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Placing signal templates (grid points) as efficiently as possible to cover a multi-dimensional parameter space
is crucial in computing-intensive matched-filtering searches for gravitational waves, but also in similar searches
in other fields of astronomy. To generate efficient coverings of arbitrary parameter spaces, stochastic template
banks have been advocated, where templates are placed at random while rejecting those too close to others.
However, in this simple scheme, for each new random point its distance to every template in the existing bank is
computed. This rapidly increasing number of distance computations can render the acceptance of new templates
computationally prohibitive, particularly for wide parameter spaces or in large dimensions. This work presents
a neighboring cell algorithm that can dramatically improve the efficiency of constructing a stochastic template
bank. By dividing the parameter space into sub-volumes (cells), for an arbitrary point an efficient hashing
technique is exploited to obtain the index of its enclosing cell along with the parameters of its neighboring
templates. Hence only distances to these neighboring templates in the bank are computed, massively lowering
the overall computing cost, as demonstrated in simple examples. Furthermore, we propose a novel method
based on this technique to increase the fraction of covered parameter space solely by directed template shifts,
without adding any templates. As is demonstrated in examples, this method can be highly effective.

PACS numbers: 02.60.Pn, 04.30.Db, 04.80.Nn, 07.05.Kf

I. INTRODUCTION

In searches for gravitational-wave signals using matched-
filtering methods or similar detection statistics, efficient tem-
plate banks play an essential role [1–6] when analyzing data
from the ground-based detector instruments such as LIGO
[7, 8], Virgo [9], GEO600 [10, 11] and TAMA [12], as well as
future space-based detectors [13]. Searches for signals based
on template banks are also relevant in neighboring research
fields of astronomy, for example in binary pulsar searches
of radio data from the Arecibo radio telescope [14, 15] or
gamma-ray data from the Fermi satellite [16].

In the standard procedure of matched-filtering searches, the
instrumental data is correlated with a template that has the
form of the expected signal. Because the parameters of the
signal are unknown a priori, the data must be correlated with
a bank (or grid) of possible signal templates (grid points)
that have distinct parameter values [17, 18]. In particular
for wide search parameter spaces, methods for constructing
template banks that minimize the computational burden with-
out decreasing the signal detectability are essential. This can
be achieved by placing the templates more optimally, such
that fewer are required at the same level of signal detectabil-
ity. Different strategies for improved template placement have
been studied in previous work, e.g. see [19] and references
therein.

For Euclidean spaces, the problem of finding an optimal
lattice coverings is well studied [e.g., 20] and is related to
periodic crystalline structures. For up to 5 dimensions, the
so-called A∗n lattice turns out to cover the space with the least
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number of templates [21, 22]. For more than 5 dimensions,
other lattice structures are also known which have a better
covering behavior than A∗n lattices [21]. However, a crys-
talline structure is often not optimal if either a covering frac-
tion of less than one is desired, or the parameter space is not
Euclidean or has large dimensionality.

To address such cases, alternative schemes for arbitrary pa-
rameter spaces have been considered by Messenger et al. [23],
where templates are simply placed at random. Such random
template banks show superior covering behavior in higher
dimensions compared to relaxed (less than 100% covering
fraction) A∗n lattices. In low dimensions, Manca and Vallis-
neri [19] showed that the covering of random template banks
can be improved by exploiting Sobol quasi random sequences
[24–26]. However, with an increasing number of dimensions
the resulting improvement becomes less pronounced.

In stochastic template banks that have been suggested by
Harry, Allen and Sathyaprakash [27] (hereafter HAS09) as
well as by Babak [28] (hereafter B08), templates are picked
at random too, but only those are added to the bank which
have a distance larger than a certain predefined value (cov-
ering radius) to any of those templates already in the bank.
This procedure is to continue until no more new template can
be added to the bank. Compared to (fully) random template
placement, the filtering stage done for a stochastic template
bank thus results in a more diluted template bank, leading in
turn to a more efficient search since much fewer templates
have to be evaluated. As HAS09 note, for this approach the
number of templates to reach a covering fraction of one (i.e.
full coverage) is actually finite.

However, a major drawback of the existing stochastic tem-
plate bank algorithms is the severe computational complex-
ity involved in the bank construction. This is mainly because
the distance between each new candidate template and every
other template already part of the bank has to be computed
and compared to the covering radius before acceptance. Es-
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pecially for covering fractions approaching one, the computa-
tional cost for accepting a new template to the bank increases
much more rapidly than quadratically, and can in fact become
prohibitive for large or high-dimensional parameter spaces.

In this work, we present a solution to this problem by di-
viding the parameter space into smaller sub-volumes (cells) to
drastically reduce the aforementioned computational burden.
This basic idea is hardly new, but inspired by previous work
[29, 30], and also alluded to in HAS09. Here we develop an
efficient concept, which we refer to as the neighboring cell al-
gorithm (NCA), and study its performance improvements. In
addition, we describe a new method to significantly increase
the covering fraction of a stochastic template bank without
having to add further templates to bank, but performing sys-
tematic shifts of the templates in the bank.

