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We study the process of quantum tunnelling in scalar-tensor theories in which the scalar field is
nonminimally coupled to gravity. In these theories gravitational instantons can deviate substantially from
sphericity and can in fact develop a neck—a feature prohibited in theories with minimal coupling. Such
instantons with necks lead to the materialization of bubble geometries containing a wormhole region. We
clarify the relationship of neck geometries to violations of the null energy condition, and also derive a
bound on the size of the neck relative to that of the instanton.
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I. INTRODUCTION

Recently there has been substantial interest in theories
violating the null energy condition (NEC) (see e.g. [1,2] for
reviews). Such theories may lead to interesting phenomena
like the creation of a universe in the laboratory [1], the
existence of traversable Lorentzian wormholes [3], or
nonsingular bounce solutions [4–8]. One of the examples
of NEC violating theories is a scalar field theory non-
minimally coupled to gravity [9],1 and Lorentzian worm-
holes were in fact found in this theory [12,13]. Lorentzian
wormholes typically join two asymptotically flat geom-
etries, or they could be a bridge between an asymptotically
flat and a spatially closed universe (see Fig. 1). The
characteristic feature of a wormhole is the existence of a
“neck” in a spatial slice.
In the present paper we consider the Euclidean version

of modified gravity theories in order to study metastable
vacuum decay processes [14]. In particular, we are
interested in the possibility of creating a wormhole during
metastable vacuum decay processes. A priori there are
four possible instanton shapes in de Sitter to de Sitter
transitions, depending on whether the false and true
vacuum regions are smaller or larger than half of
Euclidean de Sitter space (see e.g. the discussion in
[15,16]). A neck is only present in the case where both
“halves” of the instanton are larger than half of Euclidean
de Sitter space. However, it was shown in [17] that in
scalar field theories minimally coupled to gravity, such
configurations cannot arise. At the same time it was
argued [17] that the creation of instantons with necks
might be possible if one allows for a nonminimal coupling

of the scalar field to gravity. Here we will explore this
possibility in detail.2

II. MINIMAL COUPLING AND NEC VIOLATION

We will start with a simple model of a scalar field ϕ with
a potential VðϕÞ minimally coupled to gravity and
described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

1

2κ
R − 1

2
∇μϕ∇μϕ − VðϕÞ

�
; ð1Þ

where κ is the reduced Newton’s constant. We will consider
homogeneous and isotropic universes, described by the
metric

ds2 ¼ −dt2 þ a2ðtÞγKijdxidxj

¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dθ2 þ r2sin2ðθÞdφ2

�
:

ð2Þ

In what follows we will only be interested in the K ¼ þ1
case, but for clarity we will write K out explicitly in this
section. The energy-momentum tensor is given by

T00 ¼ ρs; Tij ¼ a2γKijps ð3Þ

where the energy density and the pressure are given,
respectively, by

ρs ¼
1

2

�
dϕ
dt

�
2

þ V; ps ¼
1

2

�
dϕ
dt

�
2 − V: ð4Þ
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in the context of Higgs inflation [10,11].

2Certain related issues in the context of Brans-Dicke theories
have been studied in [18,19].
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Tμνnμnν > 0; ð5Þ

with nμ being a null vector, nμnμ ¼ 0, and then it reduces to
the requirement

ρs þ ps > 0: ð6Þ

The equations of motion (Friedmann equations) can be
written in the form

H2 ¼ κ

3
ρs − K

a2
; ð7Þ

dH
dt

¼ −
κ

2
ðρs þ psÞ þ

K
a2

; ð8Þ

where H ≡ ðda=dtÞ=a. Tunnelling can be described by
performing an analytic continuation to Euclidean time, with
t ¼ −iλ̄. Then the metric and scalar field are of the form

ds̄2E ¼ dλ̄2 þ ρ̄2dΩ2
3; ϕ̄ ¼ ϕ̄ðλ̄Þ; ð9Þ

where ρ̄ðλ̄Þ≡ aðitÞ. Note that the Euclidean version of the
NEC condition, Eq. (6), reverses sign:

ρEs þ pE
s < 0; ð10Þ

where the Euclidean energy density and pressure are
obtained by analytic continuation of Eq. (4),

ρEs ¼ − 1

2

�
dϕ

dλ̄

�
2

þ V; pE
s ¼ − 1

2

�
dϕ

dλ̄

�
2 − V: ð11Þ

The Euclidean versions of the Friedmann equations read

H2
E ¼ − κ

3
ρEs þ K

a2
; ð12Þ

dHE

dλ̄
¼ κ

2
ðρEs þ pE

s Þ − K
a2

; ð13Þ

where HE ¼ ðdρ̄=dλ̄Þ=ρ̄. At the putative neck of an in-
stanton, i.e. at a local minimum of ρ̄ðλ̄Þ, we have HE ¼ 0

and would need dHE

dλ̄
> 0, which, in view of Eq. (13), is

impossible if the “NEC” condition, Eq. (10), is fulfilled.
Thus we can see that [Oð4Þ symmetric] instantons in
theories whose Lorentzian counterpart satisfies the NEC
cannot have a neck.

III. MODIFIED GRAVITY: EINSTEIN
AND JORDAN FRAMES

The arguments of the previous section motivate us to
study theories in which the scalar field is nonminimally
coupled to gravity. In particular, we are interested in the
theory defined by the Euclidean action

SE ¼
Z

d4x
ffiffiffi
g

p �
− 1

2κ
fðϕÞRþ 1

2
∇μϕ∇μϕþ VðϕÞ

�
þ Smðψm; gμνÞ; ð14Þ

where the matter action Sm depends on matter fields ψm,
which we assume to couple to the physical metric gμν [20].
With the conformal transformation and field redefinition

gμν ≡ f−1ḡμν; ð15Þ

dϕ̄
dϕ

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ 3

2κ f
2
;ϕ

q
f

; ð16Þ

we obtain the action in the Einstein frame,

SE ¼
Z

d4x
ffiffiffī
g

p �
− 1

2κ
R̄þ 1

2
∇̄μϕ̄∇̄μϕ̄þ V̄

�
þ Smðψm; f−1ḡμνÞ; ð17Þ

where V̄ ¼ Vðϕðϕ̄ÞÞ=f2. At the level of classical solutions,
this means that if

ds2 ¼ dλ2 þ ρ2ðλÞdΩ2
3; ϕ ¼ ϕðλÞ ð18Þ

is a solution in the Jordan frame (14), then

ds2 ¼ dλ̄2 þ fðϕðλ̄ÞÞρ2ðλ̄ÞdΩ2
3; ϕ̄ ¼ ϕ̄ðϕðλ̄ÞÞ ð19Þ

FIG. 1 (color online). Schematic view of a semiclosed world.
An asymptotically flat region (in blue) is connected to a spatially
closed one (in red) via a wormhole, exhibiting the characteristic
“neck” feature (in green) in the geometry.
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is a solution in the Einstein frame (17) provided that ϕ̄ðϕÞ is
specified (up to an irrelevant integration constant) by (16)
and

dλ̄
dλ

¼ f1=2: ð20Þ

In particular, this means that the two “scale factors” are
related by

ρ ¼ ρ̄

f1=2
: ð21Þ

This implies that, if ρ̄ is a “normal” instanton with only one
extremum (local maximum) and the function f has a
sufficiently sharp local maximum, the profile of the
instanton in the Jordan frame can develop a neck.

IV. NONMINIMAL COUPLING: MODEL
AND FIELD EQUATIONS

For specificity we choose

fðϕÞ ¼ 1 − κξϕ2; ð22Þ

i.e. we consider the Euclidean theory with action

SE ¼
Z

d4x
ffiffiffi
g

p �
− 1

2κ
Rþ 1

2
∇μϕ∇μϕþ VðϕÞ þ ξ

2
ϕ2R

�
;

ð23Þ

where ξ is a dimensionless parameter. Varying this action
with respect to ϕ and the metric leads to the scalar field
equation

