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1 Introduction

Random tensor models represent a natural generalization, to dimensions greater than two,

of the celebrated random matrix models. Thus, one can view these tensor models as an

appealing new approach for a fundamental theory of quantum gravity (see the review

paper [1]).

The current revival of interest in the study of tensor models came from the definition

of colored tensor models [2] and, shortly thereafter, from the implementation of a 1/N -

expansion within these models [3–7]. In the case of matrix models, the 1/N -expansion is
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controlled by the genus of the corresponding Feynman ribbon graphs. In dimensions greater

than two, the role of the genus is played by the degree of the tensor graphs. The degree of a

tensor graph is defined to be the sum of the genera of certain well-chosen ribbon subgraphs

(called the jackets of the tensor graph [8]). At large–N , matrix models are dominated by

planar graphs (tiling the two-dimensional sphere S2), while the dominant graphs for tensor

models are the so-called melonic graphs. In D dimensions, these correspond to particular

triangulations of the D-dimensional sphere SD (see also [9] for an extensive review and [7]

for a shorter one). The continuum limit of melonic graphs turns out to be the continuous

random branched polymer [10].

To escape this universality class and further explore tensor models, the next-to-leading

order of the 1/N -expansion has been identified in [11] where new structures are shown to

emerge. Recently, this has led to a double scaling limit of random tensor models, exhibited

for both the colored model and the so-called uncolored model with a quartic interaction.

The idea of the double scaling limit is to take N large while sending the model to the

continuum, so as to consistently retain Feynman graphs from arbitrary orders of the 1/N -

expansion. It is worth noticing that the double scaling limit in tensor models differs

markedly from that in matrix models. In the matrix model case, while the resulting series

“consistently” sums over topologies, it is divergent. In the tensor model cases mentioned

above, however, the double scaling limit leads to a summable series in dimensions D =

3, 4, 5. This imply that a reiteration of the double scaling limit procedure might be possible,

which at criticality could ultimately lead to a genuinely new continuous random space.

The colored model double scaling limit was obtained in [12], using a purely combina-

torial approach; the uncolored model double scaling limit was obtained in [13], using an

appropriate intermediate field method. Both results therefore rely on a thorough analysis

of each term of the series (in the coupling constant) associated to each order in the initial

large–N expansion. However, the method of [13] is not known to be applicable beyond

the case of quartic interactions. To improve on these results and possibly go beyond, it is

reasonable to look for a more effective way to reach the double scaling regime, which we

argue here could be the Schwinger-Dyson equations.

Taking some inspiration from matrix models (and later, string field theory), while there

exist various ways to solve them, one interesting technique is the use of their Schwinger-

Dyson equations (SDEs, often known as loop equations in this context) [14–18]. They

allow one to probe the correlators at all orders in the 1/N -expansion and have unraveled

some fascinating structures (e.g. integrability) that become transparent in the topological

recursion [19]. Interestingly, topological recursion was initially developed as an intrinsic

method to solve the SDEs. It is therefore natural to ask whether the SDEs could also be

used to solve tensor models.

As in the case of matrix models, the SDEs of tensor models translate into differential

constraints satisfied by the partition function, constraints which have been shown, in the

large–N limit, to close a Lie algebra indexed by colored rooted D−ary trees. This provides

a natural generalization of the Virasoro constraints in arbitrary dimensions [20]. The SDEs

and the associated algebra at all orders in 1/N were then completed in [21], which extend

the Virasoro generators to operators labeled by regular edge-colored graphs. From the
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computational perspective, the tensor SDEs can be solved at large–N , [22], to give a new

proof that large random tensors are Gaussian, with the covariance being the full two-point

function.

In this paper we derive the double scaling limit of random tensor model using the

SDEs. It is worth emphasizing that our method allows to obtain this double scaling limit

not only for tensor models with quartic interactions, thereby reproducing the result of [13],

but also for tensor models with a general melonic interactions. This is a result going beyond

what is already known from the literature, and more importantly which would seem rather

intricate to derive without the SDEs. Indeed, the method of [13] relies on a bijection that

is only known to exist in the case of quartic interactions.

The organization of the paper is the following. In the next section we give a brief review

of random tensor models and of the two relevant SDEs which will be used. Section 3 is

dedicated to our analysis of the SDEs beyond the 1/N limit (leading order (LO), next-to-

leading-order (NLO) and even another sub-leading order in the case of the quartic model).

Those results are essential to achieve the double scaling limit of the SDEs in section 4.1.

The main result is the doubly-scaled 2-point function for a model with generic melonic

interactions (symmetrized on their colors). However several assumptions on the large–N

scaling of cumulants are made along the way. They are proved by means of combinatorial

methods in sections 4.2, 4.3 and in appendix A. The reader mostly interested in solving

the SDEs may skip those parts and simply consider their conclusions as ansatz which allow

to extract particular solutions of the SDEs.

2 Brief review of random tensor models and Schwinger-Dyson equations

2.1 The framework of random tensor theory

Observables in random tensor theory are generalizations of trace-invariants in matrix

models. They are generated by polynomials in the tensor entries Ta1···aD and Ta1···aD
(a1, . . . , aD = 1, . . . , N), which are invariant under transformations of the following

form [7, 23]:

T′a1···aD =
∑

b1,...,bD

U
(1)
a1b1
· · · U (D)

aDbD
Tb1···bD , (2.1)

where (U (1), . . . , U (D)) is a D-uple of independent unitary matrices. The complex con-

jugated tensor T transforms in a similar fashion. Since different unitary transformations

are applied to the different indices, invariants can be obtained by contracting (that is, by

identifying and summing) indices pairwise only when they have the same position between

1 and D. Invariance also requires all indices to be contracted.

It emerges that the generating polynomials can be labeled by connected, regular, bi-

partite graphs of degree D, whose edges have a color label drawn from {1, . . . , D} such

that the D edges incident to a vertex have distinct colors. Such graphs are called bubbles.

The correspondence between polynomials and bubbles is tabulated in table 1.

Let us denote bubbles by B, the vertex set of B by V(B) of cardinality |V(B)| = 2p(B)

and the set of edges of color c of B by Ec(B), of cardinality |Ec(B)| = p(B). The vertex set
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Polynomials Bubbles

Ta1···aD White vertex
a1

a2

aD

Ta1···aD Black vertex
a1

a2

aD

Contraction Edge with color label i∑
ai
Ta1···ai···aDTb1···ai···bD b1

b2

bD

a1

a2

aD

i

Table 1. Correspondence between tensor polynomials and bubbles.

1

2

D

(a) The 2-vertex bub-

ble B2.

c c

(b) The 4-

vertex bubble

B4,{c}.

1
2

1

1

1

1

2

2

2

2

1
3 4

3

3

3

3

4

4

4

4

(c) A 10-vertex bubble

at D = 4.

Figure 1. Some examples of bubbles, that is, connected, bipartite, regular graphs of degree D with

colored edges. The dots indicate multiple edges.

of B is bipartite. We generically denote a white vertex of B by v, and a black vertex by v̄

and an edge of color c by ec. We furthermore use the shorthand notation ~a for the D-uple

of indices (a1, . . . , aD) (hence ~av = (av1, . . . , a
v
D)) with ai = 1, . . . , N for i ∈ {1, . . . , D}.

The invariant polynomial associated to B is denoted TrB(T̄,T) and it writes:

TrB(T̄,T) =
∑

{~av ,~bv̄}v,v̄

 ∏
v̄∈V(B)

T̄~bv̄

 ∏
v∈V(B)

T~av

 δB
~av ,~bv̄

, δB
~av ,~bv̄

=
D∏
c=1

∏
ec=(x,ȳ)∈Ec(B)

δaxc b
ȳ
c
,

(2.2)

that is for each white vertex v (resp. black vertex v̄) of B we take a tensor T~av (resp. T~bv̄),
and for each edge of color c we contract the indices of color c of the tensors associated to

its end vertices. The operator δB
~av ,~bv̄

is called the trace-invariant operator associated to B.

There are a number of bubbles that will play an important role later on. Firstly, there

is the unique 2-vertex bubble B2, displayed in figure 1a. Secondly, there are the 4-vertex

bubbles illustrated in figure 1b. They are 1-particle-irreducible yet 2-particle-reducible.

They are labeled B4,{c} where c ∈ {1, . . . , D} is the color of the edges that, when cut,

disconnect the graph. Another (less important) example of a bubble is given in figure 1c.

Let I be a finite set and {Bi}i∈I be a set of bubbles such that Bi has pi ≥ 2 black

vertices. We shall denote the set of corresponding invariant polynomials by {TrBi}i∈I . The
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action is an invariant function of T and T:

S(T,T) = TrB2(T,T)−
∑
i∈I

zpi−1

pi
ti TrBi(T,T) , (2.3)

where the parameters z and {ti}i∈I are called the couplings. The partition function of a

generic “single trace” tensor model is:

Z(N, z, {ti}) =

∫
[dT̄dT] e−N

D−1S , [dT̄dT] =

(∏
~a

ND−1 dT~a dT~a
2πi

)
. (2.4)

2.2 Bubble observables

Among all the observables one can build out of a tensor and its complex conjugate, the

invariant observables labeled by bubbles B play a distinguished role. Their expectations are:

〈TrB(T,T)〉 =
1

Z(N, {ti})

∫
dT dT e−N

D−1S TrB(T,T) , (2.5)

and are functions of N , z and {ti}i∈I .
The above integrals can be computed via their Feynman expansions, that is, as per-

turbative expansions in the couplings. The Feynman expansion is organized with respect

to Feynman graphs. These graphs result from first Taylor expanding the exponentials

e
ND−1 z

pi−1

pi
tiTrBi (T,T)

, and commuting the sums with the remaining Gaussian integral.1 We

thus obtain a sum over terms, each term being a Gaussian integral of a product of trace-

invariants. Each Gaussian integral is computed using Wick’s theorem, as a sum over pair-

ings of Ts with Ts contracted with the covariance. Graphically, a pairing connects a black

vertex (T) to a white vertex (T) via an edge to which the fictitious color 0 is attributed.

The Feynman graphs of the partition function are therefore regular bipartite edge-

colored graphs of degree D + 1 (the colors of the bubbles plus the color 0). An example is

shown in figure 2. The Feynman graphs contributing to the expectation of TrB(T,T) for a

connected bubble B are the connected regular bipartite edge-colored graphs of degree D+1

built from the set of bubbles {Bi}i∈I and containing the bubble B as a marked sub-graph.

The Feynman amplitude associated to a closed connected Feynman graph G with no

marked bubble is (up to some symmetry factor) easily found. Each bubble Bi, i ∈ I,

contained in G brings a factor zpi−1ND−1 and its associated trace-invariant. Each edge of

color 0 brings N−(D−1) times
∏D
c=1 δavc bv̄c , which identifies the index avc on the white vertex

adjacent to the edge with the index bv̄c on the black vertex adjacent to the edge. A face with

colors cd is defined as a connected component of the graph obtained from G by removing

all edges of colors different of c and d. Contracting the Kronecker deltas of the propagators

with the trace-invariants coming from the bubbles, it follows that the indices are identified

along the faces of color 0c of G. One gets a free sum per face, hence a factor N . We denote

bi the number of bubbles of type Bi of G, and b =
∑

i∈I bi is the total number of bubbles

1It is well known that the resulting series is not summable but only Borel summable, however such

subtleties are beyond the scope of our work.
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Figure 2. An example of a (D + 1)-colored Feynman graph (with D = 4). The bubbles (solid

edges) have colors 1, 2 and 3, while the propagators (dashed edges) are assigned the color 0.

of G. Moreover p =
∑

i∈I pibi is the total number of black vertices of G and it also counts

the edges of color 0 of G. The amplitude then reads:

AG = N
∑D
c=1 f0c−(D−1)(v−b) zv−b

∏
i∈I

(ti)
bi . (2.6)

At D = 2, the (D + 1)-colored graphs G are also ribbon graphs and the exponent of N in

the amplitude reduces to 2− 2g where g is the genus of the ribbon graph.

The amplitude of a Feynman graph in the expansion of the expectation of TrB is similar,

expect that the marked sub-graph B does not bring any power of z and N . The exponent

of N for the graphs entering an expectation is bounded and leads to a 1/N -expansion of

expectations [7, 23] of the following form:

1

N
〈TrB(T,T)〉 =

∑
ω≥0

N−ω Aω,B(z, {ti}) . (2.7)

Furthermore, the large–N limit is Gaussian:

1

N
〈TrB(T,T)〉 = N−ω

∗
B αB [T (z, {ti})]v +O(N−ω

∗
B) . (2.8)

Here, ω∗B is the minimal value of ω for which Aω,B(z, {ti}) 6= 0, αB counts the number of

leading order Wick contractions on B, v is the number of black vertices of B and T (z, {ti})
is the large–N limit of the 2-point function:

T (z, {ti}) ≡ lim
N→∞

1

N
〈TrB2(T,T)〉 = lim

N→∞
K
(
B2;N, z, {ti}

)
= K

(
B2; z, {ti}

)
. (2.9)

(Here we have introduced the notation K
(
B2;N, z, {ti}

)
which refers to the 2-point cumu-

lant and is equivalent to the full 2-point function. It will be generalized to cumulants of

higher orders in the section 3.2.)

The equations (2.8) and (2.9) constitute an illustration of the Universality Theorem

for large random tensors equipped with joint distributions that are invariant under (2.1).

The details about this theorem can be found in [23], where it was proven using mostly the

– 6 –



J
H
E
P
0
9
(
2
0
1
4
)
0
5
1

combinatorics of cumulants. In the context of random tensor models defined by an action

like (2.3), it is also possible to get to this universal behavior through the Schwinger-Dyson

equations, as done in [22].2

On the one hand, it is a difficult task to find ω∗B and αB in general. On the other

hand, there is one important class for which they are known: the polynomials TrB for

which ω∗B = 0. Members of this class are called melonic polynomials and correspond to

melonic bubbles. The structure of melonic bubbles is quite simple and defined recursively.

The basic building blocks are the so-called (D − 1)-dipoles. A (D − 1)-dipole of color c is

comprised of two vertices, connected by D−1 edges not carrying the color c, and two open

edges of color c:

c

1

2

D

c

One starts with the bubble B2 and performs a (D − 1)-dipole insertion, where the edge of

color c is removed and replaced by the (D − 1)-dipole of the same color. This results in a

bubble with 4 vertices, which is actually B4,{c} (figure 1b). Such a (D− 1)-dipole insertion

can then be performed on an arbitrary edge of the new graph. In this manner, the bubble

grows according to a tree structure that records the history of dipole insertions. Melonic

bubbles have the following properties:

– They are exactly the bubbles for which ω∗B = 0.