This paper is organized as follows. To set the stage, Sec. II
describes the standard stochastic template bank generation
algorithm along with some general properties of stochas-
tic banks. Section III presents the NCA algorithm to effi-
ciently generate stochastic template banks and also demon-
strates its computational performance. Building on this, in
Sec. IV we show how the NCA can also be exploited to opti-
mize a stochastic template bank by purely shifting the exist-
ing templates of a bank, leading to a significantly increased
covering fraction without additional templates. Section V
illustrates two example applications for different parameter
spaces. In Sec. VI, we describe a scheme to further gener-
alize the NCA to arbitrarily complicated parameter spaces by
combining cells to adaptive virtual cells. Finally, this is fol-
lowed by a conclusion and discussion of future directions in
Sec. VII.

II. STOCHASTIC TEMPLATE PLACEMENT

To set the notation, let M label the d-dimensional signal
manifold, which we refer to as parameter space. We also as-
sume the availability of a positive-definite distance function
for two points in M . Thus, a template bank consisting of N
points in parameter space is said to completely cover M with
covering radius r if every point in M lies within a distance r
of at least one of the N points of the template bank. An op-
timal template bank covering M with radius r would be most
economical, i.e. having the minimum number of points.

The standard algorithm for stochastic template placement
that has been proposed in HAS09 (and B08) uses the follow-
ing principal scheme, beginning with an empty template bank:

(1) Draw a random point in M and add it to the template
bank.

(2) Draw another random point in M and add it to the tem-
plate bank only if its distance is greater than r to every
other already accepted point of the template bank.

(3) Repeat the previous step until the number of points in
template bank stops changing, or other termination cri-
teria are fulfilled.

In general, the distance between two points in M (or two
normalized signals) measures their overlap (i.e. match). An-
other way to think of it, is that one of the two points is a tem-
plate and the other is a signal, so that the distance reflects the
fractional loss in signal-to-noise ratio (SNR) due to the pa-
rameter offsets (i.e. mismatch) between the template and the
signal.

The key difference between the methods of HAS09 and B08
is the distance computation between points. Whereas B08
uses the exact overlap to compute the distances, HAS09 ex-
ploit a computationally less expensive approximation to the
overlap via the geometric concept of a metric on parameter
space [31, 32]. This metric tensor is obtained by Taylor-
expanding the fractional loss in squared SNR to quadratic or-
der in the parameter offsets. Hence, for problems where a
reliable analytic metric is available across M , the cost of dis-
tance calculations can be significantly reduced. Additional ef-
ficiency can be achieved in such cases by also modulating the
distribution of random candidate templates according to the
volume element given by the metric, as discussed in HAS09.

However, whether or not using a metric approximation is
used, in either case the total number of required distance com-
parisons in step (2) of this basic scheme can quickly render
the entire construction process computationally intractable.
The NCA proposed here presents a solution to this problem
to significantly reduce the number of distance computations
needed, as will be described in Sec. III C.

To assess the efficiency of a template covering, typically
its thickness Θ or its normalized thickness θ are consid-
ered. We follow [20, 23, 27] and refer to the thickness Θ
as the average number of templates covering any parameter-
space point. The normalized thickness is just θ = Θ/Vd,
where Vd is the volume of a d-dimensional unit sphere,
Vd = π−d/2Γ(d

2 + 1). Both, Θ and θ are invariant proper-
ties of the covering, independent of r. The total number of
templates, N = θ r−d VM , is thus directly proportional to the
normalized thickness (where VM is the proper volume of M ).

As outlined in HAS09, one can obtain theoretical upper
and lower bounds for the required number of templates for
a stochastic bank with complete covering. A theoretical up-
per bound follows from the sphere packing problem by con-
sidering how many non-overlapping spheres with radius r/2
can be packed into a certain volume. As the center of such
hard spheres are separated by r, these are possible positions
for a stochastic template bank. Thus, we use the results of
the sphere packing problem given in [20] to obtain the upper
bounds on the normalized thickness shown in Fig. 1 A theo-
retical lower bound on the number of required templates for
a complete coverage is VM/(Vd rd), which is the ratio of the
parameter-space volume and the volume of one template with
radius r. Therefore, the best possible thickness is Θ = 1,
i.e. the best possible normalized thickness is θ = 1/Vd. In
practice however it is impossible to reach this for d > 1 [20].

