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Excision techniques are used in order to deal with black holes in numerical simulations of Einstein’s
equations and consist in removing a topological sphere containing the physical singularity from the
numerical domain, applying instead appropriate boundary conditions at the excised surface. In this
work we present recent developments of this technique in the case of constrained formulations of
Einstein’s equations and for spherically symmetric spacetimes. We present a new set of boundary
conditions to apply to the elliptic system in the fully constrained formalism of Bonazzola et al. [Phys.
Rev. D 70, 104007 (2004)], at an arbitrary coordinate sphere inside the apparent horizon. Analytical
properties of this system of boundary conditions are studied and, under some assumptions, an
exponential convergence toward the stationary solution is exhibited for the vacuum spacetime. This
is verified in numerical examples, together with the applicability in the case of the accretion of
a scalar field onto a Schwarzschild black hole. We also present the successful use of the excision
technique in the collapse of a neutron star to a black hole, when excision is switched on during
the simulation, after the formation of the apparent horizon. This allows the accretion of matter
remaining outside the excision surface and for the stable long-term evolution of the newly formed
black hole.

PACS numbers: 04.25 Dg 04.25.D-, 04.70.Bw, 97.60.Lf

I. INTRODUCTION

Relativistic simulations of astrophysical phenomena in-
volving one or several black holes (BHs) have undergone
significant improvements in the last decade, in particular
with the first successful studies of binary BH systems [1–
3]. One of the major difficulties in performing such sim-
ulations is the handling of the physical singularity of the
BH, where some physical fields may diverge. In order to
cope with this problem, essentially two types of meth-
ods have been proposed in the literature: i) excision,
where the singularity, together with its neighborhood, is
removed from the computational domain and eventually
replaced by boundary conditions (see e.g. Refs. [4, 5]);
and ii) punctures, where the BH is set in such initial
data that the physical singularity is not included, but in-
stead the spatial hypersurface containing the initial data
follows a wormhole through to another copy of space-
time, which is compactified and its infinity is reduced
to a point, the “puncture” (see e.g. Refs. [6, 7]). The
wormhole topology is prescribed analytically in the con-
formal factor [see Eq. (2.2) below], which diverges at the
puncture location.

Both of these approaches have been successfully ap-
plied in simulations of binary BH systems, but with
different formulations of Einstein equations and gauge
choices: excision has been used in conjunction with the
generalized harmonic gauge [1, 8], and punctures have
usually been associated with the so-called BSSN (from
Baumgarte-Shapiro [9] Shibata-Nakamura [10]) formula-
tion [2, 3]. All these studies use free evolution schemes,

in which the constraint equations arising in the 3+1 de-
composition of Einstein equations are not enforced dur-
ing the evolution. If the constraint equations are satisfied
initially, they are also satisfied during the evolution theo-
retically, but this is not necessarily the case in numerical
simulations. In these formulations, the constraint equa-
tions are satisfied by the initial data and then monitored
during the evolution to check the validity of the numeri-
cal solution.

In such free evolution schemes, most of the resulting
partial differential equations (PDEs), coming from Ein-
stein and matter equations (in the case of nonvacuum
spacetimes), are of hyperbolic type. In particular, when
suitable gauge conditions are chosen, their characteris-
tics, computed inside the BH (apparent) horizon, are
all directed towards where the singularity is located in
the spacelike hypersurface. This means that in these
schemes, within the excision approach and adopting exci-
sion surfaces lying inside the apparent horizon (AH) such
that their evolution world tubes are of spacelike charac-
ter, there is no need for imposing any inner boundary
condition (see, e.g., Ref. [11], where the excision sphere
was placed sufficiently close to the horizon).

However, when solving constraints arising in the 3+1
formulation of Einstein’s equations, the elliptic nature of
these PDEs requires that correct corresponding bound-
ary conditions at the excision surface have to be defined
and tested. Otherwise, incorrect boundary conditions
will not give the correct physical content for the numer-
ical solution and, therefore invalidate the whole simu-
lation. This is particularly true in the case of a Fully
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Constrained Formulation (FCF), such as the one devised
by Bonazzola et al. [12], where the constraint equations
are regularly solved as part of the elliptic set of equa-
tions and enforced during the numerical simulation. It
has been checked that in the FCF all the characteristics of
the hyperbolic sector point towards the singularity when
a coordinate system adapted to the dynamical spacelike
excision world tube is used in the evolution [13].

A geometric approach to defining proper boundary
conditions for the elliptic part of Einstein’s equations
has been undertaken on the basis of the isolated horizon
paradigm [14–19] or the dynamical “trapping horizon”
concept [13]. They have been successfully applied to sta-
tionary spacetimes [20, 21], which can then be used as
initial data for further dynamical evolutions.

In this paper, we propose a different approach for the
definition of boundary conditions in the FCF formulation
using the excision technique in dynamical spacetimes,
with the motivation of simulating astrophysical scenar-
ios like a star collapsing to a BH. In this context, initial
data are usually regular and no BH is present yet. Dur-
ing the simulation, a BH forms and, particularly when
using singularity-avoiding time coordinates (e.g. maxi-
mal slicing), an AH is found before the appearance of
the physical singularity [22]. When no symmetry is as-
sumed, the AH does not have a simple shape in general
and, therefore, it is not easy to use it numerically as an
excision surface to impose boundary conditions. Here,
we suggest using an arbitrary but nearby sphere inside
the AH to define simple and appropriate boundary con-
ditions for the elliptic system of PDEs in the FCF of Ein-
stein’s equations, in the particular case of spherical sym-
metry. Numerical codes assuming spherical symmetry
which include complex microphysics are nowadays still
relevant; for example, spherically symmetric relativistic
simulations were used to study the influence of differ-
ent microphysics and equations of state in the formation
of the BH in Refs. [23–25], instead of using simulations
without any symmetry assumptions, due to the very long
simulation times involved. In the case of no symmetry
assumptions, we plan to follow similar ideas for using
the excision technique in dynamical evolutions, but this
study is beyond the scope of the present work.

We will describe how the excision technique is used in
dynamical evolutions and show the practical applicabil-
ity of this approach in the case of a Schwarzschild BH
spacetime, the accretion of a scalar field into a spherical
BH and the collapse of a neutron star to a BH. Previous
works by Scheel et al. [26] and Rinne and Moncrief [27]
have presented similar approaches in constrained formu-
lations in spherical symmetry, too. Scheel et al. [26] have
considered the situation of dust collapse in the Brans-
Dicke theory of gravity, whereas Rinne and Moncrief [27]
have studied scalar and Yang-Mills fields coupled to grav-
ity in a constant-mean-curvature slicing. Scheel et al. [26]
set the excision boundary at the AH, at a fixed radial co-
ordinate; the main difference with this work is that we
here set the excision boundary to be an arbitrary sphere

located strictly inside the AH, and let this AH evolve
in time. This approach allows in particular for a very
straightforward extension to spacetimes without symme-
tries, where the AH can form with a shape deviating
from a coordinate sphere. The latter approach was also
followed in the work of Rinne and Moncrief [27], where
the value of the conformal lapse function was frozen and
evolution equations were used to update the values of the
remaining variables at the excision surface. Here we pro-
pose and analyze a different prescription for the bound-
ary conditions at the excision surface, that underline the
geometric features of the system.
The paper is organized as follows. The FCF of Ein-

stein’s equations is briefly overviewed in Sec. II, which
also contains some remarks in the spherically symmetric
case. In Sec. III we describe the excision method, in-
cluding our excision region and the boundary conditions
imposed on each slice. Section IV discusses numerical
results. A summary of our conclusions is given in Sec. V.
We use units in which c = G = M⊙ = 1. Greek indices
run from 0 to 3, latin indices from 1 to 3, and we adopt
the standard convention for the summation over repeated
indices. ∂α denotes partial derivatives.