– The combinatorial coefficient is αB = 1. Indeed, vertices in a melonic bubble come in

canonical pairs (the vertices of a pair are those associated to a dipole insertion). αB =

1 means that there is a single family of contributions coming from Wick contracting

the two vertices of each pair.

– The large–N 2-point function T is non-trivial, that is T 6= 1, if and only if the set of

bubbles {Bi}i∈I contains a melonic bubble (different from B2). The function T can

then be found by means of the Schwinger-Dyson equations, as we explain below.

2.3 The Schwinger-Dyson equations

The Schwinger-Dyson equations are the quantum equations of motion, governing the be-

havior of the expectations. A detailed presentation of these equations can be found in [21]

and a focus on the melonic sub-algebra in [20]. They can be solved at leading order to

recover the Universality Theorem, as well as to find the equation satisfied by the large–N

2-point function [22]. Here, we shall only need a couple of Schwinger-Dyson equations and

not the full tower of equations derived in [21]. The first equation we use is the simplest

one, coming from the identity:∑
a1,...,aD

1

Z(N, {ti})

∫
dT dT

∂

∂Ta1···aD

(
Ta1···aD e

−ND−1S
)

= 0 . (2.10)

2Although universality was shown in [22] only for the so-called melonic polynomials, the same method

applies to the expectations of non-melonic polynomials.
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Performing the derivatives explicitly, it is easy to see that it leads to:

N − 〈TrB2(T,T)〉+
∑
i∈I

zpi−1 ti 〈TrBi(T,T)〉 = 0 . (2.11)

Here pi once again denotes the number of black vertices of Bi. The second equation comes

from the identity:3

∑
a1,...,aD

1

Z(N, {ti})

∫
dT dT

∂

∂Ta1···aD

(
1

2

∂ TrB4,{c}(T,T)

∂Ta1···aD
e−N

D−1S

)
= 0 . (2.12)

We shall recast this expression bit by bit. When acting on the first factor the derivative

w.r.t. T gives:

∑
a1,...,aD

1

Z(N, {ti})

∫
dT dT

1

2

∂2 TrB4,{c}(T,T)

∂Ta1···aD ∂Ta1···aD
e−N

D−1S

= ND−1〈TrB2(T,T)〉+N〈TrB2(T,T)〉 . (2.13)

Meanwhile, we split its effect on the second factor into two parts. Operating on the

quadratic part of the action produces, thanks to
∂ TrB2

(T,T)

∂Ta1···aD
= Ta1···aD :

∑
a1,...,aD

1

Z(N, {ti})

∫
dT dT

1

2

∂ TrB4,{c}(T,T)

∂Ta1···aD

(
−∂ TrB2(T,T)

∂Ta1···aD

)
e−N

D−1S

= −ND−1 〈TrB4,{c}(T,T)〉 , (2.14)

leading to: (
1 +

1

ND−2

)
〈TrB2(T,T)〉 − 〈TrB4,{c}(T,T)〉

+
∑

a1,...,aD

∫
dT dT

Z(N, {ti})
1

2

∂ TrB4,{c}(T,T)

∂Ta1···aD

∂

∂Ta1···aD

(∑
i∈I

zpi−1

pi
ti TrBi(T,T)

)
e−N

D−1S = 0 .

(2.15)

In order to conclude we must evaluate the final contribution in eq. (2.15). Let us explain

some of its components in detail. The first factor ∂ TrB4,{c}(T,T)/∂Ta1···aD is of order two

in T and one in T. The graphical rules of table 1 still apply in this context, meaning that

the resulting (non-invariant) polynomial has a graphical representative:

1

2

∂ TrB4,{c}(T,T)

∂Ta1···aD
=

c
a1

a2

aD

ac

1

2

D

. (2.16)

As expected, the graph is open, with all open edges emerging from white vertices. This

means that the polynomial transforms like T in (2.1).

3The overall factor 1/2 has been introduced to counter the fact that the action of the derivative (w.r.t. T )

on TrB4,{c}(T,T) results in two identical terms.
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The factor ∂ TrBi(T,T)/∂Ta1···aD is a polynomial (which transforms like T) obtained

from TrBi(T,T) by summing over all the ways to remove a T. Graphically, this gives to a

sum over a collection of open graphs, each of which corresponds to a distinct way to excise

a white vertex from Bi.
Now notice that if one removes a white vertex V from an arbitrary bubble B and inserts

the right hand side of (2.16), one produces a new bubble that is B with a (D − 1)-dipole

inserted on the edge of color c incident to V . This is precisely the process operating in

the last term of (2.15). When it is contracted with the left hand side of (2.16), it means

that the right hand side of (2.16) is glued back instead of the removed white vertex. That

yields a sum over all the ways to insert a (D − 1)-dipole on an edge ec of color c in Bi.
When the insertion occurs on the edge ec, we denote the resulting bubble Bi + (ec). The

Schwinger-Dyson equation (2.15) therefore reads:(
1+

1

ND−2

)
〈TrB2(T,T)〉−〈TrB4,{c}(T,T)〉+

∑
i∈I

zpi−1

pi
ti
∑
ec∈Bi

〈TrBi+(ec)(T,T)〉 = 0 . (2.17)

There are D such equations, one for each value of the color c ∈ {1, . . . , D}.

2.4 Navigating the following sections

In light of the technical nature of sections 3 and 4, the main points of the argument are

presented here.

– To begin section 3, we present a quick recapitulation of the large–N limit. In partic-

ular, combining its Gaussian universality (2.8) with the Schwinger-Dyson equations

allows on to solve for the leading order contribution T (z, {ti}), to the 1/N -expansion

of the 2-point function. Only the melonic subsector survives and, in the quartic

model, one finds:

T (z) =
1−
√

1− 4Dz

2Dz
.

– Beyond leading order, non-Gaussian contributions creep into the mix. Having cat-

alogued the pertinent examples, we examine the next-to-leading order in detail. At

NLO, one needs only to utilize the two SD equations (2.11) and (2.17) to obtain a pair

of coupled equations, linear in KNLO
2 (z, {ti}) and KLO

4,• (z, {ti}). Respectively, these

are the NLO contribution to the 2-point function and the leading order contribution

to the connected 4-point function, based on the graphs of species B4,{c}. One solves

these equations to arrive at the result (in the case of the quartic model):

KNLO
2 (z) =

1√
1− 4Dz

Dz T (z)2

1− z T (z)2
,

KLO
4,• (z) =

z T (z)4

1− z T (z)2
,

– Specializing to the quartic model allows one to most easily probe deeper into the SD

equations, (2.11) and (2.17), and retrieve information about KNNLO
2 (z) and KLO

4,∅ (z).
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The latter is the leading order contribution to the connected 4-point function based

on the graph B4,∅ (as described next to figure 4). Again, solving the associated

coupled equations yields our next result:

KNNLO
2 (z) =

1

1− 4Dz

D(D − 1) z2 [T (z)]3

1− z [T (z)]2
,

KLO
4,∅ (z) =

1√
1− 4Dz

D(D − 1) z2 [T (z)]5

1− z [T (z)]2
.

– In section 4.1, we change the parameter set from (N, z, {ti}) to (N, x, {ti}) where

x = ND−2(z − 1
4D ), dubbed the double-scaling parameter. While this choice for x

is, at the outset, an ansatz, its validity is unequivocally confirmed by subsequent

analysis. In principle, one can now send N → ∞ and z → 1
4D , keeping x fixed.

This is the double scaling limit. Moreover, it allows for a new expansion of the

cumulants around the melonic sector evaluated at criticality. Once substituted into

the SD equation (2.11), one obtains an equation for KDS(x, {ti}), the dominant

contribution to the 2-point function in this new expansion, provided i) certain higher

order correction terms truly remain sub-dominant as one tunes to criticality in z and

ii) the contributing series are actually summable (which is the case for D < 6). In

this instance, one arrives at our main result, the limiting double scaled behaviour of

the 2-point function. In the quartic case, this takes the form:

KDS(x) = 4
√
D

√
x− 1

4 (D − 1)
.

– In section 4.2, we prove that the assumption of sub-dominance, vital for the results

of the preceding section, does in fact hold. In section 4.3, we present an argument for

the universality of such a double scaling limit within the subclass of tensor models

with melonic interaction terms.

3 The Schwinger-Dyson equations beyond the large–N -limit

3.1 The leading order

Plugging the result (2.8) of the Universality Theorem into the SD equations enables one

to obtain a closed the system of equations, since all expectations factorize as products of

the large–N 2-point function T (z, {ti}). Only the melonic expectations survive and all SD

equations ultimately reduce to the same algebraic equation [22]:

1− T (z, {ti}) +
∑
i∈I

zpi−1 ti [T (z, {ti})]pi = 0 . (3.1)

Together with the initial condition T|z=0 = 1, this equation determines T as long as the

derivative of (3.1) with respect to T does not vanish. Examining the equation (3.1), one
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sees that for generic couplings {ti}i∈I , T has a square-root singularity at a finite value of

z called the critical coupling zc:

T (z, {ti}) ' Tc + T ′c
(
1− z/zc

)1/2
, (3.2)

where Tc, zc and T ′c are functions of {ti}. The critical values Tc and zc are determined by

eq. (3.1) supplemented with the criticality condition that (minus) the derivative of (3.1)

with respect to T :

C(z, {ti}) ≡ 1−
∑
i∈I

ti pi [z T (z, {ti})]pi−1 , (3.3)

vanishes. Notice that C(z, {ti}) not only controls how far we are from criticality, but it

is also singular at criticality. Indeed, plugging the expansion (3.2) into C(z, {ti}), we see

that around zc:

C(z, {ti}) = −
(∑
i∈I

tipi(pi − 1)zpi−1
c T pi−2

c

)
T ′c
(
1− z/zc

)1/2
= c({ti})

(
1− z/zc

)1/2
. (3.4)

Quartic case. The above scenario is easily illustrated when I = {1, . . . , D} and the in-

teraction part of the action is defined as the set of quartic bubbles {Bi}i∈I = {B4,{c}}c=1,...,D

with the same global coupling z, i.e. ti = 1 for all i ∈ I. Thus, the model is symmetric with

respect to the colors {1, . . . , D}, the number of black vertices for each interaction bubble

satisfies pi = 2 (i ∈ I), and the sums over i ∈ I reduce to multiplication by the factor D.

The equations (3.1) specializes to:

1− T (z) +Dz T (z)2 = 0 , (3.5)

whose physical solution is:

T (z) =
1−
√

1− 4Dz

2Dz
. (3.6)

The critical point is zc = 1/(4D), Tc = 2, which satisfies the criticality condition, 1 −
2DzcTc = 0. Moreover, close to criticality:

C(z) = 1− 2Dz T =
√

1− 4Dz , (3.7)

is singular as expected from (3.3).

3.2 Moments and cumulants

The expectations of arbitrary polynomials in the tensor entries can be computed as deriva-

tives of the moment generating function

Z(J, J) =

∫ (∏
~a

ND−1 dT~a dT~a
2πi

)
e−N

D−1S(T,T)+TrB2
(T,J)+TrB2

(J,T) . (3.8)

It turns out that it is more convenient to work with the generating function of connected
moments, or cumulants:

W (J, J) = lnZ(J, J) with W (J, J) =

∞∑
p=0

1

(p!)2
W

(2p)

~a1...~ap,~b1...~bp

(
N, z, {ti}

)
J~a1 · · · J~apJ~b1 · · · J~bp .

(3.9)

– 11 –



J
H
E
P
0
9
(
2
0
1
4
)
0
5
1

c c

Figure 3. This shows a 4-point graph where the grey blobs represent arbitrary 2-point insertions,

which do not affect the boundary graph.

The normalization factor 1/(p!)2 is conventional and accounts for the invariance of the

cumulant of order 2p (or 2p point cumulant) W
(2p)

~a1...~ap,~b1...~bp

(
N, z, {ti}

)
under independent

permutations σ and τ of its indices:

W
(2p)

~a1...~ap,~b1...~bp

(
N, z, {ti}

)
= W

(2p)

~aσ(1)...~aσ(p),~bτ(1)...~bτ(p)

(
N, z, {ti}

)
. (3.10)

The generating function W (J, J) is itself invariant under the unitary transforma-

tions (2.1). It follows that it admits an expansion in invariants labeled by (non necessarily

connected) bubbles. Denoting p(B) the number of black vertices of the bubble B, the

2p-point cumulant admits an expansion:

W
(2p)

~a1...~ap,~b1...~bp

(
N, z, {ti}

)
=

∑
B,p(B)=p

δ̄B
~a1...~ap,~b1...~bp

W
(
B;N, z, {ti}

)
, (3.11)

where δ̄B
~a1...~ap,~b1...~bp

is the trace-invariant operator associated to B, symmetrized over its

indices.

The graphical interpretation is as follows. The 2p-point cumulants are sums over

connected Feynman graphs G with 2p external lines, i.e. (D+ 1) edge-colored graphs with

2p edges of color 0 hooked to univalent external vertices, and such that all their subgraphs

with colors {1, . . . , D} are from the set {Bi}i∈I . A typical example is presented in figure 3.

The faces of color 0c of a Feynman graph (i.e. the subgraphs with colors 0, c) fall in

two categories. Either they are internal faces, that is closed cycles of edges of colors 0 and

c, or they are external faces, that is chains of edges of colors 0 and c. The external faces

start and end at external vertices and there is a single face of color 0c which start/end

at an external vertex (there are p external faces of each color c ∈ {1, . . . , D} in G). The

univalent external vertices have D-uples of indices, ~av for white vertices and~bv̄ for the black

ones. The index of color c at an external white vertex is identified along the corresponding

external face with the index of the same color at the black vertex on the other end of the

chain.

Due to the unitary invariance, the pattern of index identification along the external

faces of G can be encoded in a D-colored graph called the boundary graph of G and denoted

∂G. It only depends on the external faces and is obtained by only keeping the univalent

external vertices of G and drawing an edge of color c for every external face of colors 0c

connecting two external vertices. For instance, the figure 3 shows a 4-point graph whose

boundary graph is B4,{c}. From the boundary graph ∂G, one gets the trace-invariant oper-

ator δ̄∂G
~a1...~ap,~b1...~bp

which contains the whole index dependence of the Feynman graph. The

function W
(
B;N, z, {ti}

)
is then the sum of the amplitudes of all graphs G contributing

with the fixed boundary graph ∂G = B.
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Figure 4. The bubble graph B4,{ck+1,...,cD}.

The scaling with N of each of the terms in the sum above has been studied in [23].

