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Placing signal templates (grid points) as efficiently as possible to cover a multidimensional parameter
space is crucial in computing-intensive matched-filtering searches for gravitational waves, but also in
similar searches in other fields of astronomy. To generate efficient coverings of arbitrary parameter spaces,
stochastic template banks have been advocated, where templates are placed at random while rejecting those
too close to others. However, in this simple scheme, for each new random point its distance to every
template in the existing bank is computed. This rapidly increasing number of distance computations can
render the acceptance of new templates computationally prohibitive, particularly for wide parameter spaces
or in large dimensions. This paper presents a neighboring cell algorithm that can dramatically improve the
efficiency of constructing a stochastic template bank. By dividing the parameter space into subvolumes
(cells), for an arbitrary point an efficient hashing technique is exploited to obtain the index of its enclosing
cell along with the parameters of its neighboring templates. Hence only distances to these neighboring
templates in the bank are computed, massively lowering the overall computing cost, as demonstrated in
simple examples. Furthermore, we propose a novel method based on this technique to increase the fraction
of covered parameter space solely by directed template shifts, without adding any templates. As is
demonstrated in examples, this method can be highly effective.
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I. INTRODUCTION

In searches for gravitational-wave signals usingmatched-
filtering methods or similar detection statistics, efficient
template banks play an essential role [1–6] when analyzing
data from the ground-based detector instruments such as
LIGO [7,8], Virgo [9], GEO600 [10,11] and TAMA [12],
as well as future space-based detectors [13]. Searches
for signals based on template banks are also relevant in
neighboring research fields of astronomy, for example in
binary pulsar searches of radio data from the Arecibo radio
telescope [14,15] or gamma-ray data from the Fermi
satellite [16].
In the standard procedure of matched-filtering searches,

the instrumental data are correlated with a template that
has the form the expected signal. Because the parameters
of the signal are unknown a priori, the data must be
correlated with a bank (or grid) of possible signal templates
(grid points) that have distinct parameter values [17,18].
Particularly for wide search parameter spaces, methods for
constructing template banks that minimize the computa-
tional burden without decreasing the signal detectability
are essential. This can be achieved by placing the templates
more optimally, such that fewer are required at the
same level of signal detectability. Different strategies for

improved template placement have been studied in pre-
vious work; e.g., see [19] and references therein.
For Euclidean spaces, the problem of finding an optimal

lattice coverings is well studied (e.g., [20]) and is related to
periodic crystalline structures. For up to five dimensions,
the so-called A�

n lattice turns out to cover the space with
the least number of templates [21,22]. For more than
five dimensions, other lattice structures are also known
which have a better covering behavior than A�

n lattices
[21]. However, a crystalline structure is often not
optimal if either a covering fraction of less than one is
desired, or the parameter space is not Euclidean or has large
dimensionality.
To address such cases, alternative schemes for arbitrary

parameter spaces have been considered in [23], where
templates are simply placed at random. Such random
template banks show superior covering behavior in higher
dimensions compared to relaxed (less than 100% covering
fraction) A�

n lattices. In low dimensions, Ref. [19] showed
that the covering of random template banks can be
improved by exploiting Sobol quasirandom sequences
[24–26]. However, with an increasing number of dimen-
sions the resulting improvement becomes less pronounced.
In stochastic template banks that have been suggested by

Harry, Allen and Sathyaprakash [27] (hereafter HAS09) as
well as by Babak [28] (hereafter B08), templates are picked
at random too, but only those are added to the bank which
have a distance larger than a certain predefined value
(covering radius) to any of those templates already in the
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bank. This procedure is to continue until no more new
template can be added to the bank. Compared to (fully)
random template placement, the filtering stage done for a
stochastic template bank thus results in a more diluted
template bank, leading in turn to a more efficient search
since much fewer templates have to be evaluated. As
HAS09 note, for this approach the number of templates
to reach a covering fraction of one (i.e. full coverage) is
actually finite.
However, a major drawback of the existing stochastic

template bank algorithms is the severe computational
complexity involved in the bank construction. This is
mainly because the distance between each new candidate
template and every other template already part of the bank
has to be computed and compared to the covering radius
before acceptance. Especially for covering fractions
approaching one, the computational cost for accepting a
new template to the bank increases much more rapidly than
quadratically, and can in fact become prohibitive for large
or high-dimensional parameter spaces.
In this paper, we present a solution to this problem by

dividing the parameter space into smaller subvolumes
(cells) to drastically reduce the aforementioned computa-
tional burden. This basic idea is hardly new, but inspired by
previous work (e.g., [29,30]), and also alluded to in
HAS09. Here we develop an efficient concept, which we
refer to as the neighboring cell algorithm (NCA), and study
its performance improvements. In addition, we describe a
new method to significantly increase the covering fraction
of a stochastic template bank without having to add further
templates to bank, but performing systematic shifts of the
templates in the bank.
This paper is organized as follows. To set the stage,

Sec. II describes the standard stochastic template bank
generation algorithm along with some general properties of
stochastic banks. Section III presents the NCA algorithm
to efficiently generate stochastic template banks and also
demonstrates its computational performance. Building
on this, in Sec. IV we show how the NCA can also be
exploited to optimize a stochastic template bank by purely
shifting the exiting templates of a bank, leading to a
significantly increased covering fraction without additional
templates. Section V illustrates two example applications
for different parameter spaces. In Sec. VI, we describe a
scheme to further generalize the NCA to arbitrarily com-
plicated parameter spaces by combining cells to adaptive
virtual cells. Finally, this is followed by a conclusion and
discussion of future directions in Sec. VII.

