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I. INTRODUCTION

According to the standard inflationary cosmology, the
early universe underwent a very short period of rapid
accelerated expansion, which was originally assumed as a
mechanism to solve several puzzles of the Big Bang theory,
e.g., the flatness and horizon problems [1–6]. Inflation also
provides plausible scenarios for the origin of the large scale
structure of the Universe, as well as the formation of
anisotropies in the cosmic microwave background radia-
tion. We refer, e.g., to Refs. [7–9] for a detailed review on
the different kinds of inflationary models developed so far,
including recent attempts to construct consistent models of
inflation based on superstring or supergravity models. In
order to achieve inflation, the strong energy condition has
to be broken (in general), so that the evolution of the
Universe at very early times is expected to be driven by a
source field with positive energy density and negative
pressure. The simplest way to model a system with such a
property is to assume a scalar field. A variety of scalar field
models of inflation have been proposed so far, including
quintessence [10], k-essence [11,12], phantom [13] and
tachyonic scalar fields [14].
The evolution of a scalar field in a given gravitational

background can be equivalently described by using a
hydrodynamic representation (see, e.g., Ref. [9]). In fact,
the scalar field mainly acts as a perfect fluid, even if it
cannot in general be described by an equation of state

relating energy density and pressure in a standard way.
Fluids with negative pressure are indeed widely used in
cosmology and string theory to describe “exotic” matter
and topological defects (associated with phase transitions in
a primordial universe). In many practical cases, they can be
represented by perfect fluids with a barotropic equation of
state p ¼ wρ, with negative w, like fluids of cosmic strings
and domain walls [15,16]. The equivalence between field
representation and hydrodynamic representation then holds
at a very formal level only, and requires some care to be
predictive, especially when fluids with negative pressure
are involved, as discussed in Ref. [17].
The usual way to formulate a scalar field model of

inflation is to specify a Lagrangian with prescribed kinetic
and potential terms, also taking into account the coupling to
gravity and eventually to other fields. Alternatively, one can
start with a “dark energy fluid” obeying a given equation of
state as a source of the field equations and study the
resulting inflationary dynamics. Such an approach has been
developed, e.g., in Ref. [18], where the inflaton field has
been assumed to exhibit the same thermodynamic proper-
ties of a fluid obeying a Chaplygin gas-like equation of
state. In the present paper, we follow the same line of
thinking as above to develop an inflationary model based
on a dark energy field described by a Shan-Chen-like
equation of state [19,20]. This equation of state has the
suitable property to support a phase transition between low
and high density regimes, both characterized by an ideal
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gas behavior, i.e., pressure and density change in linear
proportion to each other. It was first introduced by Shan and
Chen in the context of lattice kinetic theory [19], and
recently applied to a cosmological context in Ref. [20] to
model the growth of the dark energy component of the
present Universe. In the sequel, we will show that this
model satisfies current observational constraints over a
wide range of parameters, and also provides a a graceful
exit mechanism from the inflationary epoch.

II. SCALAR FIELD INFLATIONARY MODELS

The action associated with a scalar field ϕ minimally
coupled to gravity is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R − LðX;ϕÞ

�
; ð2:1Þ

where g is the determinant of themetric,R is the Ricci scalar,
Mpl ¼ ð8πGÞ−1=2 is the reduced Planck mass and L is the
Lagrangian density, which can be in general an arbitrary
function of the field and its kinetic termX ¼ − 1

2
gμν∂μϕ∂νϕ.

Variation of the action with respect to the metric leads to
the energy momentum tensor, which can be cast in the form
of a perfect fluid, with energy density and pressure given
by [21]