Let us define the rescaled contribution of an invariant:

K
(
B;N, z, {ti}

)
≡

W
(
B;N, z, {ti}

)
ND−2(D−1)p(B)−ρ(B)

, (3.12)

where ρ(B) denotes the number of connected components of B. In the sense of perturbation

theory, for any tensor model, these quantities are bounded for all N and admit a finite

large–N limit [23]:

lim
N→∞

K
(
B;N, z, {ti}

)
= K

(
B, z, {ti}

)
. (3.13)

In the sequel the 2- and 4-point cumulants W
(2)

~a1,~b1
and W

(4)

~a1~a2,~b1~b2
will play a distin-

guished role. W
(2)

~a1,~b1
is proportional to the trace-invariant δB2 since there is a single bubble

on two vertices, B2.

At order 4, we have several bubbles B4,C , one for each choice of a subset C ⊂ {1, . . . , D}
of cardinality 0 ≤ |C| ≤ D/2 (it is important to keep in mind that the expansion includes

non-connected bubbles, here the union of two copies of B2). The four vertices of B4,C
are divided into two pairs. The two vertices in a pair are connected by edges of colors

{1, . . . , D} \ C, while the edges with color in C connect the pairs in between them. An

example is presented in figure 4.
Remark that B4,∅ represents two copies of B2, while the bubbles B4,{c} have already

been presented in figure 1b. The trace-invariant operators associated to B2 and B4,C are

δ̄B2

~a1,~b1
=

D∏
c=1

δa1cb1c , (3.14)

δ̄
B4,C

~a1~a2,~b1~b2
=

(∏
c/∈C

δa1cb1c

)(∏
c/∈C

δa2cb2c

)(∏
c∈C

δa1cb2cδa2cb1c

)
+

(∏
c/∈C

δa2cb1c

)(∏
c/∈C

δa1cb2c

)(∏
c∈C

δa2cb2cδa1cb1c

)
,

(3.15)

where, according to our previous discussion we use the symmetrized trace-invariant oper-

ator for B4,C . The 2- and 4-point cumulants write therefore as:

W
(2)

~a1,~b1
= δB2

~a1~b1
W
(
B2;N, z, {ti}

)
, (3.16)

W
(4)

~a1~a2,~b1~b2
=

∑
C⊂{1,...,D}

δ
B4,C

~a1~a2;~b1~b2
W
(
B4,C ;N, z, {ti}

)
. (3.17)
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3.3 Gaussian and non-Gaussian contributions

The Universality Theorem asserts that the large–N limit of a random tensor model is

Gaussian with covariance T (z, {ti}). At next-to-leading orders, non-Gaussian contributions

eventually show up. Loosely speaking, a non-Gaussian contribution to an expectation

〈TrB(T,T)〉 is any Feynman graph G in the expansion of the expectation which would not

appear in a Gaussian distribution whatever the covariance.

Let us denote π a partition of the set of vertices V(B) of the bubble B into (disjoint)

bipartite subsets, V(B) =
⋃
α Vα, with Vα = {v(α)

1 , . . . , v
(α)
pα , v̄

(α)
1 , . . . , v̄

(α)
pα } of cardinality 2pα

(hence
∑

α pα = p(B)). The expectation of a bubble observable expands in cumulants as:

〈TrB(T,T)〉 =
∑

{~av ,~bv̄}v,v̄

δB
~av ,~bv̄

〈 ∏
v̄∈V(B)

T̄~bv̄

 ∏
v∈V(B)

T~av

〉 (3.18)

=
∑

{~av ,~bv̄}v,v̄

δB
~av ,~bv̄

(∑
π

∏
Vα∈π

W
(2pα)

~av
(α)
1 ...~av

(α)
pα ,~bv̄

(α)
1 ...~bv̄

(α)
pα

(
N, z, {ti}

))
. (3.19)

This means that we can classify the Feynman graphs contributing to the expectation using

partitions of the vertex set V(B). Each partition π gives rise to a family of graphs G
such that upon cutting off the edges of color 0 which connect the marked sub-graph B to

the rest of G, one gets as many connected components as parts in π and these connected

components have 2pα external edges which were connected to the vertices of Vα in G.

We call a Gaussian contribution a partition π such that pα = 1, ∀α, and a non-

Gaussian contribution any other partition. This means that a Gaussian contribution is

exactly a graph obtained by attaching to B only 2-point graphs.

The case p(B) = 1 is quite trivial, by definition. Indeed there is a single parti-

tion π which is the vertex set of B2 and 〈TrB2(T,T)〉/N = K(B2;N, z, {ti}). Recall

that K
(
B2;N, z, {ti}

)
is bounded for all N and has a finite limit, namely T (z, {ti}) ≡

K
(
B2; z, {ti}

)
, when N goes to infinity. We can therefore start the 1/N -expansion of the

2-point function as

1

N
〈TrB2(T,T)〉 = K

(
B2;N, z, {ti}

)
= T (z, {ti}) +

1

ND−2

(
KNLO

(
B2, z, {ti}

)
+O(1/N)

)
,

(3.20)

Next, consider the case p(B) = 2. Labeling the four vertices v1, v2, v̄1, v̄2, three

partitions into bipartite subsets are obtained. The partitions {{v1, v̄1}, {v2, v̄2}} and

{{v1, v̄2}, {v2, v̄1}} are both Gaussian, since the parts have cardinality two, meaning only

2-point functions are attached to B. The third partition is the vertex set itself, correspond-

ing to attaching to B a 4-point cumulant. Graphically, this leads to the following exact
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expansion on B4,{c},

1

N

〈
c

v1

v̄1

v̄2

v2 〉
=

c
W (2)(N, z) W (2)(N, z) +

c

W (2)(N, z)

W (2)(N, z)

+
c

W (4)(N, z)

Clearly, the parts of a partition corresponding to a graph can be visualized by cutting the

edges of color 0 around the bubble B4,{c}.

Let us consider in more detail the expectation of B4,{c}. We have

1

N
〈TrB4,{c}(T,T)〉 =

1

N

∑
~a1,~a2

~b1,~b2

(
δa1
cb

2
c
δa2
cb

1
c

∏
c1 6=c

δa1
c1
b1c1
δa2
c1
b2c1

)
〈T~a1T~a2T~b1T~b2〉 (3.21)

=
1

N

∑
~a1,~a2

~b1,~b2

(
δa1
cb

2
c
δa2
cb

1
c

∏
c1 6=c

δa1
c1
b1c1
δa2
c1
b2c1

)[
W

(2)

~a1,~b1

(
N, z, {ti}

)
W

(2)

~a2,~b2

(
N, z, {ti}

)

+W
(2)

~a1,~b2

(
N, z, {ti}

)
W

(2)

~a2,~b1

(
N, z, {ti}

)
+W

(4)

~a1~a2,~b1~b2

(
N, z, {ti}

)]
.

(3.22)

The two products of 2-point cumulants are the two Gaussian contributions.

We treat the Gaussian and non-Gaussian contributions above separately. Using

eq. (3.16), the Gaussian contributions write:

c
W (2)(N, z) W (2)(N, z) +

c

W (2)(N, z)

W (2)(N, z)

=
1

N

(
N2D−1 +ND+1

)[
N−(D−1)K

(
B2;N, z, {ti}

)]2

=
(

1 +
1

ND−2

)[
K
(
B2;N, z, {ti}

)]2

=
c

K(B2;N, z) K(B2;N, z) +
1

ND−2

c

K(B2;N, z)

K(B2;N, z)

.

(3.23)
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c

K(B4,{c};N, z)

c

Figure 5. The dominant non-Gaussian contribution to the expectation of B4,{c}, where the

rightmost bubble represents the boundary graph of K(B4,{c};N, z, {ti}). It is necessary to explicitly

draw this boundary graph in order to describe how it is connected to the observable. There are

indeed two ways to connect it, corresponding to the two terms proportional to K(B4,{c};N, z, {ti})
in eq. (3.26): the dominant one, which comes with a factor 1/ND−2 and a sub-dominant one which

comes with a scaling N−D−1/ND−2.

The non-Gaussian contributions:

c
W (4)(N, z) =

1

N

∑
a,b

(
δa1
cb

2
c
δa2
cb

1
c

∏
c1 6=c

δa1
c1
b1c1
δa2
c1
b2c1

)
W

(4)

~a1~a2,~b1~b2

(
N, z, {ti}

)
,

(3.24)

are shown in appendix A to yield:

c
W (4)(N, z)

=
( 1

N2(D−1)
+

1

ND

)
K
(
B4,∅;N, z, {ti}

)
+

∑
C∈{1,...,D},c∈C,|C|≤D/2

( 1

ND−2
N1−|C| +

1

ND−2
N−D+|C|−1

)
K
(
B4,C ;N, z, {ti}

)
+

∑
C∈{1,...,D},c/∈C,|C|≤D/2

( 1

ND−2
N−D+1+|C| +

1

ND−2
N−1−|C|

)
K
(
B4,C ;N, z, {ti}

)
. (3.25)

We conclude that these terms contribute at most at order ND−2. Furthermore, at order

ND−2 only the term with C = {c} represented in figure 5 contributes.
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Gathering the above pieces brings up the following cumulant expansion,

1

N
〈TrB4,{c}(T,T)〉

=
(

1 +
1

ND−2

)[
K
(
B2;N, z, {ti}

)]2

+
( 1

ND−2
+

1

N2D−1

)
K
(
B4,{c};N, z, {ti}

)
+
( 1

N2(D−1)
+

1

ND

)
K
(
B4,∅;N, z, {ti}

)
+

∑
C∈{1,...,D},c∈C,1<|C|≤D/2

( 1

ND−2
N1−|C| +

1

ND−2
N−D+|C|−1

)
K
(
B4,C ;N, z, {ti}

)
+

∑
C∈{1,...,D},c/∈C,1≤|C|≤D/2

( 1

ND−2
N−D+1+|C| +

1

ND−2
N−1−|C|

)
K
(
B4,C ;N, z, {ti}

)
.

(3.26)

This equation is exact. Since we are only interested in the LO and NLO of the expectation,

we only keep the first line in the form

1

N
〈TrB4,{c}(T,T)〉

=
(

1 +
1

ND−2

)[
K
(
B2;N, z, {ti}

)]2

+
1

ND−2
K
(
B4,{c};N, z, {ti}

)
+O(1/ND−1). (3.27)

Truncating at order 1
ND−2 and using (3.20), we obtain:

1

N
〈TrB4,{c}(T,T)〉 = T 2+

1

ND−2

(
2T KNLO

(
B2, z, {ti}

)
+T 2+K

(
B4,{c}; z, {ti}

)
+O(1/N)

)
.

(3.28)

We will use from now on the shorthand notations KNLO
(
B2, z, {ti}

)
≡ KNLO

2 , and

K
(
B4,{c}; z, {ti}

)
≡ KLO

4,{c}. In appendix A we prove that the same kind of expansion

can be performed on the expectations of the polynomials associated to arbitrary melonic

bubbles:

1

N
〈TrBi(T,T)〉 =

(
1 +

αi
ND−2

)[
K
(
B2;N, z, {ti}

)]pi
+

α′i
ND−2

[
K
(
B2;N, z, {ti}

)]pi−2

K
(
B4,{c};N, z, {ti}

)
+O(1/ND−1), (3.29)

reducing at NLO to:

1

N
〈TrBi(T,T)〉 = T pi+

1

ND−2

(
pi T

pi−1KNLO
2 +αi T

pi+T pi−2
∑

c=1,...,D

α′i,cK
LO
4,{c}+O(1/N)

)
,

(3.30)

where αi and α′i,c are some coefficients which depend on Bi.
From now on, to simplify the analysis, we shall assume that the set of interaction

bubbles {Bi}i∈I (as well as the set of corresponding couplings {ti}i∈I) is invariant under

color relabeling. As a consequence, there is a single function KLO
4,• ≡ KLO

4,{c} for all c ∈
{1, . . . , D}. We denote in (3.30) α′i ≡

∑
α′i,c.
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The same kind of expansion holds for 〈TrBi+(ec)(T,T)〉, albeit with different numerical

constants, αi,ec and α′i,ec . It is convenient to sum directly over e ∈ Bi, that is, the edges of

color c, upon which one may insert a (D − 1)-dipole:∑
ec∈Bi

1

N
〈TrBi+(ec)(T,T)〉

= pi T
pi+1+

1

ND−2

(
pi(pi + 1)T pi KNLO

2 + βi,c T
pi+1 + β′i,c T

pi−1KLO
4,• +O(1/N)

)
, (3.31)

with βi,c =
∑

e αi,ec and β′i,c =
∑

e α
′
i,ec

.

6-point bubbles. In the quartic model of [13], the SD equations involve the bubbles

B4,{c′}+ (ec), that is, B4,{c′} with a melonic insertion of color c, which have six vertices and

are of two types: either c = c′ or c 6= c′. If c = c′, we get a bubble with three (D−1)-dipole

insertions of the same color. Setting for convenience c′ = 1 and c = 1 or c = 2 (depending

on the case), we can write:

1

N

〈
1

〉
=
(

1 +
3

ND−2

)[
K
(
B2;N, z, {ti}

)]3

+
3

ND−2

[
K
(
B2;N, z, {ti}

)
K
(
B4,•;N, z, {ti}

)
+O(1/N)

]
, (3.32)

1

N

〈
1 2

〉
=
(

1 +
2

ND−2

)[
K
(
B2;N, z, {ti}

)]3

+
2

ND−2

[
K
(
B2;N, z, {ti}

)
K
(
B4,•;N, z, {ti}

)
+O(1/N)

]
. (3.33)

In both equations, the K(B2;N, z, {ti})3 term is the Gaussian contribution. Its coefficient

takes into account the single melonic contraction, as well as the α NLO Gaussian con-

tractions. The second term is the non-Gaussian contribution, where there are α′ ways to

introduce a 4-point contribution with the appropriate 1/ND−2 scaling. For the first bubble

α = α′ = 3, since there are three contributions of the types:4

1

K(B2)

K(B2) K(B2)

,
1

K(B2)

K(B4,{1})

.

For the second bubble α = 2, which corresponds to the two terms:

1 2

K(B2)

K(B2)

K(B2) ,
1 2

K(B2)

K(B2)

K(B2)

,

4Repeatedly rotating the graphs by 2π/3 produces another two graphs of each type.
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and α′ = 2, corresponding to the following two terms,

1 2
K(B2)K(B4,{1}) , 1 2

K(B4,{2})K(B2) .

