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Self-force driven motion in curved spacetime
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We adopt the Dirac-Detweiler-Whiting radiative and regular effective field in curved spacetime.
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I. THE TWO-BODY PROBLEM AND THE PERTURBATION METHOD

For the two-body problem in general relativity, it is widely known that there aren’t exact solutions. For studying a
real case, we would need to consider two masses embedded in a single field (metric), but there isn’t any available tool
to perform such a desirable computation. At the easy end of the difficulty scale, analytic solutions are available when
the mass of the smaller body - if a smaller body can be identified - is neglected. In this case, general relativity dictates
the physics via the geodesic equation. Between the real and the oversimplified ends, several approaches lie. One of
these approaches, Numerical Relativity (NR), although having scored impressive results, is still partially limited by
technical difficulties (initial conditions, mass ratio of the two bodies, duration of the orbital evolution, computing
power requirements, etc.). Further, it is not best suited to physical understanding.
Leaving behind us the partially fledged NR, we are forced to enter into the world of approximation techniques dealing

with the simplified (linearised) version of the Einstein equation. The approximation methods examine different features
of the two-body problem at the price of narrowing down their applicability to this or that domain. For instance, in
strong field and high velocity regime, post-Newtonian (pN) methods cease to be highly reliable. Based on the pN
framework, an improvement is offered by the Effective One Body (EOB) approach. EOB reduces the matter at
hand to a single body moving in an effective potential. To which extent the EOB improvement goes, it is subject
of exploration. Anyway, the EOB is not a self-standing approach, as it is calibrated through the parameters coming
from NR, pN and lately perturbation methods. With the latter, a hard, but now manageable, challenge considers
both masses for any field and velocity, if one of the two masses is much smaller - but still existing - than the other,
and it shrinks to a point. This third approach will be pursued herein.
In this scenario, the small body reacts to its own field-mass and to the radiation emitted. Back-reaction to the

own field-mass for the small body is to be interpreted solely as induced by the presence of another body. In other
words, a single body - infinitely - far away from any other gravitating body or external influence of any sort, will not
experience any interaction with its own field and mass. Self-force is the back-action of a body to its mass, motion
and radiation via the intermediate role of an external field.
For the smaller mass, the shrinkage to a point is not painless. The concept of gravitating point-mass is foreign to

full general relativity, as its expression through a distributional stress-energy tensor on the world-line leads to inherent
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contradictions. In linearised relativity, a gravitating point-particle is acceptable, but divergences will be associated to
the particle. After all, the difficulties arising from the infinitesimal size are to be traded against the simplifications
obtained by neglecting the internal structure.
The problem of motion for point particles has been tackled by concurring approaches all yielding the same result.

The solution for a massive point-particle moving in a strong field and for any velocity was indeed derived in 1997 by
Mino, Sasaki and Tanaka [1], Quinn and Wald [2], in the de Donder [3] (harmonic) gauge[18], around an expansion
of the mass ratio, m/M , m being the small mass and M the large one. The main result has been the identification of
the regular and singular perturbation components and their playing and not-playing role to motion, respectively. The
resulting equation has been baptised MiSaTaQuWa from the first two initials of its discoverers. A practical recipe,
based on spherical harmonics and dealing with the divergences coming from the infinitesimal size of the particle, was
later conceived by Barack and Ori [4].
The MiSaTaQuWa approach may be intuitively viewed. The particle crosses the curved spacetime and thus generates

gravitational waves. These waves are partly radiated to infinity (the instantaneous or direct part) and partly scattered
back by the black hole potential (the tail part), thus forming tails which impinge on the particle and give origin to
the self-force. Alternatively, the same phenomenon is described by an interaction particle-black hole generating a field
which behaves as outgoing radiation in the wave-zone and thereby extracts energy from the particle. In the near-zone,
the field acts on the particle and determines he self-force which impedes the particle to move on the geodesic of the
background metric. From these works, it emerges the splitting between the instantaneous and tail components of the
perturbations, the latter acting on the motion. Unfortunately the tail component can’t be computed directly, but as a
difference between the total and the instantaneous components. Detweiler and Whiting [5] have shown an alternative
approach, not any longer based on the computation of tails, but stemmed from a geodesic vision of the motion. We
shall make use of the DeWh approach to identify the radiative part of the perturbations.
A comprehensive introduction to mass and motion in general relativity has appeared [6]. This paper echoes the same

intendment, focusing on the self-force for point particles in a gravitational field and on how the geodesic deviation
arises in perturbed spacetime. The question we pose is: what is the difference between the motion of a particle in an
unperturbed background metric and the same particle being affected by its own field-mass and the radiation emitted?
We provide two answers to the question: one in the main body of the paper, the other in the appendix.
The topic attracts growing interest beyond the Capra Meeting community[19], since impacting on the successful

accomplishment of an SLI (Space Laser Interferometry) mission like LISA[20] for the detection of gravitational waves
emitted by EMRI (Extreme Mass Ratio Inspiral) sources. We use the signature convention (- + + +).

