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A scalar field equivalent to a non-ideal “dark energy fluid” obeying a Shan-Chen-like equation of
state is used as the background source of a flat Friedmann-Robertson-Walker cosmological spacetime
to describe the inflationary epoch of our universe. Within the slow-roll approximation, a number of
interesting features are presented, including the possibility to fulfill current observational constraints
as well as a graceful exit mechanism from the inflationary epoch.
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I. INTRODUCTION

According to the standard inflationary cosmology, the
early universe underwent a very short period of rapid ac-
celerated expansion, which was originally assumed as a
mechanism to solve several puzzles of the Big Bang the-
ory, e.g., the flatness and horizon problems [1–6]. Infla-
tion also provides plausible scenarios for the origin of the
large scale structure of the universe, as well as the forma-
tion of anisotropies in the cosmic microwave background
radiation. We refer, e.g., to Refs. [7–9] for a detailed
review on the different kinds of inflationary models de-
veloped so far, including recent attempts to construct
consistent models of inflation based on superstring or
supergravity models. In order to achieve inflation, the
strong energy condition has to be broken (in general),
so that the evolution of the universe at very early times
is expected to be driven by a source field with positive
energy density and negative pressure. The simplest way
to model a system with such a property is to assume a
scalar field. A variety of scalar field models of inflation
have been proposed so far, including quintessence [10], k-
essence [11, 12], phantom [13] and tachyonic scalar fields
[14].
The evolution of a scalar field in a given gravitational

background can be equivalently described by using a hy-
drodynamic representation (see, e.g., Ref. [9]). In fact,
the scalar field mainly acts as a perfect fluid, even if it
cannot in general be described by an equation of state
relating energy density and pressure in a standard way.
Fluids with negative pressure are indeed widely used in
cosmology and string theory to describe “exotic” matter
and topological defects (associated with phase transitions

in a primordial universe). In many practical cases, they
can be represented by perfect fluids with a barotropic
equation of state p = wρ, with negative w, like fluids of
cosmic strings and domain walls [15, 16]. The equivalence
between field representation and hydrodynamic represen-
tation then holds at a very formal level only, and requires
some care to be predictive, especially when fluids with
negative pressure are involved, as discussed in Ref. [17].

The usual way to formulate a scalar field model of in-
flation is to specify a Lagrangian with prescribed kinetic
and potential terms, also taking into account the cou-
pling to gravity and eventually to other fields. Alterna-
tively, one can start with a “dark energy fluid” obeying a
given equation of state as a source of the field equations
and study the resulting inflationary dynamics. Such an
approach has been developed, e.g., in Ref. [18], where
the inflaton field has been assumed to exhibit the same
thermodynamic properties of a fluid obeying a Chaply-
gin gas-like equation of state. In the present paper, we
follow the same line of thinking as above to develop an
inflationary model based on a dark energy field described
by a Shan-Chen-like equation of state [19, 20]. This equa-
tion of state has the suitable property to support a phase
transition between low and high density regimes, both
characterized by an ideal gas behavior, i.e., pressure and
density change in linear proportion to each other. It was
first introduced by Shan and Chen in the context of lat-
tice kinetic theory [19], and recently applied to a cosmo-
logical context in Ref. [20] to model the growth of the
dark energy component of the present universe. In the
sequel, we will show that this model satisfies current ob-
servational constraints over a wide range of parameters,
and also provides a a graceful exit mechanism from the
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inflationary epoch.

II. SCALAR FIELD INFLATIONARY MODELS

The action associated with a scalar field φ minimally
coupled to gravity is given by

S =

∫
d4x

√−g

[
M2

pl

2
R− L(X,φ)

]
, (2.1)

where g is the determinant of the metric, R is the Ricci
scalar, Mpl = (8πG)−1/2 is the reduced Planck mass and
L is the Lagrangian density, which can be in general an
arbitrary function of the field and its kinetic term X =
− 1

2g
µν∂µφ∂νφ.