3.4 The Schwinger-Dyson equations at NLO

We are now in position to solve the SD equations at NLO to extract KNLO
2 ,KLO

4,• . Plugging

the expansions (3.20), (3.28), (3.30), (3.31) into the SD equations (2.11) and (2.17) yields

a linear system on KNLO
2 ,KLO

4,• . The first SD equation (2.11) reads:(
−1 +

∑
i∈I

tipi[zT ]pi−1
)
KNLO

2 +
(∑
i∈I

tiα
′
iz
pi−1T pi−2

)
KLO

4,• = −
∑
i∈I

tiαiz
pi−1T pi . (3.34)

Notice that the coefficient of KNLO
2 is the singular function C(z, {ti}) defined in (3.3),

which vanishes at criticality.

The second SD equation, (2.17), is:

(
1− 2T +

∑
i∈I

ti(pi + 1)zpi−1T pi
)
KNLO

2 +
(
−1 +

∑
i∈I

ti
β′i,c
pi

[zT ]pi−1
)
KLO

4,•

= −T
(

1− T +
∑
i∈I

ti
βi,c
pi
zpi−1 T pi

)
(3.35)

It should be noted that, although the numerical coefficients βi,c and β′i,c depend on both

i and c, the sum over i ∈ I ensures that everything is symmetric with respect to color

relabeling, so that the equation is the same for all values of c ∈ {1, . . . , D}. We then set

c = 1 and denote βi ≡ βi,c=1 and β′i ≡ β′i,c=1.

To simplify this equation, we use 1−T +
∑

i∈I tiz
pi−1T pi = 0, first to observe that the

coefficient of KNLO
2 is again proportional to the singular function C:

1− 2T +
∑
i∈I

ti(pi + 1)zpi−1T pi = −T C , (3.36)

and second to reduce the right hand side:

1− T +
∑
i∈I

ti
βi
pi
zpi−1 T pi = −

∑
i∈I

ti

(
1− βi

pi

)
zpi−1T pi . (3.37)

After dividing the equation (3.35) by T , (3.34) and (3.35) can be cast into a linear

system:(
−C ∑

i∈I tiα
′
iz
pi−1T pi−2

−C 1
T

(
−1 +

∑
i∈I ti

β′i
pi

[zT ]pi−1
))(KNLO

2

KLO
4,•

)
=

(
−∑i∈I tiαiz

pi−1T pi∑
i∈I ti

pi−βi
pi

zpi−1T pi

)
, (3.38)
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whose determinant is:

det

(
−C ∑

i∈I tiα
′
iz
pi−1T pi−2

−C 1
T

(
−1 +

∑
i∈I ti

β′i
pi

[zT ]pi−1
)) =

C

T

(
1−

∑
i∈I

ti

(β′i
pi
− α′i

)
[zT ]pi−1

)
=

C

T 2

(
1−

∑
i∈I

ti

(β′i
pi
− (α′i + 1)

)
zpi−1T pi

)
.

(3.39)
Inversion is then straightforward and leads to:

KNLO
2 =

T

C

(
1−∑i tiβ

′
i[zT ]pi−1/pi

)∑
i tiαiz

pi−1T pi −∑i,j∈I titjα
′
i(vj − βj)zpi+vj−2T pi+vj−1/vj

1−∑i∈I ti
(
β′i/pi − (α′i + 1)

)
zpi−1T pi

,

(3.40)

KLO
4,• =

∑
i ti
(
βi/pi − (αi + 1)

)
zpi−1 T pi+2

1−∑i∈I ti
(
β′i/pi − (α′i + 1)

)
zpi−1T pi

. (3.41)

The quartic case. For I = {1, . . . , D} and {Bi}i∈I = {B4,{c}}c=1,...,D, the combinatorial

coefficients are α = α′ = 1 and βc = β′c with β1 = 6 and βc = 4 for c 6= 1. Specializing the

above formula simply gives:

KNLO
2 (z) =

1√
1− 4Dz

Dz T (z)2

1− z T (z)2
,

KLO
4,• (z) =

z T (z)4

1− z T (z)2
, (3.42)

where we have used the explicit solution T (z) = (1−
√

1− 4Dz)/(2Dz), C = 1− 2DzT =√
1− 4Dz.

The function KLO
4,• has a simple combinatorial interpretation as the chain of quartic

bubbles transmitting a single color:

c cT

T

T

T

. . .
c

=
z T 4

1− z T 2
= KLO

4,• (z).

This makes the link with the results of [12, 13], where these chains play a prominent role.

3.5 The order 1/ND in the quartic model

In the context of the quartic model, it is easy enough to go beyond the order 1/ND−2. Here,

we solve the SD equations at the order 1/ND to get the leading order of K(B4,∅;N, z). This

result will be useful to derive the double scaling limit (and will actually be also derived in

the section 4.2, using combinatorics).

Notice that 1/ND is the NNLO when D ≥ 5. For D = 3, the NNLO is however

1/N2(D−2), while those two orders coincide at D = 4. Nonetheless, the SD equations hold

order by order in the 1/N expansion, so 1/ND not being the NNLO is not an issue. The

only critical case is D = 4, for which it would seem that looking at terms of order 1/ND

is not enough. It is however not true. The terms which scale like 1/N4 at D = 4 can be
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unambiguously split into contributions which generalize to D 6= 4 with scaling 1/ND and

others with scaling 1/N2(D−2). If the SD equations are satisfied by some functions of D

at the order 1/ND for D 6= 4, they will still be satisfied at this order when D = 4 by the

same functions evaluated on D = 4.

We here need to come back to the equation (3.26), i.e. the cumulant expansion of the

expectation 〈TrB4,{c}(T,T)〉/N (fixed color c), so as to identify the terms which pop up

at the order 1/ND. We find directly the term K(B4,∅;N, z)/N
D which shows that the

disconnected boundary graph is now involved. We also find the term N−1−|C|

ND−2 K(B4,C ;N, z)

with c 6∈ C, which for |C| = 1 reduces to 1
NDK(B4,{c′};N, z) with C = {c′}. We can now

extend the explicit terms of (3.27) to

1

N
〈TrB4,{c}(T,T)〉 =

(
1 +

1

ND−2

)[
K
(
B2;N, z, {ti}

)]2

+
1

ND−2
K
(
B4,{c};N, z, {ti}

)
+

1

ND

[
K
(
B4,∅;N, z

)
+
∑
c′ 6=c

K
(
B4,{c′};N, z

)
+O(1/N)

]
. (3.43)

Due to the color symmetry, all the termsK
(
B4,{c′};N, z

)
are equal and their LO is therefore

KLO
4,• (z). We introduce KNNLO

2 (z) the restriction of the 2-point function at the order 1/ND,

and KLO
4,∅ (z) the leading order of K

(
B4,∅;N, z

)
. Identifying those terms at order 1/ND,

we find:

1

N
〈TrB4,{c}(T,T)〉|1/ND = 2T (z)KNNLO

2 (z) + (D − 1)KLO
4,• (z) +KLO

4,∅ (z). (3.44)

Similar cumulant expansions exist for larger melonic bubbles. For the quartic model,

we need to extend the expansions (3.3), (3.3) of the two 6-point bubbles. We skip the details

which generalize the appendix A to the order 1/ND. At the end of the day, one gets

1

N

〈
1

〉

=
(

1 +
3

ND−2

)[
K
(
B2;N, z, {ti}

)]3
+

3

ND−2
K
(
B2;N, z, {ti}

)
K
(
B4,•;N, z, {ti}

)
+

3

ND
K
(
B2;N, z, {ti}

)[
(D − 1)K

(
B4,•;N, z, {ti}

)
+K

(
B4,∅;N, z, {ti}

)
+O(1/N)

]
,

(3.45)

and

1

N

〈
1 2

〉
=
(

1 +
2

ND−2
+

1

ND

)[
K
(
B2;N, z, {ti}

)]3
+

2

ND−2
K
(
B2;N, z, {ti}

)
K
(
B4,•;N, z, {ti}

)
+

1

ND
K
(
B2;N, z, {ti}

)[(
2(D − 1) +D

)
K
(
B4,•;N, z, {ti}

)
+ 3K

(
B4,∅;N, z, {ti}

)
+O(1/N)

]
. (3.46)
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This way the SD equation (2.11) gives at order 1/ND

(
−1 + 2Dz T (z)

)
KNNLO

2 (z) +DzKLO
4,∅ (z) = −D(D − 1)z KLO

4,• (z), (3.47)

while the SD equation (2.17) gives(
1− 2T (z) + 3Dz T (z)2

)
KNNLO

2 (z)+
(
− 1 + 3Dz T (z)

)
KLO

4,∅ (z)

= (D − 1)
(

1− (3D + 1)z T (z)
)
KLO

4,• (z)− (D − 1)z T (z)3. (3.48)

Substracting 2 times the first equation to the second, we get the linear system(
−1 + 2Dz T Dz

1−Dz T 2 −1 +Dz T

)(
KNNLO

2 (z)

KLO
4,∅ (z)

)

=

(
−D(D − 1)zKLO

4,• (z)

(D − 1)KLO
4,• (z)− (D + 1)(D − 1)zTKLO

4,• (z)− (D − 1)zT 3

)
(3.49)

where KLO
4,• acts as a source. The determinant is found to be

det

(
−1 + 2Dz T (z) Dz

1−Dz T (z)2 −1 +Dz T (z)

)
=

[
1−Dz T (z)2

T (z)

]2

= 1− 4Dz = 1− z/zc, (3.50)

which leads to

KNNLO
2 (z) =

D(D − 1) z2 [T (z)]5

(1−Dz [T (z)]2)2 (1− z [T (z)]2)
=

1

1− 4Dz

D(D − 1) z2 [T (z)]3

1− z [T (z)]2
, (3.51)

KLO
4,∅ (z) =

D(D − 1) z2 [T (z)]6

(1−Dz [T (z)]2) (1− z [T (z)]2)
=

1√
1− 4Dz

D(D − 1) z2 [T (z)]5

1− z [T (z)]2
. (3.52)

Whereas KLO
4,• (z) was found to be the (sum of all) monocolored chains, KLO

4,∅ (z) instead

corresponds to the (sum of all) strictly multicolored chains, i.e. the chains of quartic bub-

bles where there is at least one change of transmitted color. Indeed, there are obtained

by considering all chains with arbitrary colors and then substracting the D monocolored

chains,
Dz T 4

1−Dz T 2
− Dz T 4

1− z T 2
=

D(D − 1) z2 T 6

(1−Dz T 2) (1− z T 2)
= KLO

4,∅ (z). (3.53)

All those combinatorial interpretations within the quartic model will be clear in the sec-

tion 4.2 which makes use of a powerful combinatorial representation (which however only

works for the quartic model).

4 The double scaling limit

4.1 Double scaling limit in the SD equation

We now look for a different scaling limit, which can be reached by sending both N → ∞
and z to its critical value zc, at a certain rate such that a combination (which we denote

x), of zc − z and N (to be determined) is held fixed. The system of SD equations that we
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have solved so far is linear in the 1/N perturbations: only linear functions arise beyond

the LO. To find an interesting limit, the SD equations must become non-linear in the

perturbations, at least in the 1/N corrections to the 2-point function.

The plan is to expand the 2-point function in a different manner, after which we shall

test the viability of this ansatz using the simplest SD equation (2.11):

0 = 1− 1

N
〈TrB2(T,T)〉+

1

N

∑
i∈I

zpi−1ti〈TrBi(T,T)〉 .

A sign that non-linear perturbations are possible stems from the fact that the expectation

〈TrBi(T,T)〉 is of order pi in the 2-point function:

1

N
〈TrBi(T,T)〉 − non-Gaussian parts =

(
1 +

αi
ND−2

+O(1/ND)
) [

K
(
B2;N, z, {ti}

)]pi
.

(4.1)

Therefore, if we make the following generic ansatz for the double-scaled 2-point function:

K
(
B2;N, x, {ti}

)
= T (zc, {ti}) +

1

Na
KDS(x, {ti}) + · · · (4.2)

when N → ∞, z → zc, we see that a quadratic term in KDS(x, {ti}) arises from the

expansion:

1

N
〈TrBi(T,T)〉 − non-Gaussian parts

=T pic +
1

Na
piT

pi−1
c KDS(x) +

1

ND−2
αiT

pi
c +

1

N2a

pi(pi − 1)

2
T pi−2
c

[
KDS(x)

]2
+ · · · , (4.3)

where Tc ≡ T (zc, {ti}), at order 1/N2a. It follows that a nontrivial double scaling equation

can be obtained for a = D−2
2 (when N−2a = N−(D−2)) since then the expectation does

have other contributions at this order, which can provide a source for the quadratic term

[KDS(x)]2.

A reasonable ansatz is thus to start with (4.2) with a = (D − 2)/2, completed up to

the order 1/ND−2 to which we want to solve the SD equation. We introduce the function

KDS,NLO(N, x, {ti}) which contains all the orders between 1/N
D−2

2 and 1/ND−2 and write:

K
(
B2;N, x, {ti}

)
= T (zc, {ti}) +

KDS(x, {ti})
N

D−2
2

+KDS,NLO(N, x, {ti})

+
KDS,(D−2)(x, {ti})

ND−2
+O(N−D+1), (4.4)

and we expect KDS(x) to be determined by the SD equation (2.11) at order 1/ND−2.

In order to determine the fixed coupling x as a function of zc−z and N , the ansatz (4.4)

must be compared with the expansion of the 2-point function to NLO, in the vicinity of

the critical coupling zc:

K
(
B2;N, x, {ti}

)
=
z∼zc

T (z, {ti}) +
1

ND−2
√

1− z/zc
(· · · ) +O(N−D+1) ,
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where the ellipses represent the currently irrelevant contributions to the function KNLO
2

given in (3.40) which take a finite value when z → zc. The singular factor 1/C of KNLO
2 ,

which behaves as 1/
√

1− z/zc, has been explicitly factorized. While 1/ND−2 goes to zero

as N → ∞, the singularity of 1/C as z approaches its critical value makes it possible to

find a double scaling limit. Comparing with eq. (4.4) it appears that the only way to reach

a = (D − 2)/2 while z → zc is to choose:

z = zc −
x

ND−2
, (4.5)

where x is held fixed in the double scaling limit z → zc, N →∞.

Substituting the ansatz (4.4) into the expansion (3.30) of the expectation of TrBi
leads to:

1

N
〈TrBi(T,T)〉 =

(
1 +

αi
ND−2

)[
T (zc, {ti}) +

KDS(x, {ti})
N

D−2
2

+KDS,NLO(N, x, {ti})

+
KDS,(D−2)(x, {ti})

ND−2

]pi
+

1

ND−2

[
T (zc, {ti})

]pi−2
KLO

4,•

∣∣∣
z→zc

+ · · · (4.6)

Importantly, KLO
4,• is finite at criticality, since it does not have the singular factor 1/C.