II. FULLY CONSTRAINED FORMULATION

Given an asymptotically flat spacetime (M, gµν), we
consider a 3+1 splitting by spacelike hypersurfaces Σt,
denoting timelike unit normals to Σt by n

µ. The space-
time on each spacelike hypersurface Σt is described by the
pair (γij ,K

ij), where γµν = gµν + nµnν is the Rieman-
nian metric induced on Σt. We choose the convention
Kµν = − 1

2Lnγµν for the extrinsic curvature. With the

lapse function N and the shift vector βi, the Lorentzian
metric gµν in the 3+1 formalism can be expressed in co-
ordinates (xµ) as

gµνdx
µdxν = −N2dt2 + γij(dx

i + βidt)(dxj + βjdt).
(2.1)

As in Ref. [12], we introduce a time-independent flat
metric fij , which satisfies Ltfij = ∂tfij = 0 and coin-
cides with γij at spatial infinity. With the definitions
γ := det γij and f := det fij , we introduce the following
conformal decomposition of the spatial metric,

γij = ψ4γ̃ij , ψ = (γ/f)1/12. (2.2)

The difference between the conformal metric and the flat
fiducial one is denoted by hij , hij := γ̃ij − f ij . The
chosen prescriptions for the gauge variables in Ref. [12]
are the maximal slicing,

K = 0, (2.3)

and the so-called generalized Dirac gauge,

Diγ̃
ij = Dih

ij = 0, (2.4)
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where K = γijKij denotes the trace of the extrinsic cur-
vature and Dk stands for the Levi-Civita connection as-
sociated with the flat metric fij . Finally, we introduce
the conformal decomposition

Âij := ψ10Kij . (2.5)

In this formulation, Einstein’s equations result in a cou-
pled elliptic-hyperbolic system: the elliptic sector acts
on the variables ψ, N and βi, while the hyperbolic sector
acts on hij and Âij . More details of the analysis of both
sectors can be found in Refs. [28, 29].

The decomposition of Âij in longitudinal and
transverse-traceless (TT) parts

Âij = (LX)ij + Âij
TT, (2.6)

where (LX)ij := DiXj + DjX i − 2
3f

ijDkX
k and

DiÂ
ij
TT = 0, can be considered motivated by the lo-

cal uniqueness properties of the elliptic sector shown in
Ref. [29].
We decompose classically the energy-momentum ten-

sor, T µν, measured by the observer of 4-velocity nµ (Eu-
lerian observer), in terms of the energy density E :=
Tµνn

µnν , the momentum density Si := −γµi Tµνnν , and
the stress tensor Sij := Tµνγ

µ
i γ

ν
j , with S := γijSij being

its trace.
The resulting elliptic equations in the FCF are

∆̃ψ = −2πψ−1E∗ − γ̃ilγ̃jmÂ
lmÂij

8ψ7
+
ψR̃

8
, (2.7)

∆̃(Nψ) =
[

2πψ−2(E∗ + 2S∗)

+

(

7γ̃ilγ̃jmÂ
lmÂij

8ψ8
+
R̃

8

)]

(Nψ), (2.8)

∆̃βi = 16πNψ−6γ̃ij(S∗)j + ÂijDj(2Nψ
−6)

−2Nψ−6∆i
klÂ

kl, (2.9)

where the operator ∆̃ is defined as

∆̃ψ = γ̃klDkDlψ (2.10)

(analogously for Nψ) and

∆̃βi = γ̃klDkDlβ
i +

1

3
γ̃ikDkDlβ

l, (2.11)

E∗ := ψ6E, S∗ := ψ6S, (S∗)i := ψ6Si,

R̃ =
1

4
γ̃klDkh

mnDlγ̃mn − 1

2
γ̃klDkh

mnDnγ̃ml (2.12)

is the scalar 3-curvature of the conformal metric γ̃ij , and

∆i
jk =

1

2
γ̃kl(Diγ̃lj +Dj γ̃il −Dlγ̃ij) (2.13)

is the difference between Christoffel symbols of the con-
formal and flat metrics.

The resulting hyperbolic equations are evolution equa-
tions for hij and Âij ,

∂th
ij = 2Nψ−6Âij + βkDkh

ij

−γ̃ikDkβ
j − γ̃kjDkβ

i +
2

3
γ̃ijDkβ

k,(2.14)

∂tÂ
ij = (SÂ)

ij , (2.15)

where the explicit expression for the source (SÂ)
ij can

be found in Ref. [30].

If a TT decomposition is performed for Âij , an extra
elliptic equation for the vectorX i is added and Eq. (2.15)

can be viewed as an evolution equation for Âij
TT.

A. Spherical symmetry

It has been proven in Ref. [31] that a spherically sym-
metric spacetime can be locally foliated by a maximal
slicing and by using isotropic coordinates for the spatial
metric onto the spatial hypersurfaces Σt. This statement
refers to neighborhoods, and does not involve global pre-
scriptions or boundaries. The FCF in spherical symme-
try and with topologically R

3 spatial hypersurfaces Σt

reduces to the isotropic gauge, where γ̃ij = f ij . This
is not true anymore for more general topologies, like the
R

3 − B case, where B is a ball, when general boundary
conditions on the boundary of B are given. In a non-
convex topology such as R

3 − B, the expression for γ̃ij

evolving in time in the FCF in spherical symmetry is
instead given by

γ̃ij(t) =













(

1 + ω(t)
r3

)
2

3

0 0

0
(

1 + ω(t)
r3

)− 1

3

0

0 0
(

1 + ω(t)
r3

)− 1

3













,

(2.16)
where ω(t) is a real and twice-derivable function of time
t. A proof of this statement is presented in Appendix A.
Note that on R

3, ω = 0 is required at the origin for met-
ric regularity. If a ball containing the origin is excised
and the value for ω is not zero at the excision bound-
ary, the spatial metric is not necessarily expressed as a
conformally flat one.
Since the value for ω can be chosen arbitrarily taking

into account the previous general expression for γ̃ij (it
represents just a gauge freedom, as the Dirac gauge is
a differential one), the spatial metric can be expressed
as a conformally flat one, i.e., γ̃ij = f ij , or equivalently,
hij = 0. Note that in this case Eq. (2.14) is a time-

independent prescription for Âij ,

Âij =
ψ6

2N

(

γ̃ikDkβ
j + γ̃kjDkβ

i − 2

3
γ̃ijDkβ

k

)

, (2.17)

Equations (2.7–2.9) can be solved to obtain N , ψ and
βi, and Eq. (2.15) is a redundant condition in the bulk.
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This redundant condition will be used as a compatibility
condition for the prescription of boundary conditions in
the constrained system resolution.