II. STOCHASTIC TEMPLATE PLACEMENT

To set the notation, let M label the d-dimensional signal
manifold, which we refer to as parameter space. We also
assume the availability of a positive-definite distance
function for two points in M. Thus, a template bank
consisting of N points in parameter space is said to

completely cover M with covering radius r if every point
in M lies within a distance r of at least one of the N points
of the template bank. An optimal template bank coveringM
with radius r would be most economical, i.e. having the
minimum number of points.
The standard algorithm for stochastic template place-

ment that has been proposed in HAS09 (and B08) uses the
following principal scheme, beginning with an empty
template bank:
(1) Draw a random point in M and add it to the

template bank.
(2) Draw another random point in M and add it to the

template bank only if its distance is greater than r to
every other already accepted point of the tem-
plate bank.

(3) Repeat the previous step until the number of points
in template bank stops changing, or other termina-
tion criteria are fulfilled.

In general, the distance between two points inM (or two
normalized signals) measures their overlap (i.e. match).
Another way to think of it, is that one of the two points is a
template and the other is a signal, so that the distance
reflects the fractional loss in signal-to-noise ratio (SNR)
due to the parameter offsets (i.e. mismatch) between the
template and the signal.
The basic difference between the methods of HAS09 and

B08 is the distance computation between points. Whereas
B08 uses the exact overlap to compute the distances,
HAS09 exploit a computationally less expensive approxi-
mation to the overlap via the geometric concept of a metric
on parameter space [31,32]. This metric tensor is obtained
by Taylor-expanding the fractional loss in squared SNR to
quadratic order in the parameter offsets. Hence, for prob-
lems where a reliable analytic metric is available acrossM,
the cost of distance calculations can be significantly
reduced. Additional efficiency can be achieved in such
cases by also modulating the distribution of random
candidate templates according to the volume element given
by the metric, as discussed in HAS09.
However, whether or not using a metric approximation is

used, in either case the total number of required distance
comparisons in step (2) of this basic scheme can quickly
render the entire construction process computationally
intractable. The NCA proposed here presents a solution
to this problem to significantly reduce the number of
distance computations needed, as will be described in
Sec. III C.
To assess the efficiency of a template covering, typically

its thickness Θ or its normalized thickness θ are considered.
We follow [20,23,27] and refer to the thickness Θ as the
average number of templates covering any parameter-
space point. The normalized thickness is just θ ¼ Θ=Vd,
where Vd is the volume of a d-dimensional unit sphere,
Vd ¼ π−d=2Γðd

2
þ 1Þ. Both, Θ and θ are invariant properties

of the covering, independent of r. The total number of
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templates, N ¼ θr−dVM, is thus directly proportional
to the normalized thickness (where VM is the proper
volume of M).
As outlined in HAS09, one can obtain theoretical upper

and lower bounds for the required number of templates for
a stochastic bank with complete covering. A theoretical
upper bound follows from the sphere packing problem by
considering how many nonoverlapping spheres with radius
r=2 can be packed into a certain volume. As the center of
such hard spheres are separated by r, these are possible
positions for a stochastic template bank. Thus, we use the
results of the sphere packing problem given in [20] to
obtain the upper bounds on the normalized thickness shown
in Fig. 1 A theoretical lower bound on the number of
required templates for a complete coverage is VM=ðVdrdÞ,
which is the ratio of the parameter-space volume and the
volume of one template with radius r. Therefore, the best
possible thickness is Θ ¼ 1, i.e. the best possible normal-
ized thickness is θ ¼ 1=Vd. In practice, however, it is
impossible to reach this for d > 1 [20].
For Euclidean spaces Ed with d dimensions a large body

of literature exists [20] seeking to find the lattice with
minimum possible thickness, such that when placing a d-
dimensional sphere with radius r at each lattice point, the
set of all such spheres completely covers Ed. Figure 1
shows the known minimum possible normalized thickness
values as listed in [21]. For comparison, the performance of
two other lattice algorithms is displayed, the hypercubical
lattice and the so-called A�

n lattice [20]. Notice that a
hypercubical lattice in dimensions d > 4 for unit covering

fraction does not satisfy the conditions of a stochastic
template bank.
Extending Fig. 1 of HAS09, we are also able to compute

