linear combination with ~ξþH0. It is important when constructing the
“plus-side” solutions to use either Eqs. (4.7), (B8), and (B14) or Eqs. (B4), (B11), and (B18). Mixing these sets of equations
will introduce an inconsistency.

APPENDIX C: EXPLICIT FORM OF THE FORCE TERMS f αn

Here, we give the explicit form of the various force terms fαn defined in Sec. II E. Only the t and r components are
necessary. The θ component vanishes, and the φ component can be derived from the other two. These functions depend
upon the position on the orbit, the constants of motion, and the MP amplitudes and their first derivatives. There is implied
dependence on l and m:
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ft0 ¼
�
imELð3fp þ U2

p − 2E2Þ
4f3p

−
ME2ð3fp þ U2

p − 4E2Þ_rp
2f5p

�
htt þ

r2pðfpðU2
p þ E2Þ − f2p þ E2ðU2

p − 2E2ÞÞ
4f4p

∂thtt

þ r2pE2ð3fp þU2
p − 2E2Þ_rp

4f4p
∂rhtt þ

�
imELðfp þU2

p − 2E2Þ
4fp

þME2ðfp þU2
pÞ_rp

2f3p

�
hrr

þ r2pðfp þ E2Þðfp þ U2
p − 2E2Þ

4f2p
∂thrr þ

r2pE2ðfp þ U2
p − 2E2Þ_rp

4f2p
∂rhrr

þ
�
−
MðfpU2

p þ E2U2
p − 2E4Þ

f3p
þ imELðfp − E2Þ_rp

f3p

�
htr −

r2pE4 _rp
f4p

∂thtr þ
r2pðfp − E2ÞðE2 − U2

pÞ
f2p

∂rhtr

þ
�
−
m2L2ðfp − E2Þ

r2pf2p
þ imELðE2fp − 2f2p þ E2Þ_rp

rpf4p

�
jt −

imE3L
f3p

∂tjt þ
imELðfp − E2Þ_rp

f3p
∂rjt

þ
�
imELð−5fpU2

p þ 4E2fp þ U2
pÞ

2rpf2p
þm2E2L2 _rp

r2pf2p

�
jr −

imELðfp þ E2Þ_rp
f3p

∂tjr −
imELðE2 −U2

pÞ
fp

∂rjr

þ imELðfp − U2
pÞ

2f2p
K þ r2pðfp −U2

pÞðfp þ E2Þ
2f3p

∂tK þ r2pE2ðfp −U2
pÞ_rp

2f3p
∂rK

þ
�
imðm2 þ 4ÞEL3

4r2pfp
−
m2E2L2 _rp

rpf2p

�
Gþm2L2ðfp þ E2Þ

4f2p
∂tGþm2E2L2 _rp

4f2p
∂rG; ðC1Þ

ft1 ¼
�
−
imEL3

4r2pf2p
þME2L2 _rp

2r2pf4p

�
htt −

L2ðfp þ E2Þ
4f3p

∂thtt −
E2L2 _rp
4f3p

∂rhtt

þ
�
imEL3

4r2p
þ E2L2ð1 − 5fpÞ_rp

4rpf2p

�
hrr þ

L2ðfp þ E2Þ
4fp

∂thrr þ
E2L2 _rp
4fp

∂rhrr

þ L2ðfp − E2Þ
rpfp

htr −
imEL3

r3p
jr þ

E2L2 _rp
rpf2p

K þ
�
−
imEL3

r2pfp
þ lðlþ 1ÞE2L2 _rp

2rpf2p

�
G; ðC2Þ

ft2 ¼
L2ðfp − E2Þ

r2pf2p
jt −

E2L2 _rp
r2pf2p

jr þ
�
−
5imEL3

4r2pfp
þ E2L2 _rp

rpf2p

�
G −

L2ðfp þ E2Þ
4f2p

∂tG −
E2L2 _rp
4f2p

∂rG; ðC3Þ

ft3 ¼
imEL3

4r2pfp
Gþ L2ðfp þ E2Þ

4f2p
∂tGþ E2L2 _rp

4f2p
∂rG; ðC4Þ

ft4 ¼
imL2ðE2 − fpÞ

r2pf2p
ht þ

imE2L2 _rp
r2pf2p

hr −
�
m2EL3

r4pfp
þ 2imE2L2 _rp

r3pf2p

�
h2 þ

imL2ðfp þ E2Þ
2r2pf2p

∂th2 þ
imE2L2 _rp
2r2pf2p

∂rh2; ðC5Þ

ft5 ¼
ELðE2fp − 2f2p þ E2Þ_rp

rpf4p
ht −

E3L
f3p

∂tht þ
ELðfp − E2Þ_rp

f3p
∂rht þ

ELð−5fpU2
p þ 4E2fp þU2

pÞ
2rpf2p

hr

−
ELðfp þ E2Þ_rp

f3p
∂thr þ

ELðU2
p − E2Þ
fp

∂rhr −
ðm2 − 1ÞEL3

2r4pfp
h2; ðC6Þ

ft6 ¼ −
EL3

r3p
hr −

EL3

2r4pfp
h2; ðC7Þ

ft7 ¼ −
EL3

2r4pfp
h2; ðC8Þ
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fr0 ¼
�
MðE2fp − f2p − ð5E2 − U2

