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Abstract: We revisit the classical theory of ten-dimensional two-derivative grav-

ity coupled to fluxes, scalar fields, D-branes, anti D-branes and Orientifold-planes.

We show that such set-ups do not give rise to a four-dimensional positive curvature

spacetime with the isometries of de Sitter spacetime. We further argue that a de

Sitter solution in type IIB theory may still be achieved if the higher-order curva-

ture corrections are carefully controlled. Our analysis relies on the derivation of the

de Sitter condition from an explicit background solution by going beyond the su-

pergravity limit of type IIB theory. As such this also tells us how the background

supersymmetry should be broken and under what conditions D-term uplifting can

be realized with non self-dual fluxes.
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1. Introduction

The hot, dense state of the early universe and its subsequent evolution offer a unique

testing ground for theories of high-energy physics; if string theory is the correct

theory of the earliest universe, it should be possible to embed all the known results

from cosmology in a consistent string theory description. Our best observational data

of the early universe, from the cosmic microwave background (CMB)[1, 2, 3, 4, 5, 6],

and late time acceleration [7], point to a universe that is very close to spatially flat, in

which large-scale structure was generated from an almost scale-invariant spectrum

of primordial density perturbations with a nearly Gaussian distribution. This is
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consistent with a large class of inflationary models [5], which we will have in mind

here, as well as a variety of alternatives to inflation [8, 9, 10].

However, the dynamics of the early universe is necessarily studied via an effective

field theory (EFT) approach. Although one might expect a decoupling of energy

scales, leading to suppression of higher-order terms in the Lagrangian by increasing

powers of the cut-off, the predictions of inflation can be highly sensitive to corrections

of both the potential or inflaton mass [11] and the kinetic terms [12, 13]. This forces

one to consider the UV sensitivity of inflation, which has been addressed from many

perspectives: see [11, 14] for reviews, [15] for a recent take, and [16] for a completely

different approach. The dependence of cosmological observables on the detailed

embedding of inflation into string theory offers a unique window into the high-energy

physics of the early universe, and may provide evidence that string theory could be

the correct description of physics at these scales.

A consistent string compactification with a de Sitter (or quasi de Sitter) vacuum

in the 3+1 non-compact directions is crucial to such an embedding. Achieving such a

compactification has proved to be an extremely difficult endeavour. No-go theorems

exist for supergravity [17, 18] and for string theory (without time-dependent fields

or higher-curvature corrections), the well-known Maldacena-Nunez result [19]. This

was extended to the heterotic case with higher-order corrections (but without non-

perturbative effects) included [20, 21].

In Type II string theory, dS solutions have been studied in many works, for

example [22, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31]. In addition, many models of

inflation in string theory have been proposed (see the reviews by [14, 11]), together

with ‘uplift’ mechanisms for obtaining dS [33, 34, 35] by lifting an AdS minimum of

the scalar potential to a metastable dS minimum.

In this paper, we revisit the question from the full ten-dimensional setup of

Type IIB string theory, generalizing the analysis of Maldacena-Nunez [19] by in-

cluding extended localized sources in the gravity action. In particular we consider

the traced-over Einstein equations, identifying the conditions for achieving de Sitter

space in the non-compact dimensions for the cases of fluxes, scalar fields and differ-

ent localized sources, e.g. D-branes, anti D-branes and orientifold planes, in Type

IIB with two-derivative gravity. We find that none of these ingredients satisfy the

required condition, suggesting that one must consider additional terms in the gravity

action.

One example of such additional terms is the set of higher-order curvature correc-

tions. We perform an explicit calculation using an M-theory uplift, so as to simplify

the form of the available fluxes. To study the effect of curvature corrections, we are

forced to take an indirect route and instead consider a generalized correction to the

action. We make an ansatz for the stress-energy tensor of the perturbative correc-

tions, noting that the correction terms are built from curvatures. We explicitly find

that positive curvature in the non-compact directions is only possible if curvature
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corrections are present and satisfy a certain inequality.