Therefore, it can be safely evaluated at zc (it already comes at order 1/ND−2 so there

is no need to expand around zc which would generate 1/N corrections). At this stage,

however, it is not clear that the ellipses in the above equation contain only terms that

can be neglected in the double scaling limit. It could indeed be the case that corrections

to the 4-point function, as well as non-Gaussian contributions of higher orders, diverge at

criticality, and furthermore, that they come with sufficiently many powers of 1/
√

1− z/zc
to counter-balance their 1/N suppression. In this way, those terms could contribute in the

double scaling limit. Solving this issue requires a precise analysis that will be performed

in the next section, 4.2.

For the time being, we simply give the result of the analysis, in the context of the

quartic model. We need to know the behavior of the various 4-point cumulants in the

eq. (3.26). In the standard 1/N -expansion:

K
(
B4,{c};N, z

)
=

z T (z)4

1− z T (z)2
+O

(
1

ND−2

)
,

K
(
B4,∅;N, z

)
=

1√
1− 4Dz

D(D − 1) z2 [T (z)]5

1− z [T (z)]2
+O

(
1

ND−2

)
,

K
(
B4,C ;N, z

)∣∣∣
|C|≥2

= O
(

1

ND−2

)
. (4.7)

Both the first and second lines have been obtained by solving the SD equations in the

section 3 (the estimates on their rests follow combinatorial arguments). The third line is a

scaling argument. In the following section 4.2, those results will actually be re-derived on
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the way to showing that the cumulants in the double scaling limit become:

K
(
B4,{c};N, x

)
= f (0)(B4,{c};N, x) +N−

D−2
2 f (−D−2

2
)(B4,{c};N, x) ,

K
(
B4,∅;N, x

)
= N

D−2
2 f (D−2

2
)(B4,∅;N, x) ,

K
(
B4,C ;N, x

)
= O

( 1

ND−2

)
. (4.8)

Importantly, the functions f (q)(B;N, x) are bounded for all N (have a finite value as N →
∞). Note that the sub-leading corrections to K

(
B4,{c};N, x

)
contribute at order N−

D−2
2 ,

that is sooner than expected in the 1/N -expansion.

As a result, K
(
B4,∅;N, x

)
is enhanced in the double scaling regime by a factor N

D−2
2 .

This can be understood already from the 1/N -expansion (4.7). Its LO indeed contains the

singular factor 1/C(z) = 1/
√

1− 4Dz which as a function of x and N becomes

1

C(z(N, x))
=
N

D−2
2√
x

.

The divergence of the LO of K
(
B4,∅;N, x

)
as z approaches zc is traded for a large N

enhancement.

Therefore the non-Gaussian contributions to the expectation of TrB4,{c} read:

1

ND−2
K
(
B4,{c};N, x

)
+

1

ND
K
(
B4,∅;N, x

)
+O(N−D−1)

=
1

ND−2

(
f (0)(B4,{c};N, x)︸ ︷︷ ︸

O(1)

+
ND−2N

D−2
2

ND
f (D−2

2
)(B4,∅;N, x)︸ ︷︷ ︸

O
(
N
D−6

2

) +O(1/N)
)
. (4.9)

From this analysis, we conclude that in the double scaling limit, the dominant 4-point

cumulant in the quartic model is dominated by the leading order of:

– f (0)(B4,{c};N, x) when D < 6,

– both f (0)(B4,{c};N, x) and f (D−2
2

)(B4,∅;N, x) when D = 6,

– f (D−2
2

)(B4,∅;N, x) when D > 6.

This way, we recover the D = 6 barrier found in [12, 13]. Since the doubly scaled 2-point

function is not-summable for D ≥ 6, we hereafter focus on the case D < 6. Moreover, we

will argue in the section 4.3 that this conclusion holds for any model with melonic bubbles

in the action (symmetrized on the colors) and not only the quartic model.
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Plugging the expansion (4.4) for the 2-point function into the SD equation (2.11) gives
(some terms contributing beyond 1/ND−2 have already been neglected):

1−
(
Tc +

KDS(x, {ti})
N

D−2
2

+KDS,NLO(N, x, {ti}) +
KDS,(D−2)(x, {ti})

ND−2

)
+
∑
i∈I

ti

(
zc −

x

ND−2

)pi−1(
T pic +

1

N
D−2

2

piT
pi−1
c KDS(x, {ti}) + piT

pi−1
c KDS,NLO(N, x, {ti})

+
1

ND−2

(
αiT

pi
c + piT

pi−1
c KDS,(D−2)(x, {ti})

+
pi(pi − 1)

2
T pi−2c

[
KDS(x, {ti})

]2
+ α′iT

pi−2
c KLO

4,• (zc, {ti})
))

= 0 ,

(4.10)

which we shall evaluate order-by-order in the 1/N -expansion up to 1/ND−2. The leading

order equation is trivially satisfied as the evaluation of 1− T +
∑

i tiz
pi−1T pi at criticality.

At order N−
D−2

2 , we get(
−1 +

∑
i∈I

tipi[zc Tc]
pi−1

)
KDS(x, {ti}) = 0 . (4.11)

The quantity into brackets is the function C evaluated at criticality and so vanishes. Thus,

it provides no new information. Then we need to take care of all the terms between the

order 1/N
D−2

2 and 1/ND−2. Because they are strictly bounded by N−(D−2)/2, the functions

KDS,NLO and KDS,(D−2) only appear linearly in the above expansion (their square would

only contribute beyond 1/ND−2). Therefore, they both come in factor of the first derivative

of the LO equation, i.e. the function C(z, {ti}), evaluated at criticality which is zero.

Remarkably, we are left at order 1/ND−2 with an equation on the function KDS only:

(∑
i∈I

ti
pi(pi − 1)

2
zpi−1
c T pi−2

c

)
[KDS(x, {ti})]2 − x

(∑
i∈I

ti(pi − 1)zpi−2
c T pic

)
+
∑
i∈I

tiz
pi−1
c

(
αiT

pi
c + α′iT

pi−2
c KLO

4,• (zc, {ti})
)

= 0 , (4.12)

which directly gives its expression as a function of x, {ti}. This is the main result of the

article.

The quartic case. Specializing this calculation to the quartic case directly reproduces

the doubly scaled 2-point function found in [13]:

[KDS(x)]2 =
( x
zc
− 1
)
T 2
c −KLO

4,• (zc) . (4.13)

Using zc = 1/4D, we find Tc = 2 and KLO
4,• (zc) = 4/(D − 1) and finally:

KDS(x) = 4
√
D

√
x− 1

4 (D − 1)
. (4.14)
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1

1

1

3

3

(a) A Feynman graph with two exter-

nal legs.

1
2

3

1

1

(b) The associated edge

colored map with a

(dashed) cilium.

Figure 6. An example of the bijection between Feynman graphs with 2p external legs and

edge-colored maps with p cilia.

4.2 Proof of the double scaling limit

Our task in this section is to establish the equation (4.8) (we will actually derive (4.7) on

our way).

At the end of the day, we do not know how to derive these equalities solely via the SD

equations. We shall utilize in this section a different analysis, devised in [24] (and utilized

first in [13] for the 2-point function), to probe these sub-leading terms.

In this proof, we shall restrict to the quartic model described earlier and use a univer-

sality argument, presented in the next section, to extend the proof to the generic model.

Our main reason for doing so is that the universality argument is succinct yet powerful.

As one will see, the following analysis is quite involved and tailored for the quartic model

only. To prove these results for generic models directly is an arduous task, deserving its

own paper.

The quartic model is defined by the action and the generating function:

S(quart)(T,T) = TrB2(T,T)−
D∑
c=1

z

2
TrB4,{c}(T,T) ,

Z(quart)(J, J) =

∫ (∏
~a

ND−1 dT~a dT~a
2πi

)
e−N

D−1S(quart)(T,T)+TrB2
(T,J)+TrB2

(J,T) .

The 2p-point cumulants are sums over connected (D+1)-colored graphs with 2p edges

of color 0 adjacent to 2p vertices of degree 1 called the external vertices. Moreover the

connected components of the sub-graphs with colors 1, . . . , D are bubbles B4,{c}.

We recall that the amplitude of such a Feynman graph G is easily evaluated: each

subgraph B4,{c} brings a ND−1 scaling factor and a trace-invariant operator. Each edge

of color 0 brings a 1
ND−1

∏D
c=1 δacbc factor. It follows that the indices are identified along

the faces of color 0c of G. The indices corresponding to the internal faces are summed and

bring a factor N each. The indices corresponding to the external faces of G reconstitute

the trace-invariant operator associated to ∂G, δ∂G
~av ,~bv

. Denoting E0(G) the number of edges

of color 0 of G (including the external edges), B(G) the number of subgraphs of colors
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{1, . . . , D} of G, and F 0c
int(G) the number of internal faces of color 0c of G, the 2p-point

cumulant writes:

W
(2p)

~a1...~ap,~b1...~bp

(
N, z, {ti}

)
=
∑
n≥0

1

n!
zn

∑
G,p(∂G)=p
B(G)=n

NB(G)(D−1)N
∑D
c=1 F

0c
int(G)

N (D−1)E0(G)
δ∂G
~av ,~bv

, (4.15)

where the sum runs over graphs G with labeled sub-graphs B4,{c}. The contribution of an

invariant B to the 2p-point cumulant is obtained by restricting to graphs whose boundary

is B, that is ∂G = B:

W
(
B;N, z

)
=
∑
n≥0

1

n!
zn

∑
G,∂G=B
B(G)=n;

NB(G)(D−1)N
∑D
c=1 F

0c
int(G)

N (D−1)E0(G)
, (4.16)

The graphs and amplitudes of this model can be recast in terms of an intermediate field

representation, the details of which can be found in [24]. Although somewhat lengthy to

introduce, this representation clarifies greatly the 1/N -expansion. The intermediate field

representation can be obtained by introducing Hubbard-Stratonovich intermediate fields,

integrating out T,T and deriving the new Feynman rules of the theory. Here we do not

need this full machinery, but we will take advantage of the fact that the graphs of this

intermediate field representation are in a one-to-one correspondence with the Feynman

graphs of the tensor model.

4.2.1 The intermediate field representation

We will call effective graphs the graphs of the intermediate field representation. The map-

ping to the Feynman graphs of our tensor model is exemplified in the figure 6b. The

effective graphs are simply obtained from the regular edge-colored graphs by contracting

all the edges of color 0 and all the edges of color c′ 6= c in each B4,{c} to constitute effective

vertices (e-vertices for short), while associating an effective edge of color c (e-edges of color

c for short) to the couple of edges of color c in each B4,{c}.

The external edges of color 0 will then be partitioned into pairs associated to some of

the e-vertices. We decorate those e-vertices by a mark, or a cilium, to signal such a couple.

An e-vertex can have at most one cilium. This mapping is obviously bijective. A typical

example of a contribution to the 4-point cumulant is presented in figure 7.

We use boxes to represent the marked vertices when there is no ambiguity as for the

cilium positions around the vertices. Note indeed that, in this intermediate field repre-

sentation, the order of the e-edges adjacent to an e-vertex is specified. It means that the

effective graphs are in fact combinatorial maps (i.e. graphs with ascribed order of the edges

at a vertex) with edges colored {1, . . . , D}. We call a corner the piece of an e-vertex com-

prised between two consecutive e-edges. Note that a cilium is incident to two corners (or

to a unique corner, if the graph has one ciliated vertex and no edges). We will denote the

maps thus obtained by M.

Every M has D canonical sub-maps Mc obtained by deleting all the edges of color

c′ 6= c in M. All the vertices of M belong to Mc. The sub-maps Mc have a well defined
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Figure 7. An effective graph with two marked vertices {i1, i2}. The e-edges have a color, as

stressed out by the dashed edge with color c1.

notion of faces. They fall in two categories: the internal faces of Mc are the circuits

obtained by going along the e-edges (of color c) and along the corners of the e-vertices of

Mc, while the external faces ofMc are the open paths obtained by going along the corners

and the e-edges (of color c) ofMc from one cilium to another. By convention, all the faces

are oriented clockwise. We define the faces of color c of M as the faces of Mc. Note that

some of the faces can be reduced to a single corner on an isolated vertex.

All the elements present in the formula (4.16) are faithfully represented within effective

graphs:

• each subgraph B4,{c} of G corresponds to an e-edge of color c of M,

• each edge of color 0 of G corresponds to a corner of M,

• each (internal or external) face of color 0c of G corresponds to an (internal or external)

face of color c of M.

The boundary graph ∂G can be reconstructed from M. To do so, one draws a black

and a white vertex for every cilium of M and for each external face of color c of M going

from a source cilium to a target cilium, one connects the white vertex corresponding to the

source cilium with the black vertex of the target cilium by an edge of color c. We denote

∂M the boundary graph of the effective map M.

Let us denote Ec(M), V (M) and F cint(M) the numbers of e-edges of color c, e-vertices

and internal faces of color c of M. Furthermore, let us define E(M) =
∑D

c=1E
c(M) and∑D

c=1 F
c
int(M) = Fint(M). The numbers of corners of M is p(B) + 2E(M). The number

of cilia of M is half the number of vertices of B = ∂M. The equation (4.16) becomes:

W
(
B;N, z

)
=
∑
v≥0

1

v!

∑
M,∂M=B
V (M)=v

zE(M)N
E(M)(D−1)NFint(M)

N (D−1)[p(B)+2E(M)]

= N−(D−1)p(B)
∑
v≥0

1

v!

∑
M,∂M=B
V (M)=v

zE(M)N−E(M)(D−1)+Fint(M)

(4.17)

where the sum runs over edge-colored maps with labeled vertices such that ∂M = B.
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Lemma 1 We have the bound:

−E(M)(D−1)+Fint(M) ≤ D−(D−1)p(B)−ρ(B)−(D−2)
[
E(M)−V (M)+1

]
. (4.18)

Proof. The external faces are open paths. They can be represented as cycles by adding

to our drawings external strands. For each external face of color c, we connect its source

and target cilia by an external strand of color c (which can for instance be represented as

a dashed edge). By convention we orient the external strands form the target cilium to the

source cilium. The external faces now become cycles, obtained by going between the cilia

along the corners and e-edges of the graph and closing the path into a cycle by following

the external strands.

Note that the external strands encode the boundary ∂M of M. For each cilium we

draw a black and a white vertex and for each strand of color c we connect the white vertex

of its target cilium with the black vertex of its source cilium. Henceforth we use this as

the definition of the boundary graph of a map.