pÞU2
p þ 4E4Þ

2f3p
−
imELðfp −U2

p þ 2E2Þ_rp
4f3p

�
htt −

r2pE2ðfp −U2
p þ 2E2Þ_rp

4f4p
∂thtt

þ r2pðE2fp þ f2p þ ð3E2 − U2
pÞU2

p − 2E4Þ
4f2p

∂rhtt

þ
�
−
Mð−fpð2U2

p þ E2Þ þ f2p þ ðU2
p − E2ÞU2

pÞ
2fp

−
imELð3fp −U2

p þ 2E2Þ_rp
4fp

�
hrr

−
r2pE2ð3fp −U2

p þ 2E2Þ_rp
4f2p

∂thrr þ
r2pð2fpU2

p − E2fp − f2p þ ð3E2 − U2
pÞU2

p − 2E4Þ
4

∂rhrr

þ
�
imELðU2

p − E2 − fpÞ
fp

þME2ð2fp −U2
p þ 2E2Þ_rp

f3p

�
htr −

r2pE2ðfp − U2
p þ E2Þ

f2p
∂thtr

þ r2pE2ðU2
p − E2Þ_rp
f2p

∂rhtr þ
�
imELðfp þ 1ÞðE2 − U2

pÞ
rpf2p

þm2E2L2 _rp
r2pf2p

�
jt −

imE3L_rp
f3p

∂tjt

þ imELðfp þ U2
p − E2Þ

fp
∂rjt þ

�
m2L2ðfp − U2

p þ E2Þ
r2p

þ imELð−5fpU2
p þ 4E2fp þ 4f2p þ U2

pÞ_rp
2rpf2p

�
jr

−
imELðfp −U2

p þ E2Þ
fp

∂tjr −
imELðE2 −U2

pÞ_rp
fp

∂rjr þ
imELðfp −U2

pÞ_rp
2f2p

K þ r2pE2ðfp − U2
pÞ_rp

2f3p
∂tK

−
r2pðfp − U2

pÞðfp þ U2
p − E2Þ

2fp
∂rK þ

�
−
m2L2ðfp −U2

p þ E2Þ
rp

þ imðm2 þ 4ÞEL3 _rp
4r2pfp

�
Gþm2E2L2 _rp

4f2p
∂tG

−
m2L2ðfp þ U2

p − E2Þ
4

∂rG; ðC9Þ

fr1 ¼
�
−
ML2ðfp þ U2

p − E2Þ
2r2pf2p

−
imEL3 _rp
4r2pf2p

�
htt −

E2L2 _rp
4f3p

∂thtt þ
L2ðfp þU2

p − E2Þ
4fp

∂rhtt

þ
�
L2ð5fpðU2

p − E2Þ − 3f2p − fp − U2
p þ E2Þ

4rp
þ imEL3 _rp

4r2p

�
hrr þ

E2L2 _rp
4fp

∂thrr −
L2fpðfp þ U2

p − E2Þ
4

∂rhrr

−
E2L2 _rp
rpfp

htr −
imEL3 _rp

r3p
jr þ

L2ðfp − U2
p þ E2Þ

rp
K þ

�
lðlþ 1ÞL2ðfp −U2

p þ E2Þ
2rp

−
imEL3 _rp
r2pfp

�
G; ðC10Þ

fr2 ¼ −
E2L2 _rp
r2pf2p

jt −
L2ðfp −U2

p þ E2Þ
r2p

jr þ
�
L2ðfp −U2

p þ E2Þ
rp

−
5imEL3 _rp
4r2pfp

�
G−

E2L2 _rp
4f2p

∂tGþL2ðfp þU2
p − E2Þ

4
∂rG;

ðC11Þ

fr3 ¼
imEL3 _rp
4r2pfp

Gþ E2L2 _rp
4f2p

∂tG −
L2ðfp þ U2

p − E2Þ
4

∂rG; ðC12Þ

fr4¼
imE2L2 _rp

r2pf2p
htþ

imL2ðfp−U2
pþE2Þ

r2p
hrþ

�
2imL2ðU2

p−E2Þ
r3p

−
m2EL3 _rp
r4pfp

�
h2þ

imE2L2 _rp
2r2pf2p

∂th2−
imL2ðfpþU2

p−E2Þ
2r2p

∂rh2;

ðC13Þ

fr5 ¼
ELðfp þ 1ÞðE2 −U2

pÞ
rpf2p

ht −
E3L_rp
f3p

∂tht þ
ELðfp þU2

p − E2Þ
fp

∂rht −
ELð5fpU2

p − 4E2fp − 4f2p − U2
pÞ_rp

2rpf2p
hr

−
ELðfp −U2

p þ E2Þ
fp

∂thr þ
ELðU2

p − E2Þ_rp
fp

∂rhr −
ðm2 − 1ÞEL3 _rp

2r4pfp
h2; ðC14Þ

fr6 ¼ −
EL3 _rp
r3p

hr −
EL3 _rp
2r4pfp

h2; ðC15Þ
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fr7 ¼ −
EL3 _rp
2r4pfp

h2: ðC16Þ

APPENDIX D: ADDITIONAL SELF-FORCE VALUES

The following two tables (Tables VI and VII provide GSF data that complements that presented in Tables III and IV

TABLE VII. Same as Table III with e ¼ 0.7.

