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We study the process of quantum tunnelling in scalar-tensor theories in which

the scalar field is non-minimally coupled to gravity. In these theories gravitational

instantons can deviate substantially from sphericity and can in fact develop a neck –

a feature prohibited in theories with minimal coupling. Such instantons with necks

lead to the materialisation of bubble geometries containing a wormhole region. We

clarify the relationship of neck geometries to violations of the null energy condition,

and also derive a bound on the size of the neck relative to that of the instanton.

I. INTRODUCTION

Recently there has been substantial interest in theories violating the null energy condition (NEC)

(see e.g. [1], [2] for reviews). Such theories may lead to interesting phenomena like the creation

of a universe in the laboratory [1], the existence of traversable Lorentzian wormholes [3] or non-

singular bounce solutions [4–8]. One of the examples of NEC violating theories is a scalar field

theory non-minimally coupled to gravity [9]∗, and Lorentzian wormholes were in fact found in this

theory [12, 13]. Lorentzian wormholes typically join two asymptotically flat geometries, or could be a

bridge between an asymptotically flat and a spatially closed universe, see Fig. (1). The characteristic

feature of a wormhole is the existence of a “neck” in a spatial slice.

In present paper we will consider the Euclidean version of modified gravity theories in order to

study metastable vacuum decay processes [14]. In particular we are interested in the possibility of

∗Electronic address: lorenzo.battarra@aei.mpg.de
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∗ We note that non-minimal coupling is also actively discussed in context of Higgs inflation [10, 11].
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Figure 1: Schematic view of a semiclosed world. An asymptotically flat region (in blue) is connected to

a spatially closed one (in red) via a wormhole, exhibiting the characteristic “neck” feature (in green) in

the geometry.

creating a wormhole during metastable vacuum decay processes. A priori there are four possible

instanton shapes in de Sitter to de Sitter transitions, depending on whether the false and true

vacuum regions are smaller or larger than half of Euclidean de Sitter space, see e.g. the discussion in

[15, 16]. A neck is only present in the case where both “halves” of the instanton are larger than half

of Euclidean de Sitter space. However, it was shown in [17] that in scalar field theories minimally

coupled to gravity such configurations cannot arise. At the same time it was argued [17] that the

creation of instantons with necks might be possible if one allows for a non-minimal coupling of the

scalar field to gravity. Here we will explore this possibility in detail.†

II. MINIMAL COUPLING AND NEC VIOLATION

We will start with a simple model of a scalar field φ with a potential V (φ) minimally coupled to

gravity and described by the action

S =

∫
d4x
√
−g
( 1

2κ
R− 1

2
∇µφ∇µφ− V (φ)

)
, (1)

† Certain related issues in the context of Brans-Dicke theories have been studied in [18, 19].
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where κ is the reduced Newton’s constant. We will consider homogeneous and isotropic universes,

described by the metric

ds2 = −dt2 + a2(t)γKij dx
idxj = −dt2 + a2(t)[

dr2

1−Kr2
+ r2dθ2 + r2 sin2(θ)dϕ2]. (2)

In what follows we will only be interested in the K = +1 case, but for clarity we will write K out

explicitly in this section. The energy momentum tensor is given by

T00 = ρs , Tij = a2γKij ps (3)

where the energy density and the pressure are given respectively by

ρs =
1

2

(
dφ

dt

)2

+ V , ps =
1

2

(
dφ

dt

)2

− V . (4)

The null energy condition (NEC)

Tµνn
µnν > 0 , (5)

with nµ being a null vector, nµn
µ = 0, then reduces to the requirement

ρs + ps > 0 . (6)

The equations of motion (Friedmann equations) can be written in the form

H2 =
κ

3
ρs −

K

a2
, (7)

dH

dt
= −κ

2
(ρs + ps) +

K

a2
, (8)

where H ≡ (da/dt)/a. Tunnelling can be described by performing an analytic continuation to Eu-

clidean time, with t = −iλ̄. Then the metric and scalar field are of the form

ds̄2
E = dλ̄2 + ρ̄2dΩ2

3 , φ̄ = φ̄(λ̄) , (9)

where ρ̄(λ̄) ≡ a(it). Note that the Euclidean version of the NEC condition Eq. (6) reverses sign:

ρEs + pEs < 0 , (10)

where the Euclidean energy density and pressure are obtained by analytic continuation of Eq. (4)