Variation of the action with respect to the metric leads
to the energy momentum tensor, which can be cast in the
form of a perfect fluid, with energy density and pressure
given by [21]

ρ = 2XLX − L , p = L , (2.2)

where the subscript X indicates differentiation with re-
spect to X . The evolution of a scalar field in a given
gravitational background is equivalently described by the
motion of a hydrodynamic fluid with a given equation of
state. The hydrodynamic analogy proves useful even if
the pressure cannot be expressed in terms of the density
alone, because in general φ and X are independent, as
pointed out in Ref. [21].
In the context of inflation, several models have been

proposed by selecting a particular functional form of the
Lagrangian density (see, e.g., Refs. [21–24]). In the
present paper, we discuss a canonical scalar field model,
i.e., with L = X−V (φ), where X = φ̇2/2 is the standard
kinetic term and V the potential. As usual in inflationary
cosmology, we also assume the background gravitational
field to be a FRW universe with vanishing spatial curva-
ture, i.e., with metric ds2 = −dt2 + a2(dx2 + dy2 + dz2),
where a = a(t) is the scale factor. The Euler-Lagrange
equations for this system read as follows

H2 =
1

3M2
pl

(
φ̇2

2
+ V

)
,

0 = φ̈+ 3Hφ̇+ V ′ , (2.3)

where H = ȧ/a is the Hubble parameter. Here a over-
dot indicates derivative with respect to cosmic time t,
whereas a prime denotes differentiation with respect to
the scalar field φ. The hydrodynamic analog of this for-
mulation consists then in taking a perfect fluid as a source
of the Einstein’s field equations, with energy density and
pressure given by

ρ =
φ̇2

2
+ V , p =

φ̇2

2
− V , (2.4)

so that

V =
1

2
(ρ− p) , φ̇2 = ρ+ p . (2.5)

The field equations

H2 =
ρ

3M2
pl

, ρ̇ = −3H(ρ+ p) , (2.6)

are then completely equivalent to Eqs. (2.3).

A. Slow-roll inflation

Let us consider a slow-roll approximation for the (back-
ground) scalar field, i.e., the case when the potential en-

ergy V dominates over the kinetic energy φ̇2/2, driving a
quasi-exponential expansion of the universe. The follow-
ing conditions hold [8]

φ̈≪ 3Hφ̇ ,
φ̇2

2
≪ V , (2.7)

implying that

V ′ ≈ −3Hφ̇ , H2 ≈ V

3M2
pl

, p ≈ −ρ . (2.8)

In this case one defines the slow-roll parameters

ǫ =
1

2
M2

pl

(
V ′

V

)2

,

η = M2
pl

V ′′

V
,

Ξ = M4
pl

V ′V ′′′

V 2
, (2.9)

which should remain small, i.e., ǫ ≪ 1, |η| ≪ 1, |Ξ| ≪ 1.

Note that under these conditions Ḣ/H2 ≈ −ǫ.
Inflation is commonly characterized by the number N

of e-folds of the expansion. It is defined as the natural
logarithm of the ratio of the scale factor at the final time
te to its value at some initial time, i.e.,

N =

∫ te

t

Hdt = ln
ae
a
. (2.10)

This measures the amount of inflation that still has to
occur after a time t, with N decreasing to 0 at the end of
inflation. When slow-roll is violated, i.e., ǫ(φe) ≈ 1 (or
|η(φe)| ≈ 1, |Ξ(φe)| ≈ 1), the inflationary phase ends. As
it is well known, the universe should then be reheated,
undergoing a transition to the radiative phase of the stan-
dard cosmological model. The stability issue related to
scalar perturbations of scalar field inflationary models in
the slow-roll regime is briefly recalled in the Appendix.
In the following sections, we will develop a canonical

scalar field model of inflation based on a dark energy
field described by a suitable non-ideal equation of state
supporting phase-transitions.
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III. THE SHAN-CHEN FLUID MODEL

Before discussing the application to inflationary cos-
mology, we shall review below the basic features of non-
ideal fluids obeying a Shan-Chen-like (SC) equation of
state [19, 20], with special focus on the underlying mi-
crophysics and its relevance to cosmological models.