ρ ¼ 2XLX − L; p ¼ L; ð2:2Þ
where the subscript X indicates differentiation with respect
to X. The evolution of a scalar field in a given gravitational
background is equivalently described by the motion of a
hydrodynamic fluid with a given equation of state. The
hydrodynamic analogy proves useful even if the pressure
cannot be expressed in terms of the density alone, because
in general ϕ and X are independent, as pointed out
in Ref. [21].
In the context of inflation, several models have been

proposed by selecting a particular functional form of the
Lagrangian density (see, e.g., Refs. [21–24]). In the present
paper, we discuss a canonical scalar field model, i.e., with
L ¼ X − VðϕÞ, where X ¼ _ϕ2=2 is the standard kinetic
term and V the potential. As usual in inflationary cosmol-
ogy, we also assume the background gravitational field to
be a FRW universe with vanishing spatial curvature, i.e.,
with metric ds2 ¼ −dt2 þ a2ðdx2 þ dy2 þ dz2Þ, where
a ¼ aðtÞ is the scale factor. The Euler-Lagrange equations
for this system read as follows,

H2 ¼ 1

3M2
pl

�
_ϕ2

2
þ V

�
;

0 ¼ ϕ̈þ 3H _ϕþ V 0; ð2:3Þ

where H ¼ _a=a is the Hubble parameter. Here a overdot
indicates derivative with respect to cosmic time t, whereas a

prime denotes differentiation with respect to the scalar field
ϕ. The hydrodynamic analog of this formulation consists
then in taking a perfect fluid as a source of the Einstein’s
field equations, with energy density and pressure given by

ρ ¼
_ϕ2

2
þ V; p ¼

_ϕ2

2
− V; ð2:4Þ

so that

V ¼ 1

2
ðρ − pÞ; _ϕ2 ¼ ρþ p: ð2:5Þ

The field equations

H2 ¼ ρ

3M2
pl

; _ρ ¼ −3Hðρþ pÞ ð2:6Þ

are then completely equivalent to Eqs. (2.3).

A. Slow-roll inflation

Let us consider a slow-roll approximation for the
(background) scalar field, i.e., the case when the potential
energy V dominates over the kinetic energy _ϕ2=2, driving a
quasiexponential expansion of the Universe. The following
conditions hold [8]

ϕ̈ ≪ 3H _ϕ;
_ϕ2

2
≪ V; ð2:7Þ

implying that

V 0 ≈ −3H _ϕ; H2 ≈
V

3M2
pl

; p ≈ −ρ: ð2:8Þ

In this case one defines the slow-roll parameters,

ϵ ¼ 1

2
M2

pl

�
V 0

V

�
2

;

η ¼ M2
pl
V″

V
;

Ξ ¼ M4
pl
V 0V‴

V2
; ð2:9Þ

which should remain small, i.e., ϵ ≪ 1, jηj ≪ 1, jΞj ≪ 1.
Note that under these conditions _H=H2 ≈ −ϵ.
Inflation is commonly characterized by the number N of

e-folds of the expansion. It is defined as the natural
logarithm of the ratio of the scale factor at the final time
te to its value at some initial time, i.e.,

N ¼
Z

te

t
Hdt ¼ ln

ae
a
: ð2:10Þ

This measures the amount of inflation that still has to occur
after a time t, with N decreasing to 0 at the end of inflation.
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When slow-roll is violated, i.e., ϵðϕeÞ ≈ 1 (or jηðϕeÞj ≈ 1,
jΞðϕeÞj ≈ 1), the inflationary phase ends. As it is well
known, the Universe should then be reheated, undergoing a
transition to the radiative phase of the standard cosmo-
logical model. The stability issue related to scalar pertur-
bations of scalar field inflationary models in the slow-roll
regime is briefly recalled in the Appendix.
In the following sections, we will develop a canonical

scalar field model of inflation based on a dark energy field
described by a suitable nonideal equation of state support-
ing phase-transitions.

III. THE SHAN-CHEN FLUID MODEL

Before discussing the application to inflationary cosmol-
ogy, we shall review below the basic features of nonideal
fluids obeying a Shan-Chen-like (SC) equation of state
[19,20], with special focus on the underlying microphysics
and its relevance to cosmological models.