For Euclidean spaces Ed with d dimensions a large body of
literature exists [20] seeking to find the lattice with minimum
possible thickness, such that when placing a d-dimensional
sphere with radius r at each lattice point, the set of all
such spheres completely covers Ed. Figure 1 shows the
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FIG. 1: The normalized thickness θ as a function of the number of
dimensions d for a stochastic template bank in Ed (crosses). In ad-
dition, the lower and upper bounds for stochastic template banks are
shown, derived from the known minimum and maximum possible
normalized thickness values for the sphere packing problem [20, 21]
as described in the text. For comparison, also lattice placement algo-
rithms (hyper-cubical and A∗n) are displayed.

known minimum possible normalized thickness values as
listed in [21]. For comparison, the performance of two other
lattice algorithms is displayed, the hyper-cubical lattice and
the so-called A∗n lattice [20]. Notice that a hyper-cubical lat-
tice in dimensions d > 4 for unit covering fraction does not
satisfy the conditions of a stochastic template bank.

Extending Fig. 1 of HAS09, we are also able to compute
the normalized thickness for a stochastic template bank for
up to 10 dimensions. This calculation was only made pos-
sible owing to the significantly improved computational effi-
ciency of the NCA algorithm presented in this work. Due to
computational limitations, in HAS09 the results for only up
to 4 dimensions have been reported. For dimensions higher
than 3, the stochastic bank increasingly improves in perfor-
mance compared to the simple hyper-cubical lattice. Though
the stochastic bank with complete coverage appears to be less
efficient than the A∗n lattice. However, any such lattice cov-
erings and constructions algorithms are only defined for the
cases of flat parameter spaces. In contrast, the stochastic tem-
plate bank generation with the NCA in principle can be done
for any parameter space and thus can prove especially useful
for non-flat parameter spaces.

When generating a stochastic template bank, it is useful to
define the covering fraction f ∈ [0, 1], which denotes the fac-
tion of VM that is covered by the union of all template vol-
umes. As HAS09 note, f is also related to the computational
complexity to populate the stochastic template bank, because
the expected number of candidate templates required to accept
one template to the bank increases as 1/(1− f).

III. THE NEIGHBORING CELL ALGORITHM

A. Key elements and requirements of the NCA

In the following we describe the key elements and basic
requirements of the NCA in order to efficiently generate a
stochastic template bank:

(1) The entire parameter space is divided into non-
overlapping sub-volumes that we denote as cells. For
simplicity and ease of computing, we employ hyper-
cubical cells in a Cartesian coordinate system.1 Any
other regular or non-regular structure is also possible.

(2) Each cell must be uniquely indexed.

(3) Generally, two cells are neighbors if at least one com-
mon parameter-space point of one cell and a template
covering volume exists where the template lies inside
the other cell. In Cartesian coordinates and hyper-
cubical cells neighboring cells have at least one border
point in common. For a given cell index, the indices of
the neighboring cells can be computed.

(4) Each template must be uniquely indexed.

(5) Each template index is mapped to a cell index that labels
the cell in which the template position lies.

(6) Given a parameter-space position of a template, the in-
dex of its enclosing cell is readily computed by a hash-
ing algorithm. For a hyper-cubical cell lattice this is ac-
complished by a fast rounding or truncating operation
on the parameter values of the template position.

(7) The parameter-space covered by a template only over-
laps with the space of the enclosing cell and the neigh-
boring cells. It must not overlap with the space of non-
neighboring cells. This is ensured by either choosing
a small enough covering radius of the templates, or by
designing the cells sufficiently large.

The NCA requires two different tables to be kept in mem-
ory. First, the template table, which stores the indices and the
parameter-space positions of all templates. Second, the cell
table, which contains all cell indices and the list of template
indices of template positions lying within each cell. Figure 2
shows a simplified example for the contents of the cell table.

B. Stochastic template placement with the NCA

The following procedure describes how to generate a
stochastic template bank with covering fraction f using the

1 For maximum efficiency in curved (i.e. non-flat) parameter spaces, it its
recommended to adapt the cells sizes to follow the local metric approxima-
tion. See Sec. V for an example. For complicated curved parameter spaces
(e.g. where widely separated cells would have high overlap), a possible
alternative is outlined in Sec. VI using the concept of virtual cells.
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FIG. 2: Exemplary illustration of the cell table, which contains all
cell indices and the list of template indices of template positions lying
within each cell. Shown on the left are four templates (black circles)
labeled by indices {1, 2, 3, 4}. The cells (red boxes) are labeled by
the indices {a, b, c, d}.

NCA. Starting with an empty template bank, the process for
adding new templates to the bank is as follows:

(1) Draw a random2 point in M as a candidate template for
addition to the bank.

(2) Determine the cell the candidate template falls into by
calculating its cell index iC.

(3) Compute the cell indices of all neighboring cells. We
refer to the resulting list of neighboring cells including
the enclosing cell iC as the neighboring-cell (NC) list.
Note that a cell that is a d-dimensional hypercube, has
(3d − 1) neighboring cells.

(4) Sort the NC list in order of increasing distance. Start
with iC and proceed with the closest neighboring cells.
The distance between two cells is defined as the dis-
tance between the centers of the cells. For illustrative
purposes, Fig. 3 shows an example for the NC list.

(5) Retrieve a list of all template indices associated with the
cells of the NC list.