A. Microscopic foundations

Shan and Chen first used a non-ideal equation of state
to model dynamic phase transitions in the context of lat-
tice kinetic theory [19]. The main motivation was to
circumvent the problem of the very small time-steps im-
posed by the short-range (hard-core) repulsion of atomic
potentials in the numerical integration of the equations
of motion of molecular fluids. The distinctive feature of
the SC equation of state is the replacement of hard-core
repulsive interactions, which are needed to tame unstable
density build-up, with a purely attractive force, with the
peculiar property of becoming vanishingly small above
a given density threshold, so as to prevent the onset of
instabilities due to uncontrolled density pile-up. Since
high-density implies short spatial separation, the SC po-
tential implements a form of effective of “asymptotic free-
dom,” meaning by this that molecules below a certain
separation behave basically like free particles. Since its
inception, the SC method has met with major success for
the numerical simulation of a broad variety of complex
flows with phase-transitions [25, 26].
More in detail, with specific reference to lattice fluids,

for which the time-step is fixed by the lattice size, Shan
and Chen [19] proposed a “synthetic” repulsion-free po-
tential of the form:

V (x,x′) = ψ(x)G(x − x
′)ψ(x′) , (3.1)

where the generalized density ψ(x) = ψ[ρ(x)] is a local
functional of the fluid density and G(x−x

′) is the Green
function of the interaction. In the above

x
′ = x+ ea , (3.2)

where ea denotes a generic spatial direction in the lattice.
The explicit dependence on time of the various functions
defined above has been omitted for notational simplicity.
For instance, a typical two-dimensional lattice features
one rest particle (|e0| = 0), 4 nearest-neighbors (|ea| =
cL∆t), and 4 next-nearest-neighbors (|ea| = cL∆t

√
2),

cL = ∆x/∆t being the lattice “light speed.”

Shan and Chen took G(x−x
′) = G for |ea| < cL∆t

√
2

and zero elsewhere, where G < 0 codes for attractive
interaction. The associated force per unit volume of the
fluid reads as follows:

F(x) = −ψ(x)G
∑

a

ψ(x+ ea)ea , (3.3)

which equals −Gc2s∇ψ2/2 in the limit ∆t → 0. Taylor
expanding the above expression yields:

F(x) = −Gψ(x)∇ψ(x) +O(∆t3) , (3.4)

where we have taken into account that
∑

a e
i
a = 0 and∑

a e
i
ae

j
a = (c2L∆t

2/3)δij .
Higher order terms describe physical properties, such

as surface tension, which play a crucial role in the dy-
namics of complex fluids. It is readily shown that the
above force contributes an excess pressure of the form
(in lattice units ∆t = ∆x = cL = 1)

p

c2s
− ρ =

G
2
ψ2(ρ) , (3.5)

cs being the sound speed of the ideal fluid, typically c2s =
1/3 in lattice units.
Note that for attractive interactions, i.e., G < 0, the

excess pressure is negative, leading to a Van der Waals-
like loop for G sufficiently negative. The functional form
ψ(ρ) was chosen in Ref. [19] in such a way as to realize
a vapor-liquid coexistence curve, i.e.,

ψ(ρ) = ρ0

(
1− e

− ρ
ρ0

)
, (3.6)

where ρ0 is a reference density, above which “asymptotic
freedom” sets in. The above expression delivers a phase
transition at ρc = ρ0 ln 2 and G < Gc = −4. In the
low density regime (ρ ≪ ρ0) ψ → ρ and the Shan-Chen
equation of state (3.5) reduces to p/c2s = ρ+Gρ2/2, which
be unstable in the high density regime. Due to the sat-
uration of ψ for ρ ≫ ρ0, in the high-density limit the
equation of state delivers instead p/c2s = ρ+ Gρ20/2. An
interesting feature of the Shan-Chen equation of state
is the fact of supporting a negative pressure for G suffi-
ciently below Gc, jointly with a positive c2s.
Finally, it is worth noting that ψ(x) can also be in-

terpreted as a scalar field, interacting via gauge quanta,
whose propagator is precisely G(x − x