∇μ∇μϕ − ξRϕ ¼ dV
dϕ

; ð24Þ

and the gravity equations

Rμν − 1

2
gμνR ¼ ~κTμν − ~κξð∇μ∇ν − gμν∇λ∇λÞϕ2; ð25Þ

where

~κ ≡ κ

1 − κξϕ2
ð26Þ

is the effective gravitational constant and the minimally
coupled energy-momentum tensor is given by

Tμν ¼ ∇μϕ∇νϕ − 1

2
gμν∇λϕ∇λϕ − gμνVðϕÞ: ð27Þ

To proceed, we contract Eq. (25) with gμν to obtain the
relation

R¼ κ

1−κξð1−6ξÞϕ2

�
4V−6ξϕ

dV
dϕ

þð1−6ξÞ∇λϕ∇λϕ

�
;

ð28Þ

which is the generalization of a relation found earlier [17]
for the ξ ¼ 1=6 case. Assuming Oð4Þ symmetry,

ds2 ¼ N2ðλÞdλ2 þ ρðλÞ2dΩ2
3; ϕ ¼ ϕðλÞ; ð29Þ

the reduced Euclidean action takes the form

SE ¼ 2π2
Z

dλ

�
ρ3

2N
_ϕ2 þ ρ3NV − ρ3N

2~κ
R

�
; ð30Þ

where _≡ d=dλ and

R ¼ 6

ρ2
− 6_ρ2

ρ2N2
− 6ρ̈

ρN2
þ 6_ρ _N

ρN3
: ð31Þ

In proper time gauge, N ≡ 1, the equations of motion are

ϕ̈þ 3
_ρ

ρ
_ϕ − ξRϕ ¼ dV

dϕ
; ð32Þ

_ρ2 ¼ 1þ ~κρ2

3

�
1

2
_ϕ2 − V þ 6ξ

_ρ

ρ
ϕ _ϕ

�
; ð33Þ

ρ̈ ¼ − ~κρ

3

�
_ϕ2 þ V − 3ξ

�
_ϕ2 þ _ρ

ρ
ϕ _ϕþ ϕϕ̈

��
: ð34Þ

With the help of Eq. (28) the scalar field equation (32) takes
the form

ϕ̈þ 3
_ρ

ρ
_ϕ − κξϕ

1 − κξð1 − 6ξÞϕ2

×
�
4V − 6ξϕ

dV
dϕ

þ ð1 − 6ξÞ _ϕ2

�
¼ dV

dϕ
: ð35Þ

Finally, using Eq. (35) the last equation, Eq. (34), can be
rewritten in a form that is convenient for numerical
integration:

ρ̈¼− ~κρ

3

��
1− 3ξ

1− κξð1−6ξÞϕ2

�
_ϕ2þ1− κξð1þ6ξÞϕ2

1− κξð1−6ξÞϕ2
V

þ6ξ
_ρ

ρ
ϕ _ϕ− 3ξð1−κξϕ2Þ

1− κξð1−6ξÞϕ2
ϕ
dV
dϕ

�
: ð36Þ

Equations (35), (36) simplify for the particular value
ξ ¼ 1=6, which reflects the value for a conformally
invariant coupling of a massless scalar field [21]. We note
that the equation of motion, Eq. (33), differs from the
corresponding equation presented in recent research on a
similar topic in [22,23]—though see also [24], where the

CREATION OF WORMHOLES BY QUANTUM TUNNELLING … PHYSICAL REVIEW D 90, 124015 (2014)

124015-3



equation was corrected and where the nucleation of true
vacuum bubbles in a false vacuum background in the
presence of nonminimal coupling was discussed.
Note that the right-hand side of Eq. (25) allows us to find

the Euclidean energy density and pressure for a non-
minimally coupled scalar field as

ρEξ ¼ ~κ

�
− 1

2

�
dϕ
dλ

�
2

þ V − 3ξHE
dðϕ2Þ
dλ

�
; ð37Þ

pE
ξ ¼ ~κ

�
− 1

2

�
dϕ
dλ

�
2 − V þ ξ

d2ðϕ2Þ
dλ2

þ 2ξHE
dðϕ2Þ
dλ

�
:

ð38Þ

Thus we see that now the Euclidean NEC

ρEξ þ pE
ξ < 0 ↔ −

�
dϕ
dλ

�
2

þ ξ
d2ðϕ2Þ
dλ2

− ξHE
dðϕ2Þ
dλ

< 0

ð39Þ

has the possibility of being violated if ξ ≠ 0. Such
violations due to nonminimal coupling were previously
discussed e.g. in [9,13,25].
We now assume that the potential VðϕÞ is positive and

has two nondegenerate local minima at ϕ ¼ ϕtv and
ϕ ¼ ϕfv, with VðϕfvÞ > VðϕtvÞ, as well as a local maxi-
mum for some ϕ ¼ ϕtop, with ϕfv < ϕtop < ϕtv. The
Euclidean solution describing vacuum decay satisfies the
boundary conditions

ϕð0Þ ¼ ϕ0; _ϕð0Þ ¼ 0; ρð0Þ ¼ 0; _ρð0Þ ¼ 1

ð40Þ

at λ ¼ 0 and

ϕðλmaxÞ ¼ ϕm; _ϕðλmaxÞ ¼ 0;

ρðλmaxÞ ¼ 0; _ρðλmaxÞ ¼ 1 ð41Þ

at some λ ¼ λmax. This assumes the following Taylor series
at λ → 0,

ϕðλÞ ¼ ϕ0þ
ð1− κξϕ2

0Þ ∂V∂ϕ jϕ¼ϕ0
þ 4κξϕ0Vðϕ0Þ

8ð1− κξϕ2
0ð1− 6ξÞÞ λ2þOðλ4Þ;

ð42Þ

ρðλÞ ¼ λ − κVðϕ0Þ − 3
2
κξϕ0

∂V
∂ϕ jϕ¼ϕ0

18ð1 − κξϕ2
0ð1 − 6ξÞÞ λ3 þOðλ5Þ; ð43Þ

and similar power-law behavior as x → 0, where
x ¼ λmax − λ.

V. NUMERICAL EXAMPLES

For our numerical examples, we will consider the
potential

VðϕÞ ¼ Λþ 1

2
μϕ2 þ 1

3
β3ϕ

3 þ 1

4
β4ϕ

4 þ Ae−αϕ2

; ð44Þ

whose shape is shown in Fig. 2 on the left. The right panel
of the same figure shows the corresponding potential in the
Einstein frame. We have chosen the following values for
the constants appearing in SE,

κ ¼ 0.1; ξ ¼ 3; Λ ¼ 0.1; μ ¼ 1.0;

β3 ¼ −0.25; β4 ¼ 0.1; A ¼ 3.0; α ¼ 2.0:

ð45Þ

2 1 0 1 2
0
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5

6

V

2 1 0 1 2 3
0

1
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4

V

FIG. 2 (color online). The scalar field potential VðϕÞ in the Jordan frame (left panel) and the corresponding potential V̄ðϕ̄Þ in the
Einstein frame (right panel).
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When jϕj is too large, the effective gravitational constant ~κ
becomes negative, and a region of “antigravity” is reached.
These regions are shaded in the plot of VðϕÞ—in our
discussion, we will solely be concerned with the regions of
ordinary-sign gravity.
We have integrated Eqs. (35) and (36) numerically with

the boundary conditions Eqs. (42) and (43) and indeed
found that instantons in this theory can have a neck.3 An
example of an instanton with a neck is shown in Fig. 3. The
scalar field has a characteristic kink profile, while the scale
factor ρ develops a neck in the small ϕ region, where the
suppression due to the factor f−1=2 in Eq. (21) is the largest.
Note that in this potential one can also find oscillating
instantons [28–32], in which the scalar field oscillates
several times back and forth between the two sides of the

potential barrier. An example of a twice oscillating instan-
ton is shown in Fig. 4. In this case the scalar field profile
has two nodes and the scale factor acquires a “hump”
instead of a neck. We should remark that, as already
anticipated in [17], in order for these special features to
arise, the potential must contain a rather sharp barrier
between the two local minima—it is for this reason that we
included a Gaussian term in our definition of the potential
in Eq. (44).
We also checked that the neck and hump features