the normalized thickness for a stochastic template bank for
up to ten dimensions. This calculation was only made
possible thanks to the significantly improved computa-
tional efficiency of the NCA algorithm presented in this
paper. Due to computational limitations, in HAS09 the
results for only up to four dimensions have been reported.
For dimensions higher than three, the stochastic bank
increasingly improves in performance compared to the
simple hypercubical lattice. Though the stochastic bank
with complete coverage performs less efficient than the A�

n
lattice. However, any such lattice coverings and construc-
tions algorithms are only defined for the cases of flat
parameter spaces. In contrast, the stochastic template bank
generation with the NCA in principle can be done for any
parameter space and thus can prove especially useful for
nonflat parameter spaces.
When generating a stochastic template bank, it is useful

to define the covering fraction f ∈ ½0; 1�, which denotes
the faction of VM that is covered by the union of all
template volumes. As HAS09 note, f is also related to the
computational complexity to populate the stochastic tem-
plate bank, because the expected number of candidate
templates required to accept one template to the bank
increases as 1=ð1 − fÞ.

III. THE NEIGHBORING CELL ALGORITHM

A. Key elements and requirements of the NCA

In the following we describe the key elements and basic
requirements of the NCA in order to efficiently generate a
stochastic template bank:
(1) The entire parameter space is divided into non-

overlapping subvolumes that we denote as cells.
For simplicity and ease of computing, we employ
hypercubical cells in a Cartesian coordinate
system.1 Any other regular or nonregular structure
is also possible.

(2) Each cell must be uniquely indexed.
(3) Generally, two cells are neighbors if at least one

common parameter-space point of one cell and a
template covering volume exists where the template
lies inside the other cell. In Cartesian coordinates
and hypercubical cells, neighboring cells have at
least one border point in common. For a given cell
index, the indices of the neighboring cells can be
computed.
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FIG. 1 (color online). The normalized thickness θ as a function
of the number of dimensions d for a stochastic template bank in
Ed (crosses). In addition, the lower and upper bounds for
stochastic template banks are shown, derived from the known
minimum and maximum possible normalized thickness values
for the sphere packing problem [20,21] as described in the text.
For comparison, also lattice placement algorithms (hypercubical
and A�

n) are displayed.

1For maximum efficiency in curved (i.e. nonflat) parameter
spaces, it its recommended to adapt the cells sizes to follow the
local metric approximation. See Sec. V for an example. For
complicated curved parameter spaces (e.g., where widely sepa-
rated cells would have high overlap), a possible alternative is
outlined in Sec. VI using the concept of virtual cells.
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(4) Each template must be uniquely indexed.
(5) Each template index is mapped to a cell index that

labels the cell in which the template position lies.
(6) Given a parameter-space position of a template, the

index of its enclosing cell is readily computed by a
hashing algorithm. For a hypercubical cell lattice
this is accomplished by a fast rounding or truncating
operation on the parameter values of the template
position.

(7) The parameter-space covered by a template only
overlaps with the space of the enclosing cell and the
neighboring cells. It must not overlap with the space
of non-neighboring cells. This is ensured by either
choosing a small enough covering radius of the
templates, or by designing the cells sufficiently large.

The NCA requires two different tables to be kept in
memory. First, the template table, which stores the indices
and the parameter-space positions of all templates. Second,
the cell table, which contains all cell indices and the list of
template indices of template positions lying within each
cell. Figure 2 shows a simplified example for the contents
of the cell table.

B. Stochastic template placement with the NCA

The following procedure describes how to generate a
stochastic template bank with covering fraction f using the
NCA. Starting with an empty template bank, the process for
adding new templates to the bank is as follows:
(1) Draw a random2 point in M as a candidate template

for addition to the bank.
(2) Determine the cell the candidate template falls into

by calculating its cell index iC.
(3) Compute the cell indices of all neighboring cells. We

refer to the resulting list of neighboring cells
including the enclosing cell iC as the neighboring-
cell (NC) list. Note that a cell that is a d-dimensional
hypercube has (3d − 1) neighboring cells.

(4) Sort the NC list in order of increasing distance. Start
with iC and proceed with the closest neighboring
cells. The distance between two cells is defined as
the distance between the centers of the cells. For
illustrative purposes, Fig. 3 shows an example for
the NC list.

(5) Retrieve a list of all template indices associated with
the cells of the NC list.

(6) For all retrieved template indices obtain the template
positions from the template table.

(7) Compute the distance between the candidate
template and every other template position of
those obtained in the previous step. Start with
the templates located in cells nearest to cell iC. If
all computed distances exceed the predefined cover-
ing radius, accept this candidate template as a new
template and assign it the next consecutive tem-
plate index.

(8) If the candidate template has been accepted, update
the template table: Append the position of the
accepted candidate template to the template table.
Also update the cell table: Append the template
index to the list of template indices pertaining to the
cell iC in the cell table.