In a general spacetime with no spherical symmetry
hij = 0 cannot be imposed, and hij and Âij have to
be evolved in time. Boundary conditions on the exci-
sion boundary for hyperbolic equations may or may not
be imposed, depending on the characteristic structure of
the system. This is not the case for elliptic equations, for
which incorrect boundary conditions invalidate the solu-
tion in the whole domain. The general case (no spheri-
cally symmetric spacetimes) is beyond the scope of this
work and will be analyzed in future studies.

III. EXCISION METHOD

Due to the singular character of BH interior solutions,
measures have to be taken in numerical simulations of BH
spacetimes. Quite a number of codes relying on hyper-
bolic formulations of Einstein’s equations are based on
an adaptive slicing which is typically designed to avoid
the BH singularity by coordinate stretching and using a
proper shift vector. This is the case of the BSSN formu-
lation in combination with the puncture method, which
is very popular in binary BH simulations. An alternative
approach is known as stuffed BHs, where one fills BH
interiors with unimportant (but regular) junk data in a
hyperbolic formulation, and then evolves the regularized
spacetime [32, 33].

In this work, we want to present how the excision tech-
nique can be used in the FCF in spherically symmetric
spacetimes, where the presence of elliptic PDEs has to be
taken into account. This technique consists in removing
from each spatial hypersurface Σt the open interior of a
topological sphere S2, and solving Einstein’s equations
in the remaining hypersurface. The sphere is assigned
both physical and geometrical characteristics, tailored so
that it is located strictly inside the AH of the modeled
BH region, and so that it encloses the gravitational sin-
gularity. Those properties are then encoded as boundary
conditions of the available elliptic equations to be solved
for.

In BH initial data problems, a natural approach con-
sists in placing the excision sphere at the outermost
marginally outer trapped surface in the initial slice,
namely the AH. Much work has been done in this field,
including how to impose this prescription and transcribe
it in terms of 3+1 spacetime metric quantities (see, e.g.,
Refs. [14–19]). In the evolution case, the set of excision
spheres at every Σt can be prescribed to describe a hy-
pertube of marginally outer trapped surfaces, leading to
a trapping horizon as outlined in Ref. [13]. Here we will
rather follow a more generic approach in which the exci-
sion surface is not enforced at the BH AH, but rather at
the interior of the AH world tube.

A. Excision surface geometry

We first define the geometrical setting of the excision
surface. Notice that these definitions do not depend on
the matter content of the spacetime, being valid for vac-
uum and nonvacuum spacetimes. Let St be a topologi-
cal 2-sphere embedded in Σt, and its induced 2-metric is
qab. Let s

µ be the unit outward-directed spacelike vector
normal to St, that is also tangent to Σt. Let H be the
hypertube formed by the set of excision spheres at ev-
ery Σt. At the excision surface, three other vector fields
are defined: the outward and inward future-directed null
vectors

lµ = (nµ + sµ)/
√
2, kµ = (nµ − sµ)/

√
2, (3.1)

respectively, and the evolution vector on H normal to
sections St and carrying St onto St+δt

hµ = Nnµ + bsµ, (3.2)

which we adapt to the 3+1 evolution vector tµ = Nnµ +
βµ, so that b = βisi (note that b is only defined at H).
This means that the excision surface is kept at the same
spatial coordinate location along the evolution. Two ad-
ditional geometric quantities are the scalar outward ex-
pansion θ(l) and outward shear σab along lµ, defined as

Llǫ
S
ab = θ(l)ǫSab, (3.3)

σ
(l)
ab =

1

2

[

Llqab − θ(l)qab

]

, (3.4)

where ǫSab is the area element on St. Analogously, the

inward expansion θ(k) and the corresponding shear can
be defined.
For a Schwarzschild BH, in the case of adapting the

excision surface to the AH, the excision world tube H
is a null hypersurface, meaning that the time evolution
vector hµ at the excision surface is null. This provides
the following relationship between metric quantities at
the AH: b = N . The outward expansion θ(l) can be
expressed as follows [see e.g. Eq. (11.8) in Ref. [17]]:

ψ2 θ(l) = 4s̃iD̃i lnψ + D̃is̃
i +Kij

s̃is̃j

ψ2
, (3.5)

where s̃i := ψ2si and D̃ is the Levi-Civita connection
associated with the conformal metric γ̃ij . This relation
could be used as a (nonlinear) Robin boundary condition
on the conformal factor in order to compute initial data.
In particular, the outward expansion θ(l) vanishes if the
excision surface is placed at the AH, or can be prescribed
to be negative to place the excision surface inside the AH,
as we shall do here. One can set hij = 0 at the boundary
and on the whole spacetime, due to the particular form
that the Dirac gauge takes in spherical symmetry (see
Appendix A).
The value of the lapse subsists at the excision bound-

ary as a free condition for initial data: since the maximal
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slicing gauge provides us only with an elliptic constraint
on the bulk, one can still choose freely the value at the
inner excision surface. In the case of a dynamical evo-
lution of a spherically symmetric BH, the value of the
lapse at the excision surface has to be consistent with
the assumption hij = 0, as it is described in the next
subsection.

B. Dynamical approach in the spherically

symmetric case

We consider now the time-dependent case in spherical
symmetry involving matter content. Such situations in-
clude pure gauge evolutions (as illustrated in Sec. IVB)
and matter evolution (as illustrated here for the particu-
lar case of a scalar field, see Sec. IVC, and for the collapse
of a neutron star to a BH, see Sec. IVD). As an astrophys-
ical application, we have in mind the BH formation in
stellar gravitational collapse simulations. Starting from
a simulation for regular data evolving in R

3 × [0, t0], a
trapped region forms at a given time t = t0. To pursue
the simulation long enough to study the subsequent evo-
lution of the BH, one performs excision inside the trapped
region, switching to a simulation in (R3 −B)× [t0,+∞).
The algorithm has the three following conditions to fulfill:
i) for numerical stability reasons, a transition between the
two topologies has to occur smoothly, meaning that all
the metric quantities solved for must be continuous and
derivable in time at t = t0; ii) dynamical excision has
to avoid coordinate stretching and high gradient fields
that would cause high and increasing inaccuracies in the
computation; iii) the Schwarzschild solution should be
recovered in the stationary limit.
The outermost trapped surface corresponding to the

adopted spherically symmetric slicing can be located with
an AH finder. Since there is no previous control on the ge-
ometry of this trapped region, the outermost trapped sur-
face might be stretched or deformed in three-dimensional
models, and thus is not in general an optimal candidate
for the excision surface, unless we make an adaptation of
the coordinates to the horizon that would imply a remap-
ping of all data on the slice and likely introduce com-
plexity in the problem and a copious amount of noise.
A recent approach following this idea can be found in
Ref. [34] for the simulation of binary BH spacetimes.
At time t = t0, we choose the excision surface St0 to be

located strictly inside the trapped region. The quantities
N , ψ and βi are determined at St0 by the previous evolu-
tion and are employed as initial values for the subsequent
evolution. The outgoing scalar expansion is generically

(and on average) negative, θ
(l)
t=t0 ≤ 0.