(6) For all retrieved template indices obtain the template
positions from the template table.

(7) Compute the distance between the candidate template
and every other template position of those obtained in
the previous step. Start with the templates located in
cells nearest to cell iC. If all computed distances ex-
ceed the predefined covering radius, accept this candi-
date template as a new template and assign it the next
consecutive template index.

(8) If the candidate template has been accepted, update the
template table: Append the position of the accepted
candidate template to the template table. Also update
the cell table: Append the template index to the list of
template indices pertaining to the cell iC in the cell ta-
ble.

2 A pseudo-, quasi or real random number generator may be used. As de-
scribed in HAS09, when an analytic metric is available across M , it is
advisable to modulate the distribution of random points according to the
volume element given by the metric for maximum efficiency.
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√
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FIG. 3: Schematic illustration of the distances between neighboring
cells of the NC list. The letters {a, b, c, d, e, f, g, h, i} represent the
cell indices. The numbers shown are the distances from the center
of the cell labeled by e to each center of the other cells shown. For
maximum efficiency, the NC list is sorted by increasing order of this
distance as explained in the text.

(9) Repeat this procedure starting from step (1) until the
covering fraction f has reached the desired value.

C. Computational cost improvements from the NCA

A major drawback of the standard stochastic template bank
algorithm by HAS09 is the computational complexity which
can become even prohibitive. This is because for each new
candidate template its distance to every other template of the
existing bank has to be computed and compared to the cov-
ering radius before eventual acceptance to the bank. With in-
creasing covering fraction the probability of accepting a can-
didate template decreases. At the beginning, when the cover-
ing fraction substantially less than one, the estimated compu-
tational cost for accepting a new candidate template increases
approximately quadratically with the number of templates in
the bank, since almost no templates are rejected. For covering
fractions closer to one the computational cost increases much
faster than quadratically with the number of templates in the
bank, because the rejection of candidate templates dominates.
It is this prohibitive computing cost that can quickly render
the acceptance of new templates computationally intractable
in the standard stochastic template bank algorithm.

In order to demonstrate the significant computational effi-
ciency improvement of the NCA over the standard algorithm,
we consider the generation of a stochastic template bank in a
3-dimensional Euclidean space with periodic boundary con-
ditions, where each coordinate lies within [0, 1]. The template
covering radius r is chosen, such that the bank contains 3.5
million templates at a covering fraction of f = 99.9%, which
is given by r = 1/180 and implies a normalized thickness
of about 0.6. To compare the computational costs of both
algorithms when constructing this bank, we count the total
number of distance computations required in either case. Fig-
ure 4 shows the results of this comparison study. With the
NCA, the total number of distance computations is massively
reduced and about five orders of magnitude lower compared
to the standard algorithm. This gain factor is not surprising
but straightforward to understand: It is simply the ratio of the
total volume of the considered parameter space to the volume
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FIG. 4: Comparison the computing cost (measured by the number of
distance computations) between the standard algorithm and the NCA
to generate a stochastic template bank in E3. Shown as a function of
the covering fraction f for each method is the number of distance
computations for candidate templates that have been accepted (thin
solid) and rejected (thin dotted-dashed), as well as the total number
(thick dashed). With the NCA, the total number of distance compu-
tations is massively reduced, by more than five orders of magnitude
as shown by the dotted curve.

enclosed by a single cell and its (33 − 1) neighboring cells,
which gives 1803/27 ≈ 2× 105 in this example.

Figure 4 also shows the shares in the total number of dis-
tance computations separately for rejected and accepted can-
didate templates. As can be seen, at the beginning for low
covering fractions, the computing cost is dominated by the
distance computations for accepted candidate templates. As
the template bank is getting more populated at higher cov-
ering fractions, a turnover occurs, where the computing cost
starts being dominated by the distance computations due to
rejections and increases much more rapidly. As can be seen,
compared to the standard algorithm for the NCA this turnover
takes place at a larger covering fraction. This is mainly due
to the NCA’s much more efficient rejection of candidate tem-
plates, as described in the following.

Sorting the NC list of neighboring cells is crucial for the
efficiency of the NCA, specifically in view rejecting candi-
date templates. This sorting [done in step (4) in Sec. III C
above] as part of the NCA stochastic template bank generation
considerably reduces the average number of distance compu-
tations needed before a candidate template is eventually re-
jected. As illustrated in Fig. 3, this is obvious, because on
average the overlapping volume of the candidate template is
highest with the own cell and decreases for the neighboring
cells. Therefore, the probability for rejecting a candidate tem-
plate is the highest when comparing to those templates located
in the same cell. Hence, the sorting of the NC list by distance
of step (4) can also be seen as sorting by decreasing order of
probability of rejection, which thus overall minimizes the av-
erage number of distance computations. This is also seen in
that the gain factor between the NCA and the standard scheme

(dotted curve in Fig. 4) is mostly constant but increases for
covering fractions closer to one, where the rejections of can-
didate templates dominate.