(9) Repeat this procedure starting from step (1) until the
covering fraction f has reached the desired value.

C. Computational cost improvements from the NCA

A major drawback of the standard stochastic template
bank algorithm by HAS09 is the computational complexity
which can become even prohibitive. This is because for
each new candidate template its distance to every other
template of the existing bank has to be computed and
compared to the covering radius before eventual acceptance
to the bank. With increasing covering fraction the proba-
bility of accepting a candidate template decreases. At the
beginning,when the covering fraction substantially less than
one, the estimated computational cost for accepting a new
candidate template increases approximately quadratically
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FIG. 2 (color online). Exemplary illustration of the cell table,
which contains all cell indices and the list of template indices of
template positions lying within each cell. Shown on the left are
four templates (black circles) labeled by indices f1; 2; 3; 4g. The
cells (red boxes) are labeled by the indices fa; b; c; dg.
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FIG. 3 (color online). Schematic illustration of the distances
between neighboring cells of the NC list. The letters
fa; b; c; d; e; f; g; h; ig represent the cell indices. The numbers
shown are the distances from the center of the cell labeled by e to
each center of the other cells shown. For maximum efficiency, the
NC list is sorted by increasing order of this distance as explained
in the text.

2A pseudo-, quasi- or real random number generator may be
used. As described in HAS09, when an analytic metric is
available across M, it is advisable to modulate the distribution
of random points according to the volume element given by the
metric for maximum efficiency.
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with the number of templates in the bank, since almost no
templates are rejected. For covering fractions closer to one
the computational cost increases much faster than quadrati-
cally with the number of templates in the bank, because the
rejection of candidate templates dominates. It is this pro-
hibitive computing cost that can quickly render the accep-
tance of new templates computationally intractable in the
standard stochastic template bank algorithm.
In order to demonstrate the significant computational

efficiency improvement of the NCA over the standard
algorithm, we consider the generation of a stochastic
template bank in a three-dimensional Euclidean space with
periodic boundary conditions, where each coordinate lies
within ½0; 1�. The template covering radius r is chosen, such
that the bank contains 3.5 million templates at a covering
fraction of f ¼ 99.9%, which is given by r ¼ 1=180 and
implies a normalized thickness of about 0.6. To compare
the computational costs of both algorithms when construct-
ing this bank, we count the total number of distance
computations required in either case. Figure 4 shows the
results of this comparison study. With the NCA, the total
number of distance computations is massively reduced
and about 5 orders of magnitude lower compared to the
standard algorithm. This gain factor is not surprising but
straightforward to understand: It is simply the ratio of
the total volume of the considered parameter space to the
volume enclosed by a single cell and its ð33 − 1Þ neighbor-
ing cells, which gives 1803=27 ≈ 2 × 105 in this example.

Figure 4 also shows the shares in the total number of
distance computations separately for rejected and accepted
candidate templates. As can be seen, at the beginning for
low covering fractions, the computing cost is dominated
by the distance computations for accepted candidate
templates. As the template bank is getting more populated
at higher covering fractions, a turnover occurs, where the
computing cost starts being dominated by the distance
computations due to rejections and increases much more
rapidly. As can be seen, compared to the standard algorithm
for the NCA this turnover takes place at a larger covering
fraction. This is mainly due to the NCA’s much more
efficient rejection of candidate templates, as described in
the following.
Sorting the NC list of neighboring cells is crucial for the

efficiency of the NCA, specifically in view rejecting
candidate templates. This sorting [done in step (4) in
Sec. III C above] as part of the NCA stochastic template
bank generation considerably reduces the average number
of distance computations needed before a candidate tem-
plate is eventually rejected. As illustrated in Fig. 3, this is
obvious, because on average the overlapping volume of the
candidate template is highest with the own cell and
decreases for the neighboring cells. Therefore, the proba-
bility for rejecting a candidate template is the highest when
comparing to those templates located in the same cell.
Hence, the sorting of the NC list by distance of step (4) can
also be seen as sorting by decreasing order of probability of
rejection, which thus overall minimizes the average number
of distance computations. This is also seen in that the gain
factor between the NCA and the standard scheme (dotted
curve in Fig. 4) is mostly constant but increases for
covering fractions closer to one, where the rejections of
candidate templates dominate.
With higher dimensions this effect gains even more

importance, because the number of neighboring cells
increases exponentially with dimension. For example, if
d ¼ 3 the number of considered cells is 33 ¼ 27. Without
sorting and a cell addressing scheme as shown in Fig. 3, the
cell containing the candidate would be on average the
ð33 þ 1Þ=2 ¼ 14th cell considered. After sorting, the cell
enclosing the template candidate is considered first. Hence,
this sorting can decrease the number of distance computa-
tions by a factor of almost 14. Whereas, if d ¼ 10 the
number of considered cells is 310 ¼ 59049. The cell con-
taining the candidate in absence of sorting would be the
ð310 þ 1Þ=2 ¼ 29525th cell considered. Therefore, sorting
the NC list can decrease the number of distance computa-
tions in d ¼ 10 by almost 30000. This efficiency gain has
greatest importance for covering fractions nearing one,
where the majority of candidate templates is rejected
(see Fig. 4).
The NCA also significantly facilitates evaluating the

