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ABSTRACT
The formation and evolution of protoplanetary discs remains a challenge from both a theo-
retical and numerical standpoint. In this work, we first perform a series of tests of our new
hybrid algorithm presented in Glaschke, Amaro-Seoane and Spurzem (henceforth Paper I)
that combines the advantages of high accuracy of direct-summation N-body methods with a
statistical description for the planetesimal disc based on Fokker–Planck techniques. We then
address the formation of planets, with a focus on the formation of protoplanets out of plan-
etesimals. We find that the evolution of the system is driven by encounters as well as direct
collisions and requires a careful modelling of the evolution of the velocity dispersion and
the size distribution over a large range of sizes. The simulations show no termination of the
protoplanetary accretion due to gap formation, since the distribution of the planetesimals is
only subjected to small fluctuations. We also show that these features are weakly correlated
with the positions of the protoplanets. The exploration of different impact strengths indicates
that fragmentation mainly controls the overall mass-loss, which is less pronounced during
the early runaway growth. We prove that the fragmentation in combination with the effective
removal of collisional fragments by gas drag sets an universal upper limit of the protoplanetary
mass as a function of the distance to the host star, which we refer to as the mill condition.

Key words: methods: numerical – methods: statistical – planets and satellites: dynamical evo-
lution and stability – protoplanetary discs.

1 IN T RO D U C T I O N

The origin of our Solar system remains one of the most exciting
problems of today’s astronomy. For a long time it has been the only
known planetary system. While it is still the only planetary system
that can be studied in detail, progress in observation techniques has
led to the discovery of extrasolar planets and even some extrasolar
planetary systems. The wealth of observational data raised the ques-
tion of how a planetary system forms in general. As of writing these
lines, 859 planets and 676 planetary systems are known.1 Most of
these planetary systems are very different compared to our Solar
system.

Understanding planet formation comprises many challenges,
such as hydrodynamics of the protoplanetary disc, chemical evolu-
tion of the embedded dust grains, migration of planets and planetes-
imals and even star–star interactions in dense young star clusters

� E-mail: pau.amaro-seoane@aei.mpg.de
1 http://exoplanet.eu/catalog-all.php

(see Armitage 2011, for a review and references therein, and also the
introduction of Paper I, Glaschke, Amaro-Seoane & Spurzem 2014,
for a brief summary). All these components constitute the frame for
the essential process of planet formation: an enormous growth from
dust-sized particles to the final planets, accompanied by a steady
decrease of the number of particles which contain most of the mass
over many orders of magnitude. The particle number changes over
many orders of magnitude as planetary growth proceeds. There is
active research on each of the different aspects of planet forma-
tion, but the current efforts are far from a unified model of planet
formation (Lissauer 1993; Goldreich, Lithwick & Sari 2004).

We address the study of this many-to-few transition from plan-
etesimals to few protoplanets. This stage is of particular interest, as it
links the early planetesimal formation to the final planet formation.
Collisions still play a major role in the evolution of the system, and
the close interplay between the change of the size distribution and
the evolution of the random velocities requires a careful treatment
of the complete size range.

Small N-body simulations have been useful in exploring the basic
growth mechanisms at the price of a modified time-scale and an
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Table 1. Parameters of all test simulations (and hence preceded by a ‘T’). From the left to the right we
display the name of the simulation, the surface mass density, the width of the ring in au, the number of
particles used in the N-body part of the code, the number of radial bins, the square of the eccentricity
and inclination of the field planetesimals scaled by the reduced Hill radius h of the protoplanet (see
Paper I), the mass of the field planetesimals in the simulation in M⊕ and the nature of the algorithm
(see text and Paper I). The threshold for a new particle to be created with inclination and eccentricity
according to the stored velocity dispersions, the ‘transition mass’ (see Paper I), is in all simulations
mtrans = 9.98 × 10−6 M� but for T4b, for which we adopt 1.03 × 10−4 M�. Only simulations T3,
T4a–T4c and T5 include collisions. The simulations use the internal units Mc = G = r0 = 1, but the
results are in au for length and M� for masses, because the code has been historically used in stellar
dynamics. That is, the mass of the central sun, Mc (and respectively M∗) has a mass of 1 M� and the
ring is centred at 1 au. The surface mass density gives us the total mass for the simulation, 2πr0�a�

(M� au−2).

No. � �a (au) N Nrad e2/h2 i2/h2 m (M⊕) Type

T1a 1.1251 × 10−6 0.02 1000 – 0.04 0.01 4.69 × 10−5 N-body
T1b 1.1251 × 10−6 0.02 500 10 0.04 0.01 4.69 × 10−5 Hybrid
T1c 1.1251 × 10−6 0.02 – 10 0.04 0.01 4.69 × 10−5 Statistic

T2a 0.5626 × 10−6 0.08 800 – 4 1 1.66 × 10−4 N-body
0.5626 × 10−6 200 – 4 1 6.66 × 10−4

T2b 0.5626 × 10−6 0.08 – 10 4 1 1.66 × 10−4 Hybrid
0.5626 × 10−6 200 – 4 1 6.66 × 10−4

T3 Safronov – – – – – – Statistic

T4a 1.1251 × 10−6 0.02 10.000 – 4 1 4.69 × 10−6 N-body
T4b 1.1251 × 10−6 0.02 – 10 4 1 4.69 × 10−6 Hybrid
T4c 1.1251 × 10−6 0.02 – 10 4 1 4.69 × 10−6 Statistic

T5 1.8789 × 10−6 – – – 620 155 7.99 × 10−10 Statistic

artificially reduced particle number (e.g. Kokubo & Ida 1995, 1996;
Barnes et al. 2009). Statistical codes explored the limit of large
particle numbers in the early phases and are now tentatively applied
to the full planet formation process. An efficient solution would
be the combination of these two approaches in one hybrid code to
unify the advantages of both methods.