ρEs = −1

2

(
dφ

dλ̄

)2

+ V , pEs = −1

2

(
dφ

dλ̄

)2

− V . (11)

The Euclidean versions of the Friedmann equations read

H2
E = −κ

3
ρEs +

K

a2
, (12)

dHE

dλ̄
=

κ

2
(ρEs + pEs )− K

a2
, (13)
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where HE = (dρ̄/dλ̄)/ρ̄. At the putative neck of an instanton, i.e. at a local minimum of ρ̄(λ̄),

we have HE = 0 and would need dHE

dλ̄
> 0, which, in view of Eq. (13), is impossible if the “NEC”

condition Eq. (10) is fulfilled. Thus we can see that (O(4) symmetric) instantons in theories whose

Lorentzian counterpart satisfies the NEC cannot have a neck.

III. MODIFIED GRAVITY: EINSTEIN AND JORDAN FRAMES

The arguments of the previous section motivate us to study theories in which the scalar field is

non-minimally coupled to gravity. In particular, we will be interested in the theory defined by the

Euclidean action

SE =

∫
d4x
√
g

(
− 1

2κ
f(φ)R +

1

2
∇µφ∇µφ+ V (φ)

)
+ Sm(ψm, gµν) , (14)

where the matter action Sm depends on matter fields ψm, which we assume to couple to the physical

metric gµν [20]. With the conformal transformation and field redefinition

gµν ≡ f−1 ḡµν , (15)

dφ̄

dφ
≡

√
f + 3

2κ
f 2
,φ

f
, (16)

we obtain the action in Einstein frame,

SE =

∫
d4x
√
ḡ

(
− 1

2κ
R̄ +

1

2
∇̄µφ̄∇̄µφ̄+ V̄

)
+ Sm(ψm, f

−1ḡµν) , (17)

where V̄ = V (φ(φ̄))/f 2. At the level of classical solutions, this means that if

ds2 = dλ2 + ρ2(λ)dΩ2
3 , φ = φ(λ) , (18)

is a solution in Jordan frame (14), then

ds2 = dλ̄2 + f(φ(λ̄))ρ2(λ̄)dΩ2
3 , φ̄ = φ̄(φ(λ̄)) , (19)

is a solution in Einstein frame (17) provided that φ̄(φ) is specified (up to an irrelevant integration

constant) by (16) and
dλ̄

dλ
= f 1/2 . (20)

In particular, this means that the two “scale factors” are related by

ρ =
ρ̄

f 1/2
. (21)

This implies that, if ρ̄ is a “normal” instanton with only one extremum (local maximum) and the

function f has a sufficiently sharp local maximum, the profile of the instanton in the Jordan frame

can develop a neck.
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IV. NON-MINIMAL COUPLING: MODEL AND FIELD EQUATIONS

For specificity we will choose

f(φ) = 1− κξφ2 , (22)

i.e. we will consider the Euclidean theory with action

SE =

∫
d4x
√
g
(
− 1

2κ
R +

1

2
∇µφ∇µφ+ V (φ) +

ξ

2
φ2R

)
, (23)

where ξ is dimensionless parameter. Varying this action w.r.t. φ and the metric leads to the scalar

field equation

∇µ∇µφ− ξRφ =
dV

dφ
, (24)

and the gravity equations

Rµν −
1

2
gµνR = κ̃Tµν − κ̃ξ(∇µ∇ν − gµν∇λ∇λ)φ2 , (25)

where

κ̃ ≡ κ

1− κξφ2
, (26)

is the effective gravitational constant and the minimally coupled energy momentum tensor is given

by

Tµν = ∇µφ∇νφ−
1

2
gµν∇λφ∇λφ− gµνV (φ) . (27)

To proceed, we contract Eq. (25) with gµν to obtain the relation

R =
κ

1− κξ(1− 6ξ)φ2

(
4V − 6ξφ

dV

dφ
+ (1− 6ξ)∇λφ∇λφ

)
, (28)

which is the generalisation of a relation found earlier [17] for the ξ = 1/6 case. Assuming

O(4)−symmetry,

ds2 = N2(λ)dλ2 + ρ(λ)2dΩ2
3, φ = φ(λ) , (29)

the reduced Euclidean action takes the form

SE = 2π2

∫
dλ
( ρ3

2N
φ̇2 + ρ3NV − ρ3N

2κ̃
R
)
, (30)

where ˙≡ d/dλ and

R =
6

ρ2
− 6ρ̇2

ρ2N2
− 6ρ̈

ρN2
+

6ρ̇Ṅ

ρN3
. (31)