With higher dimensions this effect gains even more impor-
tance, because the number of neighboring cells increases ex-
ponentially with dimension. For example, if d = 3 the num-
ber of considered cells is 33 = 27. Without sorting and a
cell addressing scheme as shown in Fig. 3, the cell containing
the candidate would be on average the (33 + 1)/2 = 14th
cell considered. After sorting, the cell enclosing the tem-
plate candidate is considered first. Hence, this sorting can
decrease the number of distance computations by a factor al-
most 14. Whereas, if d = 10 the number of considered cells
is 310 = 59049. The cell containing the candidate in absence
of sorting would be the (310 + 1)/2 = 29525th cell consid-
ered. Therefore, sorting the NC list can decrease the number
of distance computations in d = 10 by almost 30 000! This
efficiency gain has greatest importance for covering fractions
nearing one, where the majority of candidate templates is re-
jected (see Fig. 4).

The NCA also significantly facilitates evaluating the cover-
ing fraction at the different stages of the stochastic bank gen-
eration. The covering fraction is typically obtained via Monte
Carlo integration using a sufficient number of sample points
(as also done in HAS09). The standard algorithm by HAS09
has to compute the distances between a sample point and all
templates in the bank, which is inefficient. The NCA instead
readily can provide a list of the subset of templates closest
to a given sample point, and only the distances to those are
computed. This way, wasteful distance computations for tem-
plates far away from the sample-point location are avoided, as
those templates will obviously have no overlap with the sam-
ple point.

IV. INCREASING THE COVERING FRACTION BY
SHIFTING TEMPLATES

The generation of stochastic template banks with covering
fractions nearing unity can become quickly computationally
prohibitive (cf. Fig. 4). This is due to the enormous number
of candidate templates to be tested before a new template is
accepted to the bank. Here, we present a possible and efficient
alternative solution to this problem. The idea is to first gener-
ate a stochastic template bank with initially smaller covering
fraction and then increase the covered space by only shifting
the positions of the templates, instead of adding new ones.

A. Barycentric template shifts

In what follows, we describe a scheme to effectively shift
the templates in the bank with the goal of increasing the over-
all covering fraction. One such shift optimization stage begins
with the first template in bank:
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(1) Determine3 a set of points uniformly distributed on the
boundary of the covering volume of the template. Note
that the boundary of a covering volume is the set of
points which have distance r (the covering radius) to
the template position.

(2) Check whether each of these points is covered or not by
another template.4 If covered the boundary point gets
the zero weight, otherwise a weight of unity. In case
a boundary point lies outside of the relevant parameter
space this point gets also zero weight.

(3) From the set of boundary points with unit weight, cal-
culate the barycenter of these points.

(4) If the distance between the template position and the
barycenter is smaller then a certain maximum dis-
tance ε, the template is moved to coincide with the
barycenter. If the distance is larger than ε, the tem-
plate position moved in the direction of the barycenter
by only ε.

(5) Carry out the procedure starting from step (1) for the
next template until done for all templates in the bank.

The above scheme (forming a single optimization stage) is to
be repeated until the covering fraction does not increase any-
more (or any other terminating condition is met). In general,
step (4) will increase the fraction of covered parameter space.
However, it might also happen that occasionally a template is
shifted towards an existing template, leading to an undesired
newly created overlap. To mitigate this effect, we therefore
recommend to set the maximum shift distance ε at a fraction
of r. Within this work we found that choosing a maximum
shift of ε = 0.05 r provides overall satisfactory results.

B. Choice of boundary points and computing cost

The actual number of boundary points used is a tradeoff be-
tween accuracy of the barycentric shift and computational ef-
ficiency. As a lower bound, to be able to shift the template po-
sition into any direction in a d-dimensional parameter space,
the minimum number of points should is 2d. More boundary
points will improve the accuracy of the shift, but also decrease
the computational efficiency of a single optimization stage.
While a more detailed study of these aspects is beyond the
scope of this paper, one scheme we found to work sufficiently
well for our purposes is choosing twice as many boundary
points as there are neighboring cells, i.e. 2× (3d − 1) points.

One way to place the set of boundary points as required in
step (1) is the following approach, first presented in [33, 34].
In a d-dimensional Euclidean space with spherical template
volumes, a uniformly distributed set of boundary points can

3 One way to do this is described in detail in Sec. IV B.
4 Notice that this can be accomplished by treating each boundary point like

candidate template as described in Sec. III.
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FIG. 5: Schematic illustration of the barycentric template shifts to
increase the covering fraction. Left: Illustration of the generation of
the boundary points. In the enclosing cube around the sphere ran-
dom points are placed uniformly. The points falling outside of the
template volume (small hollow points) are ignored. The points are
inside the sphere (small filled black points) they are projected onto
the boundary of the template volume, providing the boundary points.
Right: The thick red lines shows points on the boundary of a tem-
plate covering volume that have weight one. These points are not
covered by any neighboring template. All other boundary points get
the weight zero. Using these weights we can compute the barycenter
of the boundary points. The arrow points from the current position
of the template to the center of mass of the unit-weight (red thick)
boundary points. The resulting shift of the template position towards
this barycenter thus increases the covering fraction.

be obtained by placing random points uniformly into the en-
veloping hyper-cubical box. As illustrated in Fig. 5, then all
points lying outside of the sphere are discarded and those in-
side the sphere are projected onto the boundary to provide the
desired set of boundary points.