A. Microscopic foundations

Shan and Chen first used a nonideal equation of state to
model dynamic phase transitions in the context of lattice
kinetic theory [19]. The main motivation was to circumvent
the problem of the very small time-steps imposed by the
short-range (hard-core) repulsion of atomic potentials in the
numerical integration of the equations of motion of
molecular fluids. The distinctive feature of the SC equation
of state is the replacement of hard-core repulsive inter-
actions, which are needed to tame unstable density build-
up, with a purely attractive force, with the peculiar property
of becoming vanishingly small above a given density
threshold, so as to prevent the onset of instabilities due
to uncontrolled density pile-up. Since high-density implies
short spatial separation, the SC potential implements a form
of effective “asymptotic freedom,” meaning by this that
molecules below a certain separation behave basically like
free particles. Since its inception, the SC method has met
with major success for the numerical simulation of a broad
variety of complex flows with phase-transitions [25,26].
More in detail, with specific reference to lattice fluids,

for which the time-step is fixed by the lattice size, Shan and
Chen [19] proposed a “synthetic” repulsion-free potential
of the form

Vðx;x0Þ ¼ ψðxÞGðx − x0Þψðx0Þ; ð3:1Þ
where the generalized density ψðxÞ ¼ ψ ½ρðxÞ� is a local
functional of the fluid density and Gðx − x0Þ is the Green
function of the interaction. In the above,

x0 ¼ xþ ea; ð3:2Þ
where ea denotes a generic spatial direction in the lattice.
The explicit dependence on time of the various functions
defined above has been omitted for notational simplicity.

For instance, a typical two-dimensional lattice features one
rest particle (je0j ¼ 0), four nearest neighbors (jeaj ¼
cLΔt), and four next-nearest neighbors (jeaj ¼ cLΔt

ffiffiffi
2

p Þ,
cL ¼ Δx=Δt being the lattice “light speed.”
Shan and Chen took Gðx − x0Þ ¼ G for jeaj < cLΔt

ffiffiffi
2

p
and zero elsewhere, where G < 0 codes for attractive
interaction. The associated force per unit volume of the
fluid reads as follows,

FðxÞ ¼ −ψðxÞG
X
a

ψðxþ eaÞea; ð3:3Þ

which equals −Gc2s∇ψ2=2 in the limit Δt → 0. Taylor
expanding the above expression yields

FðxÞ ¼ −GψðxÞ∇ψðxÞ þOðΔt3Þ; ð3:4Þ
where we have taken into account that

P
ae

i
a ¼ 0 andP

ae
i
ae

j
a ¼ ðc2LΔt2=3Þδij.

Higher order terms describe physical properties, such as
surface tension, which play a crucial role in the dynamics of
complex fluids. It is readily shown that the above force
contributes an excess pressure of the form (in lattice units
Δt ¼ Δx ¼ cL ¼ 1)

p
c2s

− ρ ¼ G
2
ψ2ðρÞ; ð3:5Þ

cs being the sound speed of the ideal fluid, typically c2s ¼
1=3 in lattice units.
Note that for attractive interactions, i.e., G < 0, the

excess pressure is negative, leading to a Van der Waals-
like loop for G sufficiently negative. The functional form
ψðρÞ was chosen in Ref. [19] in such a way as to realize a
vapor-liquid coexistence curve, i.e.,

ψðρÞ ¼ ρ0

�
1 − e−

ρ
ρ0

�
; ð3:6Þ

where ρ0 is a reference density, above which asymptotic
freedom sets in. The above expression delivers a phase
transition at ρc ¼ ρ0 ln 2 and G < Gc ¼ −4. In the low
density regime (ρ ≪ ρ0) ψ → ρ and the Shan-Chen equa-
tion of state (3.5) reduces to p=c2s ¼ ρþ Gρ2=2, which be
unstable in the high density regime. Due to the saturation of
ψ for ρ ≫ ρ0, in the high-density limit the equation of state
delivers instead p=c2s ¼ ρþ Gρ20=2. An interesting feature
of the Shan-Chen equation of state is the fact of supporting
a negative pressure for G sufficiently below Gc, jointly with
a positive c2s .
Finally, it is worth noting that ψðxÞ can also be

interpreted as a scalar field, interacting via gauge quanta,
whose propagator is precisely Gðx − x0Þ in Eqs. (3.1)–
(3.3). In the standard version, such gauge quanta do not
propagate beyond the first Brillouin region, the one
associated with the 8 lattice connections described above.
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More recent variants of the model also include longer-range
interactions, implementing the competition between short-
range attraction and long-range repulsion, which permits to
describe the dynamics of highly complex fluids such as
foams and emulsions [27].