covering fraction at the different stages of the stochastic
bank generation. The covering fraction is typically obtained
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FIG. 4 (color online). Comparison of the computing cost
(measured by the number of distance computations) between
the standard algorithm and the NCA to generate a stochastic
template bank in E3. Shown as a function of the covering fraction
f for each method is the number of distance computations for
candidate templates that have been accepted (thin solid) and
rejected (thin dotted-dashed), as well as the total number (thick
dashed). With the NCA, the total number of distance computa-
tions is massively reduced, by more than 5 orders of magnitude as
shown by the dotted curve.
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via Monte Carlo integration using a sufficient number
of sample points (as also done in HAS09). The standard
algorithm by HAS09 has to compute the distances between
a sample point and all templates in the bank, which is
inefficient. The NCA instead readily can provide a list of
the subset of templates closest to a given sample point,
and only the distances to those are computed. This way,
wasteful distance computations for templates far away from
the sample-point location are avoided, as those templates
will obviously have no overlap with the sample point.

IV. INCREASING THE COVERING FRACTION
BY SHIFTING TEMPLATES

The generation of stochastic template banks with cover-
ing fractions nearing unity can become quickly computa-
tionally prohibitive. This is due to the enormous number of
candidate templates to be tested before a new template is
accepted to the bank. Here, we present a possible and
efficient alternative solution to this problem. The idea is to
first generate a stochastic template bank with initially
smaller covering fraction and then increase the covered
space by only shifting the positions of the templates,
instead of adding new ones.

A. Barycentric template shifts

In what follows, we describe a scheme to effectively shift
the templates in the bank with the goal of increasing the
overall covering fraction. One such shift optimization stage
begins with the first template in bank:
(1) Determine a set of points uniformly distributed on

the boundary of the covering volume of the template.
Note that the boundary of a covering volume is the
set of points which have distance r (the covering
radius) to the template position.

(2) Check whether each of these points is covered or not
by another template.3 If covered the boundary point
gets the zero weight, otherwise a weight of unity. In
case a boundary point lies outside of the relevant
parameter space this point gets also zero weight.

(3) From the set of boundary points with unit weight,
calculate the barycenter of these points.

(4) If the distance between the template position and the
barycenter is smaller then a certain maximum
distance ϵ, the template is moved to coincide with
the barycenter. If the distance is larger than ϵ, the
template position moved in the direction of the
barycenter by only ϵ.

(5) Carry out the procedure starting from step (1) for the
next template until done for all templates in
the bank.

The above scheme (forming a single optimization stage) is
to be repeated until the covering fraction does not increase
anymore (or any other terminating condition is met). In
general, step (4) will increase the fraction of covered
parameter space. However, it might also happen that
occasionally a template is shifted towards an existing
template, leading to an undesired newly created overlap.
To mitigate this effect, we therefore recommend to set the
maximum shift distance ϵ at a fraction of r. Within this
work we found that choosing a maximum shift of ϵ ¼ 0.05r
provides overall satisfactory results.

B. Choice of boundary points and computing cost

The actual number of boundary points used is a tradeoff
between accuracy of the barycentric shift and computa-
tional efficiency. As a lower bound, to be able to shift the
template position into any direction in a d-dimensional
parameter space, the minimum number of points is 2d.
More boundary points will improve the accuracy of the
shift, but also decrease the computational efficiency of a
single optimization stage. While a more detailed study of
these aspects is beyond the scope of this paper, one scheme
we found to work sufficiently well for our purposes is
choosing twice as many boundary points as there are
neighboring cells, i.e. 2 × ð3d − 1Þ points.
One way to place the set of boundary points as required

in step (1) is the following approach, first presented in
[33,34]. In a d-dimensional Euclidean space with spherical
template volumes, a uniformly distributed set of boundary
points can be obtained by placing random points uniformly
into the enveloping hypercubical box. As illustrated in
Fig. 5, then all points lying outside of the sphere are
discarded and those inside the sphere are projected onto the
boundary to provide the desired set of boundary points.
The computational cost of this optimization scheme is

again dominated by the number of distance computations.
In this method, the number of needed distance computa-
tions D is simply the product D ¼ NO × NB × NS × N×,
where NO is the number of optimization stages, NB is the
number of boundary points, NS is the average number of
templates in the considered within the subvolume of the
neighboring cells, and N is the total number of templates.
As mentioned above, NB can be taken as 2 × ð3d − 1Þ.
Moreover, NS is estimated as the normalized thickness θ
times the number of neighboring cells plus the own cell
giving 3d. The value of NO depends on the used shifting
method, while typically we reached convergence after
NO ¼ 20 stages. Thus, for example in three dimensions,
the number of required distance computations using the
normalized thickness of the optimal covering is
D ¼ 20 × 26 × 9.8 × N ≈ 10200 × N. It is worth noting
that since the computational cost is only linear in the total
number of templates N, this proposed scheme is feasible
also for a relatively large template banks.