In proper time gauge, N ≡ 1, the equations of motion are

φ̈+ 3
ρ̇

ρ
φ̇− ξRφ =

dV

dφ
, (32)

ρ̇2 = 1 +
κ̃ρ2

3
(
1

2
φ̇2 − V + 6ξ

ρ̇

ρ
φφ̇) , (33)

ρ̈ = − κ̃ρ
3

(
φ̇2 + V − 3ξ(φ̇2 +

ρ̇

ρ
φφ̇+ φφ̈)

)
. (34)
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Figure 2: The scalar field potential V (φ) in Jordan frame (left) and the corresponding potential V̄ (φ̄) in

Einstein frame (right).

With help of Eq. (28) the scalar field equation Eq. (32) takes the form

φ̈+ 3
ρ̇

ρ
φ̇− κξφ

1− κξ(1− 6ξ)φ2
[4V − 6ξφ

dV

dφ
+ (1− 6ξ)φ̇2] =

dV

dφ
. (35)

Finally, using Eq. (35) the last equation Eq. (34) can be rewritten in a form that is convenient for

numerical integration:

ρ̈ = − κ̃ρ
3

(
(1− 3ξ

1− κξ(1− 6ξ)φ2
)φ̇2 +

1− κξ(1 + 6ξ)φ2

1− κξ(1− 6ξ)φ2
V

+6ξ
ρ̇

ρ
φφ̇− 3ξ(1− κξφ2)

1− κξ(1− 6ξ)φ2
φ
dV

dφ

)
. (36)

Eqs. (35), (36) simplify for the particular value ξ = 1/6, which reflects the value for a conformally

invariant coupling of a massless scalar field [22]. We note that the equation of motion Eq. (33) differs

from the corresponding equation presented in recent research on a similar topic in [23, 24] - though

see also [25], where the equation was corrected and where the nucleation of true vacuum bubbles in

a false vacuum background in the presence of non-minimal coupling was discussed.

Note that the rhs of the Eq. (25) allow us to find the Euclidean energy density and pressure for

non-minimally coupled scalar field as

ρEξ = κ̃

(
−1

2

(
dφ

dλ

)2

+ V − 3ξHE
d(φ2)

dλ

)
, (37)

pEξ = κ̃

(
−1

2

(
dφ

dλ

)2

− V + ξ
d2(φ2)

dλ2
+ 2ξHE

d(φ2)

dλ

)
. (38)

Thus we see that now the Euclidean NEC

ρEξ + pEξ < 0 ↔ −
(
dφ

dλ

)2

+ ξ
d2(φ2)

dλ2
− ξHE

d(φ2)

dλ
< 0 (39)
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has the possibility of being violated if ξ 6= 0. Such violations due to non-minimal coupling were

previously discussed e.g. in [9, 13, 21].

We will now assume that the potential V (φ) is positive and has two non-degenerate local minima

at φ = φtv and φ = φfv, with V (φfv) > V (φtv), as well as a local maximum for some φ = φtop, with

φfv < φtop < φtv. The Euclidean solution describing vacuum decay satisfies the boundary conditions

φ(0) = φ0, φ̇(0) = 0, ρ(0) = 0, ρ̇(0) = 1 , (40)

at λ = 0 and

φ(λmax) = φm, φ̇(λmax) = 0, ρ(λmax) = 0, ρ̇(λmax) = 1 , (41)

at some λ = λmax. This assumes the following Taylor series at λ→ 0

φ(λ) = φ0 +
(1− κξφ2

0)∂V
∂φ
|φ=φ0 + 4κξφ0V (φ0)

8(1− κξφ2
0(1− 6ξ))

λ2 +O(λ4) , (42)

ρ(λ) = λ−
κV (φ0)− 3

2
κξφ0

∂V
∂φ
|φ=φ0

18(1− κξφ2
0(1− 6ξ))

λ3 +O(λ5) , (43)

and similar power law behaviour as x→ 0, where x = λmax − λ.