B. Application to cosmology

The SC equation of state is particularly interesting for
cosmological applications because of its flexibility, which
permits to represent a broad variety of cosmological fluids,
from radiation to dark energy, through a smooth variation
of its free parameters (see Fig. 1, for a simple illustration).
Furthermore, it supports phase transitions, so that different
epochs in the evolution of the Universe can be described as
a natural consequence of the SC fluid dynamic equations.
As an example of such flexibility, we have recently

presented in Ref. [20] a new class of cosmological models
consisting of a FRWuniverse with a fluid source, obeying a
SC-like equation of state of the form:

p ¼ wðinÞρðcritÞ;0

�
ρ

ρðcritÞ;0
þ g
2
ψ2

�
;

ψ ¼ 1 − e
−α ρ

ρðcritÞ;0 ; ð3:7Þ

where ρðcritÞ;0 ¼ 3H2
0M

2
pl is the present value of the critical

density (H0 denoting the Hubble constant) and the dimen-
sionless quantities wðinÞ, g ≤ 0 and α ≥ 0 are free param-
eters of the model. Note that these three parameters respond
to a well-defined physical interpretation: wðinÞ describes the
nature of matter, ordinary (positive) versus exotic (neg-
ative). The parameter g measures the strength of nonideal
interactions within the matter component. Finally, α sets the
ratio between the actual critical density and the density
above which the excess pressure saturates to a constant
value, a regime sometimes associated with asymptotic
freedom, as it corresponds to a vanishing contribution of
nonideal forces to the momentum budget of the fluid.
We have shown in Ref. [20] that, starting from an

ordinary equation of state at early times (e.g., satisfying

the energy condition typical of a radiation-dominated
universe), a cosmological FRW fluid obeying the SC
equation of state naturally evolves towards a present-day
Universe with a suitable dark-energy component, as a
consequence of the fluid evolution equations. In the sequel,
we shall explore the possibility to develop an inflationary
model based on a dark energy field described by a SC-like
equation of state of the form (3.7).

IV. SHAN-CHEN INFLATION

Let us turn to the scalar field formulation of inflation
briefly recalled in Section II, assuming that the scalar field
be described by a fluid satisfying the nonideal Shan-Chen-
like equation of state (3.7). It proves convenient to
introduce the following set of dimensionless variables:

ξ ¼ ρ

ρðcritÞ;0
; x ¼ a

a0
; τ ¼ H0t; ð4:1Þ

so that for an expanding universe (H > 0) Eqs. (2.6) reduce
to

dx
dτ

¼ x
ffiffiffi
ξ

p
;

dξ
dτ

¼ −3
ffiffiffi
ξ

p
½ξþ wðinÞPðξÞ�; ð4:2Þ

where

PðξÞ ¼ ξþ 1

2
gð1 − e−αξÞ2: ð4:3Þ

Besides the trivial solution ξ ¼ 0 ¼ x, the above system
admits as fixed points the solutions of the following
equation:

ξ� þ wðinÞPðξ�Þ ¼ 0; ð4:4Þ

which can be at most 2, for fixed values of α and g, as
discussed in Ref. [20].
Note that Eq. (4.3) reduces to the ideal gas expression

PðξÞ ∼ ξ in the low-density limit αξ → 0, while in the
opposite high-density limit, it delivers P ∼ ξþ 1

2
g, i.e., the

nonideal gas contribution reduces to a constant, often
associated with vacuum fluctuations. For more details on
the SC thermodynamics, see Ref. [20]. Here, we simply
note that by changing the three parameters at hand, i.e.,
wðinÞ, g and α, the SC equation of state can attain a broad
range of values of cosmological interest for the parameter
weff ≡ p=ρ. Its behavior as a function of ξ is shown in
Fig. 2 for fixed values of wðinÞ and g and different values of
α. Changing the value of wðinÞ permits to obtain different
low-density asymptotic regimes. Increasing the value of jgj
implies that the relative maxima attain larger values. Direct
inspection of this plot shows that there exist values of α
such that the SC equation of state undergoes a transition
from exotic matter (weff < 0) to ordinary matter (weff > 0).