We denote by F cext(M) the number of external faces of color c of the map M, and∑D
c=1 F

c
ext(M) = Fext(M). Initially,M has exactly Dp(B) external faces, hence a total of:

Dp(B) + Fint(M) ,

faces either internal or external. We are interested in finding a bound on this total number

of faces.

An e-edge belongs to either one or two faces (internal or external). By deleting an e-

edge and merging the corners of the two e-vertices to which it is hooked, the total number

of faces of the map can not increase by more than 1. Remark that, while in the initial

map every external face contained exactly one external strand, by deleting an edge we can

create external faces containing several external strands. However, as the deletion does not

affect the connectivity of the external strands, the latter still encode the boundary of the

initial map ∂M.

We choose a spanning tree in M and iteratively delete the e-edges in its complement.

We denote the map obtained at the end of this procedure (which is a tree decorated with

external strands) by M(0) and we have:

Dp(B) + Fint(M) ≤ Fext(M(0)) + Fint(M(0)) +
[
E(M)− V (M) + 1

]
,

and ∂M = ∂M(0).

Starting from M(0) we build the maps M(s) obtained by eliminating one by one the

e-vertices ofM of coordination one. Choose a univalent e-vertex (hence hooked to a unique

e-edge, say of color c) in M(s) having no cilium. The map M(s+1) is obtained by deleting

this e-vertex and the e-edge it is adjacent to. The boundary graph is unchanged by this

procedure, ρ(M(s)) = ρ(M(s+1)), and D−1 internal faces are deleted (all the faces of color

c′ 6= c contained in the e-vertex), hence

Fext(M(s))+Fint(M(s))+ρ(∂M(s)) = Fext(M(s+1))+Fint(M(s+1))+ρ(∂M(s+1))+(D−1) .

(4.19)

– 30 –



J
H
E
P
0
9
(
2
0
1
4
)
0
5
1

If the univalent e-vertex (hooked to a unique e-edge, say of color c) onM(s) is ciliated

then there are D incoming and D outgoing external strands at this cilium. Let us denote

the cilium by i. We build first the map M̃(s) by deleting i and all the external strands

which start and end at i, and reconnecting the remaining external strands incident at i

respecting the colors. The mapM(s+1) is then obtained from M̃(s) by deleting the resulting

univalent e-vertex and the e-edge to which it is hooked.

Going from M(s) to M̃(s) changes the boundary graph: ∂M(s) 6= ∂M̃(s), while going

from M̃(s) to M(s+1) preserves it. There are several cases:

• The black and white vertices associated to the cilium i in ∂M(s) belong to two

different connected components of ∂M(s). Then the number of connected components

of the boundary graph decreases by 1, ρ(M(s)) = ρ(M̃(s)) + 1. At the same time, a

new face is created for every color c′ 6= c (this new face is contained in the e-vertex

of interest). For the color c (of the e-edge hooked to the e-vertex), at most one face

can be deleted, thus:

Fext(M(s))+Fint(M(s))+ρ(∂M(s))≤Fext(M̃(s))+Fint(M̃(s))+ρ(∂̃M(s))+1−(D−1)+1 .

(4.20)

• The black and white vertex associated to the cilium i in ∂M(s) belong to the same

connected component of ∂M(s), but not all of the external strands starting at i

end at i. Then the number of connected components of the boundary graph can

only increase, ρ(M(s)) ≤ ρ(M̃(s)). The faces of color c′ 6= c containing the external

strands starting and ending at i become internal. The other faces of color c′ 6= c

remain external. If the external strand of color c starting at i ends also at i, the face

containing it survives. If not, the number of faces of color i can at most decrease by

1. Thus

Fext(M(s))+Fint(M(s))+ρ(∂M(s)) ≤ Fext(M̃(s))+Fint(M̃(s))+ρ(∂̃M(s))+1 (4.21)

• all the external strands starting at i end at i. Then the number of connected com-

ponents of the boundary graph decreases by 1, ρ(M(s)) = ρ(M̃(s)) + 1, but none of

the faces is affected, hence:

Fext(M(s))+Fint(M(s))+ρ(∂M(s)) ≤ Fext(M̃(s))+Fint(M̃(s))+ρ(∂̃M(s))+1 . (4.22)

When going from M̃(s) toM(s+1), D−1 faces are deleted. Taking into account that D ≥ 3,

Fext(M(s)) + Fint(M(s)) + ρ(∂M(s)) ≤ Fext(M(s+1)) + Fint(M(s+1)) + ρ(∂M(s+1)) +D .

(4.23)

Eliminating all the e-vertices we obtain the map M(sf ) with sf = V (M)− 1, having only

one e-vertex and exactly D faces. The final e-vertex can be ciliated or not, hence we obtain

the bound

Fext(M(0)) + Fint(M(0))

≤D + ρ(∂M(sf ))− ρ(∂M(0)) + (D − 1)(V (M)− 1) +

{
p(B)− 1 if ciliated

p(B) if not
,
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hence, taking into according that ∂M(0) = ∂M = B in both cases

Fext(M(0)) + Fint(M(0)) ≤ D + (D − 1)(V (M)− 1) + p(B)− ρ(B)⇒
Fint(M) ≤ D + (D − 1)(V (M)− 1)− (D − 1)p(B)− ρ(∂B) +

[
E(M)− V (M) + 1

]
.

This lemma proves in particular in the sense of perturbation theory the scaling behavior

in the equation (3.12):

K
(
B;N, z

)
=
∑
v≥0

∑
M,∂M=B
V (M)=v

zE(M)N
−(D−1)p(B)−E(M)(D−1)+Fint(M)

ND−2(D−1)p(B)−ρ(B)
,

∣∣∣∣∣N−(D−1)p(B)−E(M)(D−1)+Fint(M)

ND−2(D−1)p(B)−ρ(B)

∣∣∣∣∣ ≤ N−(D−2)

[
E(M)−V (M)+1

]
,

(4.24)

where the sum runs over mapsM with v unlabeled vertices (canceling the 1/v! factor), and

D ≥ 3 and E(M)− V (M) + 1 ≥ 0 for a connected map.

4.2.2 Leading order of the 4-point cumulants in the 1/N-expansion

The relevance of the intermediate field representation is now transparent. Indeed, equa-

tion (4.24) teaches us that (in the sense of perturbation theory):

• the functions K
(
B;N, z

)
are finite for all N and admit a large–N limit.

• the leading order of K
(
B;N, z

)
is given by treesM such that ∂M = B (in particular

M must have p(B) cilia).

• the next to leading order is given by trees decorated by a loop edge, and is suppressed

by N−(D−2).

• the first q orders in the 1/N series are given (at most) by trees decorated with up to

q loop edges.

From now on we concentrate on the 4-point contributions K
(
B4,C ;N, z

)
. They are

represented by maps with two cilia, {i1, i2}. At leading order only trees with two cilia

contribute. If all the edges in the tree connecting the two ciliated vertices have the same

color c, the boundary graph ofM is B4,{c}. If not, the boundary graph ofM is B4,∅. Thus

the last statement of equation (4.7):

K
(
B4,C ;N, z

)∣∣∣
|C|≥2

= O
(

1

ND−2

)
, (4.25)

is proven.

The other two statements are obtained as follows. Recall that T (z) = 1−
√

1−4Dz
2Dz is

the physical solution of the equation 1 − T (z) + DzT (z)2 = 0, and counts rooted plane
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trees with a weight Dz per edge (i.e. tress with a weight z per edge and an arbitrary color

c ∈ {1, . . . , D}).
The graph B4,{c} is obtained from trees such that the path between i1 and i2 is formed

by edges of the same color. The simplest example is the tree with only two vertices

separated by an edge of color c. Any other tree contributing at leading order is obtained

by inserting a (possibly empty) tree with colored edges at any one of the four corners of

the vertices i1 or i2 and inserting d additional intermediary vertices on the path between

i1 and i2, each equipped with two corners on which arbitrary trees are inserted, thus:

K
(
B4,{c}; z

)
= zT (z)4

∞∑
d=0

[zT (z)2]d =
zT (z)4

1− zT (z)2
. (4.26)

For K
(
B4,∅; z

)
the simplest tree has two edges of different colors hooked to i1 and i2

joined at an intermediary bi valent vertex. Denoting d the number of additional vertices

inserted on the path between i1 and i2 and taking into account that only paths in which

not all edges have the same color contribute we have:

K
(
B4,∅; z

)
= T (z)4

[
Dz

∞∑
d=0

[DzT (z)2]d−Dz
∞∑
d=0

[zT (z)2]d
]

=
D(D − 1)z2T (z)6(

1−DzT (z)2
)(

1− zT (z)2
) ,

(4.27)

which reproduces eq. (4.7) taking into account that 1−DzT (z)2 = 2− T = T
√

1− 4Dz.

4.2.3 Reduced maps

The explicit resummation we performed for the leading order in the previous subsection

can be extended to all orders in the 1/N series and ultimately leads to the double scaling

limit of tensor models.

It emerges that we can partition the maps M, with ∂M = B into classes, each pos-

sessing a canonical representative M, which we call the pruned, reduced map (or simply,

reduced map). There are infinitely many maps M in the original sum, which are related

through pruning and reduction to the same reduced mapM. Moreover, the amplitude for

the entire class can be resummed and thus assigned to this representative. This process is

illustrated in figure 8.

Let us start with a map M.

– Pruning is the iterative removal of non-ciliated e-vertices of degree one. This proce-

dure effectively removes tree-like sub-structures from the map M. From the point

of view of the original (D + 1)-colored graph, pruning is equivalent to the iterative

removal of elementary melons.

– Reduction is the removal of all non-ciliated e-vertices of degree two, which from the

point of view of the original (D + 1)-colored graphs, is equivalent to the contraction

of certain chains of (D − 1)-dipoles. This procedure effectively replaces chains of

bivalent vertices by new edges, which we call bars. Those bars come in two types: i)

Type–c bars represent chains of e-vertices of degree two where the connecting e-edges
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Figure 8. The process of pruning and reduction.

all have the same color c; and ii) Type-m bars (m for multicolored) represent chains

of e-vertices of degree two, where the connecting e-edges have at least two different

colors.

A type–m bar is a sequence of type–c bars connected by vertices of degree two and at least

one change of color. Any vertex of the reduced map, except possibly the ciliated ones,

therefore has degree at least three.

It is easy to show [13] that all the maps M associated to the reduced map M possess

the same scaling in N . The scaling exponent of a map in eq. (4.24):

−E(M)(D − 1) + Fint(M) ,

is clearly invariant under the deletion of e-vertices of degree one with no cilia and of the e-

edges adjacent to them (as exactly (D−1) internal faces are formed only by this e-vertex).

Also, exactly (D− 1) internal faces are formed by an e-vertex of degree two with no cilium

and adjacent to two e-edges of the same color.

Type–c bars bring the same scaling as regular e-edges of color c, i.e. N−(D−1). However,

packing up chains of such bars into type–m bars changes the scaling with an extra N−1.

Thus, a type–m bar comes with ND. The faces and boundary of the reduced map M are

defined as before, but taking into account thatMc is obtained by deleting not only all the

bars of colors different from c, but also all the multicolored bars. We denote Em(M) the

number of multicolored bars, and Eu(M) =
∑D

c=1E
c(M) the total number of type–c bars

of M.

In addition to its scaling with N , a reduced map has a z-dependent amplitude. Fol-

lowing the process of pruning and reduction, it is found that this amplitude is evaluated

via local weights assigned in the following way:

– corners are dressed with the LO full 2-point function T (z), reflecting the summation

of arbitrary tree-like structures,

– type–c bars represent chains of bubbles B4,{c} with the same color, hence get the

weight

z
∑
k≥0

[zT (z)2]k =
z

1− zT (z)2
,
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Figure 9. The leading reduced map for

K
(
B4,{c};N, z

)
.

Figure 10. The leading reduced map for

K
(
B4,∅;N, z

)
.

– type–m bars represent chains of bubbles B4,{c} with at least one change of colors,

hence the weight

Dz
∑
k≥0

[DzT (z)2]k −Dz
∑
k≥0

[zT (z)2]k =
D(D − 1) z2T (z)2

(1−DzT (z)2) (1− zT (z)2)
.

The perturbative expansion of K
(
B;N, z

)
can be reorganized in terms of reduced

maps M with unlabeled vertices:

K
(
B;N, z

)
=
∑
v≥0

∑
M,∂M=B
V (M)=v

N−(D−1)p(B)−DE
m(M)−(D−1)Eu(M)+Fint(M)

ND−2(D−1)p(B)−ρ(B) (4.28)

T (z)p(B)+2
[
Em(M)+Eu(M)

]( z

1− zT (z)2

)Eu(M)( D(D − 1)z2T (z)2

(1−DzT (z)2)(1− zT (z)2)

)Em(M)

.

The leading 1/N terms for K
(
B4,{c};N, z

)
and K

(
B4,∅;N, z

)
we computed in the previous

sections are exactly the contributions of the reduced maps in figures 9 and 10.

4.2.4 The double scaling limit

Each type–m bar comes with a factor 1/(1−DzT (z)2) = 1/(T (z)
√

1− 4Dz) which diverges

as z → zc = 1/4D. Therefore the amplitude of a reduced map has a singular part of the

form (1−4Dz)−
Em(M)

2 close to criticality. We henceforth look for the most singular reduced

maps at each fixed order in 1/N , by maximizing the number of multicolored bars at that

order.

Consider a reduced mapM with boundary B = ∂M. No face goes along a multicolored

edge, neither internal nor external. We delete all the multicolored bars. The reduced map

M splits into several connected components. We denoteM(ν), ν = 1, . . . , r the connected

components which contain ciliated vertices, and M(µ), µ = 1, . . . , q those which do not

contain any ciliated vertex. Remark that these connected components are not reduced

maps, as they can contain vertices of degree two. However, they are edge-colored maps.

As no face goes along the multicolored bars, the boundary graph B = ∂M also splits

into several connected components B(ν) = ∂M(ν) and B is the disjoint union of B(ν). The

type–c bars and internal faces are partitioned between the M(ν)s and M(µ)s, hence:

−DEm(M)− Eu(M)(D − 1) + Fint(M)

= −DEm(M) +

r∑
ν=1

[
− Eu

(
M(ν)

)
(D − 1) + Fint

(
M(ν)

)]

+

q∑
µ=1

[
− Eu

(
M(µ)

)
(D − 1) + Fint

(
M(µ)

)]
. (4.29)
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m1

m2

m3

mn

m3

mn

m1

m2

m

Figure 11. From the left to the right drawing, the scaling with N is preserved but a type–m bar

is created. One can proceed until the initial e-vertex has become a binary tree.

m1

m2

mn

m1

m2

mn

c

m1

m2 mn

c

Figure 12. From the left to the middle drawing, one changes the gray blob representing M(µ)

with a unicolored loop, which can not decrease the exponent of N . From the middle to the right,

the scaling with N is preserved but a type–m bar is created.