3Notice that this can be accomplished by treating each
boundary point like candidate template as described in Sec. III.
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C. Performance demonstration

Figure 6 illustrates the effect of the optimization via
barycentric template shifting for a stochastic template bank
in a two-dimensional Euclidean space. Here, we repeatedly
applied template shifting optimization several times to the
bank. With an increasing number of such optimization
steps it becomes apparent that the template bank
approaches an A�

2 lattice structure. Since we chose periodic
boundary conditions and a quadratic parameter space, a
perfect A�

2 cannot be obtained and defects are expected.
This can be avoided by choosing an appropriate size of the
parameter space. Such an example choice for length l and
width w in two dimensions would be l=w ¼ ffiffiffi

3
p

=2 and a

covering radius of the templates that is an integer fraction
of w=

ffiffiffi

3
p

.
To evaluate the performance of the template shifting

optimization method, we study the increase in covering
fraction f. Again, for simplicity we consider the Euclidean
space Ed with up to d ¼ 8 dimensions. For all dimensions,
we choose again r ¼ 1 template shifts are limited to at most
5% of the covering radius, so that ϵ ¼ 0.05. The resulting
reduction of noncovered parameter space (i.e. increasing f)
is presented in Fig. 7. As can be seen from the figure, after
a few optimization steps of collective template shifting
the noncovered fraction of space (that is 1 − f) can be
significantly reduced. Ultimately after a sufficient number
of optimization steps the fraction of noncovered can be
decreased by 2 orders of magnitude compared to the
standard stochastic template bank (corresponding to zero
optimization steps). Recall that this achievement has been
made without the addition of any extra templates to the
bank. Further improvements could eventually be made by
varying or adapting ϵ during the run time, achieving a faster
convergence or better covering. Similarly, replacing the
barycentric “fixed-size” template shift with some simplex
or gradient driven downhill method could better take into
account the overlapping volume of nearby templates and
enable even more effective template shifts.

V. FURTHER EXAMPLES TO TEST THE NCA

For maximum efficiency of the NCA, the cells should be
constructed to adapt to the parameter space structure, e.g.,
following the local metric approximation. In particular for
curved parameter spaces the cell construction and the
determination of neighboring cells requires care and can
be difficult, in particular in higher dimensions since the
number of neighboring cells grows exponentially with the
dimension. However, when it is not possible to determine
the exact set of neighboring cells it always is safe to just use
a somewhat larger set of cells (that is simpler to determine,
but does include cells which are not strict neighbors). This
would only slightly reduce the performance since distances

FIG. 5 (color online). Schematic illustration of the barycentric
template shifts to increase the covering fraction. Left: Illustration
of the generation of the boundary points. In the enclosing cube
around the sphere random points are placed uniformly. The points
falling outside of the template volume (small hollow points) are
ignored. The points are inside the sphere (small filled black
points) they are projected onto the boundary of the template
volume, providing the boundary points. Right: The thick red lines
shows points on the boundary of a template covering volume that
have weight one. These points are not covered by any neighbor-
ing template. All other boundary points get the weight zero.
Using these weights we can compute the barycenter of the
boundary points. The arrow points from the current position of
the template to the center of mass of the unit-weight (red thick)
boundary points. The resulting shift of the template position
towards this barycenter thus increases the covering fraction.

FIG. 6. Illustration of different optimization stages of a two-dimensional stochastic template bank in Euclidean space with a
normalized thickness of 0.38. The individual panels are: (a) Unoptimized template bank that has a covering faction of 0.89; (b) Template
bank after 12 optimization stages (template shifting) that has a covering fraction of 0.978; (c) Template bank after 120 optimization
stages that has a covering fraction of 0.995.
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between more templates have to be computed than are
actually necessary. On the other hand, missing neighboring
cells could lead to a more severe issue, since this would
lead to over-covering of templates in the regions of the
missed neighboring cells. In what follows, we show further
exemplary applications of the NCA, one related to the
choice of coordinates on parameter space, and one for a
parameter space that is curved.

A. Choice of coordinates

In principle, the NCA and the optimization are
independent of the choice of the coordinates. This is

demonstrated in the following example. Figure 8 illustrates
the parameter space splitting (cell construction) for the
NCA in Cartesian ðx; yÞ and in polar coordinates ðρ;ϕÞ.
The coordinate transformation is given by x ¼ ρ cosϕ,
y¼ρsinϕ and the distance is computed as d¼ðx2þy2Þ1=2.
It is obvious that in polar coordinates the cells are obtained
by dividing the parameter space into rings of width r, where
r is the covering fraction of the templates. Each ring is
fragmented so that a template covering volume reaches
only the neighboring cells and never the cells beyond. The
neighboring cells are the adjacent cells in the same ring
and any cell in the adjacent rings which can be “reached”
by the covering volume of any template in lying inside the
considered cell. This can also include cells which have no
common boundary points with the considered cell. Finally,
the results from applying the NCA for both choices of
coordinates are also presented in Fig. 8, showing that the
noncovered fraction as a function of the number optimi-
zation stages (using barycentric shifts, see Sec. IV) is
effectively the same for both choices of coordinates.