FIG. 1. The behavior of the SC pressure p given by Eq. (3.7) is
shown as a function of ρ in units of ρðcritÞ;0 for the choice of
parameters α ¼ 1, g ¼ −6 and different values of wðinÞ ¼ 1=3
(left) and wðinÞ ¼ −1 (right).
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According to the scalar field description discussed
above, Eq. (2.5) implies that the potential associated with
the SC energy density and pressure is given by

V
ρðcritÞ;0

¼ 1

2
ðξ − wðinÞPÞ; ð4:5Þ

and the evolution equation for the dimensionless scalar
field ~ϕ ¼ ϕ=Mpl reads as

d ~ϕ
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðξþ wðinÞPÞ

q
: ð4:6Þ

The slow-roll parameters (2.9) turn out to be

ϵ ¼ 3

2

ξðξþ wðinÞPÞ
ðξ − wðinÞPÞ2

½1 − wðinÞ þ gαwðinÞψðψ − 1Þ�2;

η ¼ −
3

4ðξ − wðinÞPÞ
X4
k¼0

Akψ
k;

Ξ ¼ 9

2

ξðξþ wðinÞPÞ½1 − wðinÞ þ gαwðinÞψðψ − 1Þ�
ðξ − wðinÞPÞ2

×
X4
k¼0

Bkψ
k; ð4:7Þ

where ψ ¼ 1 − e−αξ is defined in Eq. (3.7), and

A0 ¼ 4ξð1þ wðinÞÞðξα2gwðinÞ þ wðinÞ − 1Þ;
A1 ¼ 2ξgwðinÞα½3wðinÞ þ 1 − 6αξðwðinÞ þ 1Þ�;
A2 ¼ gwðinÞ½8α2ξ2ð1þ wðinÞÞ þ wðinÞ − 1

þ 2αξð2αgwðinÞ − 3wðinÞ − 1Þ�;
A3 ¼ −αg2w2

ðinÞð10αξ − 1Þ;
A4 ¼ αg2w2

ðinÞð6αξ − 1Þ; ð4:8Þ

and

B0 ¼ 2ð1 − w2
ðinÞÞ − gα2wðinÞξð5þ 7wðinÞÞ

þ 6ð1þ wðinÞÞgα3wðinÞξ2;

B1 ¼ −4gαw2
ðinÞ þ gα2wðinÞξð21wðinÞ − 4gαwðinÞ þ 15Þ

− 14ð1þ wðinÞÞgα3wðinÞξ2;

B2 ¼ 4gαw2
ðinÞ −

7

2
g2α2w2

ðinÞ þ 8ð1þ wðinÞÞgα3wðinÞξ2

− gα2wðinÞξð10 − 19gαwðinÞ þ 14wðinÞÞ;

B3 ¼ g2α2w2
ðinÞ

�
17

2
− 27αξ

�
;

B4 ¼ g2α2w2
ðinÞð12αξ − 5Þ: ð4:9Þ

Next, we study the behaviors of V, ϵ, η and Ξ as
functions of ξ for fixed values of the parameters.
Approaching the initial singularity, ξ goes to infinity or
to a value of equilibrium (ξ�). In the former case we obtain

lim
ξ→∞

V
ρðcritÞ;0

¼ −
1

4
wðinÞgþ

ξ

2
ð1 − wðinÞÞ; ð4:10Þ

and

lim
ξ→∞

ϵ ¼ 3

2
ð1þ wðinÞÞ; lim

ξ→∞
η ¼ 3ð1þ wðinÞÞ;

lim
ξ→∞

Ξ ¼ 9ð1þ wðinÞÞ2: ð4:11Þ

When ξ → ξ� we have instead that ϵ → 0 and Ξ → 0,
whereas η → ηðξ�Þ≡ η�, with ξ� satisfying Eq. (4.4). The
fixed points ξ� are inflationary attractors, corresponding to
an exponential inflation, i.e.,