In this work, we present a series of tests and first results of our
new hybrid code, which was presented in Paper I (Glaschke et al.
2014). As described in the first paper, it combines the NBODY6 code
(a descendant of the widespread N-body family (see Aarseth 1999,
2003; Spurzem 1999) with a new statistical code which uses recent
works on the statistical description of planetesimal systems. In this
second part, we adopt the same nomenclature and notation as in
the precedent work. The new hybrid code includes a consistent
modelling of the velocity distribution and the mass spectrum over
the whole range of relevant sizes, which allows us to apply a detailed
collision model rather than the perfect-merger assumption used in
previous N-body simulations. We then apply this new code to follow
the formation of protoplanets out of 1–10 km sized planetesimals. In
Section 2, we present a series of tests that check for the robustness
of the code. In Section 3.1, we explain the initial conditions we use
for our numerical experiments, which we show in Section 3.2. In
Section 4, we derive a useful relation that allows us to introduce
a universal upper limit of the protoplanetary mass as a function of
the distance to the host star. Finally, in Section 5, we discuss our
progress and results and potential future applications.

2 VA L I DATI N G TH E C O D E

The new hybrid code requires the implementation of rather differ-
ent methods within a single framework. We have here two pos-
sible sources of problems. First, the method is new and there-

fore it must be carefully assessed with other work; on the other
hand, the implementation must also be checked meticulously, since
it combines two rather different approaches. We hence present
in this section a number of tests to check all code components,
namely the evolution of the velocity dispersion, the accuracy of the
solver of the coagulation equation, the proper joining of statistical
and N-body component and an overall comparison of statistical,
N-body and hybrid calculations. We refer the reader to the tests
of Bromley & Kenyon (2006) and in general to the previous work
of Duncan & Lissauer (1998), Duncan, Levison & Lee (1998) and
Weidenschilling et al. (1997) for similar approaches. Table 1 sum-
marizes the selected test runs with the respective initial conditions.

2.1 Energy balance

The first test run is dedicated to a careful check of the interplay
between statistical component and N-body component with respect
to the evolution of the velocity dispersion. We therefore exclude
from this first test collisions and accretion. We point the reader to
the work of Stewart & Ida (2000), which conducted similar tests.

We use a homogeneous ring of planetesimals as our first test.
The reason is that we can analyse the evolution with three different
setups – a pure N-body calculation, a pure statistical calculation
and a mixed hybrid calculation. All three approaches should in
principle reproduce the same result. Hence, we prepare a small
N-body test run (T1a) and let the system evolve (see Fig. 1). As
a second test run, we shift one half of the bodies to the statistical
model and conduct the integration again (T1b). While this usage of
the hybrid code is somewhat artificial, it provides an excellent setup
to examine the interplay between N-body and statistical part, since
neither component dominates the result. Finally, we run a complete
statistical calculation (T1c).
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The mill condition in protoplanetary systems 3757

Figure 1. Test simulations T1a–T1c (uniform mass, see Table 1). We show
the results from the N-body calculation (100 per cent N-body), the statistical
calculation (100 per cent statistic) and the hybrid calculation (50 per cent
statistic refers to the statistical component, whereas 50 per cent N-body is
the N-body part). The red curve shows the eccentricity data, and the green
curve the inclination.

Figure 2. Comparison of the N-body calculation T2a with the hybrid cal-
culation T2b. The coding is the same as in Fig. 1.

We can see that all different approaches are in good agreement.
Although the accordance between N-body and statistical calculation
is not a new finding – it merely shows that the stirring terms provide a
proper description of a planetesimal system (this was already shown
by Ohtsuki, Stewart & Ida 2002) – we deem the test to be necessary
to demonstrate that the agreement holds in our approach and, in
particular, that the accuracy in the integration of the statistical model
is robust. A more stringent test is posed by the hybrid run, which
proves that the pseudo-force method links both code components in
a consistent way without spurious energy transfer. In this respect,
Fig. 1 includes both components of the hybrid calculation separately,
but the difference is so small that they are hardly distinguishable.

We also run a second test run that follows the same approach
but with a bimodal mass distribution, with the same total mass in
both components. The first case, T2a, is a pure N-body calculation,
whereas the second one treats the smaller particles with the statisti-
cal model. This test is particularly interesting because it is close to
the real purpose of our hybrid code. In Fig. 2, we can see that there
is a satisfactory agreement between the two test runs.

The transition from e < 1 (in Hill’s units) to e > 1 illustrates
how well the code treats the transition from the shear regime to the
dispersion regime. We note that the code maintains a constant ratio
of i/e throughout the evolution.

2.2 Coagulation equation

In this section. we verify the numerical solution of the coagulation
equation by running a comparison with the analytic solution of the
Safronov problem, as presented in Paper I. We refer the interested
reader to the interesting previous work of Kenyon & Luu (1998),
Morbidelli et al. (2009) and Fraser (2009).

The collisional cross-section is assumed to be proportional to the
sum of the masses of the colliding bodies. Thus, the coagulation
kernel is known and an additional integration of the velocity disper-
sions is not necessary. Fig. 3 summarizes the numerical solution,
simulation T3, of the Safronov test.

The mass bins are spaced by a factor δ = 2. While some slight
differences emerge near the maximum of the density distribution,
the overall shape is well conserved throughout the integration. This
proves that a spacing within a factor of 2 still guarantees a reliable
solution of the coagulation equation without a modified time-scale
for the growth.

We note that not only is the coagulation kernel known, but it is
exactly integrable, as summarized in Wetherill (1990). It is also im-
portant to note the lag between the exact solution and the numerical
solution, which decreases as the mass resolution measured by the
mass ratio between adjacent bins increases.

2.3 Testing the complete code

The most robust test of our hybrid code (or the stand-alone statistical
code) is a comparison with a pure N-body simulation with the same
initial conditions. While a large particle number is desirable to cover
a large range in masses, we are limited in the number of particles to
be used in the direct N-body techniques to a few 104.

We therefore choose a single-mass system with initially 10 000
particles for the simulations T4a, T4b and T4c of Table 1. The tran-
sition mass mtrans is in all simulations 9.98 × 10−6 M⊕ but for T4b,
which is 3.33 10−5 M⊕. The particles used in the simulation have a
mass m = 4.69 × 10−6 M⊕ in an annulus with width �a = 0.02 au
centred at 1 au.

Figure 3. Test of the solution of the coagulation equation (T3). The analyt-
ical solution is presented in Paper I.
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Figure 4. Surface density and radial velocity dispersion of the N-body model (T4a).

Figure 5. Surface density and radial velocity dispersion of the hybrid model (T4b).

Figure 6. Surface density and radial velocity dispersion of the statistical model (T4c).