We further find that the fluxes in any dS solution must be non self-dual, as is

consistent with broken supersymmetry. These fluxes, combined with D-brane instan-

tons, are enough to fix both the complex structure and Kahler moduli, including the

volume modulus. In addition to this, the instantons are one possible source for the

curvature correction terms required to give positive curvature to the non-compact

space. We do not propose a specific form for these corrections, and as the complete

set of supported corrections is not yet known, further conclusions cannot be made

at this point.

The structure of this paper is as follows: Sections 2 and 3 rederive the Gibbons-

Maldacena-Nunez No-Go theorem, and apply it to bulk fields (fluxes and scalar fields)

and localized sources. In Section 4, we set up our M-theory calculation, which we

perform in Section 5. We then examine the resulting equations of motion in Section

6 and 7, and discuss the origin of higher order curvature corrections in Section 8. We

conclude our work with a short discussion of our results in Section 9.

2. Einstein gravity in D dimensions

Consider the following Einstein-Hilbert action coupled to matter in D spacetime

dimensions:

Stotal =
1

KD

∫
dDx

√
−GDRD +

∫
dDxLint, (2.1)

where KD is the D-dimensional Newton constant, RD is the Ricci scalar in D dimen-

sions, GD is the determinant of the D-dimensional metric gMN ,M,N = 0, .., D − 1,

and Lint is the Lagrangian for the local or global fields that couple to gravity. It can

contain global fluxes, scalar fields, local sources and terms that describe graviton self

coupling. In the Einstein equations, Lint enters through the stress-energy tensor

TMN = − 2√
−GD

δLint

δgMN
. (2.2)

Variation of (2.1) with respect to gMN gives the following Einstein equation:

RMN =
KD

2

(
TMN − 1

D − 2
gMNT

)
, (2.3)

where T is defined in the usual way, i.e.

T = gMNTMN . (2.4)

Now we will split the geometry into two manifolds: M4, spanned by coordinates

xµ, µ = 0, .., 3 and a transverse space MD−4, spanned by coordinates xm, m =

4, .., D − 1. We want M4 to describe our four dimensional non-compact space-time
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geometry and thus choose (x0, x1, x2, x3) = (t, x, y, z), where t is timelike. MD−4

can be either a compact or non-compact D − 4 dimensional manifold, described by

spacelike coordinates xm. We will often refer to xm and xµ as describing internal and

external directions respectively. The line element is

ds2D = ds24 + ds2D−4 ≡ gµνdx
µdxν + gmndx

mdxn. (2.5)

Now if the D-dimensional manifold has a direct product topology M4 ×MD−4, then

the Ricci scalar for M4 is:

R4 ≡ gµνRµν . (2.6)

If R4 > 0 we obtain a positive curvature spacetime, of which de Sitter space is one

example, as is consistent with our universe. Alternatively, if R4 < 0, we have Anti-de

Sitter type geometry, which is not consistent with the current universe.

Taking the trace of (2.3) in the µ, ν directions, we get

R4 = − KD

2(D − 2)

[
T µ
µ (6−D) + 4Tm

m

]
. (2.7)

Thus for a positively curved spacetime, i.e. R4 > 0, we must satisfy the condition:

(D − 6)T µ
µ > 4Tm

m . (2.8)

Whatever the content of the Lagrangian, we must satisfy (2.8) if we are to obtain a

positively curved four-dimensional universe. If we do not have a direct product space,

but rather a warped product space, then the manifold cannot be nicely separated:

MD 6=M4×MD−4. However, we can still try to obtain an effective four-dimensional

space at low energies. In this case, the transverse dimensions are not accessible,

which is possible if the size of MD−4 is small compared to the typical distance scale

of interactions inM4. We will separately address the case of a warped product space

in the context of type IIB string theory in Section 3.2, where we will again see that

the condition (2.8) plays a crucial role.

We can now proceed to analyse different choices for the Lagrangian.