B. Curved parameter space

To illustrate the applicability of the NCA for a curved
(i.e. nonflat) parameter space, we consider generating a
stochastic template bank on the sphere—an example that
was also used in HAS09. A sphere here means a set of
points with the same distance to a center point, where unit
distance is used for simplicity in the present example. Thus
the length element is defined as dl ¼ dθ þ dϕ cos θ were
−π=2 ≤ θ ≤ π=2 and 0 ≤ ϕ < 2π. The cells in parameter
space are constructed, using uniform spacings in the θ
direction. The cell sizes Δϕ in the ϕ direction should
depend on θ. Because the cell construction should be such
that the covering volumes of templates overlap only with
neighboring cells, we choose Δϕ ¼ r= cos θb, where θb
minimizes cos θ within this cell. Making Δϕ smaller would
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FIG. 7 (color online). The decreasing fraction of noncovered
parameter space (that is just 1 − f) with the number of opti-
mization stages. At each stage, the barycentric template shifting
method is applied using maximum shifts of ϵ ¼ 0.05. The
different curves are for a template covering radius r ¼ 1 in a
d-dimensional Euclidean space Ed with periodic boundary
conditions.

FIG. 8 (color online). Example application of the NCA for Cartesian and polar coordinates. The individual panels are: (b) Schematic
illustration of cell construction when using Cartesian coordinates. (b) Schematic illustration of cell construction when using polar
coordinates. (c) Comparison of the noncovered fraction ð1 − fÞ for Cartesian and polar coordinates. In this comparison, we employed a
template covering radius of r ¼ 0.01 and a total number of templates N ¼ 4000. To determine the noncovered fraction we used 20000
Monte Carlo points.
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result in template volumes which could reach into non-
neighboring cells. In this example, determining the neigh-
boring cells works similar as described above for polar
coordinates. For a given θ one has to find all cells which
could have an overlap with any template inside the
considered cell. In Fig. 9, the cell construction in parameter
space is displayed, along with the stochastic template
generated by the NCA, as well as the optimized template
bank using the barycentric shift method introduced
in Sec. IV.

VI. GENERALIZATION OF THE NCA

In this section, we describe a conceptual idea how
to generalize the NCA for application even to arbitrarily
“ill-behaved” parameter spaces. In general, the smaller
the average number of templates per cell the smaller the
number of required distance computations needed by the
NCA. However, for certain parameter spaces, the shape or
the size of the template volumes might be unknown or vary
strongly across the space. This might represent a non-
negligible problem in order to meet requirement (7) of

Sec. III A, as one has to choose the size of the cells to be
sufficiently large. It may even lead to extreme situations,
where the efficiency gain from the NCA can melt away.
To address this problem of ill-behaved parameter spaces,

we suggest the following strategy. To begin with, set up the
cells with a smaller size that actually violates the require-
ment (7) of Sec. III A. Then notice that in some regions
of parameter space, a template overlaps with many cells
and not only with neighboring ones. Therefore, one can
combine these cells to form a single virtual cell. Those
virtual cells then again meet all requirements for the NCA
as outlined in Sec. III A. This basic idea is illustrated in
Fig. 10. To combine cells the following recipe is proposed:

(i) Start with the first cell and place a template inside
this cell at a random position. Form the first virtual
cell labeled A, which contains that first cell.

(ii) Consider the next cell and place a second template
inside. If the first and second templates are too close
to each other, the second cell also belongs to the
same virtual cell A. In this case the second template
can be discarded and the first template is the
representing template for the virtual cell A. On

FIG. 9 (color online). Example application of the NCA to place templates on the sphere, parameterized by the polar angle θ and the
azimuth angle ϕ. Here θ ¼ 0 denotes the equatorial plane. The individual panels are: (a) Illustration of cell construction in parameter
space. (b) Stochastic template bank from the NCA containing 150 templates and having a covering fraction of f ¼ 0.858. (c) Optimized
template bank by the NCAwith an improved covering fraction of f ¼ 0.984 for the same number of templates. The template covering
radius has been chosen as r ¼ 0.18 in this example.
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FIG. 10 (color online). Illustration of NCA generalization by combining cells to form virtual cells for arbitrary parameter-space
structures. The cell indices are indicated by Arabic numbers. The virtual-cell indices are labeled with red capital letters. The templates
are denoted by lower-case letters. The left panel illustrates schematically the borders of the templates, cells, and virtual cells. The right
top table shows a table for the corresponding cell to virtual-cell mapping. The right bottom table presents a table that lists the neighbors
of the virtual cells.
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the other hand, if the distance between the two
templates is large enough, the second cell forms
another virtual cell labeled B, containing the second
cell. In this case, the first template represents A and
the second represents B.