disappear in the Einstein frame. Figure 5 shows what
the instanton corresponding to the one shown in Fig. 3
looks like in the Einstein frame, while Fig. 6 is the Einstein
frame counterpart of the oscillating instanton shown in
Fig. 4. In these figures the dots represent the data obtained
via the conformal transformation, while the solid line
represents the data obtained by solving the field equa-
tions directly in the Einstein frame—the two agree
precisely.
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FIG. 3 (color online). The field profiles (scale factor on the left, scalar field on the right) for our example of an instanton with a neck.
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FIG. 4 (color online). The field profiles (scale factor on the left, scalar field on the right) for our oscillating instanton example. The
scalar field profile now leads to a hump in the scale factor, rather than a neck.

3Earlier studies of the creation of wormholes during tunnelling
transitions include [26,27].
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VI. BUBBLE MATERIALIZATION

In order to obtain the bubble shape at the moment of
materialization, we have to analytically continue the
Euclidean metric

ds2 ¼ dλ2 þ ρ2ðλÞ½dψ2 þ sin2ðψÞðdθ2 þ sin2 θdφ2Þ�
ð46Þ

into Lorentzian signature. This procedure is not single
valued. Using analytic continuation

ψ ¼ π

2
þ it; λ ¼ r; ð47Þ

we obtain the bubble geometry

ds2 ¼ −ρ2ðrÞdt2 þ dr2 þ ~ρ2ðt; rÞdΩ2
2; ð48Þ

where

~ρðt; rÞ≡ coshðtÞρðrÞ: ð49Þ
We see that the function ρ indeed determines the spatial
geometry of the bubble at the moment of materialization,
t ¼ 0, and thus the neck region becomes a wormhole.
In the late 1980s there was considerable interest in

wormhole physics motivated by the hope that Planck scale
quantum fluctuations of the topology of the space-time
metric could lead to observable effects in the low-energy
world [33,34]. Wormhole solutions were found in various
theories such as gravity coupled to the stringy axion [35], to
the Yang-Mills field [36], and to a complex scalar field
[37]. These wormholes all describe the branching of a small
baby universe from the parent universe, in contrast to the
solution found in the present paper which describes the
materialization of two portions of de Sitter-like universes
(corresponding to the false and true vacua) joined by a
wormhole.
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FIG. 5 (color online). In the Einstein frame, the neck of Fig. 3 has disappeared.
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FIG. 6 (color online). In the Einstein frame, the hump of the oscillating instanton in Fig. 4 has also disappeared.
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VII. DESIGNING WORMHOLE NECKS

Now that we have established both analytically and
numerically that instantons with necks can occur in non-
minimally coupled scalar-tensor theories, we may ask how
much freedom there is in the shape of the neck. Our
numerical example of the preceding section had a rather
broad neck, and one may wonder if it can be substantially
narrower so that one might obtain two spacetime regions
separated by a thin wormhole after materialization.
However, as we will now show, necks necessarily tend
to be fairly broad.
Imagine we start from a potential V̄ in the Einstein frame,

and we obtain an instanton profile ρ̄ with a typical de Sitter
form, i.e. a deformed four-sphere. By specifying fðϕ̄Þ,
naively we can obtain an arbitrary profile ρ via (21), as long
as we are free to specify the function fðϕ̄Þ. However, the
inverse field transformation

dϕ

dϕ̄
¼ �

�
f − 3

2κ

f2
;ϕ̄

f

�1=2

ð50Þ

should remain well defined all the way across the
instanton. This means that f cannot vary too fast across
the instanton—more precisely, positivity of the square root
in the above equation implies the bound

���� d ln f

dðκ1=2ϕ̄Þ

���� ≤
�
2

3

�
1=2

: ð51Þ

To see what this bound implies, consider a typical situation
with n-oscillating instantons for which [38]

nðnþ 3Þ < 3jV̄;ϕ̄ ϕ̄ topj
κV̄ top

; ð52Þ

where V̄ top is the value of the potential at the top of the
barrier. The field span of the instanton can be approximated
by a Taylor series around the top of the barrier,