II. THE RADIATIVE PART OF THE PERTURBATIONS

On the footsteps of Dirac’s work [7], Detweiler and Whiting [5, 8, 9] have proposed a novel approach to the self-force.
The singular term (from the perturbation field) Sing, that is the mean of the advanced and retarded terms, is time-
reversal invariant, id est incoming and outgoing energy are equal. It is known that in flat spacetime, the radiative term
is obtained by subtracting the singular from the retarded term. The latter is singular, non time-reversal invariant,
and shows that the system is losing energy by radiating outward. The subtraction cancels out the singularity at the
particle, without any other consequence. Indeed, the singularity is isotropic and it does not exert any force on the
particle. It remains only the radiative term to act upon the particle given by

Rad = Ret− Sing = Ret−
1

2
[Ret+Adv] =

1

2
[Ret−Adv] .

In curved spacetime, Figs. 1-4, at a given point x the retarded term depends upon the particle’s history before the
retarded time τret; the advanced term depends upon the particle’s history after the advanced time τadv. The singular
term depends then upon the particle’s history during the interval τret < τ < τadv. The straight transposition of the
subtraction Ret− Sing to curved space determines still a singularity-free quantity, but the latter depends upon the
contributions from inside of the light cone, past and future. The dependence on the future is patently non-causal.
The circumvention of this riddle passes through the inclusion of an additional, purposely built, function H

Rad = Ret− Sing = Ret−
1

2
[Ret+Adv −H ] =

1

2
[Ret−Adv +H ] ,

where the ad hoc function H is defined to agree with the advanced term when the particle position is in the future of
the evaluation point, thereby cancelling the Sing term (the Ret term is zero, for τ > τadv). Finally, we have
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FIG. 1: Retarded and advanced terms (dotted line).
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FIG. 2: The H term (dotted line).
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FIG. 3: Singular term (dotted line).
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FIG. 4: Radiative term (dotted line).

Rad τ>τadv = 0 .

Instead, H is defined to agree with the retarded term when the particle position is in the past of the evaluation
point, also cancelling the Sing term (the Adv term is zero, for τ < τret). Finally, we have

Rad τ<τret = Ret .

Further, H differs from zero at the intermediate values of the world-line outside the light-cone, between τret and
τadv. Thus, the radiative component includes the state of motion at all times prior to the advanced time, and it is not
a representation of the physical field but rather of an effective field. Nevertheless, H goes to zero when the evaluation
point coincides with the particle position. Figures (1-4) show the various terms (τ is the proper time, x the evaluation
point, and z the particle position).
The perturbation hµν is the difference between the full metric of the perturbed spacetime, and the background.

The DeWh approach ephasises that the motion is a geodesic of the metric gµν + hR
µν where hR

µν is the radiative part
of the perturbation hµν , and it implies two notable features: the regularity of the radiative field and the avoidance
of any non-causal behaviour. The quantitative definition of hR

µν necessitates a brief reminder [9]. The trace-reversed
potential is given by

γµν = hµν −
1

2

(
gρσhρσ

)
gµν , (1)

and satisfies the wave equation with the harmonic gauge condition

�γµν + 2R µ ν
ρ σ γρσ = −16πT µν γµν

;ν = 0 , (2)

where � = gαβ∇α∇β , the wave operator for the background spacetime, and T µν is the energy-momentum tensor of
the point mass given by a Dirac distribution supported on the particle trajectory p. The retarded solution is