We enlarge the radii of the planetesimal by a factor f = 5, which
speeds up the calculation without modifying the growth mode. The
transition mass is 20 times larger than the initial planetesimal mass,
keeping the particle number covered by the statistical component
larger than a few thousands.

We compare a full N-body run with a hybrid calculation and a
pure statistical calculation. Though the stand-alone statistical cal-
culation includes the proper treatment of the runaway bodies via
the gravitational range method, if only few particles reside in one
mass bin we do not take into account suppression of self-accretion
and self-stirring. While the hybrid approach describes this regime
in much more detail, we include the full statistical calculation nev-
ertheless for completeness.

In Figs 4–6, we have an overview of the time evolution of the
system, where all quantities are integrated over the whole system.
All calculations seem to agree rather well, although the statistical

noise in the N-body calculation and the hybrid calculation is quite
strong due to the particle number. Runaway growth leads to the
fast formation of a few protoplanets on a time-scale of a few thou-
sand years, with good agreement of the fast initial growth phase
in all three test runs. The boundary between smooth evolution and
noisy data marks the location of the transition mass in the hybrid
calculation.

We compare the size distribution and the velocity dispersion at
the end of the integration, which is 20 000 yr, in more detail in
Figs 7–9. Both the N-body data and the hybrid data are projected
on to the same grid as the full statistical calculation to allow a
convenient comparison.

The agreement of the size distribution N( > m) is excellent; the
small deviations are within the statistical error. We note that the
strong variations in the size distributions of Figs 4–6 are located at
the high-mass end, where only few particles dominate the surface

MNRAS 445, 3755–3769 (2014)
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Figure 7. Cumulative size distribution of the comparative runs T4a–T4c at
T = 20 000 yr.

Figure 8. Mean square eccentricities of the comparative runs T4a–T4c at
T = 20 000 yr. Error bars indicate the spread due to the Rayleigh distribution
of the eccentricity.

Figure 9. The same as Fig. 8 for the inclination. The strong deviation at
m = 3 × 10−9 is due to a single particle.

density. In addition, the growth in the statistical model seems to be
faster than the N-body reference calculation. However, the density
at the highest masses refers to less than one particle. As we noted
before, this is due to the poor treatment of the few-body limit.

Figure 10. Comparative calculation T5 which adopts the initial conditions
of Inaba et al. 2001 (their fig. 9, bottom).

The comparison of the velocity dispersions yields good results, in
particular in the low-mass regime, where the statistical error is small.
The high-mass regime does not only suffer from bad statistics, but
also from a pronounced time variability, as we can see by comparing
the fluctuations in Figs 4–6. Taking these variations into account, all
three calculations are in good agreement. As before, the deviation
at m = 3 × 10−9 is due to a single particle.

2.4 The statistical code

Inaba et al. (2001) presented a high-accuracy statistical code. In
this section, we run our last test calculation by comparing with this
work, in particular with their fig. 9, bottom. They included in their
code approximately the same physics and interpolation formulae,
with only minor differences to our approach.

While our approach allows us to set a spacing up to δ = 2, their
solution of the coagulation requires a smaller spacing, of δ = 1.1,
to guarantee a reliable solution. The few-body limit is handled
properly, with an additional treatment of the protoplanets via the
gravitational-range approach. In Fig. 10, we show our comparison,
simulation T5, with their runs. Again, we find good agreement
but for minor deviations. These are likely related to the different
implementation of the collisional probability.

3 SI MULATI ONS: PROTO PLANETA RY
G ROW T H

3.1 Initial conditions

We apply our hybrid code now to a well-defined initial setup of
a planetesimal disc. All simulations use a homogeneous ring of
planetesimals extending from an inner boundary Rmin to an outer
boundary Rmax .

In all cases, the ring is centred at 1 au, which means that
Rmin = r0 − δ/2 and Rmax = r0 + δ/2 or, equivalently,
r0 = (1/2) × (Rmax + Rmin), and its width �a is given in
Table 1. Since radial migration is not included, all planetesimals
are bounded to this volume throughout the simulation. The central
star has a mass of one solar mass. Each simulation starts with no
N-body particles, so that we need only to specify the setup for the
statistical part of the calculation. The differential surface density as
a function of mass is

d�

dm
= �0

m

m̄2
exp (−m/m̄) (1)
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Table 2. General parameters com-
mon to all simulations listed in Ta-
ble 3. For all simulations, the ring is
centred at 1 au and we fix the mass
of the sun Mc (respectively, M∗) to
1 M�.

ηDisc 0.01
ηreg 0.002
ηirr 0.001
Rmin 0.95 au
Rmax 1.05 au
m̄ 3 × 1018 g
ρ 2.7 g cm−3

δ 2
�vg 60 m s−1

Var(m) = m̄2, (2)

where �0 is the total surface density and m̄ is the mean mass.
Equation (1) provides a smooth variation over a few mass bins,
which avoids numerical problems at the beginning of the simulation.
The initial velocity dispersion is related to the mean escape velocity
v∞ of the initial size distribution defined by equation (1) as

1

100
v2

∞ = Tr + Tφ + Tz (3)

with the ratio of the velocity dispersions

Tr = 4Tφ = 4Tz. (4)

We adopt a rather small initial velocity dispersion to avoid strong
spurious fragmentation due to an overestimation of the velocity dis-
persion. Furthermore, strong relaxation in the initial phase of the
calculation quickly establishes an equilibrium velocity dispersion.
The time step control parameters are chosen such that the energy
error �E/E of the N-body component remains always smaller than
10−8 throughout the simulation. Likewise, our choice of the param-
eters of the statistical component assures that the statistical model
is solved accurately and remains stable, as indicated by the set of
comparative runs. All runs simulate only a narrow ring centred at a
distance rc, distances are in au and masses in M�, and we choose
the following internal units for the simulations: rc = 1, Mc = 1
and G = 1. In Table 2, we summarize the main parameters of the
simulations, fixed to the same values for all of them.