′) in Eqs. (3.1)–
(3.3). In the standard version, such gauge quanta do not
propagate beyond the first Brillouin region, the one as-
sociated with the 8 lattice connections described above.
More recent variants of the model also include longer-
range interactions, implementing the competition be-
tween short-range attraction and long-range repulsion,
which permits to describe the dynamics of highly com-
plex fluids such as foams and emulsions [27].

B. Application to cosmology

The SC equation of state is particularly interesting for
cosmological applications because of its flexibility, which
permits to represent a broad variety of cosmological flu-
ids, from radiation to dark energy, through a smooth
variation of its free parameters (see Fig. 1, for a simple
illustration). Furthermore, it supports phase transitions,
so that different epochs in the evolution of the universe
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FIG. 1: The behavior of the SC pressure p given by Eq. (3.7)
is shown as a function of ρ in units of ρ(crit),0 for the choice of
parameters α = 1, g = −6 and different values of w(in) = 1/3
(left) and w(in) = −1 (right).

can be described as a natural consequence of the SC fluid
dynamic equations.
As an example of such flexibility, we have recently pre-

sented in Ref. [20] a new class of cosmological models
consisting of a FRW universe with a fluid source, obey-
ing a SC-like equation of state of the form:

p = w(in)ρ(crit),0

[
ρ

ρ(crit),0
+
g

2
ψ2

]
,

ψ = 1− e
−α ρ

ρ(crit),0 , (3.7)

where ρ(crit),0 = 3H2
0M

2
pl is the present value of the crit-

ical density (H0 denoting the Hubble constant) and the
dimensionless quantities w(in), g ≤ 0 and α ≥ 0 are free
parameters of the model. Note that these three param-
eters respond to a well-defined physical interpretation:
w(in) describes the nature of matter, ordinary (positive)
versus exotic (negative). The parameter g measures the
strength of non-ideal interactions within the matter com-
ponent. Finally, α sets the ratio between the actual crit-
ical density and the density above which the excess pres-
sure saturates to a constant value, a regime sometimes
associated with asymptotic-freedom, as it corresponds to
a vanishing contribution of non-ideal forces to the mo-
mentum budget of the fluid.
We have shown in Ref. [20] that, starting from an ordi-

nary equation of state at early times (e.g., satisfying the
energy condition typical of a radiation-dominated uni-
verse), a cosmological FRW fluid obeying the SC equa-
tion of state naturally evolves towards a present-day uni-
verse with a suitable dark-energy component, as a con-
sequence of the fluid evolution equations. In the sequel,
we shall explore the possibility to develop an inflationary
model based on a dark energy field described by a SC-like
equation of state of the form (3.7).

IV. SHAN-CHEN INFLATION

Let us turn to the scalar field formulation of inflation
briefly recalled in Section II, assuming that the scalar

field be described by a fluid satisfying the non-ideal Shan-
Chen-like equation of state (3.7). It proves convenient to
introduce the following set of dimensionless variables:

ξ =
ρ

ρ(crit),0
, x =

a

a0
, τ = H0t , (4.1)

so that for an expanding universe (H > 0) Eqs. (2.6)
reduce to

dx

dτ
= x

√
ξ ,

dξ

dτ
= −3

√
ξ[ξ + w(in)P(ξ)] , (4.2)

where

P(ξ) = ξ +
1

2
g
(
1− e−αξ

)2
. (4.3)

Besides the trivial solution ξ = 0 = x, the above sys-
tem admits as fixed points the solutions of the following
equation:

ξ∗ + w(in)P(ξ∗) = 0 , (4.4)

which can be at most two, for fixed values of α and g, as
discussed in Ref. [20].
Note that Eq. (4.3) reduces to the ideal gas expres-

sion P(ξ) ∼ ξ in the low-density limit αξ → 0, while in
the opposite high-density limit, it delivers P ∼ ξ + 1

2g,
i.e., the non-ideal gas contribution reduces to a constant,
often associated with vacuum fluctuations. For more de-
tails on the SC thermodynamics, see Ref. [20]. Here,
we simply note that by changing the three parameters at
hand, i.e., w(in), g and α, the SC equation of state can
attain a broad range of values of cosmological interest for
the parameter weff ≡ p/ρ. Its behavior as a function of
ξ is shown in Fig. 2 for fixed values of w(in) and g and
different values of α. Changing the value of w(in) per-
mits to obtain different low-density asymptotic regimes.
Increasing the value of |g| implies that the relative max-
ima attain larger values. Direct inspection of this plot
shows that there exist values of α such that the SC equa-
tion of state undergoes a transition from exotic matter
(weff < 0) to ordinary matter (weff > 0).
According to the scalar field description discussed

above, Eq. (2.5) implies that the potential associated
with the SC energy density and pressure is given by:

V

ρ(crit),0
=

1

2

(
ξ − w(in)P

)
, (4.5)

and the evolution equation for the dimensionless scalar

field φ̃ = φ/Mpl reads as:

dφ̃

dτ
=
√
3(ξ + w(in)P) . (4.6)

The slow-roll parameters (2.9) turn out to be

ǫ =
3

2

ξ(ξ + w(in)P)

(ξ − w(in)P)2
[1− w(in) + gαw(in)ψ(ψ − 1)]2 ,
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FIG. 2: The behavior of the ratio weff ≡ p/ρ as a function
of ξ is shown for the choice of parameters w(in) = −1, g = −4
and different values of α = [1, 2, 3]. The dashed curve (with
α = 2) corresponds to the set of parameters used below for
the numerical integration of the model equations.

η = − 3

4(ξ − w(in)P)

4∑

k=0

Akψ
k ,

Ξ =
9

2

ξ(ξ + w(in)P)[1− w(in) + gαw(in)ψ(ψ − 1)]

(ξ − w(in)P)2

×
4∑

k=0

Bkψ
k , (4.7)

where ψ = 1− e−αξ is defined in Eq. (3.7), and

A0 = 4ξ(1 + w(in))(ξα
2gw(in) + w(in) − 1) ,

A1 = 2ξgw(in)α[3w(in) + 1− 6αξ(w(in) + 1)] ,

A2 = gw(in)

[
8α2ξ2(1 + w(in)) + w(in) − 1

+2αξ
(
2αgw(in) − 3w(in) − 1

)]
,

A3 = −αg2w2
(in)(10αξ − 1) ,

A4 = αg2w2
(in)(6αξ − 1) . (4.8)

and

B0 = 2(1− w2
(in))− gα2w(in)ξ(5 + 7w(in))

+6(1 + w(in))gα
3w(in)ξ

2 ,

B1 = −4gαw2
(in) + gα2w(in)ξ(21w(in) − 4gαw(in) + 15)

−14(1 + w(in))gα
3w(in)ξ

2 ,

B2 = 4gαw2
(in) −

7

2
g2α2w2

(in) + 8(1 + w(in))gα
3w(in)ξ

2

−gα2w(in)ξ(10− 19gαw(in) + 14w(in)) ,

B3 = g2α2w2
(in)

(
17

2
− 27αξ

)
,

B4 = g2α2w2
(in)(12αξ − 5) . (4.9)

Next, we study the behaviors of V , ǫ, η and Ξ as func-
tions of ξ for fixed values of the parameters. Approaching
the initial singularity, ξ goes to infinity or to a value of
equilibrium (ξ∗). In the former case we obtain:

lim
ξ→∞

V

ρ(crit),0
= −1

4
w(in)g +

ξ

2
(1− w(in)) , (4.10)

and

lim
ξ→∞

ǫ =
3

2
(1 + w(in)) , lim

ξ→∞
η = 3(1 + w(in)) ,

lim
ξ→∞

Ξ = 9(1 + w(in))
2 . (4.11)