γµν = 4m

∫

p

Gret µν
ρσ uρuσ dτ , (3)

where Gret µν
ρσ is the retarded Green function associated with Eq. (2). Inversion of Eq. (1) provides the perturbation

hαβ . Herein, γ
adv
µν and γret

µν satisfy Eq. (2), while γR
µν is a free gravitational field that satisfies the homogeneous wave

equation associated to Eq. (2). Finally,

hR
µν;λ = −4m

(

u(µRν)ρλσ +Rµρνσuλ

)

uρuσ +∇λh
tail
µν , (4)
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where the tail term is given by

htail
µν = 4m

∫ τ−

−∞

(

Gret
µνµ′ν′ −

1

2
gµνG

ret ρ
ρµ′ν′

)
(
z(τ), z(τ ′)

)
uµ′

uν′

dτ ′ . (5)

Equation 5 displays the current position z(τ) of the particle, at which the unprimed tensors are evaluated, as well
as all prior positions z(τ ′), at which primed tensors are evaluated. The integral is cut short at τ− to avoid the singular

behaviour of the retarded Green’s function at coincidence. Finally, uµ′

= dzµ/dτ ′.

III. THE EQUATIONS OF MOTION IN THE TWO METRICS AND THEIR DIFFERENCE

A particle, of zα coordinates, is moving in the background metric gµν . Its geodesic is given by

D2zα

dτ2
=

duα

dτ
+ Γα

µνu
µuν = 0 , (6)

where τ , Γα
µν , u

α = dzα/dτ are the proper time, Christoffel symbol and four-velocity in the background metric gµν ,
respectively. Let us now consider the same particle moving in a perturbed metric. We define ẑα as the coordinates of
the particle in the full metric ĝµν = gµν + hR

µν . Obviously, the gauge freedom allows to choose a comoving coordinate
frame where no acceleration occurs. The geodesic is then given by

D2ẑα

dλ2
=

dûα

dλ
+ Γ̂α

µν û
µûν = 0 , (7)

where λ, Γ̂α
µν , û

α = dẑα/dλ are the proper time, Christoffel symbol and four-velocity in the full metric, respectively.
We wish to compute the difference in motion between the two geodesics. To this end, we first map the geodesic in

the full spacetime, Eq. (7), onto the background spacetime. The mapping will produce an equation which is not any
longer geodesic. Furthermore, the projection is not uniquely defined, being dependent on the gauge in which hR

µν is
represented. For a discussion on mapping see [10].

A. Mapping on the background spacetime

Conversely to the labelling of the coordinates of the particle in the geodesics, Eqs. (6,7), the two spacetimes -
background and full - are mapped by two equal coordinate systems in the limit h → 0. Thus

dτ2 = −gµνdx
µdxν , (8)

and

dλ2 = −ĝµνdx
µdxν = −

(
gµν + hR

µν

)
dxµdxν . (9)

Using the relations

d

dλ
=

dτ

dλ

d

dτ

d2

dλ2
=

(
dτ

dλ

)2
d2

dτ2
+

d2τ

dλ2

d

dτ
, (10)

Eq. (7) becomes

d2ẑα

dτ2
+

d2τ

dλ2

dẑν

dτ
+ Γ̂α

µν

dẑµ

dτ

dẑν

dτ
= 0 ; (11)

dividing by (dτ/dλ), we get
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d2ẑα

dτ2
+ Γα

µν

dẑµ

dτ

dẑν

dτ
= −∆Γα

µν

dẑµ

dτ

dẑν

dτ
−K

dẑα

dτ
, (12)

where K = (d2τ/dλ2)(dλ/dτ)2, and ∆Γα
µν = Γ̂α

µν − Γα
µν . From the latter, we get

∆Γα
µν

dẑµ

dτ

dẑν

dτ
=

[
1

2
ĝασ (ĝµσ,ν + ĝνσ,µ − ĝµν,σ)− Γα

µν

]
dẑµ

dτ

dẑν

dτ
=

[
1

2
gαβgσρhR

βρ (gµσ,ν + gνσ,µ − gµν,σ) +
1

2
gασ

(
2hR

µσ,ν − hR
µν,σ

)
]
dẑµ

dτ

dẑν

dτ
=

[
1

2
gασ

(
2hR

µσ,ν − hR
µν,σ − 2Γρ

µνh
R
σρ

)
]
dẑµ

dτ

dẑν

dτ
.