χ p ¼ 10 p ¼ 20 p ¼ 30 p ¼ 60 p ¼ 90

Ft

0 −1.12 × 10−2 −2.101 × 10−4 −2.3435 × 10−5 −6.4473 × 10−7 −1.97 × 10−7

π=4 6.33 × 10−3 9.829 × 10−4 3.7436 × 10−4 7.1857 × 10−5 2.68 × 10−5

π=2 3.53 × 10−3 6.765 × 10−4 2.5715 × 10−4 4.7747 × 10−5 1.76 × 10−5

3π=4 6.28 × 10−4 1.300 × 10−4 4.8732 × 10−5 8.8491 × 10−6 3.24 × 10−6

π 9.81 × 10−8 1.933 × 10−9 2.2050 × 10−10 6.4536 × 10−12 −3.01 × 10−11

5π=4 −6.10 × 10−4 −1.296 × 10−4 −4.8678 × 10−5 −8.8474 × 10−6 −3.24 × 10−6

3π=2 −2.15 × 10−3 −6.524 × 10−4 −2.5435 × 10−4 −4.7665 × 10−5 −1.76 × 10−5

7π=4 −6.48 × 10−3 −9.957 × 10−4 −3.7692 × 10−4 −7.1956 × 10−5 −2.68 × 10−5

Fr

0 5.24 × 10−2 1.185 × 10−2 5.5084 × 10−3 1.4758 × 10−3 6.74 × 10−4

π=4 4.66 × 10−2 9.581 × 10−3 4.3877 × 10−3 1.1591 × 10−3 5.27 × 10−4

π=2 1.62 × 10−2 4.435 × 10−3 2.0476 × 10−3 5.3292 × 10−4 2.40 × 10−4

3π=4 4.22 × 10−3 1.180 × 10−3 5.3937 × 10−4 1.3833 × 10−4 6.20 × 10−5

π 1.55 × 10−3 4.224 × 10−4 1.9202 × 10−4 4.9022 × 10−5 2.19 × 10−5

5π=4 4.19 × 10−3 1.179 × 10−3 5.3905 × 10−4 1.3832 × 10−4 6.20 × 10−5

3π=2 1.35 × 10−2 4.348 × 10−3 2.0342 × 10−3 5.3232 × 10−4 2.40 × 10−4

7π=4 2.68 × 10−2 9.061 × 10−3 4.3148 × 10−3 1.1561 × 10−3 5.26 × 10−4

TABLE VI. Same as Table III with e ¼ 0.3.

χ p ¼ 10 p ¼ 20 p ¼ 30 p ¼ 60 p ¼ 90

Ft

0 −1.02425 × 10−3 −2.195889 × 10−5 −2.619956 × 10−6 −7.6424003 × 10−8 −9.94261928 × 10−9

π=4 7.93725 × 10−4 2.611011 × 10−4 1.056357 × 10−4 2.0516060 × 10−5 7.66603327 × 10−6

π=2 1.12072 × 10−3 2.704049 × 10−4 1.061464 × 10−4 2.0147891 × 10−5 7.47715975 × 10−6

3π=4 5.23325 × 10−4 1.237182 × 10−4 4.795782 × 10−5 8.9766821 × 10−6 3.31514100 × 10−6

π 2.83617 × 10−7 −3.146284 × 10−8 −4.916581 × 10−9 −1.5203069 × 10−10 −1.85477251 × 10−11

5π=4 −5.01242 × 10−4 −1.234054 × 10−4 −4.792378 × 10−5 −8.9756562 × 10−6 −3.31499843 × 10−6

3π=2 −1.05385 × 10−3 −2.698687 × 10−4 −1.061119 × 10−4 −2.0147281 × 10−5 −7.47706856 × 10−6

7π=4 −1.52944 × 10−3 −2.782552 × 10−4 −1.077562 × 10−4 −2.0579481 × 10−5 −7.67431383 × 10−6

Fr

0 2.30316 × 10−2 6.836866 × 10−3 3.254304 × 10−3 8.7346506 × 10−4 3.97631238 × 10−4

π=4 2.10318 × 10−2 6.042486 × 10−3 2.859673 × 10−3 7.6346290 × 10−4 3.46940757 × 10−4

π=2 1.41875 × 10−2 4.215713 × 10−3 1.985131 × 10−3 5.2535511 × 10−4 2.37910729 × 10−4

3π=4 8.91644 × 10−3 2.676966 × 10−3 1.253239 × 10−3 3.2907620 × 10−4 1.48590757 × 10−4

π 7.11090 × 10−3 2.131279 × 10−3 9.953187 × 10−4 2.6059554 × 10−4 1.17547270 × 10−4

5π=4 8.70369 × 10−3 2.669408 × 10−3 1.252041 × 10−3 3.2902233 × 10−4 1.48581907 × 10−4

3π=2 1.30565 × 10−2 4.179240 × 10−3 1.979557 × 10−3 5.2511220 × 10−4 2.37871148 × 10−4

7π=4 1.86761 × 10−2 5.972195 × 10−3 2.849306 × 10−3 7.6302517 × 10−4 3.46870034 × 10−4
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