When ξ → ξ∗ we have instead that ǫ → 0 and Ξ → 0,
whereas η → η(ξ∗) ≡ η∗, with ξ∗ satisfying Eq. (4.4).
The fixed points ξ∗ are inflationary attractors, corre-
sponding to an exponential inflation, i.e.,

H2
∗

H2
0

= ξ∗ , x = e
√
ξ∗τ , (4.12)

as follows from Eqs. (2.6).

For completeness, at ξ = 0 the potential behaves as

lim
ξ→0

V

ρ(crit),0
=
ξ

2
(1− w(in)) , (4.13)

whereas the slow-roll parameters ǫ, η and Ξ all approach
the same values as in the limit ξ → ∞ shown above.

A. Observational constraints

In the context of slow-roll inflation, the parameters
(2.9) plus the amplitude of the potential are sufficient
to determine the observable quantities. For instance, the
ratio of tensor to scalar perturbations, the scalar spectral
index and its running exponent are given by:

r = 16ǫ ,

ns = 1− 6ǫ+ 2η ,

αs ≡ dns

d ln k
= 16ǫη − 24ǫ2 − 2Ξ , (4.14)

respectively. Recent cosmic microwave background data
from Planck [28], combined with the large angle polar-
ization data from the Wilkinson Microwave Anisotropy
Probe (WMAP) [29] impose strong bounds on these pa-
rameters: r < 0.11 and ns = 0.9603 ± 0.0073 at 95%
confidence level. Furthermore, Planck data do not indi-
cate any statistically significant running of the spectral
index, i.e., αs = −0.0134± 0.0090. Finally, the combina-
tion of the very recent results of BICEP2 [30] with the
other experiments favors a value of the tensor-to-scalar
ratio r between 0.13 and 0.25 (with 0.2 preferred).
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B. Results

In order to study the implications of observational con-
straints on the SC potential and the free parameters of
the model, we have first to check that the slow-roll con-
ditions are fulfilled. Inflation ends if/when ǫ ≈ 1 (or
|η| ≈ 1, |Ξ| ≈ 1). This condition fixes the value of the

field φ̃e at the end of inflation. Next, the potential must
allow for a sufficient number of inflationary e−folds be-
tween horizon crossing for observable scales and the end
of inflation, which is typically about 60. Requiring that
Ni ≈ 60 at the beginning of inflation provides a condi-

tion on the initial value φ̃i of the field in order to obtain
a sufficient number of e−folds, which is assumed to be

Ne = 0 at the end of inflation (with φ̃e = 0 too).
It is convenient to express the evolution of the scalar

field φ̃ and the number of e−folds N in terms of ξ as
follows:

dφ̃

dξ
= − 1√

3ξ(ξ + w(in)P)
,

dN

dξ
=

1

3(ξ + w(in)P)
, (4.15)

from Eqs. (2.10) and (4.6). Since in the limit of both
high and low density the SC equation of state reduces to
p ∼ w(in)ρ, we assume hereafter w(in) = −1, to match the
inflationary condition also in these asymptotic regimes.
This choice allows for an analytical study of the model
equations.
In fact, the field equations (4.2) reduce to

dx

dτ
= x

√
ξ ,

dξ

dτ
=

3

2
g
√
ξ(1 − e−β)2 . (4.16)

The latter equation can be also written as

dβ

dx
= − 1

σ2x
(1− e−β)2 , (4.17)

in terms of β = αξ and the new parameter σ2 = 2/(3α|g|)
which summarizes the whole dependence on the param-
eters of the model. The solution is

β = ln

(
1 +

1

y

)
, y =W (x1/σ

2

eC/σ2

) , (4.18)

where W (z) denotes the Lambert W function (see, e.g.,
Ref. [31] for its definition and main properties) and C is
an integration constant. Upon inverting we obtain

x = e−σ2β(1− e−β)−σ2

e−C+σ2/(1−e−β) . (4.19)