The computational cost of this optimization scheme is again
dominated by the number of distance computations. In this
method, the number of needed distance computations D is
simply the product D = NO ×NB ×NS ×N×, where NO

is the number of optimization stages, NB is the number of
boundary points, NS is the average number of templates in
the considered within the subvolume of the neighboring cells,
and N is the total number of templates. As mentioned above,
NB can be taken as 2× (3d − 1). Moreover, NS is estimated
as the normalized thickness θ times the number of neighbor-
ing cells plus the own cell giving 3d. The value of NO de-
pends on the used shifting method, while typically we reached
convergence after NO = 20 stages. Thus, for example in
three dimensions, the number of required distance computa-
tions using the normalized thickness of the optimal covering
is D = 20× 26× 9.8×N ≈ 10200×N . It is worth noting
that since the computational cost is only linear in the total
number of templates N , this proposed scheme is feasible also
for a relatively large template banks.

C. Performance demonstration

Figure 6 illustrates the optimization effect from barycen-
tric template shifting for a stochastic template bank in a 2-
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(a) (b) (c)

FIG. 6: Illustration of different optimization stages of a 2-dimensional stochastic template bank in Euclidean space with a normalized thickness
of 0.38. The individual panels are: (a) Unoptimized template bank that has a covering faction of 0.89; (b) Template bank after 12 optimization
stages (template shifting) that has a covering fraction of 0.978; (c) Template bank after 120 optimization stages that has a covering fraction
of 0.995.

dimensional Euclidean space. Here, we repeatedly apply the
template shifting optimization to the bank. With an increasing
number of such optimization steps it becomes apparent that
the template bank approaches an A∗2 lattice structure. Since in
this simple example the chosen parameter space is quadratic
with periodic boundary conditions, a perfectA∗2 cannot be ob-
tained, therefore defects are expected. This can be avoided by
choosing an appropriate size of the parameter space. Such
an example choice for length l and width w in 2 dimensions
would be l/w =

√
3/2 and a covering radius of the templates

that is an integer fraction of w/
√

3.
To evaluate the performance of the template shifting opti-

mization method, we study the increase in covering fraction f .
Again, for simplicity we consider the Euclidean space Ed with
up to d = 8 dimensions. For all dimensions, we choose again
r = 1 template shifts are limited to at most 5% of the cov-
ering radius, so that ε = 0.05. The resulting reduction of
non-covered parameter space (i.e. increasing f ) is presented
in Fig. 7. As can be seen from the figure, after a few opti-
mization steps of collective template shifting the non-covered
fraction of space (that is 1 − f ) can be significantly reduced.
Ultimately after a sufficient number of optimization steps the
fraction of non-covered can be decreased by two orders of
magnitude compared to the standard stochastic template bank
(corresponding to zero optimization steps). Recall that this
achievement has been made without the addition of any extra
templates to the bank. Further improvements could eventually
be made by varying or adapting ε during the run time, achiev-
ing a faster convergence or better covering. Similarly, replac-
ing the barycentric “fixed-size” template shift with some sim-
plex or gradient driven downhill method could better take into
account the overlapping volume of nearby templates and en-
able even more effective template shifts.

V. FURTHER EXAMPLES TO TEST THE NCA

For maximum efficiency of the NCA, the cells should be
constructed to adapt to the parameter space structure, e.g.
following the local metric approximation. In particular for
curved parameter spaces the cell construction and the deter-
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FIG. 7: The decreasing fraction of non-covered parameter space
(that is just 1− f ) with the number of optimization stages. At each
stage, the barycentric template shifting method is applied using max-
imum shifts of ε = 0.05. The different curves are for Euclidean
spaces Ed with dimensions from d = 2 up to d = 8, using periodic
boundary conditions and a template covering radius r = 1.

mination of neighboring cells requires care and can be dif-
ficult, in particular in higher dimensions since the number
of neighboring cells grows exponentially with the dimension.
However, when it is not possible to determine the exact set
of neighboring cells it always is save to just use a somewhat
larger set of cells (that is simpler to determine, but does in-
clude cells which are not strict neighbors). This would only
slightly reduce the performance since distances between more
templates have to be computed than actually necessary. On the
other hand, missing neighboring cells could lead to a more se-
vere issue, since this would lead to over-covering of templates
in the regions of the missed neighboring cells. In what fol-
lows, we show further exemplary applications of the NCA,
one related to the choice of coordinates on parameter space,
and one for a parameter space that is curved.
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FIG. 8: Example application of the NCA for Cartesian and polar coordinates. The individual panels are: (b) Schematic illustration of cell
construction when using Cartesian coordinates. (b) Schematic illustration of cell construction when using polar coordinates. (c) Comparison of
the non-covered fraction (1−f) for Cartesian and polar coordinates. In this comparison, we employed a template covering radius of r = 0.01
and a total number of templates N = 4000. To determine the non-covered fraction we used 20000 Monte Carlo points.