V. NUMERICAL EXAMPLES

For our numerical examples, we will consider the potential

V (φ) = Λ +
1

2
µφ2 +

1

3
β3φ

3 +
1

4
β4φ

4 + Ae−αφ
2

, (44)

whose shape is shown in Fig. 2 on the left. The right panel of the same figure shows the corresponding

potential in Einstein frame. We have chosen the following values for the constants appearing in SE,

κ = 0.1 , ξ = 3 , Λ = 0.1 , µ = 1.0 , β3 = −0.25 , β4 = 0.1 , A = 3.0 , α = 2.0 . (45)

When |φ| is too large, the effective gravitational constant κ̃ becomes negative, and a region of “anti-

gravity” is reached. These regions are shaded in the plot of V (φ) – in our discussion, we will solely

be concerned with the regions of ordinary-sign gravity.

We have integrated Eqs. (35) and (36) numerically with the boundary conditions Eqs. (42) and

(43) and indeed found that instantons in this theory can have a neck ‡. An example of an instanton

with neck is shown in Fig. 3. The scalar field has a characteristic kink profile while the scale factor

‡ Earlier studies of the creation of wormholes during tunnelling transitions include [26, 27].
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Figure 3: The field profiles (scale factor on the left, scalar field on the right) for our example of an

instanton with a neck.
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Figure 4: The field profiles (scale factor on the left, scalar field on the right) for our oscillating instanton

example. The scalar field profile now leads to a hump in the scale factor, rather than a neck.

ρ develops a neck in the small φ region, where the suppression due to the factor f−1/2 in Eq. (21)

is the largest. Note that in this potential one can also find oscillating instantons [28–32], in which

the scalar field oscillates several times back and forth between the two sides of the potential barrier.

An example of a twice oscillating instanton is shown in Fig. 4. In this case the scalar field profile

has two nodes and the scale factor acquires a “hump” instead of a neck. We should remark that, as

already anticipated in [17], in order for these special features to arise the potential must contain a

rather sharp barrier between the two local minima – it is for this reason that we included a Gaussian

term in our definition of the potential in Eq. (44).

We also checked that the neck and hump features disappear in Einstein frame. Fig. 5 shows what
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Figure 5: In Einstein frame, the neck of Fig. 3 has disappeared.
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Figure 6: In Einstein frame, the hump of the oscillating instanton in Fig. 4 has also disappeared.

the instanton corresponding to the one shown in Fig. 3 looks like in the Einstein frame, while Fig. 6

is the Einstein frame counterpart of the oscillating instanton shown in Fig. 4. In these figures the

dots represent the data obtained via the conformal transformation, while the solid line represents

the data obtained by solving the field equations directly in Einstein frame – the two agree precisely.

VI. BUBBLE MATERIALISATION

In order to obtain the bubble shape at the moment of materialisation, we have to analytically

continue the Euclidean metric

ds2 = dλ2 + ρ2(λ)
[
dψ2 + sin2(ψ)(dθ2 + sin2 θdϕ2)

]
(46)
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into Lorentzian signature. This procedure is not single valued. Using analytic continuation

ψ =
π

2
+ it , λ = r , (47)

we obtain the bubble geometry

ds2 = −ρ2(r)dt2 + dr2 + ρ̃2(t, r)dΩ2
2 , (48)

where

ρ̃(t, r) ≡ cosh(t)ρ(r) . (49)

We see that the function ρ indeed determines the spatial geometry of the bubble at the moment of

materialisation, t = 0, and thus the neck region becomes a wormhole.

In the late 80s there was considerable interest in wormhole physics motivated by the hope that

Planck scale quantum fluctuations of the topology of the space-time metric could lead to observable

effects in the low-energy world [33, 34]. Wormhole solutions were found in various theories such

as gravity coupled to the stringy axion [35], to the Yang-Mills field [36] and to a complex scalar

field [37]. These wormholes all described the branching of a small baby universe from the parent

universe, in contrast to the solution found in the present paper which describes the materialisation

of two portions of de Sitter-like universes (corresponding to the false and true vacua) joined by a

wormhole.

VII. DESIGNING WORMHOLE NECKS

Now that we have established both analytically and numerically that instantons with necks can

occur in non-minimally coupled scalar-tensor theories, we may ask how much freedom there is in the

shape of the neck. Our numerical example of the preceding section had a rather broad neck, and

one may wonder if it can be substantially narrower, so that one might obtain two spacetime regions

separated by a thin wormhole after materialisation. However, as we will now show, necks necessarily

tend to be fairly broad.