(iii) Continue this scheme subsequently for all other cells
and test whether the considered cell belongs to one
of the existing virtual cells. If not, the considered
cells forms a new virtual cell.

(iv) Keep a list in memory which maps all cells to their
virtual cells.

(v) A virtual cell inherits the neighbors of its containing
cells. Note that if an inherited neighboring cell is
also a part of the same virtual cell, this cell has to be
removed from the list of neighbors.

This procedure will create a map of virtual cells which
cover the entire parameter space. While not guaranteed to
generate the smallest possible virtual cells meeting con-
dition (7) in Sec. III A, this method is a viable solution and
more flexible than the basic version of the NCA described
in Sec. III. To check whether a specific point in parameter
space is covered by one of the templates, one proceeds as
follows:
(1) Compute the cell index for the parameter-

space point.
(2) Map the cell to the virtual cell and read out the

indices for the neighbored virtual cells.
(3) Collect all templates from the template lists of the

own and the neighbored virtual cells and compute all
distances between the examined point and these
templates.

(4) If one of the computed distances is smaller than the
desired covering radius, the point is covered.

For illustrative purposes, Fig. 10 shows a simplified
example to which above method is applied.

VII. CONCLUSIONS

This paper presents a neighboring cell algorithm (in short
NCA) to efficiently construct stochastic template banks for
arbitrary parameter spaces. A core improvement from the
NCA is the dramatic reduction in the number distance
computations achieved by dividing the parameter space
into separate cells (neighboring cells). For any point in
parameter space we exploit an efficient hashing technique
to obtain the index of the enclosing cell (and thus the
parameters of its neighboring templates). This way, to test if
a new candidate template should be added to the bank, only
templates located within the own and neighboring cells
have to be considered. Previous methods [27,28] required
comparison (i.e. distance computation) with all templates
already in the bank and thus were considerably more
computational expensive and eventually prohibitive for
large (or also high-dimensional) parameter spaces. We
have demonstrated that compared to the standard stochastic
template bank algorithm, the NCA can reduce the number

of distance computations in a three-dimensional Euclidean
space by about 5 orders of magnitude. In addition, based
on the NCA we have described a new method to signifi-
cantly increase the covered fraction of parameter space,
solely through systematic shifts of the template positions—
without adding further templates to the bank.
The NCA is guaranteed to work efficiently if the average

number of templates per neighboring cell is small. For
cases, where the shape and size of the template volumes
vary drastically across parameter space, this can be even-
tually become difficult to achieve. To address this problem,
we have presented a method to generalize the NCA by
combining many neighboring cells to form so-called virtual
neighboring cells. The arrangement of the virtual neighbor-
ing cells can adapt adequately to the local parameter-space
structure (the shape of the covered template volumes).
Apart fromgenerating template banks, it shouldbepointed

out that the NCA can also be used to efficiently validate the
produced bank. This is usually done by searching synthetic
data sets containing simulated signals and determining the
resulting minimum mismatch in each case. The NCA
considerably accelerates this process by avoiding the need
of having to search the entire template bank for every
simulated-signal data set. Instead, for any given param-
eter-space position of a simulated signal, the NCA can
readily provide the subset of templates closest to the signal
position, which are the only ones relevant. Templates further
away from the signal location are irrelevant, since those will
obviously have high mismatch with the signal. Iterating this
procedure for a large number of simulated signals across the
parameter space, gives rise to a mismatch histogram to
validate the efficiency of the entire template bank.
The NCA, including the generalized version presented,

has applicability in different areas of astronomy. For
example in gravitational-wave searches for inspiral or
continuous-wave sources [5,6], exploiting the NCA can
potentially offer great efficiency gains. In the field of
gamma-ray pulsar astronomy, the NCA has already been
successfully used to construct an optimized stochastic
template bank to search data from the Fermi Large Area
Telescope for a pulsar binary system [16]. Further details
involved and results from these applications of the NCA are
subject to forthcoming work.
Directions for a future work also include technical and

methodological improvements. In this paper, we imple-
mented the NCA in a parallel algorithm using OpenMP4

and executed the program on a single system. However, it
might be worthwhile to port to an MPI version which runs
on many compute nodes or use remote databases to hold the
template and the cell table. The practicability of such
algorithms has to be investigated, particularly since random
access on the entire table ranges is required. Finally, a
further improvement of the optimization method could be

4http://openmp.org/
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achieved by replacing the barycentric “fixed-size” template
shift with some simplex or gradient driven downhill
method. This approach would better take into account
the overlapping volume of nearby templates and enable
even more effective template shifts.
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