A. Choice of coordinates

In principle, the NCA and the optimization are independent
of the choice of the coordinates. This is demonstrated in the
following example. Figure 8 illustrates the parameter space
splitting (cell construction) for the NCA in Cartesian (x, y)
and in polar coordinates (ρ, φ). The coordinate transforma-
tion is given by x = ρ cosφ, y = ρ sinφ and the distance is
computed as d =

(
x2 + y2

)1/2
. It is obvious that in polar

coordinates the cells are obtained by dividing the parameter
space into rings of width r, where r is the covering fraction
of the templates. Each ring is fragmented so that a template
covering volume reaches only the neighboring cells and never
the cells beyond. The neighboring cells are the adjacent cells
in the same ring and any cell in the adjacent rings which can
be “reached” by the covering volume of any template in lying
inside the considered cell. This can also include cells which
have no common boundary points with the considered cell. Fi-
nally, the results of from applying the NCA for both choices
of coordinates are also presented in Fig. 8, showing that the
non-covered fraction as a function of the number optimization
stages (using barycentric shifts, see Sec. IV), is effectively the
same for both choices of coordinates.

B. Curved parameter space

To illustrate the applicability of the NCA for a curved (i.e.
non-flat) parameter space, we consider generating a stochas-
tic template bank on the sphere – an example that was also
used in HAS09. A sphere here means a set of points with the
same distance to a center point, where unit distance is used for
simplicity in the present example. Thus the length element is
defined as dl = dθ + dφ cos θ were −π/2 ≤ θ ≤ π/2 and
0 ≤ φ < 2π. The cells in parameter space are constructed,
using uniform spacings in the θ-direction. The cell sizes
∆φ in the φ direction should depend on θ. Because the
cell construction should be such that the covering volumes
of templates overlap only with neighboring cells, we choose

∆φ = r/ cos θb, where θb minimizes cos θ within this cell.
Making ∆φ smaller would result in template volumes which
could reach into non-neighboring cells. In this example, deter-
mining the neighboring cells works similar as described above
for polar coordinates. For a given θ one has to find all cells
which could have an overlap with any template inside the con-
sidered cell. In Fig. 9, the cell construction in parameter space
is displayed, along with the stochastic template generated by
the NCA, as well as the optimized template bank using the
barycentric shift method introduced in Sec. IV.

VI. GENERALIZATION OF THE NCA

In this section, we describe a conceptual idea how to gener-
alize the NCA for application even to arbitrarily “ill-behaved”
parameter spaces. In general, the smaller the average number
of templates per cell the smaller the number of required dis-
tance computations needed by the NCA. However, for certain
parameter spaces, the shape or the size of the template vol-
umes might be unknown or vary strongly across the space.
This might represent a non-negligible problem in order to
meet requirement (7) of Sec. III A, as one has to choose the
size of the cells to be sufficiently large. It may even lead to
extreme situations, where the efficiency gain from the NCA
can melt away.

To address this problem of ill-behaved parameter spaces,
we suggest the following strategy. To begin with, set up the
cells with a smaller size that actually violates the require-
ment (7) of Sec. III A. Then notice that in some regions of
parameter space, a template overlaps with many cells and
not only with neighboring ones. Therefore, one can combine
these cells to form a single virtual cell. Those virtual cells
then again meet all requirements for the NCA as outlined in
Sec. III A. This basic idea is illustrated in Fig. 10. To combine
cells the following recipe is proposed:

• Start with the first cell and place a template inside this
cell at a random position. Form the first virtual cell la-
beled A, which contains that first cell.
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FIG. 9: Example application of the NCA to place templates on the sphere, parameterized by the polar angle θ and the azimuth angle φ. Here
θ = 0 denotes the equatorial plane. The individual panels are: (a) Illustration of cell construction in parameter space. (b) Stochastic template
bank from the NCA containing 150 templates and having a covering fraction of f = 0.858. (c) Optimized template bank by the NCA with an
improved covering fraction of f = 0.984 for the same number of templates. The template covering radius has been chosen as r = 0.18 in this
example.

• Consider the next cell and place a second template in-
side. If the first and second templates are too close to
each other, the second cell also belongs to the same vir-
tual cell A. In this case the second template can be dis-
carded and the first template is the representing tem-
plate for the virtual cell A. On the other hand, if the
distance between the two templates is large enough, the
second cell forms another virtual cell labeled B, con-
taining the second cell. In this case, the first template
represents A and the second represents B.