3.2 Main objectives of the analysis

The scheme we have developed is in principle ready to solve the
complete planetesimal problem, at least concerning the large range
of sizes. However, in practice, we are limited by the computational
power. A small ring with a width of 0.1 au centred at 1 au with
a moderate size for the lower cut-off requires some days of in-
tegration, with the largest fraction of time spent in the statistical
model. While we focus on these initial conditions for our simula-
tions, we also present some more refined models that required larger
calculations. We adopt a surface density � = 10 g cm−2 in the sim-
ulations, which can be envisaged as a nominal value used in the re-
lated literature (see Weidenschilling et al. 1997; Bromley & Kenyon
2006; Raymond et al. 2011, 2012, which start from similar initial

conditions). In the remaining of this work, we focus on the following
aspects of protoplanetary growth.

(i) Different collision models: this represents a fundamental un-
certainty, since the impact physics of planetesimals is not well
established yet. In order to do realistic modelling of planetesimal
collisions, we need to understand the internal structure of the bodies
taking part in the collision. Planetesimals emerge as fragile dust ag-
gregates and evolve into solid bodies, so that their internal structure
and strength is time dependent.

(ii) Spatial (radial) density structure (e.g. gap formation): this is
related to the slowly evolving inhomogeneities introduced by the
growing protoplanets. It has been argued that gap opening in the
planetesimal disc could stop the accretion well before the isolation
mass is reached (Rafikov 2001). Our hybrid code includes an accu-
rate treatment of spatial structuring, so that we are in the position of
ascertaining the role of gap formation in the protoplanetary growth
process.

(iii) Resolution effects hinge on the limitation of computing
power. Since the solution of the coagulation equation scales with
the third power of the number of grid cells, the choice of a realistic
cut-off mass may be prohibitively expensive.

(iv) Different surface densities: to address this, we conduct a
small set of different surface densities with our reference fragmen-
tation model (Benz & Asphaug 1999, impact strength, referred to
as B&A 1999 hereafter).

In Table 3, we summarize the various parameters of our simula-
tions. In the following subsections, we discuss each simulation in
more detail.

We project the N-body data on to an extended mass grid derived
from the statistical model to generate a unified representation of a
hybrid run. This is so because the hybrid code uses both a statistical
representation and N-body data to integrate the planetesimal disc.

3.3 Fragmentation models

The treatment of collisions is a key element in any simulation of
planetesimal growth. In this section, we explore different collisional
models with four different setups, so as to analyse its influence on
the final results.

The perfect merger assumption (S3FN hereafter, see Table 3) is
the simplest approach for mutual collisions among smaller plan-
etesimals. This rather simplistic approach can be envisaged as a
way to derive an upper limit for the growth speed in our mod-
els. The second and third model use our detailed collisional model
(see section ‘Collisional and fragmentation model’ of Paper I, and
also note the recent work of Kobayashi & Tanaka 2010 in general
about fragmentation) with the B&A 1999 impact strength (S1FB)
and the approach of Housen & Holsapple (1990) for the impact
strength (S2FH from now onwards). These two approaches roughly
delimit the range of possible values (see e.g. the overview in Benz
& Asphaug 1999).

The fourth model (S4FBN) assumes that the gaseous disc has
dispersed early, so that we have a gas-free system. This model
provides us with a different evolution for the random velocities,
which leads to a different role of the collisions. All other simulations
neglect the dispersion of the gaseous disc, since the simulation time
is still short compared to the disc lifetime.

We present the results of the simulations of the four different
approaches in a figure with four panels: Fig. 11 shows model S3FN,
Fig. 12 model S2FH, Fig. 13 model S1FB and Fig. 14 model S4FBN.
In these figures, we depict in the upper-left panel the cumulative
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Table 3. Complete list of all simulations (the names of the models are therefore preceded with an ‘S’). The
first group examines different collisional models, the second group resumes the nominal simulation S1FB
with different resolutions and the third group explores different surface densities.

Code Strength NM NR �(g cm−2) mmin /Mc mtrans/Mc ρg(g cm−3)

S1FB B&A 1999 24 50 10 3.48 × 10−18 3.89 × 10−11 10−9

S2FH H&H 1990 24 50 10 3.48 × 10−18 3.89 × 10−11 10−9

S3FN Perfect merger 24 50 10 3.48 × 10−18 3.89 × 10−11 10−9

S4FBN B&A 1999 24 50 10 3.48 × 10−18 3.89 × 10−11 0

S5FBL B&A 1999 24 5 10 3.48 × 10−18 3.89 × 10−11 10−9

S6FBH B&A 1999 24 100 10 3.48 × 10−18 3.89 × 10−11 10−9

S7FB2 B&A 1999 40 50 10 5.31 × 10−23 3.89 × 10−11 10−9

S8_S2 B&A 1999 15 50 2 3.48 × 10−18 4.87 × 10−12 2 × 10−10

S9_S100 B&A 1999 27 50 100 3.48 × 10−18 3.11 × 10−10 10−8

Figure 11. Summary of simulation S3FN, which assumes perfect mergers.
Table 4 gives the time coding of the labels A–F.

size distribution N( > m), which allows us to see the distribution of
particles as a function of the range of masses at different moments
of the integration (T = 0, 103, 104, 2 × 104, 5 × 104 and 105 yr, and
we follow in the figures the notation of Table 4).

On the upper-right panel, we display the evolution of the surface
density per bin ��. Since we are using a logarithmically equal
spacing of the mass grid, �� is related to the differential surface
density

�� ≈ 2

3

∂�

∂ ln(m)
, (5)

where we assume δ = 2.
The lower-left and -right panels show the radial (Tr) and verti-

cal (Tz) velocity dispersion of the system at the different times of
Table 4.

One conclusion that we can derive immediately in view of these
figures is that in spite of the rather different initial approaches of the

Figure 12. Summary of simulation S2FH, which uses the H&H 1990
strength. Table 4 gives the time coding of the labels A–F.

models, their time evolution is rather similar. The runaway growth
sets in after some 104 yr, i.e. around stage C in the figures. This
is relatively easy to see because of the pronounced peak at the
high-mass end. The onset of runaway growth roughly coincides
with the creation of the first N-body particles. Contrary to previous
work done with statistical calculations (Wetherill & Stewart 1989,
1993), we find in our models no gap in the size distribution, but
a smooth transition from the slowly growing field planetesimals
(peak around 1019 g) to the rapidly growing protoplanets. See also
Weidenschilling et al. (1997), Bromley & Kenyon (2006), Raymond
et al. (2011) and Raymond et al. (2012).