Eqs. (4.15) then become

dφ̃

dβ
= − σ√

β(1 − e−β)
,

dN

dβ
=

σ2

(1 − e−β)2
. (4.20)

The solution for N is straightforward

N −N0 = σ2

[
β − 1

1− e−β
+ ln(1− e−β)

]
. (4.21)

The solution for φ̃ instead can only be given formally,
i.e.,

φ̃− φ̃0 = −σ
∞∑

k=0

√
π

k
erf(

√
kβ) , (4.22)

where erf(z) denotes the error function and the term k =
0 is taken as a limit. We have used here the geometric
series representation for (1− e−β)−1, whose convergence

is ensured for β ≫ 1. The quantities N0 and φ̃0 in Eqs.
(4.21) and (4.22) are integration constants.
The potential (4.5) in this case becomes

αV

ρ(crit),0
= β − 1

6σ2
ψ2 , (4.23)

and the slow-roll parameters (4.7) take the following com-
pact form:

ǫ = 2ψ2β
(3σ2 − ψ + ψ2)2

σ2(−6βσ2 + ψ2)2
,

η =
ψ

σ2(−6βσ2 + ψ2)
[(6β − 1)ψ3 + (1− 10β)ψ2

+(6βσ2 + 4β − 3σ2)ψ − 6βσ2] ,

Ξ = −2(1− ψ)(3σ2 − ψ + ψ2)ψ2β

σ4(−6βσ2 + ψ2)2
[2(12β − 5)ψ3

+(7− 30β)ψ2 + 4(3βσ2 + 2β − 3σ2)ψ − 6βσ2] ,

(4.24)

where ψ = 1 − e−β as from Eq. (3.7). Fig. 3 shows the
boundary of the region in the parameter space (β, α|g|)
where the slow-roll regime holds. The asymptotic behav-
ior of the potential for large values of β is then V ∼ β.

In this limit, from Eq. (4.20), one also has φ̃ ∼
√
β,

implying that V ∼ φ̃2.
Let us turn to the general equations (4.15). An exam-

ple of numerical integration is shown in Fig. 4 for the
choice of SC parameters w(in) = −1, g = −4 and α = 2.
Fig. 4 (a) shows the behavior of the potential V as a
function of φ. It starts from a large value and mono-
tonically decreases towards a minimum non-zero value,
typical of hybrid models [32]. In Fig. 4 (b), we plot
the slow-roll parameters associated with the SC poten-
tial. The slow-roll regime ends due to ǫ, which first ap-
proaches unity. Fig. 4 (c) shows the number of e−folds
during the inflation matching the interval N ≈ [0, 60]
commonly assumed in inflationary models. Finally, in
Fig. 4 (d) we show the existence of a graceful exit mech-
anism from inflation by plotting as a function of φ the
parameter weff , i.e., the ratio between energy density and
pressure. With the above choice of SC parameters, we
obtain r ≈ 0.13, ns ≈ 0.97 and αs ≈ −5 × 10−4, which
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FIG. 3: The curves ǫ = 1, η = 1 and Ξ = 1 are implicitly
plotted as functions of α|g| and β for w(in) = −1. The slow-
roll regime turns out to be valid in the region below each
curve.

are in agreement with observational data. Fig. 5 shows
the agreement of our analysis with the joint constraints
(at 1σ and 2σ confidence level) on ns versus r from cur-
rent Planck+WP+highL+BICEP2 data (see Ref. [30]
and references therein).