Once the initial excised surface has been chosen, one
needs to determine a geometrical prescription for the evo-
lution of the excision surface in time, i.e. to characterize
the excision hypertube. If the initial surface were the AH,
one could prescribe it to span an AH world tube in time,
by imposing the vanishing of the outward expansion θ(l)

at all times on the sphere of constant radius R [13]. Con-
trary to the stationary case, we do not have in general
b = N at the horizon. In particular, in the spherically
symmetric case one has [see e.g. Eq. (38) in Ref. [35],
with 2C = b2 −N2 and vanishing angular derivatives]

b2 −N2

2
= −σ

(l)
µνσ(l)µν + Tµν l

µlν

Lkθ(l)
. (3.6)

Under the null energy condition the numerator is nonpos-
itive, so that the fulfillment of an outer trapping horizon
condition [36], namely Lkθ

(l) < 0, implies b ≥ N . In
this case the horizon is either null (stationary case), or
spacelike (dynamical case), depending on whether the en-
ergy flux vanishes across the BH horizon. Unfortunately,
spherically symmetric trapping horizons do not necessar-
ily fulfill the (stability) outer condition [37], so that a

priori we cannot guarantee in general that H is spacelike
in the dynamical case. This, together with the desire to
avoid a coordinate adaption of the excision surface to the
AH, leads us to choose an excision sphere strictly inside
the AH and look for an appropriate characterization of
the excision world tube. For instance, one could also im-
pose a (nonpositive) value of the expansion throughout
the evolution, which would also determine a hypertube
geometry.
Here we will rather follow an effective approach in

which we control the radial component b of the evolu-
tion vector hµ on an excised coordinate sphere located
strictly inside the AH. From b = βisi = ψ2βis̃i, it follows
in spherical symmetry that b = βrψ2. The imposition of
a constant value in time of b at the excised surface, given
by the data at t = t0, provides us with a simple bound-
ary condition for the shift vector through time. We want
the excision hypertube to be spacelike, so that the quan-
tity (b−N) should remain positive. Although we do not
impose this condition directly, we monitor b − N along
the evolution so that b could be dynamically adapted if
needed to guarantee the spacelike character of H.
The values for ψ, N and hij have yet to be determined.

The trace part of the evolution equations gives a consis-
tent time evolution for ψ, valid everywhere and at all
time [see, e.g., Eq. (42) of Ref. [12]],

∂tψ = βkDkψ +
ψ

6
Dkβ

k. (3.7)

This equation, following from the kinematic definition of
the extrinsic curvature, provides an additional coherent
boundary condition for the conformal factor, which is
obtained by solving the corresponding (elliptic) Eq. (2.7)
with this boundary condition at the excised surface. The
value of the lapse at the excised surface is the last (gauge)
freedom left in the algorithm. We address this issue by
making use of the form for γ̃ij in a (R3 − B) topology
in Eq. (2.16). In particular, adopting the gauge ω(t) =
0 fixes the remaining degree of freedom in the system
and, in particular, fixes the value of the lapse on the
excised surface. Indeed γ̃ij adopts then a conformally
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flat form (or equivalently hij = 0) at all times, and by
using Eq. (2.15) to update the extrinsic curvature at the
excised surface we can fix the boundary condition for the
lapse from any nondegenerate component of Eq. (2.14);
for instance,

N =
ψ6(Lβ)ijsisj

2Âijsisj
. (3.8)

Our strategy can be summarized as follows: updated
values for ψ and Âij at the excised surface are obtained
by solving Eqs. (3.7) and (2.15), respectively; the im-
position of constant b and Eq. (3.8) are used to obtain
updated values of N and βi at the excised surface; fi-
nally, hij is vanishing throughout the evolution. During
the numerical simulation, we check that (b − N) ≥ 0
(see Sec. IV); under the choice of an excision world tube
closely tracking the AH from its interior, this quantity
is indeed expected to be non-negative for matter satisfy-
ing standard energy conditions in stellar collapses [note
however that in scenarios not considered here that in-
volve much larger BHs, the denominator in Eq. (3.6) can
actually change sign, cf. [37]]. With these boundary
conditions, all elliptic equations can be solved in the nu-
merical domain for all times, and no evolution equations
are solved in the bulk.
In this approach for using the excision technique we

have not considered the TT decomposition of the confor-
mal extrinsic curvature given by Eq. (2.15), motivated
by a uniqueness pathology of the elliptic sector. We find
in our numerical simulations of spherically symmetric
spacetimes that the given boundary conditions at the ex-
cised surface for solving the elliptic equations are enough
to avoid any convergence problem in the numerical res-
olution of the elliptic sector. However, this question is
open for more general spacetimes. In any case, the value
of the X i vector of the TT decomposition of the confor-
mal extrinsic curvature at the excised surface is actually
a degree of freedom [38].

C. Convergence to a stationary solution

Let us comment here about the convergence of metric
fields to stationary values in our approach. Indeed, we
find in our numerical simulations that the metric expo-
nentially converges to a stationary solution. This fact
means that the foliation induced by the boundary condi-
tions described in Sec. III B is such that the coordinates
adapt to the stationarity of the spacetime. Since no evo-
lution equations for hij and Âij are computed in the bulk
in this approach, and solutions to elliptic equations are
determined by the boundary conditions at the excised
surface, we should focus on the analysis of the values of
the metric variables at the excised surface. The value
for b is fixed to be constant at the excised surface, so a
convergence of the conformal factor at the excised sur-
face to a stationary value will imply also a convergence

of the shift vector at the excised surface to a stationary
value. The evolution of the lapse N at the excised sur-
face should be such that it is compatible with the setting
hij = 0 in the whole spacetime. This setting should in
turn be compatible with coordinates adapted to station-
arity.
We therefore focus on the value of the conformal factor

ψ at the excised surface, whose evolution is governed by

Eq. (3.7). Let us define β̂ = βrψ2, which coincides with
b at the excised surface. Equation (3.7) can be rewritten

in terms of ψ and β̂ as

∂tψ =
∂rβ̂

6ψ
+

2β̂

3

∂rψ

ψ2
+

β̂

3rψ
. (3.9)

Here we keep b constant at its initial given value at the
excised surface, located at a fixed coordinate radius, say

R > 0, during the evolution: b|R = β̂|R = b0 > 0 [since
in the initial data N is strictly positive and (b − N) is
positive, b0 is strictly positive, too].
Motivated by the results we observe in our numeri-

cal simulations, let us assume in the present consistency

analysis that (∂rβ̂)|R is negative and does not change sig-

nificantly during the evolution, so (∂rβ̂)|R ≈ b1 < 0, with
b1 being a constant. These assumptions are compatible
with the ones found in our numerical simulations with
an excised surface strictly inside the AH. In particular,
such hypotheses (constant and negative value for b1) are
checked in the different numerical simulations of Sec. IV.
Let us assume a profile for ψ of the form

ψ ≈ 1 +
c(t)

rp
, p ≥ 1. (3.10)