The initiation of runaway growth is associated with a qualita-
tive change in the velocity dispersion. While the initial choice
of the velocity dispersion quickly relaxes to a constant value
at smaller sizes (transition stage A→B), dynamical friction es-
tablishes energy equipartition among the larger masses (see e.g.
Khalisi, Amaro-Seoane & Spurzem 2007, in the context of stellar
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Figure 13. Summary of simulation S1FB, which uses the B&A 1999
strength. Table 4 gives the time coding of the labels A–F.

Figure 14. Summary of simulation S4FBN, which uses the B&A 1999
strength and a gas-free system. Table 4 gives the time coding of the
labels A–F.

Table 4. Integration times from the evolutionary stages A–F .

No. A B C D E F

T(yr) 0 1000 10 000 20 000 50 000 100 000

Figure 15. Largest body in the simulation as a function of time for the
different collision models S1FB (B&A 1999), S2FH (H&H 1990), S3FN
(perfect merger) and S4FBN (gas free). In addition, we also include simu-
lation S7FB2 with a lower cut-off mass.

dynamics). The turnover point between these two regimes refers to a
balance between the stirring due to larger bodies and damping due to
encounters with smaller planetesimals (Rafikov 2003). In addition,
the smaller planetesimals are subjected to damping by the gaseous
disc, which significantly reduces the velocity dispersion at smaller
sizes. Hence, this damping is absent in the gas-free case, which
can be seen by comparing the flat distribution of S4FBN, Fig. 14
bottom, with the other models.

We emphasize that all simulations do not generate any of the
artefacts which could be attributed to an improper joining of the
statistical and the N-body component. Some non-smooth structure
is visible at the high-mass end (i.e. it is related to data from the N-
body component), but these variations do not exceed the fluctuations
that we can expect from small number statistics.

All simulations with destructive collisions exhibit the evolution
of a fragment tail. The expected equilibrium slope is roughly k ≈ 2
(see section ‘Collisional cascades’ of Paper I), which refers to a
steep size distribution and a rather flat density distribution:

N (> m) ∝ m−1

�� ≈ constant. (6)

Simulation S1FB (B&A 1999 strength, Fig. 13) and S4FBN (gas
free, Fig. 14) show a clear plateau in the density distribution around
0.1, in accordance with the previous estimate, equation (6). In con-
trast, simulation S2FH (H&H 1990 strength, Fig. 12) evolves a
second maximum at the lower boundary of the mass grid. Although
this structure is partly due to the lower grid boundary, the main
cause is the reduced H&H 1990 impact strength at sizes of a few
tens of kilometres (as compared to the B&A 1999 strength), which
leads to the quick destruction of the remaining field planetesimals
at masses around 1018 g.

The overall agreement of the different simulations is reflected
by the growth of the largest mass in the system, as we depict in
Fig. 15. Up to 2 × 104 yr, all simulations agree well. Later on simu-
lation S3FN (which follows the approximation of perfect mergers)
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Figure 16. The same as Fig. 15 for the total mass in the N-body component.

Figure 17. Same as in Fig. 15 for the total mass-loss. For obvious reasons,
we do not include S3FN, which assumes perfect merger.

exhibits the largest growth rate, as one would naturally expect.
Although simulation S1FB (which uses the B&A 1999 strength
prescription) seems to show a slower growth than simulation S2FH
(which follows the recipe of H&H 1990 for strength), this is only
due to a different sequence of major impacts. In fact, the B&A
1999 strength simulation makes possible a much faster growth, in
accordance with the total mass contained in the N-body component,
which is displayed in Fig. 16. The gas-free simulation S4FBN ex-
hibits the slowest growth among the four test cases. In Fig. 17 we
depict the same as for Fig. 15 but for the total mass-loss case.

A further examination of the mass-loss – which we define as
the mass in planetesimals which crosses the lower grid boundary –
reveals the cause of this different behaviour: a pronounced mass-loss
in simulation S2FH slows down the protoplanetary growth reducing

the surface density. In the gas-free case, the accretion rate is mainly
reduced because of a larger velocity dispersion, although we can
still notice some enhanced mass-loss by comparing the lower panels
of Figs 13 and 14.

We find no accelerated growth due to the inclusion of fragmen-
tation events, contrary to the work of Wetherill & Stewart (1989).
We find that a lower impact strength or the absence of gas damping
slows down the growth by an increased mass-loss. The total mass
in the N-body component is still small at the end of the simulations,
of about ≈10 per cent of the total mass, as shown in Table 5.

3.4 Spatial distribution

How well the code can treat spatial inhomogeneities depends on the
choice of the spatial resolution. We hence compare a low-resolution
model, model S5FBL of Table 3, which virtually inhibits any spatial
structuring, with a model that uses our fiducial resolution, model
S1FB, as well as with a model that has a finer resolution, S6FBH.
We adjust the fiducial resolution to the width of the heating zone of
a planetesimal at the transition mass.

In the left-hand panel of Fig. 18, we have the spatial structure
at T = 30 000 yr, i.e. shortly after stage D (nominal model S1FB).
While the protoplanets are already massive enough after a few 104

years (stage C) to open gaps in the planetesimal component, there
is only a weak correlation between the radial structures and the
location of the most massive protoplanets. A closer examination of
the time evolution of the radial structure reveals that most features
are ‘fossils’ from the first emerged N-body particles, which are
slowly washed out by the diffusion of the field planetesimals. In
the right-hand panel of the same Fig. 18, we confirm the further
smoothing of the radial features. While major mergers among the
protoplanets still lead to distinct features in the surface density even
after a few 104 years, any further structuring ceases at the end of
the simulation.

The absence of any prominent gap formation (fluctuations are
smaller than 20 per cent) is related to the evolution of the overall
size distribution. Though the gap opening criterion (see section
‘Protoplanet growth’ of Paper I, and we reproduce here the relevant
equation for convenience),

Mgap

Mc
≈

⎧⎪⎨
⎪⎩

�a2

Mc

(
m
Mc

)1/3
if v � 	rHill

�a2

Mc

(
m
Mc

)1/3 (
	rHill

v

)2
if v 
 	rHill,

(7)

is formally satisfied by all protoplanets during the runaway phase,
the dense overlapping of the associated heating zones (see Fig. 18)
inhibits the evolution of any gap-like feature. As the protoplanets
grow, they exert a growing influence on the dynamics of the plan-
etesimal system. While this dominance could in principle enhance
gap formation, the system is already dynamically too hot to al-
low the system to develop radial structures. The eccentricities of
the field planetesimals are comparable to the width of the heating

Table 5. Maximum mass and associated quantities at T = 100 000 yr for different surface
densities. From the left to the right, we show the surface mass density, the mass, the Hill
velocity, the ratio between the mass in the N-body and statistical parts and the isolation mass,
as defined in the first part of this paper.