(13)

Using the definition of the covariant derivative

2hR
µσ;ν − hR

µν;σ = 2hR
µσ,ν − 2Γρ

νσh
R
ρµ − 2Γρ

νµh
R
ρσ − hR

νµ,σ + Γρ
µσh

R
νρ + Γρ

σνh
R
µρ = 2hR

µσ,ν − hR
µν,σ − 2Γρ

µνh
R
σρ , (14)

Eq. (13,12) become respectively

∆Γα
µν

dẑµ

dτ

dẑν

dτ
=

[
1

2
gασ

(
2hR

µσ;ν − hR
µν;σ

)
]
dẑµ

dτ

dẑν

dτ
, (15)

D2ẑα

dτ2
= −

1

2
gασ

(
2hR

µσ;ν − hR
µν;σ

) dẑµ

dτ

dẑν

dτ
−K

dẑα

dτ
. (16)

The velocity and acceleration vector are orthogonal to each other. We now project Eq. (16) orthogonally to dẑα/dτ
and obtain

D2ẑα

dτ2
=

d2ẑα

dτ2
+ Γα

µν

dẑµ

dτ

dẑν

dτ
=−

1

2
gβσ

(
2hR

µσ;ν − hR
µν;σ

)
(

δαβ +
dẑα

dτ

dẑβ
dτ

)
dẑµ

dτ

dẑν

dτ
=

−
1

2
gβσ

(

δαβ +
dẑα

dτ

dẑβ
dτ

)
(
2hR

µσ;ν − hR
µν;σ

) dẑµ

dτ

dẑν

dτ
=

−
1

2

(

gασ +
dẑα

dτ

dẑσ

dτ

)
(
2hR

µσ;ν − hR
µν;σ

) dẑµ

dτ

dẑν

dτ
.

(17)

Equation (17) couples the particle full coordinates with the background proper time.

B. Difference between the motions of a test-particle and of a particle affected by its own mass and radiation

The framework entails that the motion and the self-force are computed up to first order in h. Assuming ẑα =
zα +∆zα, the left-hand side of Eq. (17) can be rewritten as

d2(zα +∆zα)

dτ2
+ Γα

µν(z
α +∆zα)

d(zµ +∆zµ)

dτ

d(zν +∆zν)

dτ
. (18)

The Christoffel symbol may be expanded as

Γα
µν(z

α +∆zα) = Γα
µν(z

α) + Γα
µν,ρ∆zρ +O(h2) . (19)

We then obtain up to first order
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d2zα

dτ2
+ Γα

µν

dzµ

dτ

dzν

dτ
+

d2∆zα

dτ2
+ 2Γα

µν

d∆zµ

dτ

dzν

dτ
+ Γα

µν,ρ

dzµ

dτ

dzν

dτ
∆zρ =

−
1

2

(

gαβ +
dzα

dτ

dzβ

dτ

)

(2hR
µβ;ν − hR

µν;β)
dzµ

dτ

dzν

dτ
, (20)

where the first two terms on the left-hand side correspond to the geodesic of Eq. (6). Thus (dzµ/dτ = uµ)

d2∆zα

dτ2
= −Γα

µν,ρu
µ∆zρuν

− 2Γα
µν

d∆zµ

dτ
uν

−
1

2
(gαβ + uαuβ)(2hR

µβ;ν − hR
µν;β)u

µuν , (21)

The next step consists in transforming Eq. (21) into a covariant form. Introducing the covariant derivatives, it
holds that

D2∆zα

dτ2
=

D

dτ

(
D∆zα

dτ

)

=
d

dτ

(
d∆zα

dτ
+ Γα

µνu
µ∆zν

)

+ Γα
σρ

(
d∆zσ

dτ
+ Γσ

µνu
µ∆zν

)

uρ =

d2∆zα

dτ2
+ Γα

µν,ρu
µ∆zνuρ + 2Γα

µν

d∆zµ

dτ
uν + Γα

σρ Γσ
µνu

ρ∆zµuν +O(h2) ; (22)

we then make use of Eq. (21) and arrive to the covariant correction at the first order of the background geodesic

D2∆zα

dτ2
=

(
Γα
µβ,ν − Γα

µν,β + Γα
σν Γσ

µβ − Γα
σβ Γσ

µν

)
uµ∆zβuν

−
1

2
(gαβ + uαuβ)(2hR

µβ;ν − hR
µν;β)u

µuν . (23)

Having recognised the Riemann tensor, we have

D2∆zα

dτ2
= −Rµβν

αuµ∆zβuν
−

1

2
(gαβ + uαuβ)(2hR

µβ;ν − hR
µν;β)u

µuν . (24)

The Riemann tensors in Eq. (4) disappear when hR is replaced in Eq. (24) [9]; we finally get