This profile can be considered as the one containing the
leading term for r, taking into account that ψ → 1 when
r → ∞ (first term) and that the conformal factor should
diverge at the center of the BH (p ≥ 1). Therefore,
∂rψ ≈ −p c(t)/rp+1 and ∂tψ ≈ c′(t)/rp, where the prime
denotes the derivative.
The hypotheses assumed here are not imposed during

the numerical evolution of the system; they are used only
to analyze the behavior of the metric variables in station-
ary spacetimes.
Taking into account previous assumptions, Eq. (3.9) at

the excised radius R is rewritten as

c′(t) =
c1

[Rp + c(t)]
+

c2
[Rp + c(t)]2

, (3.11)

where

c1 =
R2p−1

3

(

b1R

2
− b0(2p− 1)

)

< 0, (3.12)

c2 =
2b0 pR

3p−1

3
> 0, (3.13)

are constants. We can integrate the previous differential
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equation, expressed in an implicit way,

t = f(Rp + c(t)) = c0 +
[Rp + c(t)]2

2c1
− c2[R

p + c(t)]

c21

+
c22
c31

log |c1[Rp + c(t)] + c2|, (3.14)

where c0 is an integration constant. The implicit equa-
tion for [Rp + c(t)] is well defined in both branches
c1[R

p + c(t)] + c2 < 0 and c1[R
p + c(t)] + c2 > 0. The

function f has a monotonic behavior on each branch (in-
creasing or decreasing depending on the specific one). In
both branches, the range of t is R. For the initial value
[Rp + c(t = t0)] = −c2/c1, the solution of Eq. (3.11) is
simply the constant value [Rp + c(t)] = −c2/c1. For ini-
tial values that are close by, an exponential convergence
of [Rp+c(t)] to the value −c2/c1 is found when t→ +∞.
This discussion shows, under the assumed conditions,

that we shall obtain exponential convergence to station-
ary values for the conformal factor ψ, and therefore to
all metric variables, if the initial data are close enough to
the stationary solution. This fact is checked numerically
in Sec. IV.

IV. NUMERICAL RESULTS

The excision technique has been used in several numer-
ical codes with different coordinates and slicings (e.g., in
Ref. [39] a null-based slicing using minimally modified
ingoing Eddington-Finkelstein coordinates was used to
evolve a BH using the excision technique almost 20 years
ago). In order to illustrate that the excision method pre-
sented in Sec. III for the FCF, in which maximal slicing
and Dirac generalized gauge are chosen, works well in
practice in a numerical code, we have implemented and
tested it in two toy models, detailed in the following sub-
sections: the setup is presented in Sec. IVA, and it is ap-
plied to the evolution of a Schwarzschild BH in Sec. IVB,
and to the accretion of a massless scalar field in Sec. IVC.
We have also implemented the excision technique in a full
simulation of the collapse of a neutron star to a BH in
spherical symmetry in Sec. IVD.

A. Setup

We consider spherically symmetric spacetimes in the
three following physical scenarios: the evolution of a
slicing of a Schwarzschild BH (vacuum spacetime) in
Sec. IVB, the spherical accretion of a massless scalar
field onto an existing BH in Sec. IVC and the collapse
of an unstable neutron star to a BH. In all cases, we
use spherical (polar) coordinates and in the first two sce-
narios, we start from an existing BH, with the excision
sphere located at the coordinate radius r = 1. As stated
in Sec. II A, the hypothesis of a spherically symmetric

spacetime in which adapted boundary conditions are cho-
sen, such that ω(t) = 0 implies that, as far as the gravi-
tational field is concerned, we only need to solve for N ,
βi and ψ.
In the first two scenarios we start from initial data

which already contain a BH and then evolve the system
in the above-described excision scheme. Therefore we
need to construct initial data at t = t0 = 0 by solv-
ing the elliptic system (2.7)-(2.9), with the stress-energy
tensor being either zero (vacuum) in the Schwarzschild
BH evolution, or given by expressions (B3)-(B5) of Ap-
pendix B in the case of the scalar field accretion. The
initial excision surface is chosen as a sphere with a given
(arbitrary) value of the outward expansion [Eq. (3.3)]

θ(l)(t = 0, r = 1) = θ
(l)
0 , prescribed to be negative. This

guarantees that the initial excision surface is inside the
AH, which then is located using an AH finder. Initial
data boundary conditions are needed for the elliptic sys-
tem and are taken as follows:

• Setting θ
(l)
0 and using Eq. (3.5), a (nonlinear) Robin

boundary condition is obtained for the conformal
factor ψ.

• The boundary value of the lapse N is fixed yielding
a Dirichlet condition.

• A value is prescribed for the quantity b − N [see
Eq. (3.2)], from which one can get a Dirichlet
boundary condition for the radial component of the
shift βr, the other two components (βθ, βϕ) being
zero in spherical symmetry.

The elliptic system giving the metric functions is solved
iteratively, starting from a first guess (flat metric)
and inverting linear Laplace operators with the library
lorene [40], using multidomain spectral methods, with a
coordinate transform u = 1/r in the last domain, extend-
ing to infinity and allowing for the imposition of bound-
ary conditions at r → ∞ (see, e.g. Ref. [41]).
In the third scenario (neutron star collapse to a BH),

initial data are obtained solving Einstein’s equations,
coupled to the fluid equilibrium equations in the isotropic
gauge, in whole space. The numerical approach is very
similar to the isolated BH case, but with no inner bound-
ary condition imposed.
During the evolution, metric quantities are obtained by

the resolution of the same elliptic system as for the BH
initial data, but with different boundary conditions. As
described in Sec. III B, the following boundary conditions
are used during the dynamical evolution:

• A Dirichlet boundary condition for the conformal
factor ψ is obtained from the time integration of
Eq. (3.7) at the excision surface. As this surface is
a sphere, there is no need for a boundary condition
to integrate Eq. (3.7) in time.

• The value of the lapse at the boundary is set by
the Dirichlet condition (3.8). To compute it, we
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need to integrate in time Eq. (2.15) at the excision
surface.

• The radial component of the shift is imposed at
the excision boundary by keeping the value of b(t)
constant in time.

The time integration of Eqs.(3.7)-(3.8) is done with a
second-order (explicit) Adams-Bashforth scheme.

B. Evolution of a Schwarzschild black hole

A spherically symmetric spacetime is computed for
r ≥ 1, with the previously defined boundary conditions,

and the specific values θ
(l)
0 = −0.01, N(t=0,r=1) = 0.55

and (b−N)(t=0) = 0.01 for these initial data. Once hav-

ing solved the elliptic system (2.7)-(2.9), one verifies that
this setting induces a nonzero value for the Arnowitt-
Deser-Misner (ADM) mass, more precisely MADM ≃
1.09. Numerically, it is obtained in isotropic gauge from
the asymptotic behavior of the conformal factor (see e.g.
Ref. [12]),

MADM = − 1

2π

∮

∞

Diψ dS
i, (4.1)

where the integral is taken over a sphere of radius r →
+∞. This causes the excision sphere to be located at r ≃
0.916 MADM. Using the numerical AH finder described
in Ref. [42], we have found in the initial data an AH
located at the coordinate radius r∗ ≃ 0.94MADM. This is
evidence that the initial data represent a BH in spherical
symmetry.
This BH spacetime is then numerically evolved for t ≥