Simulation �(g cm−2) m(g) vHill(m s−1) MNbody/MStatistic Miso(g)

S8_S2 2 2.6 × 1023 10.5 0.04 7.8 × 1025

S1FB 10 1.2 × 1025 37.6 0.13 8.6 × 1026

S9_S100 100 4.1 × 1026 122.2 1.34 2.7 × 1028
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Figure 18. Left y-axis and solid, red curve of the left-hand panel: radial density structure of the statistical component of model S1FB at T = 3 × 104 yr. Right
y-axis and blue dots of the left-hand panel: semimajor axis and masses of the N-body particles in the simulation after the same amount of time. The error bars
are 10 Hill’s radii wide and refer to the heating zone of each N-body particle. We also display the grid resolution as a reference point. In the right-hand panel,
we depict the same after T = 105 yr.

Figure 19. Largest body in the simulation as a function of time for the differ-
ent resolutions S5FBL (NR = 5), S1FB (NR = 50) and S6FBH (NR = 100).

zone (compare Fig. 13, bottom), and hence any planetesimal that
is scattered to larger (or smaller) radii immediately encounters a
neighbouring protoplanet.

In summary, the protoplanets (or rather their precursors) are too
abundant when the system is dynamically cool enough, but when
a group of mature protoplanets has evolved, the system is already
too hot. Thus, we expect an even less effective radial structuring
for larger surface densities. While systems with a lower surface
density may lead to the formation of gap-like structures, they evolve
so slowly that planet formation may never reach the final growth
phases.

3.5 Resolution

We can further evaluate the (minor) role of gap formation by com-
paring the growth process for the three different radial resolutions
NR = 5, 50 and 100. Besides some variations due to a different
sequence of major impacts (see Fig. 19), all three simulations are
in excellent agreement with respect to the mass-loss and the total
mass in the N-body component.

Figure 20. Summary of simulation S7FB2, which uses the B&A 1999
strength and a smaller lower cut-off mass.

Accordingly, we find no differences between the various frag-
mentation models (S1FB, S2FH, S3FN, S4FBN) with respect to
possible emerging gaps, except an earlier homogenization in the
gas-free case S4FBN due to the stronger heating of the smaller
planetesimals.

We conduct one additional simulation, named S7FB2, see Fig. 20,
in which we reduce the lower mass grid boundary by a factor of 105.
Although the standard choice mmin = 6.9 × 1015 g is in accordance
with the size regime where migration would remove the smaller
fragments, the actual mass cut-off is less sharp as we estimated in
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section ‘Collisional cascades’ of Paper I. A reduced lower cut-off
increases the dwell time of collisional fragments in the system, thus
increasing the mass fraction which could be accreted by the proto-
planets. As a result, mass-loss is reduced by 30 per cent compared
to our fiducial case S1FB, as we can see in Fig. 17. Although the
shape of the fragment tail is modified by a different choice of the grid
boundary, the change of the overall evolution of the protoplanets is
rather small.

3.6 Surface density

We now examine the evolution of different surface densities with a
last set of simulations. We take S1FB as our nominal model, with a
surface density of � = 10 g cm−2. We explore two different surface
densities: A low-mass disc with � = 2 g cm−2 (simulation S8_S2),
and a high-mass disc with � = 100 g cm−2 (simulation S9_S100),
which is close to the upper mass limit set by observations. The basic
parameters of all three simulations are equal except a proper scaling
of the gas density and transition masses chosen individually.

We first resume the inspection of possibly emerging gaps: while
the low-mass case shows a more pronounced radial structure (with
fluctuations as large as 40 per cent), these features are only weakly
related to the location of the largest protoplanets. Hence, these
structures are signatures of the first emerging N-body particles.
The high-mass case exhibits no strong features at all, except for
very weak features during the initial runaway phase. These results
strengthen the discussion in Section 3.4, assigning only a minor
role to gap formation in the planetesimal component during the
protoplanet accretion.

The overall growth process follows a standard pattern. Since the
accretion rate in all three simulations is directly proportional to the
surface density (see the following equation of section ‘Protoplanet
growth’ of Paper I), we rescale the time to the reference simulation
S1FB. We obtain good agreement in the time evolution of the largest
mass in the system, as we can see in Fig. 21, although the turnover
to the slower oligarchic growth occurs at different (scaled) times.
Likewise, we rescale the time to ease the comparison of the mass-
loss in the three simulations, which we depict in Fig. 22.

As soon as a set of dominant protoplanets has evolved, they
control the velocity dispersion of the field planetesimals. Therefore,
the magnitude of the velocity dispersion matches the Hill velocity of
the largest body in the system (see Table 5 and Figs 13, 23 and 24).

Figure 21. Largest body in the simulation as a function of time for the
different surface densities S8_S2 (� = 2 g cm−2), S1FB (� = 10 g cm−2)
and S9_S100 (� = 100 g cm−2). The reference density is �0 = 10 g cm−2.

Figure 22. Mass-loss in the simulation as a function of time for different
surface densities for the same cases of Fig. 21.

Figure 23. Summary of simulation S8_S2, which uses the B&A 1999
strength and a lower surface density � = 2 g cm−2. Table 4 gives the time
coding of the labels A–F.

While this similarity in the three simulations is also in good
agreement with standard estimations of the growth process (see the
section ‘Initial models’ of Paper I), the later stages in the evolution
differ markedly: a larger surface density implies larger (and faster
growing) protoplanets, so that the velocity dispersion of the field
planetesimals is also driven to higher velocities. This therefore leads
to an increased mass-loss as the initial surface density increases
(Fig. 22). The mass-loss of the most massive setup S9_S100 reduces
the surface density nearly to the standard case S1FB. Since the mass-
loss is not due to actual migration of smaller fragments, but to the
lower grid boundary (in mass) which mimics the effect of migration,
this effect deserves a closer examination. In Fig. 25 we have the mass
in the N-body component for the same surface densities.
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Figure 24. Summary of simulation S9_S100, which uses the B&A 1999
strength and a higher surface density � = 100 g cm−2. Red lines refer to
empty mass bins.