Δϕ̄2 ≃ V̄ top − V̄vacuum
1
2
jV̄;ϕ̄ ϕ̄ topj

<
6

κnðnþ 3Þ
�
1 − V̄vacuum

V̄ top

�
;

ð53Þ

where in the last step we have inserted Eq. (52). But for the
inverse transformation (50) to remain well defined and for f
to vary by a factor x > 1 across the bounce,

ftop ∼ xfvacua; ð54Þ

one needs [according to (51)]

Δϕ̄≳
ffiffiffiffiffi
3

2κ

r
ln x: ð55Þ

Putting the two inequalities together, we obtain

ln2x≲ 4

nðnþ 3Þ
�
1 − V̄vacuum

V̄ top

�
; ð56Þ

which imposes a bound on how sharp the neck can be. In
particular, for ordinary instantons with n ¼ 1, the bound on
the change in f across the instanton is

0 1 2 3 4 5 6 7
4

2

0

2

4

0 1 2 3 4 5 6

�3

�2

�1

0

1
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3

FIG. 7 (color online). Graphical representations of the instanton (left panel) and oscillating instanton (right panel) solutions described
in the text, exhibiting the characteristic neck and hump features that can arise in the Jordan frame.
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ln x≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − V̄vacuum

V̄ top

�s
< 1; ð57Þ

implying that f can vary at most by a factor of order e. Thus
wormholes will typically be rather broad in the theories we
have studied here.

VIII. CONCLUDING REMARKS

We have shown that instantons with necks can be
produced as a result of quantum tunnelling in the decay
of a metastable vacuum in scalar field theories with
nonminimal coupling to gravity (while they cannot be
produced in the case of minimal coupling). After bubble
materialization, such neck geometries lead to two regions
of the universe that are separated by a wormhole. However,
as we have also shown, these wormholes are typically quite
broad. Figure 7 shows two-dimensional views of the neck
instanton and of the oscillating instanton with the hump that
we have described.
It is important to stress that in a toy model containing just

one scalar field coupled to gravity, both Jordan and Einstein
frames are physically equivalent and whether or not necks
in the geometry exist may be seen to depend on the choice
of frame. It is the coupling of gravity to the rest of matter
that determines which metric is physical. What we have
shown is that, assuming the physical metric is the Jordan
frame metric, one obtains instantons which, for observers
composed of ordinary matter, will appear with a wormhole
geometry. However, the transformation to the Einstein
frame helps to clarify the physical significance of the
various instantons: as is well known, an important question
in the description of metastable vacuum decay is the
number of negative modes of the instantons involved.
As discussed by Coleman [39], only instantons with one

negative mode (i.e. one negative energy eigenvalue in their
spectrum of linear perturbations) really contribute to the
tunnelling process—all instantons with higher numbers of
negative modes also have a higher action. Based on the
relations in Eqs. (15) and (16) it is then clear that the lowest
instanton with just one node in the scalar field profile (see
Fig. 3) corresponds to a proper bounce solution with a
single negative mode, whereas exited, oscillating instantons
will have more negative modes. In particular, the instanton
in Fig. 4 should have two negative modes and be irrelevant
to the problem of vacuum decay. Moreover, the trans-
formation to the Einstein frame also recovers the standard
intuition regarding the action, and thus the probability of
the instantons we considered here.
It was argued in [17] that after bubble materialization, in

addition to the usual R regions, T regions also appear close
to the neck (cf. the related discussion in [40]). Since the
appearance of T regions is usually connected to the
existence of horizons, it will be interesting to work out
the global structure of the space-time obtained after bubble
nucleation, and to compare it to the Einstein frame descrip-
tion. We leave this interesting question for future work.
A further extension of the present work will be to study

the existence of solutions with wormhole geometries in
other theories that allow one to violate the NEC in a
controlled manner. As our work indicates, the spectrum of
possible instanton shapes is likely much richer in such
theories than in ordinary general relativity.
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