0, through the time integration of boundary conditions,
while solving the elliptic system (2.7)-(2.9) at every given
number of time steps, as described in Secs. III B and
IVA. This is obviously only a gauge evolution, since the
spacetime is Schwarzschild by construction. The time
evolution of the metric variables at the excision surface
(r = 1 = 0.916 MADM), namely N , ψ and b−N , as well
as the coordinate radius r∗ of the AH, in the interval
0 ≤ t ≤ 50, are displayed in Fig. 1. An exponential
convergence toward stationary values is observed for all
metric quantities, with an explicit behavior shown for
the lapse N , as expected from the analysis carried out
in Sec. III C. r∗ increases with time (right bottom panel
of Fig. 1), but the overall mass of the BH does not (see
below).
From the top right panel of Fig. 1, one can check that

the difference b−N remains positive, as assumed in the

discussion of Sec. III C. The hypothesis that (∂rβ̂)|R is
negative, assumed in the same analysis of Sec. III C, is
also fulfilled during the evolution, and its value does not
change significantly (the absolute value of the relative
difference with respect to its initial value is . 4 · 10−3).
Moreover, from the formulas (3.12) and (3.13), and the
computed limit in Sec. III C for the conformal factor at

the excision boundary, one can check that the hypoth-
esis (3.10) is valid; the numerically deduced value of p
from limt→∞ ψ(t, r = 1), and the values of b0 and b1,
is p ≃ 1.01, which gives the expected behavior for the
conformal factor. In Fig. 2 the time evolution of the
outward expansion θ(l) is displayed, which is decreasing
during the simulation and always remains negative, en-
suring that the excision surface always remains inside the
AH.
The scheme appears stable (we have run it for t ∼

1000) and, in order to check its accuracy, we have mon-
itored the variation of the AH irreducible mass, MAH,
defined as

MAH(t) =
1

2

√

AAH(t)

4π
=

1

2
ψ2(t, r∗(t)) r∗(t), (4.2)

and determined by the AH finder. The Penrose inequal-
ity conjecture, in particular its rigidity part, provides a
practical manner of characterizing the Schwarzschild so-
lution. It states

A ≤ 16πM2
ADM ⇔MAH ≤MADM , (4.3)

where the equality is valid only for slices of the
Schwarzschild spacetime. The conservation of the MAH

is displayed in Fig. 3, in particular showing the numer-
ical consistency with a Schwarzschild solution using the
Penrose inequality test. The conservation of the ADM
mass (4.1) has also been checked, with quantitatively
very similar results to the conservation of the AH surface.
Finally, a second-order convergence of these conserved
quantities has been obtained numerically while decreas-
ing the time step, in agreement with the implemented
second-order Adams-Bashforth scheme.
The exponential convergence obtained for the cho-

sen initial data, given by the specific values of θ
(l)
0 ,

N(t=0,r=1) > 0 and (b − N)(t=0) > 0, is independent
of these initial data. A similar behavior is found for dif-
ferent initial values.

C. Accretion of a massless scalar field

In this case we evolve a BH spacetime with energy
content in the form of a minimally coupled massless
scalar field in spherical symmetry; see Appendix B for
details concerning the expressions of the projections of
the energy-momentum tensor, the corresponding evolu-
tion equations for the scalar field and the way they are
solved. Initial data are given by a Gaussian profile for
the scalar field outside the excision surface, i.e. for r ≥ 1,

φ(r, t = 0) =
φ0r

2

1 + r2

(

e−(r−r0)
2/σ2

+ e−(r+r0)
2/σ2

)

,

(4.4)
where φ0, r0 and σ are three constants, following e.g.
Ref. [43]. The scalar field is evolved on the numerical
grid up to r = Rmax = 120 ≃ 110 MADM (i.e. not in
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FIG. 1: Evolution in terms of coordinate time t of the lapse N , minus its time asymptotic value Nlim ≃ 0.549 (left top panel,
logarithmic scale); of b, the projection of the shift βi onto the normal to the excision surface [Eq. (3.2)], minus the lapse N (right
top panel); of the conformal factor ψ (left bottom panel), at the excision surface (r = 0.916 MADM); and of the AH coordinate
radius r∗ (right bottom panel), for a spherically symmetric vacuum (i.e. Schwarzschild) BH spacetime, using excision boundary
conditions described in Sec. III B.

the compactified domain). Thus, the effect on the metric
at the horizon of any scalar field wave reflected from the
artificial boundary at r = Rmax can be in principle ne-
glected up to t ∼ 200. For this simulation, we have used
24 numerical domains: one nucleus, 22 shells and a com-
pactified domain (for details about the grid setting, see
Ref. [41]). As said, the wave equation is not solved in the
compactified domain, but instead the outgoing boundary
conditions (B9)-(B10) are imposed at r = Rmax. Twenty-
five Chebyshev coefficients are used in each domain, in
order to describe the wave accurately enough.

We evolve these initial data with φ0 = 0.01, r0 = 5
and σ = 1. A fraction of the scalar field is radiated away,
while the other part is accreted onto the BH; its time
evolution at the excision surface is given in Fig. 4. The
metric quantities, N , βr and ψ follow a similar evolution
with respect to the vacuum case and, once the scalar field
has been accreted to the BH, they settle rapidly to sta-

tionary values. Figure 5 gives the evolution of the AH
mass as a function of the proper time of the observer that
is located at the AH. As expected, the AH grows in time
while accreting energy from the scalar field, before reach-
ing a stationary limit. This limit does not represent all of
the ADM mass of the spacetime, as part of this asymp-
totic mass is still contained in the scalar field traveling to
higher radii. We have checked the accuracy of the code
by monitoring the variation of the ADM mass, computed
by Eq. (4.1) in Fig. 6. The conservation of this quantity,
up to the level 10−6, shows that the scalar field stress-
energy enters the BH and makes it grow accordingly. The
first two spikes for t . 10 can be attributed to the scalar
field which is entering the BH AH. Further oscillations
that are seen in this figure for t & 20 can be related to
the passing of the scalar field wave from one spectral do-
main to another. Note that the overall level of this ADM
mass violation is 10−6 and that it converges away with



10

0 10 20 30 40 50
Coordinate time  t  [M

ADM
]

-0.0103

-0.0102

-0.0101

-0.01
θ(l

)

FIG. 2: Evolution in terms of coordinate time t of the out-
ward expansion θ(l) [Eq. (3.3)], for a spherically symmetric
BH spacetime, as in Fig. 1.

0 10 20 30 40 50
Coordinate time  t [ M

ADM
 ]

8.4e-09

8.45e-09

M
 A

H
 / 

M
 A

D
M

  -
 1

FIG. 3: Evolution in terms of coordinate time t of the varia-
tion of the AH irreducible mass (4.2) with respect to the initial
ADM mass (4.1), for a spherically symmetric BH spacetime,
using excision boundary conditions described in Sec. III B.

both time and spatial resolutions.
This simulation shows that the excision boundary con-

ditions that have been designed here allow us to study
the growth of a spherically symmetric accreting BH in a
stable and accurate way.