Figure 25. Mass in the N-body component of a simulation as a function
of time for the different surface densities S8_S2 (� = 2 g cm−2), S1FB
(� = 10 g cm−2) and S9_S100 (� = 100 g cm−2).

The influence of fragmentation on the protoplanetary growth is
mainly determined by two time-scales: the fragmentation time, τ frag,
which refers to collisions between planetesimals, and the growth
time-scale τ grow of the protoplanetary accretion.

We employ the expressions derived in section ‘Perturbation of
equilibrium’ of Paper I and the approximated differential surface
density of equation (6) to estimate the fragmentation time

τfrag ≈ S̃

G′
0

τ0 G′
0 ≈ 10

≈ ln(m/m0)

80

RmSm

�m	3R2
Hill

. (8)

In the last equation m is a typical mass of the largest planetesi-
mals, Rm is the corresponding radius and Sm is the impact strength.
�m is the total surface density of the field planetesimals, with a
lower cut-off m0 due to migration. RHill is the typical Hill radius of
a protoplanet, where it is assumed that the protoplanets control the
velocity dispersion of the field planetesimals.

4 TH E M I L L C O N D I T I O N

The growth time-scale of the protoplanets follows immediately from
rearranging the following equation, as discussed in section ‘Proto-
planet growth’ of Paper I:

Ṁ ≈ 6π�	
RRHill

ẽ2
m

. (9)

The time-scale hence is

τgrow ≈ Mẽ2
m

6π�m	RRHill
. (10)

Since the mass-loss due to migration and the replenishment of
smaller fragments by mutual collisions quickly establishes a sta-
tionary solution, the removal of the field planetesimals operates on
the fragmentation time-scale. Since the protoplanets grind the sur-
rounding planetesimals without retaining a significant fraction, the
accretion of the protoplanet ceases if the condition

τgrow > τfrag (11)

is fulfilled, which we will refer to from now onwards as the ‘mill
condition’. We can easily derive a lower limit for the protoplanet
mass assuming ẽm = 4 and by translating this condition in terms of
mass, the ‘mill mass’,

M >
1

53
ln(m/m0)

RmSm

	2
3

√
Mc

a3ρ
, (12)

which we denote as Mmill:

Mmill

m
= f

53
ln(m/m0)

(
2Sm

ρv2∞,m

) (
a3ρ

Mc

)2/3

. (13)

In the last expression, ρ is the bulk density of the planetesimals and
v∞, m is the escape velocity of the field planetesimals. f is a factor of
order unity to take into account alternative treatments of migration
that could alter the size of Mmill.

We note that a necessary condition for the mill process to operate
is the presence of a gaseous disc. Since a high surface density is
needed for the protoplanetary growth to reach the mill mass, the
growth itself is likely to be faster than the dispersal of the gaseous
disc.

Nevertheless, the concept is also useful in a gas-free system: if the
protoplanets in a given planetary system do not exceed the mill mass,
it is still possible that the planets after the final giant impact phase
exceed Mmill. Radiative pressure and Pointing–Robertson drag still
provide an effective removal of dust-sized particles in a gas-free
system (see the discussion in Burns, Lamy & Soter 1979); hence,
while the absence of strong migration of planetesimals prevents
any reduction of the planetary accretion rate, the system enters
nevertheless a qualitatively different stage: the evolution of the
left-over planetesimals (i.e. the disc clearing) is now driven by
fragmentation rather than accretion.

The mill mass is independent of the surface density of the field
planetesimals and hence represents a universal upper limit of the
protoplanet mass, given that all other parameters of the planetary
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system are fixed. The mill mass increases more steeply with radius
(∝r2) than the isolation mass for any realistic density profiles (e.g.
Miso ∝ r3/4 for the minimum mass solar nebula).

This restricts the efficient termination of accretion by fragmenta-
tion to the inner parts – e.g. the terrestrial zone in the Solar system
– of a planetary system. The migration process enters only through
the lower cut-off mass m0. While the uncertainty of m0 in principle
is not a big issue, as it appears in the logarithm, the truth is that the
migration time-scale depends on the planetesimal radius which can
vary significantly. An uncertainty of the cut-off radius by a factor of
10 indicates an uncertainty of Mmill of the same order, which again
leads us to the question about the necessity of a careful treatment
of migration in a global frame.

All simulations use a lower cut-off size of 800 m, which is roughly
equivalent to the cut-off introduced by migration. Since m0 is de-
fined by the identity of the migration time-scale and the fragmenta-
tion time-scale (see section ‘Collisional cascades’ of Paper I), this
mass is also independent of the surface density, given that the ratio
of solid to gaseous material is constant. While the more refined sim-
ulation S6FBH shows a mass-loss only reduced by 30 per cent, we
expect that the uncertainty due to the reduced treatment of migration
to be at least of the same order.

In view of these considerations, we retake now the analysis of
the simulations: simulation S9_S100 is strongly affected by the
mill process, whereas simulation S1FB still retains a significant
fraction of the initial mass. The quiescent conditions in simulation
S8_S2 exclude a prominent role of fragmentation at any evolu-
tionary stage. Thus, we estimate Mmill ≈ 0.1 M⊕ for a Solar sys-
tem analogue at 1 au (see Fig. 21), which yields the approximate
expressions

Mmill = f × 0.1 M⊕ ×
( r

1 au

)2
(

Mc

1 M�

)−2/3

×
(

ρ

2.7 g cm−3

)2/3

. (14)

Since the protoplanets maintain a separation of approximately
10RHill, the mill mass corresponds to an upper limit �mill of the sur-
face density which is available for the formation of protoplanets:2

�mill = Mmill

20πaRHill

= f 2/3 × 9.15
g

cm2
×

( r

1 au

)−2/3
(

Mc

1 M�

)−1/9

×
(

ρ

2.7 g cm−3

)4/9

. (15)

The scaling relation (14) implies Mmill ≈ 2.5 M⊕ at 5 au, which
is in agreement with an upper core mass of 4 M⊕ found in the
simulations of Inaba, Wetherill & Ikoma (2003). Although it seems
impossible to form a core that is large enough (15 M⊕) to initiate gas
accretion, this tight upper limit is due to disregarding the gaseous
envelope – i.e. the protoplanetary atmosphere before the onset of
strong gas accretion – of the growing core. Since the gaseous enve-
lope enhances the accretion cross-section by an order of magnitude
(and hence f ≈ 10 in equation 14), the mill mass increases by the

2 We note that to derive this equation we have used simulations S8_S2, S1FB
and S9_S100, and all of them use the B&A 1999 strength. A dependence
on the other kinds of strength will be addressed in future works.

same factor. Thus, the formation of a 15 M⊕ proto-Jovian core at
5 au is not ruled out by fragmentation, again in agreement with
Inaba et al. (2003).