H2�
H2

0

¼ ξ�; x ¼ e
ffiffiffi
ξ�

p
τ; ð4:12Þ

as follows from Eqs. (2.6).
For completeness, at ξ ¼ 0 the potential behaves as

lim
ξ→0

V
ρðcritÞ;0

¼ ξ

2
ð1 − wðinÞÞ; ð4:13Þ

FIG. 2 (color online). The behavior of the ratio weff ≡ p=ρ as a
function of ξ is shown for the choice of parameters wðinÞ ¼ −1,
g ¼ −4 and different values of α ¼ ½1; 2; 3�. The dashed curve
(with α ¼ 2) corresponds to the set of parameters used below for
the numerical integration of the model equations.
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whereas the slow-roll parameters ϵ, η and Ξ all approach the
same values as in the limit ξ → ∞ shown above.

A. Observational constraints

In the context of slow-roll inflation, the parameters (2.9)
plus the amplitude of the potential are sufficient to
determine the observable quantities. For instance, the ratio
of tensor to scalar perturbations, the scalar spectral index
and its running exponent are given by

r ¼ 16ϵ;

ns ¼ 1 − 6ϵþ 2η;

αs ≡ dns
d ln k

¼ 16ϵη − 24ϵ2 − 2Ξ; ð4:14Þ

respectively. Recent cosmic microwave background data
from Planck [28], combined with the large angle polari-
zation data from the Wilkinson Microwave Anisotropy
Probe (WMAP) [29] impose strong bounds on these
parameters: r < 0.11 and ns ¼ 0.9603� 0.0073 at 95%
confidence level. Furthermore, Planck data do not indicate
any statistically significant running of the spectral index,
i.e., αs ¼ −0.0134� 0.0090. Finally, the combination of
the very recent results of BICEP2 [30] with the other
experiments favors a value of the tensor-to-scalar ratio r
between 0.13 and 0.25 (with 0.2 preferred).

B. Results

In order to study the implications of observational
constraints on the SC potential and the free parameters
of the model, we have first to check that the slow-roll
conditions are fulfilled. Inflation ends if/when ϵ ≈ 1 (or
jηj ≈ 1, jΞj ≈ 1). This condition fixes the value of the field
~ϕe at the end of inflation. Next, the potential must allow for
a sufficient number of inflationary e-folds between horizon
crossing for observable scales and the end of inflation,
which is typically about 60. Requiring that Ni ≈ 60 at the
beginning of inflation provides a condition on the initial
value ~ϕi of the field in order to obtain a sufficient number of
e-folds, which is assumed to be Ne ¼ 0 at the end of
inflation (with ~ϕe ¼ 0 too).
It is convenient to express the evolution of the scalar field

~ϕ and the number of e-folds N in terms of ξ as follows:

d ~ϕ
dξ

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ξðξþ wðinÞPÞ
q ;

dN
dξ

¼ 1

3ðξþ wðinÞPÞ
; ð4:15Þ

fromEqs. (2.10) and (4.6). Since in the limit of both high and
low density the SC equation of state reduces to p ∼ wðinÞρ,
we assume hereafter wðinÞ ¼ −1, to match the inflationary
condition also in these asymptotic regimes. This choice
allows for an analytical study of the model equations.

In fact, the field equations (4.2) reduce to

dx
dτ

¼ x
ffiffiffi
ξ

p
;

dξ
dτ

¼ 3

2
g

ffiffiffi
ξ

p
ð1 − e−βÞ2: ð4:16Þ

The latter equation can be also written as

dβ
dx

¼ −
1

σ2x
ð1 − e−βÞ2; ð4:17Þ

in terms of β ¼ αξ and the new parameter σ2 ¼ 2=ð3αjgjÞ
which summarizes the whole dependence on the parameters
of the model. The solution is