D. Collapse of a neutron star to a black hole

We here describe a simulation in spherical symmetry,
starting from an unstable static neutron star, up to the
formation of a BH and its accretion of all matter into the
horizon. Excision is switched on during the simulation,
after the AH is formed. For this simulation, we have

0 40 80
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|

FIG. 4: Evolution in terms of the coordinate time t of the
absolute value of the accreted scalar field, |φ|, at the excision
surface, φ(r = 1, t).
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FIG. 5: Evolution of the ratio between the AH irreducible
mass (4.2) and the ADM one (4.1), as a function of the coor-
dinate time t, for the case of the accretion of a massless scalar
field.

modified the code CoCoNuT [44], so that it uses the
excision technique described above, in the case of spher-
ical symmetry. This code solves the general-relativistic
Euler equations (see Appendix C for details), with Ein-
stein’s equations in isotropic gauge. As far as hydro-
dynamics are concerned, in the case of grid boundary
inside an AH, there is no need for boundary conditions
as all the characteristics point out of the numerical in-
tegration domain (e.g. Ref. [45]). In practice, the Eu-
ler equations are solved with the use of high-resolution
shock-capturing schemes (see Ref. [46]) and, in order to
compute the fluxes at the boundary, we perform a simple
copy of primitive variables into the ghost cells: the rest-
mass density ρ, 3-velocity vi and internal energy ǫ (see
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FIG. 6: Evolution in terms of the coordinate time t of the
relative variation of the ADM mass, defined as in Eq. (4.1),
with respect to its initial value, for the case of the accretion
of a massless scalar field.
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FIG. 7: Radial profiles of the rest-mass density, for different
moments around the start of the excision in the simulation
of the collapse of a neutron star to a BH. Excision starts at
t = 0.43788 ms.

Ref. [44] for definitions). The metric equations are the
same as in the previous numerical example, but with the
matter sources (E, Si, Sij) computed from the perfect-
fluid stress-energy tensor obtained from the integration
of Euler equations. Further details on the modeling of
the neutron star collapse to a BH can be obtained in
Ref. [29].
The initial data for this simulation consists of a static

neutron star, computed in isotropic gauge with a poly-
tropic equation of state of adiabatic index γeos = 2.
The central density is such that the star lies on the un-
stable branch, i.e., it can either migrate toward a sta-
ble configuration with the same baryon number or col-
lapse to a BH (see also Ref. [29]). The star has the
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FIG. 8: Evolution in terms of coordinate time t of the AH
irreducible mass (4.2) for the collapse of a neutron star to
a BH. The vertical dotted line indicates the moment when
excision is turned on.

following initial properties: gravitational (ADM) mass
MADM = 1.617 M⊙, baryon mass MB = 1.771 M⊙, co-
ordinate radius Rstar = 7.825 km and integrated (cicular)
radius Rcirc = 10.39 km. On top of this equilibrium con-
figuration, we have added a 1% density perturbation, in
order to ensure that the star collapses to a BH, and does
not migrate to the stable branch.

The instant t = 0 corresponds to the beginning of the
collapse, which proceeds until the formation of an AH.
Excision is switched on when a given ratio of the to-
tal baryon mass has entered the horizon; in practice, we
have set this ratio to 85%, but we have checked that
changing this value had little influence on the evolution
of observable quantities. Note that, if this ratio is small
(. 80%), excision is switched on immediately after the
detection of the AH. The excision radius is defined inside
the AH radius r∗, with a value rexcision/r∗(t = texcision) ∈
[0.9, 0.98]. Again, it has been checked that the choice for
this ratio does not influence physical results. In the run
shown here, rexcision = 1329 m. Density radial profiles
at various time steps around the time when excision is
started (t = 0.43788 ms) are given in Fig. 7. In partic-
ular, the density distribution keeps a smooth behavior
after the excision is switched on, and matter proceeds to
fall into the BH, which reaches a stationary state, sur-
rounded by vacuum. This is illustrated in Fig. 8, where
we have plotted the time evolution of the BH irreducible
mass, defined by Eq. (4.2). When the AH appears, it
grows abruptly; the excision is then switched on and the
BH accretes matter that was left outside the horizon, be-
fore settling down to the stable and stationary case. The
whole simulation then remains stable, with no noticeable
change in any evolved quantity.

We observe exponential convergence of metric quanti-
ties on the excision surface, as in Sec. IVB, as soon as all
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FIG. 9: Evolution in terms of coordinate time t of the relative
variation, with respect to its initial value at t = 0, of the ADM
mass (4.1) for the spacetime of a neutron star collapsing to
a BH. The vertical dotted line indicates the moment when
excision is turned on.

matter has passed the excision surface. To test the accu-
racy of the technique, we plot the relative time variation
of the ADM mass (4.1) of the spacetime in Fig. 9. The
main error in the conservation of the ADM mass comes
from the numerical solution of the Euler equations, using
finite-volume methods (512 radial cells have been used).
After excision has been started (dotted line in Fig. 9), this
error shows a small change, and remains almost constant
when the accretion phase has ended. The subsequent
relative change in the ADM mass is then of the order of
10−8, similarly to Sec. IVB. Note that the conservation of
the ADM mass is not enforced in the numerical scheme,
but only monitored as a global test of the accuracy of the
code.

V. CONCLUSIONS

In this work we have presented a new excision tech-
nique for the dynamical evolution of spherically symmet-
ric spacetimes in the FCF in order to numerically simu-
late systems forming a BH.

FCF belongs to the so-called constrained formulations
of Einstein’s equations, in which the constraints are
solved for each time step. On the contrary, in free evolu-
tion formulations the evolution equations are in general
of hyperbolic type and constraints are used to monitor
the validity of the numerical solution (and/or as damping
terms in the evolution scheme). The puncture method
has been used in combination with the BSSN formulation
for binary BH evolutions and the excision technique in
combination with the generalized harmonic gauge. The
difficulty of using the excision technique in the case of
constrained formulations comes from the fact that con-

straints are elliptic-type PDEs and incorrect boundary
conditions at the excision surface invalidate the physical
solution in the whole numerical domain.

In the context of constrained formulations, excision has
been used to generate initial data. Dynamical evolu-
tions using constrained formulations were presented in
the work of Scheel et al. [26], in the case of dust collapse
in Brans-Dicke theory of gravity; in their work, the exci-
sion boundary was considered to be the AH at a fixed ra-
dial coordinate. In nonspherically symmetric spacetimes,
the coordinate shape of the AH can deviate from a co-
ordinate sphere and this approach has some limitations.
In our case, as in that of Rinne and Moncrief [27], the
excision boundary is a coordinate sphere located strictly
inside the AH, and we let the coordinate location of the
AH evolve freely in time. This approach allows in par-
ticular for a very straightforward extension to spacetimes
without symmetries, where the AH can form with a shape
deviating from a coordinate sphere.