• Continue this scheme subsequently for all other cells
and test whether the considered cell belongs to one of
the existing virtual cells. If not, the considered cells
forms a new virtual cell.

• Keep a list in memory which maps all cells to their vir-
tual cells.

• A virtual cell inherits the neighbors of its containing
cells. Note that if an inherited neighboring cell is also a
part of the same virtual cell, this cell has to be removed
from the list of neighbors.

This procedure will create a map of virtual cells which cover
the entire parameter space. While not guaranteed to gener-
ate the smallest possible virtual cells meeting condition (7) in
Sec. III A, this method is a viable solution and more flexible
than the basic version of the NCA described in Sec. III. To
check whether a specific point in parameter space is covered
by one of the templates, one proceeds as follows:

(1) Compute the cell index for the parameter-space point.

(2) Map the cell to the virtual cell and read out the indices
for the neighbored virtual cells.

(3) Collect all templates from the template lists of the own
and the neighbored virtual cells and compute all dis-
tances between the examined point and these templates.

(4) If one of the computed distances is smaller than the de-
sired covering radius, the point is covered.

For illustrative purposes, Fig. 10 shows a simplified example
to which above method is applied.

VII. CONCLUSIONS

This paper presents a neighboring cell algorithm (in short
NCA) to efficiently construct stochastic template banks cover-
ing multidimensional parameter spaces. A core improvement
from the NCA is the dramatic reduction in the number dis-
tance computations, achieved by dividing the parameter space
into separate cells (neighboring cells). For any point in param-
eter space we exploit an efficient hashing technique to obtain
the index of the enclosing cell (and thus the parameters of its
neighboring templates). This way, to test if a new candidate
template should be added to the bank, only templates located
within the own and neighboring cells have to be considered.
Previous methods [27, 28] required comparison (i.e. distance
computation) with all templates already in the bank and thus
were considerably more computational expensive and eventu-
ally prohibitive for large (or also high-dimensional) parame-
ter spaces. We have demonstrated that compared to the stan-
dard stochastic template bank algorithm, the NCA can reduce
the number of distance computations in a 3-dimensional Eu-
clidean space by about five orders of magnitude. In addition,
based on the NCA we have described a new method to signifi-
cantly increase the covered fraction of parameter space, solely
through systematic shifts of the template positions – without
adding further templates to the bank.

The NCA is guaranteed to work efficiently if the average
number of templates per neighboring cell is small. For cases,
where the shape and size of the template volumes vary dras-
tically across parameter space, this can be eventually become
difficult to achieve. To address this problem, we have pre-
sented a method to generalize the NCA by combining many
neighboring cells to form so-called virtual neighboring cells.
The arrangement of the virtual neighboring cells can adapt ad-
equately to the local parameter-space structure (the shape of
the covered template volumes).
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FIG. 10: Illustration of NCA generalization by combining cells to form virtual cells for arbitrary parameter-space structures. The cell
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letters. The left panel illustrates schematically the borders of the templates, cells, and virtual cells. The right top table shows a table for the
corresponding cell to virtual-cell mapping. The right bottom table presents a table that lists the neighbors of the virtual cells.

Apart from generating template banks, it should be pointed
out that the NCA can also be used to efficiently validate the
produced bank. This is usually done by searching synthetic
data sets containing simulated signals and determining the re-
sulting minimum mismatch in each case. The NCA consider-
ably accelerates this process by avoiding the need of having to
the search the entire template bank for every simulated-signal
data set. Instead, for any given parameter-space position of
a simulated signal, the NCA can readily provide the subset
of templates closest to the signal position, which are the only
ones relevant. Templates further away from the signal location
are irrelevant, since those will obviously have high mismatch
with the signal. Iterating this procedure for a large number
of simulated signals across the parameter space, gives rise to
a mismatch histogram to validate the efficiency of the entire
template bank.

The NCA, including the generalized version presented, has
applicability in different areas of astronomy. For example in
gravitational-wave searches for inspiral or continuous-wave
sources [5, 6], exploiting the NCA can potentially offer great
efficiency gains. In the field of gamma-ray pulsar astronomy,
the NCA has already been successfully used to construct an
optimized stochastic template bank to search data from the
Fermi Large Area Telescope for a pulsar binary system [16].
Further details involved and results from these applications of
the NCA are subject to forthcoming work.

Directions for a future work also include technical and
methodological improvements. In this work, we implemented
the NCA in a parallel algorithm using OpenMP5 and executed

the program on a single system. However, it might be worth-
while to port to an MPI version which runs on many com-
pute nodes or use remote databases to hold the template and
the cell table. The practicability of such algorithms has to
be investigated, particularly since random access on the en-
tire table ranges is required. Finally, a further improvement of
the optimization method could be achieved by replacing the
barycentric “fixed-size” template shift with some simplex or
gradient driven downhill method. This approach would better
take into account the overlapping volume of nearby templates
and enable even more effective template shifts.
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