D2∆zα

dτ2
= −Rµβν

αuµ∆zβuν

︸ ︷︷ ︸

Background metric geodesic deviation

−
1

2
(gαβ + uαuβ)(2htail

µβ;ν − htail
µν;β)u

µuν

︸ ︷︷ ︸

Self−acceleration

. (25)

Stemmed from geodesic principles, a geodesic deviation equation is thus obtained by subtracting the background
from the perturbed motion, Eq. (25). This equation has appeared first in [11, 12], with a different derivation.
The first right-hand side term depends on the background metric, while the second right-hand term depends upon
the perturbations and it is the non-trivial self-acceleration term. The latter, multiplied by m, provides the known
MiSaTaQuWa equation [1, 2].
The interpretation of Eq.(25) leads to consider the self-acceleration term causing a displacement in the trajectory

represented by the geodesic deviation in the background metric.

IV. DISCUSSION AND CONCLUSIONS

The evolution of an orbit is object of growing interest in the frame of an SLI mission, since the self-force affects the
waveforms of EMRIs through dephasing, and thus it is to be taken into account for a successful detection. Equation
(25) is the exact expression of a perturbative approach, but for the evolution of an orbit, a self-consistent approach
[11, 12] is preferable. This approach prescribes that the self-acceleration term be continuously applied all along the
background trajectory and thereby correcting it, neglecting the geodesic deviation term. At each successive instant,
the geodesic is corrected by the self-acceleration, and a new obsculating geodesic is determined. (Quasi-)circular
orbits and inspirals, have been evolved self-consistently for the scalar and gravitational cases [13–15], as the radial
gravitational infall [16].
Herein, we have proposed a simple derivation of the first order perturbative correction to the geodesic of the

background in a covariant form. We have found this approach instructive when dwelling on the significance of the
motion of a particle in a curved background.
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Appendix: an alternative way

Herein, we trace a different path also leading to Eq. (25). One of the differences is the avoidance of the projection
adopted to get to Eq. (17). First, we write the relation between the proper times. From Eqs. (8,9), we have

dλ2 = dτ2 − hR
µνdx

µdxν , (26)

dλ

dτ
= 1−

1

2
hR
µνu

µuν dτ

dλ
= 1 +

1

2
hR
µνu

µuν , (27)

d2τ

dλ2
=

dτ

dλ

d

dτ

dτ

dλ
=

1

2
hR
µν;σu

µuνuσ , (28)

having neglected hR
µνa

µuν , being the acceleration of order h. Second, we determine the geodesic in the full metric in
terms of the background affine parameter. We consider

Γ̂α
µν û

µûν =
1

2
ĝασ (ĝµσ,ν + ĝνσ,µ − ĝµν,σ) û

µûν =

[

Γα
µν −

1

2
gαβgσρhR

βρ (gµσ,ν + gνσ,µ − gµν,σ) +
1

2
gασ

(
2hR

µσ,ν − hR
µν,σ

)
]

ûµûν =

[

Γα
µν +

1

2
gασ

(
2hR

µσ,ν − hR
µν,σ − 2Γρ

µνh
R
σρ

)
]

ûµûν . (29)

Equation (13) differs from Eq. (29), the former referring to dẑµ/dτ , the latter to dẑµ/dλ. Using Eq. (14), we get

Γ̂α
µν û

µûν =

[

Γα
µν +

1

2
gασ

(
2hR

µσ;ν − hR
µν;σ

)
]

ûµûν . (30)

Now, using Eq. (10), we rewrite Eq. (7) in terms of the background spacetime parameters

d2ẑα

dλ2
+ Γ̂α

µν

dẑµ

dλ

dẑν

dλ
=

(
dτ

dλ

)2
d2ẑα

dτ2
+

d2τ

dλ2

dẑα

dτ
+ Γ̂α

µν

(
dτ

dλ

)2
dẑµ

dτ

dẑν

dτ
. (31)

We divide Eq. (31) by (dτ/dλ)2; using Eqs. (27,28), and truncating at first order, we have that the middle term
on the right-hand side transforms into

d2τ

dλ2

dẑα

dτ

(
dλ

dτ

)2

=
1

2
hR
µν;σu

µuνuσ dẑ
α

dτ
. (32)

Finally, we have the geodesic in the full metric in terms of the background affine parameter

d2ẑα

dτ2
+

1

2
hR
µν;σu

µuνuσ dẑ
α

dτ
+ Γ̂α

µν

dẑµ

dτ

dẑν

dτ
= 0 . (33)