V. CONCLUDING REMARKS

Summarizing, we have proposed a scalar field model for
inflation based on the hydrodynamic analog of a Shan-
Chen-like fluid. A SC-like equation of state has been
recently introduced in cosmology to represent the cur-
rent distribution of dark energy, based on its property
of evolving ordinary matter into a matter-energy compo-
nent with an equation of state p ≈ −ρ, through a phase
transition mechanism. In the context of inflation, we
have considered a flat FRW universe filled by a canoni-
cal scalar field, with kinetic energy and potential related
to the SC energy density and pressure. The evolution
of the scalar field is thus completely determined by the
SC dynamics, and we have analyzed in detail its proper-
ties in the slow-roll approximation. Numerical inspection
of the associated equations shows that simple choices of
the free parameters of the SC model are consistent with
current Planck, WMAP and BICEP2 data, i.e., the min-
imal viability requrement for any cosmological model.
Furthermore, the equation of state undergoes a transi-
tion between p/ρ < 0 (exotic matter) during inflation
to p/ρ > 0 (ordinary matter) at late times, thus pro-
viding also a graceful exit mechanism. A more refined
choice of parameters, as well as a suitable extension of
the SC model presented here, are expected to match fur-
ther available data. Future directions of investigation will
focus on the effects of quantum fluctuations on the Shan-
Chen cosmology and their potential connections with the

(a) (b)

(c) (d)

FIG. 4: The model equations (4.15) are numerically inte-
grated for the choice of parameters w(in) = −1, g = −4 and
α = 2. The behavior of the potential V (in units of ρ(crit),0),
the slow-roll parameters ǫ, η and Ξ, the number of e−folds N
during inflation and the ratio p/ρ ≡ weff between energy den-
sity and pressure as functions of φ (in units of Mpl) is shown
in panels (a) to (d), respectively.

FIG. 5: The contours of the ratio of tensor to scalar per-
turbations r versus the scalar spectral index ns are quali-
tatively drawn from Planck+WP+highL+BICEP2 data [30].
The straight line shows how r changes as a function of ns for
a SC model with the same choice of parameters as in Fig. 4.
Noticeably, the same behavior is kept for a wide range of SC
parameters α and g that we have explored.
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theory of hydrodynamic turbulence [33].

Appendix A: Stability of scalar field inflationary

models

We briefly recall below the stability of scalar field infla-
tionary models against scalar perturbations in the slow-
roll approximation. In the hydrodynamic approach one
can define a speed of sound for the equivalent fluid as

c2s ≡ ∂p

∂ρ
=
ṗ

ρ̇
= 1 +

2V ′

3Hφ̇
, (A1)

where the definitions (2.4) and the second equation of
Eq. (2.3) have been used. Therefore, the slow-roll condi-
tions (2.8) imply c2s ≈ −1, for every inflationary model.
However, this does not necessarily imply the onset of in-
stability for the fluid with respect to small-wavelength
perturbations, as discussed in detail in Refs. [21, 34].
Following the standard theory of cosmological perturba-
tions (see, e.g., Ref. [35]), scalar perturbations of the
background FRW metric due to small inhomogeneities of
the scalar field φ(t, xa) = φ0(t)+ δφ(t, x

a) evolve accord-
ing to:

d2v

dη2
− c̃2s∇2v − 1

z

d2z

dη2
v = 0 , (A2)

for the canonical quantization variable v = zζ, defined
in Ref. [22] (see Eq. (28) there and related discussion).

In the above, η denotes the conformal time, such that
dt = adη and (z, ζ) are suitably defined perturbation
functions. As discussed in Ref. [22], what is relevant
for stability is the positiveness of the square of the “ef-
fective speed of sound”, appearing in front of the three-
dimensional Laplacian in the perturbation equation (A2),
defined as:

c̃2s ≡ pX
ρX

=
LX

LX + 2XLXX
, (A3)

as per Eq. (2.2). In the above, all quantities refer to
their background values.
For a canonical scalar field, i.e., in the case considered

in the present paper, we then obtain c̃2s = 1, henceforth
implying stability. In the hydrodynamic representation
one can relate c2s to c̃2s (see Eq. (10) of Ref. [22]), which
can be written in the form

c2s − c̃2s
1 + c̃2s

=
V ′

3Hφ̇
(A4)

which is consistent with c2s ≈ −1 in the slow-roll regime.
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