Both low-mass simulations S1FB and S8_S2 still contain a ma-
jor fraction of the total mass in the statistical component, which
prevents the onset of orbital crossing on a time-scale of a few 105

years. However, the fast protoplanetary growth in the high-mass
simulation S9_S100, accompanied by an intense mass-loss, leads
to an onset of strong protoplanet–protoplanet interactions already
at the end of the simulation. The chaotic evolution of the velocity
dispersion at the high-mass end, as we can see in Fig. 24 bottom,
indicates an intense interaction of the N-body particles. Finally, we
note that Bromley & Kenyon (2011) show that large seed proto-
planets – formed perhaps by a streaming instability in the disc –
can rapidly accrete small pebbles and grow beyond this maximum
mass. See also Lambrechts & Johansen (2012).

5 D I SCUSSI ON

In this paper, which can be envisaged as a continuation of the work
we presented in Paper I, we first carefully assess the code and
then apply it to investigate the formation of protoplanets. Our main
results are summarized as follows.

(i) The influence of the fragmentation model on the protoplane-
tary growth is weak during the fast initial runaway growth. In par-
ticular, any realistic choice of the impact strength does not inhibit
the growth of the planetesimals. However, the choice of the frag-
mentation model controls the oligarchic growth through the overall
mass-loss due to the migration of smaller fragments. Our simula-
tions show that the Housen & Holsapple (1990) strength leads to
a significant deceleration of the mass accretion in the later phases.
Thus, the recent impact strength from Benz & Asphaug (1999) is
more favourable in terms of an efficient protoplanet formation.

(ii) We derive the notion of a critical mill mass to provide a
convenient handle on the fragmentation processes. If the mass of
a (proto)planet exceeds this critical limit, then an interplay of de-
structive collisions and the removal of fragments by migration ter-
minates the accretion of planetesimals. In particular, this critical
mass implies an upper limit of the mass (in solids), which can be
transformed into planets, unless migration ceases very early due to
the fast dissipation of the gaseous disc.

(iii) Contrary to the work of Rafikov (2001), we find no termi-
nation of the protoplanetary accretion due to gap formation. None
of our simulations shows any significant radial structure, except
for a limited time during the runaway accretion. While low sur-
face densities favour gap formation, all observed radial features are
so weak that the notion ‘gap’ does not correspond to these struc-
tures. Hence, resonant interactions between protoplanets and the
field planetesimals are not a dominant process during the growth
phases considered, which also supports the validity of the Fokker–
Planck approach. Likewise, the dynamically hot field planetesimals
also suppress non-axisymmetric features beyond the Hill radius of
the protoplanets. We must mention that the difference we find with
Rafikov (2001) is true for a hot disc. Nevertheless, his solution is
correct in some cases, especially when the disc can remain cold
(see Ida et al. 2000; Kirsh et al. 2009) as in, for instance, the gaps
of Saturn’s rings (e.g. the work of Goldreich & Tremaine 1978a,b;
Lissauer, Shu & Cuzzi 1981).

The eccentricity and inclination of the protoplanets remain small
during the oligarchic growth phase. However, we note that this does
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not imply small eccentricities of the final planets, since the onset of
orbital crossing terminates the dynamically quiet oligarchic growth
phase.

Since our work introduced a new computer code to study the
growth of protoplanets, we primarily focused on the careful as-
sessment of its validity and a small parameter study to strengthen
this approach. Considering that the current abilities of the hybrid
code exclude global simulation which could address migration in
a proper way, we restricted our studies to a small ring of planetes-
imals. However, our experience drawn from this work allows an
outline of possible improvements. The wall clock time of a rather
small simulation is dominated by the integration of the statistical
component. As the radial extension of the simulation volume is
increased, the computing time due to the statistical component in-
creases linearly, whereas the computing time due to the N-body
component increases proportional to the square of the radial width.
If the resolution of the radial grid is reduced, the weight of the
N-body part will further increase. A moderately extended model,
which covers the inner planetary system up to 10 au, requires the
long-term integration of 103–104 particles.

While these are only few particles compared to big star clus-
ter simulations (e.g. Makino & Funato 2004; Berczik, Merritt &
Spurzem 2005), the long integration times of at least 106 orbits
prevent the efficient parallelization. Astrophysicists had an early
start in the field of through the GRAPE hardware in a standard
PC cluster (see the extensive description in Fukushige, Makino &
Kawai 2005). A more promising solution are the modern graph-
ics processing units (GPUs), which have made significant progress
in the last years. They were originally used to perform calcula-
tions related to 3D computer graphics. Nevertheless, due to their
highly parallel structure and computational speed, they can be
very efficiently used for complex algorithms. Computational as-
trophysics has been a pioneer to use GPUs for high-performance
general purpose computing (see for example the early AstroGPU
workshop at Princeton in 2007, through the information base3).
The direct N-body code has been ported to GPUs by Sverre
Aarseth who, as is his admirable custom, has made the code pub-
licly available. We plan on porting our hybrid method to GPU
technology soon.

The extension of the simulations towards longer integration times
does not only require an optimization of the hybrid code, but
also a more careful modelling of the growing planets to account
for the interaction with the gaseous disc. While these improve-
ments are necessary to allow the consistent treatment of migration,
they also open the study of the early debris disc phase. Debris
discs could provide constraints on the planet formation process,
since the low opacity of kilometre-sized planetesimals prevents
the direct observation of the protoplanetary growth in extraso-
lar systems. Though all these improvements are not implemented
yet, they encourage us to pursue the further development of the
hybrid approach.
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