Imagine we start from a potential V̄ in the Einstein frame, and we obtain an instanton profile

ρ̄ with a typical de Sitter form, i.e. a deformed four–sphere. By specifying f(φ̄), naively we can

obtain an arbitrary profile ρ via (21), as long as we are free to specify the function f(φ̄). However,

the inverse field transformation

dφ

dφ̄
= ±

(
f − 3

2κ

f 2
,φ̄

f

)1/2

, (50)
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should remain well-defined all the way across the instanton. This means that f cannot vary too fast

across the instanton – more precisely, positivity of the square root in the above equation implies the

bound ∣∣∣∣ d ln f

d(κ1/2φ̄)

∣∣∣∣ ≤ (2

3

)1/2

. (51)

To see what this bound implies, consider a typical situation with n–oscillating instantons for which

[38]

n(n+ 3) <
3|V̄,φ̄φ̄ top|
κV̄top

, (52)

where V̄top is the value of the potential at the top of the barrier. The field span of the instanton can

be approximated by a Taylor series around the top of the barrier,

∆φ̄2 ' V̄top − V̄vacuum
1
2
|V̄,φ̄φ̄ top|

<
6

κn(n+ 3)

(
1− V̄vacuum

V̄top

)
, (53)

where in the last step we have inserted Eq. (52). But for the inverse transformation (50) to remain

well defined and for f to vary by a factor x > 1 across the bounce,

ftop ∼ xfvacua , (54)

one needs (according to (51))

∆φ̄ &

√
3

2κ
lnx . (55)

Putting the two inequalities together, we obtain

ln2 x .
4

n(n+ 3)

(
1− V̄vacuum

V̄top

)
, (56)

which imposes a bound on how sharp the neck can be. In particular, for ordinary instantons with

n = 1, the bound on the change in f across the instanton is

lnx .

√(
1− V̄vacuum

V̄top

)
< 1 , (57)

implying that f can vary at most by a factor of order e. Thus wormholes will typically be rather

broad in the theories we have studied here.

VIII. CONCLUDING REMARKS

We have shown that instantons with necks can be produced as a result of quantum tunnelling

in the decay of a metastable vacuum in scalar field theories with non-minimal coupling to gravity
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(while they cannot be produced in the case of minimal coupling). After bubble materialisation, such

neck geometries lead to two regions of the universe that are separated by a wormhole. However, as

we have also shown, these wormholes are typically quite broad. Fig. 7 shows two dimensional views

of the neck instanton and of the oscillating instanton with the hump that we have described.
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Figure 7: Graphical representations of the instanton (left) and oscillating instanton (right) solutions

described in the text, exhibiting the characteristic neck and hump features that can arise in Jordan frame.

It is important to stress that in a toy model containing just one scalar field coupled to gravity, both

Jordan and Einstein frames are physically equivalent and whether or not necks in the geometry exist

may be seen to depend on the choice of frame. It is the coupling of gravity to the rest of matter that

determines which metric is physical. What we have shown is that, assuming the physical metric is the

Jordan frame metric, one obtains instantons which, for observers composed of ordinary matter, will

appear with a wormhole geometry. However, the transformation to Einstein frame helps to clarify

the physical significance of the various instantons: as is well known, an important question in the

description of metastable vacuum decay is the number of negative modes of the instantons involved.

As discussed by S. Coleman [39], only instantons with one negative mode (i.e. one negative energy

eigenvalue in their spectrum of linear perturbations) really contribute to the tunnelling process – all

instantons with higher numbers of negative modes also have a higher action. Based on the relations

in Eqs. (15,16) it is then clear that the lowest instanton with just one node in the scalar field

profile, see Fig. 3, corresponds to a proper bounce solution with a single negative mode, whereas

exited, oscillating instantons will have more negative modes. In particular, the instanton in Fig. 4
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should have two negative modes, and be irrelevant to the problem of vacuum decay. Moreover, the

transformation to Einstein frame also recovers the standard intuition regarding the action, and thus

the probability, of the instantons we considered here.

It was argued in [17] that after bubble materialisation, in addition to the usual R regions, T

regions also appear close to the neck (cf. the related discussion in [40]). Since the appearance of T

regions is usually connected to the existence of horizons, it will be interesting to work out the global

structure of the space-time obtained after bubble nucleation, and to compare it to the Einstein frame

description. We leave this interesting question for future work.

A further extension of the present work will be to study the existence of solutions with wormhole

geometries in other theories that allow one to violate the NEC in a controlled manner. As our work

indicates, the spectrum of possible instanton shapes is likely much richer in such theories than in

ordinary general relativity.
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