Third, in Eq. (33), we explicit the coordinate where the Christoffel symbol refers to, and get

d2ẑα

dτ2
+

1

2
hR
µν;σu

µuνuσ dẑ
α

dτ
+ Γ̂α

µν(ẑ
α)

dẑµ

dτ

dẑν

dτ
=



8

d2zα

dτ2
+

d2∆zα

dτ2
+

1

2
hR
µν;σu

µuνuσuα + Γ̂α
µν(z

α +∆zα)uµuν + 2Γα
µν(z

α)uµ d∆zν

dτ
. (34)

Now, we approximate the Christoffel symbol in the full metric (Γ̂α
µν,ρ∆zρ is of order h2)

Γ̂α
µν(z

α +∆zα) = Γ̂α
µν(z

α) + Γα
µν,ρ∆zρ +O(h2) , (35)

and get, using Eqs. (6,30)

d2∆zα

dτ2
+ gαβ

(

hR
µβ;ν −

1

2
hR
µν;β

)

uµuν + Γα
µν,ρu

µuν∆zρ + 2Γα
µν

d∆zµ

dτ
uν +

1

2
hR
µν;σu

µuνuσuα = 0 . (36)

We then step into Eq. (21), and from then on, we recover the steps already described.

[1] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457 (1997), arXiv:gr-qc/9606018.
[2] T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381 (1997), arXiv:gr-qc/9610053.
[3] T. de Donder, La gravifique Einsteinienne (Gauthier-Villar, Paris, 1921).
[4] L. Barack and A. Ori, Phys. Rev. D 61, 061502(R) (2000), arXiv:gr-qc/9912010.
[5] S. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025 (2003), arXiv:gr-qc/0202086.
[6] L. Blanchet, A. Spallicci, and B. Whiting, eds., Mass and motion in general relativity, vol. 162 of Fundamental Theories

of Physics (Springer, Berlin, 2011), ISBN 978-90-481-3014-6.
[7] P. A. M. Dirac, Proc. Roy. Soc. London A 167, 148 (1938).
[8] E. Poisson, in Mass and motion in general relativity, edited by L. Blanchet, A. Spallicci, and B. Whiting (Springer, Berlin,

2011), vol. 162 of Fundamental theories of physics, p. 309, arXiv:0909.2994 [gr-qc].
[9] E. Poisson, A. Pound, and I. Vega, Liv. Rev. Rel. 14 (2011), URL http://www.livingreviews.org/lrr-2011-7.

[10] N. Sago, L. Barack, and S. Detweiler, Phys. Rev. D 78, 124024 (2008), arXiv:0810.2530 [gr-qc].
[11] S. E. Gralla and R. M. Wald, Class. Q. Grav. 25, 205009 (2008), Corrigendum, ibid. 28, 159501 (2011), arXiv:0806.3293

[gr-qc].
[12] S. E. Gralla and R. M. Wald, in Mass and motion in general relativity, edited by L. Blanchet, A. Spallicci, and B. Whiting

(Springer, Berlin, 2011), vol. 162 of Fundamental theories of physics, p. 263, arXiv:0907.0414 [gr-qc].
[13] P. Diener, I. Vega, B. Wardell, and S. Detweiler, Phys. Rev. Lett. 108, 191102 (2012), arXiv:1112.4821 [gr-qc].
[14] K. A. Lackeos and L. M. Burko, Phys. Rev. D 86, 084055 (2012), arXiv:1206.1452 [gr-qc].
[15] N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N. Sago, Phys. Rev. D 85, 061501 (2012), arXiv:1111.6908 [gr-qc].
[16] A. D. A. M. Spallicci and P. Ritter, submitted (2014).
[17] K. Lanczos, Phys. Zeit. 23, 537 (1922).
[18] The harmonic gauge was also proposed by Lanczos [17]
[19] http://www.cnrs-orleans.fr/osuc/conf/
[20] https://www.elisascience.org/

http://www.livingreviews.org/lrr-2011-7

	I The two-body problem and the perturbation method
	II The radiative part of the perturbations
	III The equations of motion in the two metrics and their difference
	A Mapping on the background spacetime
	B Difference between the motions of a test-particle and of a particle affected by its own mass and radiation

	IV Discussion and conclusions
	 Appendix: an alternative way
	 References