β ¼ ln
�
1þ 1

y

�
; y ¼ Wðx1=σ2eC=σ2Þ; ð4:18Þ

where WðzÞ denotes the Lambert W function (see, e.g.,
Ref. [31] for its definition and main properties) and C is an
integration constant. Upon inverting we obtain

x ¼ e−σ
2βð1 − e−βÞ−σ2e−Cþσ2=ð1−e−βÞ: ð4:19Þ

Equations (4.15) then become

d ~ϕ
dβ

¼ −
σffiffiffi

β
p ð1 − e−βÞ ;

dN
dβ

¼ σ2

ð1 − e−βÞ2 : ð4:20Þ

The solution for N is straightforward,

N − N0 ¼ σ2
�
β −

1

1 − e−β
þ lnð1 − e−βÞ

�
: ð4:21Þ

The solution for ~ϕ instead can only be given formally, i.e.,

FIG. 3 (color online). The curves ϵ ¼ 1, η ¼ 1 and Ξ ¼ 1 are
implicitly plotted as functions of αjgj and β for wðinÞ ¼ −1. The
slow-roll regime turns out to be valid in the region below
each curve.
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~ϕ − ~ϕ0 ¼ −σ
X∞
k¼0

ffiffiffi
π

k

r
erfð

ffiffiffiffiffi
kβ

p
Þ; ð4:22Þ

where erfðzÞ denotes the error function and the term k ¼ 0
is taken as a limit. We have used here the geometric
series representation for ð1 − e−βÞ−1, whose convergence is
ensured for β ≫ 1. The quantities N0 and ~ϕ0 in Eqs. (4.21)
and (4.22) are integration constants.
The potential (4.5) in this case becomes

αV
ρðcritÞ;0

¼ β −
1

6σ2
ψ2; ð4:23Þ

and the slow-roll parameters (4.7) take the following
compact form:

ϵ¼ 2ψ2β
ð3σ2−ψþψ2Þ2
σ2ð−6βσ2þψ2Þ2 ;

η¼ ψ

σ2ð−6βσ2þψ2Þ ½ð6β−1Þψ3þð1−10βÞψ2

þð6βσ2þ4β−3σ2Þψ −6βσ2�;

Ξ¼−
2ð1−ψÞð3σ2−ψþψ2Þψ2β

σ4ð−6βσ2þψ2Þ2 ½2ð12β−5Þψ3

þð7−30βÞψ2þ4ð3βσ2þ2β−3σ2Þψ −6βσ2�; ð4:24Þ

where ψ ¼ 1 − e−β as from Eq. (3.7). Figure 3 shows the
boundary of the region in the parameter space ðβ; αjgjÞ
where the slow-roll regime holds. The asymptotic behavior
of the potential for large values of β is then V ∼ β. In this
limit, from Eq. (4.20), one also has ~ϕ ∼

ffiffiffi
β

p
, implying

that V ∼ ~ϕ2.
Let us turn to the general equations (4.15). An example

of numerical integration is shown in Fig. 4 for the choice of
SC parameters wðinÞ ¼ −1, g ¼ −4 and α ¼ 2. Figure 4(a)
shows the behavior of the potential V as a function of ϕ. It
starts from a large value and monotonically decreases
towards a minimum nonzero value, typical of hybrid
models [32]. In Fig. 4(b), we plot the slow-roll parameters
associated with the SC potential. The slow-roll regime ends
due to ϵ, which first approaches unity. Figure 4(c) shows
the number of e-folds during the inflation matching the
interval N ≈ ½0; 60� commonly assumed in inflationary
models. Finally, in Fig. 4(d) we show the existence of a
graceful exit mechanism from inflation by plotting as a
function of ϕ the parameter weff, i.e., the ratio between
energy density and pressure. With the above choice
of SC parameters, we obtain r ≈ 0.13, ns ≈ 0.97 and
αs ≈ −5 × 10−4, which are in agreement with observational
data. Figure 5 shows the agreement of our analysis with the
joint constraints (at 1σ and 2σ confidence level) on ns
versus r from current PlanckþWPþ highLþ BICEP2
data (see Ref. [30] and references therein).