The componentsM(µ), µ = 1, . . . , q, not containing any cilium are treated as follows.

Either:

• M(µ) is a tree, hence −Eu
(
M(µ)

)
(D−1) +Fint

(
M(µ)

)
= D. There are two cases.

– EitherM(µ) has a unique e-vertex, incident to at least three multicolored bars,

– or M(µ) has more than one e-vertex. Then M(µ) is incident to at least four

multicolored bars. The reduced mapM has the same scaling in N and the same

singular behavior as the map where M(µ) has been contracted to a unique e-

vertex.

Moreover, when M(µ) is an e-vertex of degree at least four, one can always build a

reduced map with the same scaling in N , and strictly more type–m bars, by splitting

the e-vertex into a binary tree whose edges are type–m bars, as in the figure 11.

Indeed, as no faces go all along a type–m bar, an e-vertex incident to only type–m

bars closes exactly D faces. This way, adding both a vertex and a type–m bar does

not affect the scaling while bringing an additional power of 1/
√
zc − z. Therefore the

non-ciliated components M(µ) which are trees have to be e-vertices of degree three.

• OrM(µ) is not a tree and it is incident to at least one multicolored bar. In this case,

from lemma 1:

−Eu
(
M(µ)

)
(D − 1) + Fint

(
M(µ)

)
≤ D − (D − 2)

[
Eu
(
M(µ)

)
− V

(
M(µ)

)
+ 1
]
≤ D − (D − 2) ,

and this bound is saturated by the unicolored loop. It follows thatM scales at most

like the same map where M(µ) has been replaced with a unicolored loop.

Moreover, if M(µ) is a unicolored loop incident to more than one type–m bar, then

one can always build a reduced map with the same scaling in N but with strictly
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more type–m bars (hence more singular). Ones detaches the loop and attaches the

bars to a common vertex which is then connected to the loop through a new type–m

bar (see figure 12). If M(µ) has n incident bars, the scaling is N2−nD in both cases,

but one gets a new singular factor in the second case.

Following [13], we call a type–c loop hooked to a single type–m bar a cherry, represented

like .

We now analyze the connected components M(ν), ν = 1, . . . , r, which contain the

cilia. If several type–m bars are incident to the same component M(ν), one can build a

reduced map with the same scaling in N but more type–m bars by a process similar to

the one applied on the componentsM(µ) which are not trees. One indeed detaches all the

type–m bars incident to M(ν) but one, say m1, and reconnects them on a new e-vertex

created along m1. This splits m1 into two type–m bars, enhancing the singular behavior

at criticality. It has to be mentioned that upon detaching all but one of the type–m bars

hooked to M(ν), the degree of some e-vertices in M(ν)can drop down to two, hence the

resulting drawing is not a reduced map. This however is not a problem, as the reduced

maps in which those e-vertices of degree two are appropriately exchanged for bars do exist

and scale as advertised, hence strictly dominate M.

Thus, for any boundary graph B, the leading singular behavior when z → zc is captured

by the reduced maps whose non-ciliated unicolored components are either vertices of degree

three or cherries, and each ciliated unicolored component is incident to exactly one type–m

bar. We denote V3 and Vcherry the number of e-vertices of degree 3 and the number of

cherries. We need the following combinatorial relations:

• Vcherry + V3 = q,

• as the type–m bars must connect all the unicolored components in a connected way,

we also get Em(M) = q+ r− 1 + l = Vcherry + V3 + r− 1 + l, for some non-negative

integer l,

• as all the cherries are hooked to one type–m bar, all the vertices of degree three

to three bars, and all the (ciliated) components M(ν) to one bar, we also have

2Em(M) = Vcherry + 3V3 + r.

There is however one exception to this relation, namely when r = 1 and Vcherry =

V3 = 0, there exists a reduced map with Em(M) = 0. It does not diverge at

criticality (goes to a constant), and one needs to check its scaling with N separately.

From the above three relations, we extract V3 and Em(M) as a function of Vcherry, l, r:

V3 = Vcherry + r − 2 + 2l

Em(M) = 2Vcherry + 3l + 2r − 3 .
(4.30)
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Moreover, we can rewrite the exponent of N due to non-ciliated unicolored components

in (4.29) as:

q∑
µ=1

[
− Eu

(
M(µ)

)
(D − 1) + Fint

(
M(µ)

)]
= DV3 + 2Vcherry , (4.31)

hence the most singular terms in (4.28) behave like:

N−D+p(B)(D−1)+ρ(B)N
−D(Vcherry+V3+r−1+l)+DV3+2Vcherry+

∑r
ν=1

[
−Eu

(
M(ν)

)
(D−1)+Fint

(
M(ν)

)]
(1− 4Dz)−

2Vcherry+3l+2r−3
2

=
Np(B)(D−1)+ρ(B)N

−(D−2)Vcherry−Dr−Dl+
∑r
ν=1

[
−Eu

(
M(ν)

)
(D−1)+Fint

(
M(ν)

)]
(1− 4Dz)

2Vcherry+3l+2r−3
2

. (4.32)

Further, as every M(ν) contains a cilium, the lemma 1 applies, hence every term is

bounded by:

N
−(D−2)Vcherry−Dl−(D−2)

∑r
ν=1

[
Eu
(
M(ν)

)
−V
(
M(ν)

)
+1

]
(1− 4Dz)

2Vcherry+3l+2r−3
2

. (4.33)

We are finally in the position to address the double scaling limit of cumulants in the

quartic model. The most singular contributions are selected by maximizing 2Vcherry + 3l

while keeping (D− 2)Vcherry +Dl fixed (which is a linear program similar to the one used

for the double scaling limit in [12]). For D < 6 the dominant singular behavior is obtained

by setting l to zero and introducing the new coupling x = ND−2( 1
4D − z) to be held fixed,

leading to the generic double scaling behavior

N
(D−2) 2r−3

2
−(D−2)

∑r
ν=1

[
Eu
(
M(ν)

)
−V
(
M(ν)

)
+1

]
f(B;N, x) (4.34)

where f(B;N, x) as a function of N is bounded by a constant.

We now apply this formula to the 2– and 4-point cumulants.

The 2-point cumulant. The 2-point function is represented by reduced maps with a

unique cilium, hence r = 1. Furthermore, the unique connected component containing the

ciliated vertex can be chosen to have no loops (i.e. it is formed only by the ciliated vertex).

Separating the contribution of the reduced map with only the ciliated vertex (which as we

already mentioned must be evaluated separately), we get the double scaling ansatz:

K
(
B2;N, x

)
= f (0)(B2;N, x) +N−

D−2
2 f (−D−2

2
)(B2;N, x) , (4.35)

in agreement with our ansatz (4.4).

The 4-point cumulant. For B4,∅, the leading double scaling contributions come from

the reduced maps in the figure 13 having r = 2, while for B4,{c} the leading double scaling

contributions come from the reduced maps in the figure 14 having r = 1 (and one must

remember to treat the contribution of the map with only one edge of color c separately).
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Figure 13. Leading contribution to

K
(
B4,∅;N, x

)
.

Figure 14. Leading contribution to

K
(
B4,{c};N, x

)
.

The maps contributing to B4,C with |C| ≥ 2 have r = 1, but ∂M(ν) = B4,C imposes that

M(ν) possesses loop edges. Thus:

K
(
B4,∅;N, x

)
= N

D−2
2 f (D−2

2
)(B4,∅;N, x) ,

K
(
B4,{c};N, x

)
= f (0)(B4,{c};N, x) +N−

D−2
2 f (−D−2

2
)(B4,{c};N, x) ,

K
(
B4,C ;N, x

)
= O

( 1

ND−2

)
, (4.36)

which is precisely (4.8).

4.3 From the quartic model to a generic model

Although the above proof is restricted to the quartic model, its result can be easily extended

to a generic model whose action has bubbles {Bi}i∈I that are melonic (and symmetrized on

their colorings). This is actually expected from universality (in the sense used in statistical

mechanics). Indeed, universality means that changing the details of a model (here the

building blocks of the graphs) does not change its critical properties.

Let us see to what extent the quartic model and its generic extension coincide:

Graph structure. The first thing we shall show is that all the graphs of a generic model

can be mapped to graphs of the quartic model. The apparent difference between

those two types of graph is that they are built from different bubbles (subgraphs

with colors 1, . . . , D). However, any melonic bubble can be obtained as the boundary

graph of a gluing of quartic bubbles via propagators. This has already been observed

in [20] and we shall therefore not give too many details.

The main idea behind this fact is that, given a bubble B, it is easy to add a (D− 1)-

dipole onto any of its edges, using the propagator and an appropriate quartic bubble.

Indeed, say we want to add a (D− 1)-dipole onto the edge of color c that is incident

to the white vertex v in B. To do so, a propagator is introduced to connect v to a

black vertex v of B4,{c}. The boundary graph is obtained by cutting out v and v as

well as the propagator, and reconnecting then the open edges of the same colors,

c

c V V̄

→
Boundary graph

c
c
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Note that this is the same as removing v and gluing instead the right hand side

of (2.16). Importantly, this map can be interpreted the other way around: each

(D − 1)-dipole of external color c can be replaced by a regular edge of color c and a

propagator connecting the white vertex to the quartic bubble B4,{c}.

Since any melonic bubble on p+1 black vertices can be obtained through the insertion

of a (D− 1)-dipole on a melonic bubble on p black vertices, a simple inductive argu-

ment proves the claim: any melonic bubble with p black vertices is thus represented

by a gluing of p − 1 quartic bubbles. This way the Feynman graphs of an arbitrary

model are realized as a sub-family of graphs within the quartic model. (Obviously,

the quartic model generates arbitrary melonic bubbles as boundary graphs.)

Scaling in N . If G is a Feynman graph in the generic model, we denote a representative

in the quartic model by Q(G). Then, G and Q(G) turn out to have the same scaling.

This stems from the fact that the weight of a melonic bubble reprensented as a gluing

of quartic ones is the same as if the bubble were in the action. Indeed, in the latter

case, each bubble Bi, i ∈ I, brings a factor ND−1. On the other hand, we need pi− 1

quartic bubbles to represent it, each of them also coming up with a factor ND−1.

There are however pi− 2 propagators, each of them with the weight N−(D−1), which

eventually leaves us with an overall ND−1.

z-dependence. Furthermore, the amplitudes of G and Q(G) have the same functional

dependence on the coupling z. A bubble Bi, i ∈ I, among those of the action comes

with a weight zpi−1. Since pi− 1 quartic bubbles are required to represented it, each

of them bringing a single z, we get zpi−1 as expected for the representant of Bi.

Combinatorial factors. The only departure between the two families {G} and {Q(G)}
are combinatorial factors that weight the graphs when they are summed as contri-

butions to some expectation. Those combinatorial factors come from the Feynman

expansion (that is, from the expansion of the exponential in the original integral

and the counting the number of times a given graph is obtained). But this is where

universality intervenes. Such a microscopic change coming from the use of different

building blocks (in other words, the bubbles Bi are given an internal structure made

up of quartic bubbles) may affect the value of the critical coupling but do not change

the scaling exponents. Therefore, a family of Feynman graphs of the form {Q(G)}
which is irrelevant (i.e. suppressed as some powers of 1/N) in the double scaling limit

of the quartic model cannot be a relevant family {G} in the generic model.

5 Concluding remarks and perspectives

In this paper, we have used the Schwinger-Dyson equations to both re-derive the double

scaling limit of the quartic model and also, with a succinct universality argument, to extend

it to models with generic melonic interaction bubbles. More precisely, we have obtained the

doubly scaled 2-point function in the equation (4.12). In addition to this result, we have
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used a new strategy which combine the Schwinger-Dyson equations with combinatorial

scale arguments:

– expand the expectations onto sums of products of cumulants,

– study the (simple or double) scaling of the cumulants to identify the relevant bound-

ary graphs at each order,

– solve a linear (in the regular 1/N -expansion case) or quadratic (in the double scaling

case, at least for the 2-point function) system of Schwinger-Dyson equations on those

relevant cumulants.

We have thus seen at play the hierarchy of cumulants beyond the leading order. The latter

is indeed Gaussian, then at NLO one observes 4-point cumulants and so on. Remarkably,

the double scaling of the 2-point function only requires to go up to 4-point cumulants,

and this is why only two SD equations were needed instead of the full tower. It will be

interesting to probe more equations and higher cumulants, in particular in the double

scaling regime.

Let us reiterate, given that the doubly-scaled series is summable in dimensions lower

than six, this study (complementing [12] and [13]) may be seen as a preliminary study

for some multiple scaling limit mechanism (obtained from reiterating the double scaling

procedure). This multiple scaling limit offers the hope to escape the branched polymer

phase of the theory, emerging into a new continuous random space with hopefully more

attractive physical features. This multiple scaling limit thus seem to us an interesting

direction for future work.

Another perspective for future work is the generalization of the approach exhibited

in this paper to the multi-orientable (MO) random tensor model [25], for which a large–

N expansion has recently been found and the leading-order [26] and the next-to-leading

order [27] have been identified from a combinatorial and topological point of view. A

yet more thorough analysis is required, however, as the MO model generates a family of

stranded graphs which is larger than the set of regular edge-colored graphs, and for which

observables have to be appropriately redefined.

A further perspective is the application of such techniques to tensor models whose

propagators break the unitary invariance. Numerous studies have been recently dedicated

to the renormalization of such models. Thus, by introducing a non-trivial index dependence

on the propagator (of the type 1/p2), a first, just renormalizable, four-dimensional tensor

model, the so-called Ben Geloun-Rivasseau model, was proposed in [28, 29]. A series

of studies [30–32] has followed this breakthrough, leading, for example, to the striking

result of UV asymptotic freedom of renormalizable tensor models. Moreover, this type of

result was generalized within the Group Field Theory framework [33–35]. Finally, let us

also mention that methods related to lattice gauge theories of permutation groups have

been successfully applied to count invariants for tensor models [36]. We hope that SD

techniques could be useful for those models too. For instance, when the propagator breaks

the unitary invariance of the action, Ward identities become interesting, and in the context

– 41 –



J
H
E
P
0
9
(
2
0
1
4
)
0
5
1

of non-commutative field theories, they can be successfully combined with SD equations to

study the phase diagram of the model [37].
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A The leading and next-to-leading orders in the 1/N-expansion

We recall the expansion in cumulants of the expectation of a generic trace-invariant (3.18):

1

N
〈TrB(T,T)〉 =

1

N

∑
~av~bv̄

δB
~av ,~bv̄

〈 ∏
v̄∈V(B)

T̄~bv̄

 ∏
v∈V(B)

T~av

〉

=
1

N

∑
~av~bv̄

δB
~av ,~bv̄

(∑
π

∏
Vα∈π

W
(2pα)

~av
(α)
1 ...~av

(α)
pα ,~bv̄

(α)
1 ...~bv̄

(α)
pα

(
N, z, {ti}

))
.