The proposed approach uses an arbitrary coordinate
sphere located strictly inside the AH as excision surface
and a set of simple boundary conditions for the elliptic
equations to be solved. It permits more freedom in the
choice of the excision surface, which could be set as a
simple coordinate sphere in spacetimes without symme-
tries. We have checked the practical applicability of this
approach in three cases: the numerical simulation of a
Schwarzschild spacetime, the spherically symmetric ac-
creting BH with energy content in the form of a massless
scalar field, and the collapse of a spherical neutron star
to a BH. Our numerical results are stable and accurate.
We have also theoretically analyzed the behavior of these
boundary conditions in the proximity of stationary space-
times and found an exponential adjustment of the coor-
dinates to stationary values, independently of the chosen
initial data. This behavior has also been checked numer-
ically. In the last studied case, we have demonstrated
that the switching on of excision during the collapse did
not introduce any additional noise and that the overall
simulation remained stable, with the newly formed BH
accreting matter outside the excision surface. We can
thus follow the whole BH formation process, from the
onset of the collapse, to the growth of the BH and the
description of the stationary solution up to arbitrarily
long times. Although we have restricted this work to
spherically symmetric spacetimes, we plan to extend this
approach to more general spacetimes with less symme-
tries in forthcoming studies.

This excision technique can be used in the context of
several astrophysical scenarios like a stellar collapse to a
BH as we have shown, but also in other scenarios like the
formation of an accretion disk and/or the launching of a
jet. Notice that in these scenarios the initial data are usu-
ally regular, and during the simulation a BH forms and,
particularly when using singularity-avoiding time coor-
dinates (e.g. maximal slicing), an AH is found before
the appearance of the physical singularity [22]. Then the
excision technique can be used to continue the numeri-
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cal simulation, say in the accreting period, avoiding the
stretching of the grid at the center.
An advantage of this technique in combination with

the use of spherical (polar) coordinates is the avoidance
of the time-step limiting in the numerical simulations due
to the small size of the central cells. This point can be
more important for three-dimensional simulations.

Acknowledgments

We thank P. Montero and T. Baumgarte for fruit-
ful comments and discussions. I. C.-C. acknowledges
support from the Alexander von Humboldt Foundation.
This work has been partially funded by the SN2NS
project ANR-10-BLAN-0503. This work was also sup-
ported by the Grant No. AYA2010-21097-C03-01 of the
Spanish MICINN.

Appendix A: Dirac gauge and spherical symmetry

Spherical symmetry allows us to restrict the general
form of the conformal metric in Eq. (2.4), expressed in
orthonormal spherical coordinates, to

γ̃ij =





A(r) 0 0
0 B(r) 0
0 0 C(r)



 , (A1)

with the additional determinant condition

A(r)B(r)C(r) = det f ij = 1. (A2)

Equation (2.4) and the previous one for the determinant
can be written as

∂rA+
2A−B − C

r
= 0, B = C =

1√
A

⇔ ∂rA+
2(A− 1/

√
A)

r
= 0, B = C =

1√
A
.(A3)

A general solution for A is

A(r) =
(

1 +
ω

r3

)2/3

, ω ∈ R. (A4)

Appendix B: Massless scalar field in a curved

spacetime

The massless Klein-Gordon equation, or (simply) the
wave scalar equation, is given by

∇µ∇µφ = 0, (B1)

where ∇ is the Levi-Civita connection associated with
the spacetime metric gµν . The stress-energy tensor asso-
ciated with this scalar field is given by

Tµν = ∇µφ∇νφ− 1

2
γµν∇ρφ∇ρφ. (B2)

Its projections are given by

E =
1

2N2
((∂t − Lβ)φ)

2
+

1

2
DρφD

ρφ, (B3)

Si =
1

N
((∂t − Lβ)φ)Diφ, (B4)

Sij = DiφDjφ

−1

2
γij

[

DkφD
kφ− 1

N2
((∂t − Lβ)φ)

2

]

,(B5)

where D is the Levi-Civita connection associated with
the spatial metric γij .
The wave equation (B1) is rewritten as a first-order

system in space and time, by introducing the auxiliary
scalar Π, defined from Eq. (B6) below, and the vector
Φi = Diφ, considered also as a constraint of the system,
as

∂tφ = −N Π+ βiDiφ, (B6)

∂tΠ = −N γij DiΦj + βiDiΠ

−ΦiDj(Nψ
6γij)

ψ6
+ΠNK, (B7)

∂tΦi = −Di(N Π) + ΦkDiβ
k + βkDkΦi. (B8)

This system is solved using a second-order Adams-
Bashforth scheme, with the time step being a submultiple
of the one used for the evolution of the boundary condi-
tions for the metric. Note that, in the case of the maxi-
mal slicing condition (K = 0), the last term of Eq. (B7)
vanishes.
Matching across different domains is done along char-

acteristic fields, in an upwind manner. At the outer
boundary (r = Rmax), before the compactified domain,
we impose a Sommerfeld-like condition,

∂t (Π− Φr)r=Rmax
= 0, (B9)

and the consistency condition for φ,

∂tφ|r=Rmax
= (−NΠ+ βrΦr)r=Rmax

. (B10)

No boundary condition is needed for either field at the in-
ner boundary (excision at r = 0.916MADM),as all charac-
teristics are directed out of the computational domain as
long as the excision surface is spacelike, which is verified
in our case with b−N > 0 in our numerical simulations.
All matching and boundary conditions are implemented
in a collocation approach to spectral variables.

Appendix C: Perfect-fluid equations

Einstein’s equations, in the case of nonvacuum space-
times, have to be solved coupled with the hydrodynamic
equations for the evolution of matter which can be de-
rived from the local conservation of baryon number and
energy-momentum, respectively,

∇µJ
µ = 0, ∇µT

µν = 0, (C1)
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with the current Jµ and the energy momentum-tensor
T µν of a perfect fluid being

Jµ = ρ uµ, T µν = ρ h uµ uν + p gµν , (C2)

where ρ is the rest-mass (baryon mass) density, uµ is the
4-velocity of the fluid, h = 1 + ǫ+ p/ρ is the specific en-

thalpy, ǫ is the specific internal energy and p is the pres-
sure. The previous system of equations (C1) can be writ-
ten as a first-order hyperbolic system for the conserved
variables (D,Sj , τ) = (ρW, ρ hW vj , ρ hW 2 − p− ρW ),
with W being the Lorentz factor [46].
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G. Lovelace, N.W. Taylor and S.A. Teukolsky, Classical
Quantum Gravity 30, 115001 (2013).

[35] J.L. Jaramillo, Int. J. Mod. Phys. D 20, 21692204 (2011).
[36] S.A. Hayward, Phys. Rev. D 49, 6467 (1994).
[37] I. Booth, L. Brits, J.A. Gonzalez and C. Van Den

Broeck, Classical Quantum Gravity 23, 413 (2006)
[gr-qc/0506119].

[38] I. Cordero-Carrión and J.L. Jaramillo, in CoCoNuT
Meeting 2009, Valencia, Spain, 2009, www.mpa-
garching.mpg.de/hydro/COCONUT/Valencia2009/Talks/Cordero-
Carrion.pdf

[39] R.L. Marsa and M.W. Choptuik, Phys. Rev. D 54, 4929
(1996).

[40] http://www.lorene.obspm.fr
[41] P. Grandclément and J. Novak, Living Rev. Relativity

12, 1 (2009).
[42] L.-M. Lin and J. Novak, Classical Quantum Gravity 24,

2665 (2007).
[43] M. Alcubierre and M.D. Mendez, Gen. Relativ. Gravit.

43, 2769 (2011).
[44] H. Dimmelmeier, J. Novak, J.A. Font, J.M. Ibáñez and
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