V. CONCLUDING REMARKS

Summarizing, we have proposed a scalar field model
for inflation based on the hydrodynamic analog of a
Shan-Chen-like fluid. A SC-like equation of state has been
recently introduced in cosmology to represent the current

(a) (b)

(c) (d)

FIG. 4 (color online). The model equations (4.15) are numeri-
cally integrated for the choice of parameters wðinÞ ¼ −1, g ¼ −4
and α ¼ 2. The behavior of the potential V (in units of ρðcritÞ;0),
the slow-roll parameters ϵ, η and Ξ, the number of e-folds N
during inflation and the ratio p=ρ≡ weff between energy density
and pressure as functions of ϕ (in units ofMpl) is shown in panels
(a)–(d), respectively.

FIG. 5 (color online). The contours of the ratio of tensor to
scalar perturbations r versus the scalar spectral index ns are
qualitatively drawn from PlanckþWPþ highLþ BICEP2 data
[30]. The straight line shows how r changes as a function of ns for
a SC model with the same choice of parameters as in Fig. 4.
Noticeably, the same behavior is kept for a wide range of SC
parameters α and g that we have explored.
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distribution of dark energy, based on its property of evolving
ordinary matter into a matter-energy component with an
equation of state p ≈ −ρ, through a phase transition mecha-
nism. In the context of inflation, we have considered a flat
FRWuniverse filled by a canonical scalar field, with kinetic
energy and potential related to the SC energy density and
pressure. The evolution of the scalar field is thus completely
determined by the SC dynamics, and we have analyzed
in detail its properties in the slow-roll approximation.
Numerical inspection of the associated equations shows that
simple choices of the free parameters of the SC model are
consistent with current Planck, WMAP and BICEP2 data,
i.e., the minimal viability requirement for any cosmological
model. Furthermore, the equation of state undergoes a
transition between p=ρ < 0 (exotic matter) during inflation
to p=ρ > 0 (ordinary matter) at late times, thus providing
also a graceful exit mechanism. A more refined choice of
parameters, as well as a suitable extension of the SC model
presented here, are expected to match further available data.
Future directions of investigation will focus on the effects of
quantum fluctuations and their potential connections with
the theory of hydrodynamic turbulence [33].
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APPENDIX: STABILITY OF SCALAR FIELD
INFLATIONARY MODELS

We briefly recall below the stability of scalar field
inflationary models against scalar perturbations in the
slow-roll approximation. In the hydrodynamic approach
one can define a speed of sound for the equivalent fluid as

c2s ≡ ∂p
∂ρ ¼ _p

_ρ
¼ 1þ 2V 0

3H _ϕ
; ðA1Þ

where the definitions (2.4) and the second equation of
Eq. (2.3) have been used. Therefore, the slow-roll conditions
(2.8) imply c2s ≈ −1, for every inflationary model. However,
this does not necessarily imply the onset of instability for the
fluid with respect to small-wavelength perturbations, as
discussed in detail in Refs. [21,34]. Following the standard
theory of cosmological perturbations (see, e.g., Ref. [35]),
scalar perturbations of the background FRW metric due to
small inhomogeneities of the scalar fieldϕðt; xaÞ ¼ ϕ0ðtÞ þ
δϕðt; xaÞ evolve according to

d2v
dη2

− ~c2s∇2v −
1

z
d2z
dη2

v ¼ 0; ðA2Þ

for the canonical quantization variable v ¼ zζ, defined in
Ref. [22] (see Eq. (28) there and related discussion). In the
above, η denotes the conformal time, such that dt ¼ adη and
ðz; ζÞ are suitably defined perturbation functions. As
discussed in Ref. [22], what is relevant for stability is the
positiveness of the square of the “effective speed of sound,”
appearing in front of the three-dimensional Laplacian in the
perturbation equation (A2), defined as

~c2s ≡ pX

ρX
¼ LX

LX þ 2XLXX
; ðA3Þ

as per Eq. (2.2). In the above, all quantities refer to their
background values.
For a canonical scalar field, i.e., in the case considered in

the present paper, we then obtain ~c2s ¼ 1, henceforth
implying stability. In the hydrodynamic representation
one can relate c2s to ~c2s (see Eq. (10) of Ref. [22]), which
can be written in the form

c2s − ~c2s
1þ ~c2s

¼ V 0

3H _ϕ
; ðA4Þ

which is consistent with c2s ≈ −1 in the slow-roll regime.
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