(A.1)

where π denotes a partition of the vertex set V(B) into bipartite subsets Vα =

{v(α)
1 , . . . , v

(α)
pα , v̄

(α)
1 , . . . , v̄

(α)
pα }, for α = 1, . . . , A, (hence

∑A
α=1 pα = p(B)). Moreover the

cumulants admit an expansion onto invariants:

W
(2p)

~a1...~ap,~b1...~bp

(
N, z, {ti}

)
=

∑
B′,p(B′)=p

δ̄B
~av ,~bv̄

W
(
B′;N, z, {ti}

)
,

K
(
B′;N, z, {yi}

)
=

W
(
B′;N, z, {ti}

)
ND−2(D−1)p(B′)−ρ(B′) ,

lim
N→∞

K
(
B′;N, z, {yi}

)
= K

(
B′, z, {yi}

)
,

(A.2)

where p(B′) denotes the number of black vertices of B′ and ρ(B′) denotes the number of

connected components.

Substituting (A.2) into (A.1) we obtain a sum indexed by a partition π, and a particular

set of invariants labeled by B′α, coming from the cumulants and associated to parts of π,

α = 1, . . . , A,

1

N
〈TrB(T,T)〉 =

1

N

∑
π

∑
{B′α,p(B′α)=pα}α=1,...,A

 ∑
{~av ,~bv̄}

δB
~av ,~bv̄

A∏
α=1

δ̄
B′α
~av

(α)
,~bv̄

(α) W (B′α;N, z, {ti})


(A.3)

Each term in this sum is a contraction of the trace-invariant operator δB
~av ,~bv̄

with the product

over the parts of π of trace-invariant operators δ̄
B′α
~av

(α)
,~bv̄

(α) coming from the cumulants,

multiplied by a product of W (B′α; . . . ) factors. Every vertex of B appears in exactly one

bubble of the family (B′α)α, and p(B) =
∑

α p(B′α). One naturally associates to each term
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in this sum a (D + 1)-colored graph G obtained by drawing the D-colored graphs B and

(B′α)α, and connecting the vertices of B with their images in the bubbles B′α by edges of

color 0. In order to maintain bipartiteness, one then flips all the vertices of B. The graph

G is called a doubled graph [23], and the expectation of TrB(T,T) is a sum over all doubled

graphs which have B as a subgraph.

The scaling with N of a term with associated doubled graph G is determined by

the explicit scalings of the cumulants and by the number of independent sums in the

contractions of the trace-invariant operators. The independent sums are immediately read

off the doubled graph G: indeed, one obtains a free sum for every face of color 0c of G.

We study below the leading and next to leading contributions to the expectation of

melonic observables.

A.1 Non-Gaussian contributions to the expectation of B4,{c}

We first study the non-Gaussian contributions in eq. (3.24):

1

N

∑
a,b

(
δa1
cb

2
c
δa2
cb

1
c

∏
c1 6=c

δa1
c1
b1c1
δa2
c1
b2c1

)
W

(4)

~a1~a2,~b1~b2

(
N, z, {ti}

)
. (A.4)

Using:

W
(4)

~a1~a2,~b1~b2
=

∑
C⊂{1,...,D}

δ
B4,C

~a1~a2,~b1~b2
W
(
B4,C ;N, z, {ti}

)
(A.5)

W
(
B4,C ;N, z, {ti}

)
= ND−ρ(B4,C)−2(D−1)p(B4,C)K

(
B4,C ;N, z, {ti}

)
(A.6)

δ̄
B4,C

~a1~a2;~b1~b2
=

(∏
c/∈C

δa1
cb

1
c

)(∏
c/∈C

δa2
cb

2
c

)(∏
c∈C

δa1
cb

2
c
δa2
cb

1
c

)

+

(∏
c/∈C

δa2
cb

1
c

)(∏
c/∈C

δa1
cb

2
c

)(∏
c∈C

δa2
cb

2
c
δa1
cb

1
c

)
, (A.7)

we obtain a list of terms (i.e. doubled graphs G):

• the terms with C = ∅:
1

N

(
ND+1 +N2D−1

)
ND−2−2(D−1)2K

(
B4,∅;N, z, {ti}

)
=
( 1

N2(D−1)
+

1

ND

)
K
(
B4,∅;N, z, {ti}

)
. (A.8)

• the terms with c ∈ C:
1

N

(
N2D−|C|+1 +ND+|C|−1

)
ND−1−2(D−1)2K

(
B4,C ;N, z, {ti}

)
=
( 1

ND−2
N1−|C| +

1

ND−2
N−D+|C|−1

)
K
(
B4,C ;N, z, {ti}

)
. (A.9)

• the terms with C 6= ∅, but c /∈ C scale like:

1

N

(
ND+|C|+1 +N2D−|C|−1

)
ND−1−2(D−1)2K

(
B4,C ;N, z, {ti}

)
=
( 1

ND−2
N−D+1+|C| +

1

ND−2
N−1−|C|

)
K
(
B4,C ;N, z, {ti}

)
. (A.10)
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Thus eq. (3.24) becomes, remembering that |C| ≤ D/2,( 1

N2(D−1)
+

1

ND

)
K
(
B4,∅;N, z, {ti}

)
+

∑
C∈{1,...,D},c∈C,|C|≤D/2

( 1

ND−2
N1−|C| +

1

ND−2
N−D+|C|−1

)
K
(
B4,C ;N, z, {ti}

)
+

∑
C∈{1,...,D},c/∈C,|C|≤D/2

( 1

ND−2
N−D+1+|C| +

1

ND−2
N−1−|C|

)
K
(
B4,C ;N, z, {ti}

)
. (A.11)

A.2 The expectations of melonic bubbles

In the rest of this appendix we prove that the expectation of any melonic bubble has an

expansion as in eq. (3.30). The melonic bubbles B are obtained by iterated (D− 1)-dipole

insertions. The two vertices of a (D − 1)-dipole inserted at some step form a canonical

pair. We call a (D− 1)-dipole inserted at some step in this procedure an elementary dipole

if no other (D − 1)-dipole is inserted on any of its edges.

Gaussian contributions: we first examine the Gaussian contributions to the expecta-

tion of TrB(T,T), that is the partitions π such that pα = 1 for all α = 1, . . . , A. It follows

that all the cumulants in the expansion (A.1) are 2-point cumulants. Thus the doubled

graphs G corresponding to the Gaussian contributions have a subgraph B, and all their

subgraphs B′α = B2. The Gaussian contributions split further into two classes:

• either all the parts Vα = {v(α)
1 , v̄

(α)
1 } are comprised of canonical pairs of vertices. In

this case the contribution of π is:

1

N
ND+(D−1)(p(B)−1)

K
(
B2;N, z, {ti}

)
ND−1

p(B)

=
[
K
(
B2;N, z, {ti}

)]p(B)

= [T (z, {ti})]p(B) +
1

ND−2
p(B) [T (z, {ti})]p(B)−1KNLO

(
B2;N, z, {ti}

)
+O

(
1

ND−1

)
.

(A.12)

• or some of the sets Vα are comprised of two vertices which do not form a canonical

pair.

Consider a doubled graph G consisting in the invariant B and only 2-point invariants

B′α = B2. Let (x, x̄) be a canonical pair of vertices belonging to an elementary dipole

and such that Vα = {x, x̄} for some α. Consider the graph G(1) obtained by deleting

the vertices x, x̄ and the D − 1 edges which connect them, and reconnecting the

remaining two half-edges. As G(1) has one fewer 2-point invariant and D − 1 fewer

faces that G, it has the same scaling with N .

Eliminating iteratively canonical pairs of vertices associated to elementary dipoles, we

will obtain a doubled graph G(s) having a canonical pair of vertices (v, v̄) associated
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to an elementary dipole which do not form a part Vα for any α. Instead we have

V1 = {v, x̄} and V2 = {y, v̄} for some vertices x̄, y. From eq. (A.1), it is trivial

to see that the scaling in N of G(s) is suppressed by 1/ND−2 with respect to the

scaling of the graph G̃(s) corresponding to a partition in which all other parts Vβ are

unchanged, but V1 = {v, v̄} and V2 = {y, x̄}. It follows that G contributes at most to

the order 1
ND−2 . Denoting k(B) the number of such doubled graphs which actually

do contribute at this order we obtain a total contribution:

1

ND−2
k(B) [T (z, {ti})]p(B) +O

(
1

ND−1

)
(A.13)

We have so far obtained the first three terms in eq. (3.30) (the leading order and the

first two sub-leading corrections). The fourth term requires more work.

Before proceeding, let us discuss the case when, in a Gaussian pairing G, at least three

parts V1, V2 and V3 are such their two vertices do not form canonical pairs. The elimination

of canonical pairs of vertices forming elementary dipoles which builds the sequence of graphs

(G(s)) can not eliminate any one of the three sets. Furthermore, the passage from G(s) to

G̃(s) concerns only two sets Vα. It follows that G̃(s) has at least a set Vβ (one of the three

sets V1,V2 or V3) whose two vertices do not form a canonical pair, hence the scaling of G
is at most 1

N2(D−2) .

Non-Gaussian contributions: we will show that a generic non-Gaussian contribution

is strictly bounded by contributions having exactly one 4-point cumulant and (p(B) − 2)

2-point cumulants. We subsequently classify such contributions and identify those which

contribute to the order 1
ND−2 .

Consider the contribution of a doubled graph G having a subgraph B′ chosen among

the bubbles (B′α)α=1,...,A (i.e. coming from some K
(
B′α;N, z, {ti}

)
), with more than one

connected component, ρ(B′) > 1. The graph B′ brings a scaling:

ND−ρ(B′)−2(D−1)p(B′) . (A.14)

The same doubled graph G is obtained if the connected components of B′ come from distinct

parts of the partition π (i.e. each one from a separate K). In this case, the contribution to

the scaling with N is:

N (D−1)ρ(B′)−2(D−1)p(B′) , (A.15)

which is larger by at least a factor ND.

It follows that the corrections at order 1
ND−2 can only emerge from terms which asso-

ciate connected bubbles B′α to each part of π. In this case, let us denote B′(G) = A the

number of parts, or equivalently the number of connected subgraphs with colors 1, . . . , D

in G minus one (for B itself). We also set F 0c(G) to be the number of faces of colors 0c of

G and F (G) =
∑D

c=1 F
0c(G). The scaling with N of G is:

1

N
NF (G)+(D−1)B′(G)−2(D−1)p(B) . (A.16)
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If G is a non-Gaussian contribution, then there exists a subgraph B′α, for some α,

which has more than two vertices. As long as there exist either two subgraphs B′α,B′β both

having at least four vertices, or one B′α having at least six vertices, we proceed as follows.

We consider y and ȳ two vertices of B′α, connected by at least an edge, say of color c1.

We compare the scaling of G with the scaling of the graph G̃, in which the vertices y and

ȳ have been separated into a new, 2-point, connected component B′′ = B2, and the rest

of the edges incident to y and ȳ in B′α are reconnected respecting the colors. Since the

adjacency relations between the edges of colors 0 and c1 and the vertices has not changed,

the number of faces of colors 0c1 is not affected. As for faces with colors 0c for c 6= c1, their

number can not decrease by more than 1, so F (G̃) + (D− 1) ≥ F (G). Clearly, the number

of subgraphs increases by at least 1, B′(G̃) ≥ B′(G) + 1. Thus

1

N
NF (G)+(D−1)B′(G)−2(D−1)p(B) ≤ 1

N
NF (G̃)+(D−1)+(D−1)(B′(G̃)−1)−2(D−1)p(B)

=
1

N
NF (G̃)+(D−1)B′(G̃)−2(D−1)p(B) . (A.17)

It follows that all non-Gaussian contributions are:

• either bounded by contributions with:

– exactly one 6-point cumulant and (p(B)− 3) 2-point cumulants.

– exactly two 4-point cumulants and (p(B)− 4) 2-point cumulants.

• or formed of exactly one 4-point cumulant and (p(B)− 2) 2-point cumulants.

The graphs with one 6-point cumulant or two 4-point cumulants scale at most as

1/N2(D−2), because in each case, by the same construction, one can bound them by graphs

G representing Gaussian contributions with at least three sets V1, V2 and V3 whose vertices

do not form canonical pairs (remember that the graphs coming from the cumulants must

be connected, otherwise G is already suppressed by at least N−D).

Finally, let us discuss the graphs G with exactly one 4-point cumulant and (p(B)− 2)

2-point cumulants. We repeat the above argument, but in the specific case that the 4-point

cumulant has the boundary graph B4,C . We choose y and ȳ in it and build the graph G̃
which is a Gaussian contribution, such that the images of y and ȳ in B do not belong in

a canonical pair. Therefore the amplitude of G̃ is bounded by N−(D−2). In B4,C ⊂ G, y

and ȳ are connected by l = |C| or l = D − |C| edges. From G to G̃, the number of faces

with the corresponding colors is unchanged, while the number of faces with the other colors

can change by at most one. Therefore F (G̃) + (D − l) ≥ F (G). The number of boundary

components changes by one. This way we get the bound:

F (G)+(D−1)B′(G) ≤ F (G̃)+(D− l)+(D−1)(B′(G̃)−1) ≤ F (G̃)+(D−1)B′(G̃)+
(
1− l

)
.

(A.18)

In the case |C| > 1, we find that 1 − l < 0, implying that G is at least suppressed by a

factor 1/N with respect to G̃.

It follows that at order 1
ND−2 only graphs with one 4-point cumulant, and with cor-

responding graph B′ = B4,{c} for some c can contribute, and it is simple to check that
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they do. As, moreover, such contributions are at most at order N−(D−2) with respect to a

Gaussian pairing, any contribution at the exact order N−(D−2) must be proportional to

[T (z, {ti})]p(B)−2K
(
B4,{c}; z, {ti}

)
, (A.19)

which yields the last term in the equation (3.30).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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