2.1 Fluxes and scalar fields coupled to gravity

We can reproduce the No-Go theorem of Gibbons [17, 18] and Maldacena-Nunez [19]

by including fluxes in the Lagrangian. We consider the flux Lagrangian

LF
int = −

√
−GDFa1...aqF

a1...aq , (2.9)

where F is a q-form. The above Lagrangian leads to the following stress-energy

tensor:

T F
MN = −gMNF

2 + 2qFMa2..aqF
a2...aq
N . (2.10)
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One can readily check that with the above form of the tensor, condition (2.8) will be

satisfied if

4(1− q)F 2 > −Fµa2..aqF
µa2..aqq (D − 2) . (2.11)

We will consider two types of fluxes: the first type with legs only along the internal

directions and the second type with legs in M4. Also note that the overall minus

sign in the Lagrangian is chosen to give positive energy, i.e. T00 > 0. For the first

type of flux ai = m,n for all i and F 2 ≥ 0 with Fµa2..aqF
µa2..aq = 0. Thus we find

that condition (2.8) is not satisfied for q > 1.

If q < 4 then all the legs will be along MD−4 since otherwise the isometries of

d = 4 Minkowski or de Sitter like space will be broken. Thus when we consider the

second type of flux which has legs inM4, we will restrict to the case q ≥ 4. For q ≥ 4

we will consider 4 out of q legs along M4 i.e. flux with legs in all the directions of

M4 and the rest of its legs along the internal directions. With this condition on the

fluxes, one obtains the following identities:

F 2 = Fa1a2..aqF
a1a2..aq = C(q, 4)Fµ1..µ4a5..aqF

µ1..µ4a5..aq

Fµa2..aqF
µa2..aq = C(q − 1, 3)Fµ1..µ4a5..aqF

µ1..µ4a5..aq , (2.12)

where the coefficient C(q, k) is defined by

C(q, k) ≡ q!

(q − k)!k!
. (2.13)

This in turn gives us

Fµa2..aqF
µa2..aq =

4

q
F 2. (2.14)

Using the above relation and the fact that F 2 < 0, condition (2.8) will be satisfied if

and only if

D < q + 1. (2.15)

Thus for D > q + 1, we find that a q-form flux with legs in M4 does not give rise

to positive curvature for M4. Any flux that preserves the desired isometries of M4

can be written as a combination of the two types of fluxes described above. Thus,

whatever the form of the flux, q-form flux for D > q+1 does not give rise to positive

curvature for M4, as was first demonstrated by Maldacena and Nunez [19].

Next we consider scalar fields. The most general interaction Lagrangian for a

scalar field interacting with gravity is given by

Lφ
int = −

√
−GD

(
∂Mφ∂

Mφ+ V (φ)
)
. (2.16)
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Note that the overall minus sign is chosen so that when V (φ) = 0 (for example

massless fields with only kinetic energy), we get positive energy, i.e. T00 > 0. The

stress-energy tensor is given by

T φ
MN = −gMN

(
∂Kφ∂

Kφ+ V (φ)
)
+ 2∂Mφ∂Nφ. (2.17)

Then with the stress-energy tensor given above, the only way (2.8) is satisfied is

if and only if

∂µφ∂
µφ+ V (φ) > 0. (2.18)

Now if we demand that the M4 is isotropic in space but dependent on time, we

readily find ∂µφ∂
µ = gtt∂tφ∂tφ < 0 since gtt < 0. Thus if V (φ) < 0, M4 will not have

positive curvature. In type IIB string theory, which will be the focus of our study,

the scalar axio-dilaton field τ has no potential and thus will not aid in constructing

positive curvature.

2.2 Localized matter coupled to gravity

Another possibility for the interaction Lagrangian is that of localized matter. For

a p-dimensional object embedded in D-dimensional geometry, the most general La-

grangian that couples to the metric is the worldvolume Born-Infeld Lagrangian:

LBI
int = −Tp

√
−f̃√gD−p−1δ

D−p−1(x− x̄), (2.19)

where f̃ is the determinant of the metric f̃ab, defined in the following way:

f̃ab = fab + F̃ab, fab = gMN
∂XM

∂σa

∂XN

∂σb
and F̃ab = Fab +Bab. (2.20)

Here Tp is the tension, Fab is the worldvolume flux, Bab is the pullback of the back-

ground magnetic flux, a, b = 1, .., p+1, and F̃ab is raised or lowered with the pullback

metric fab. Also note that δD−p−1(x−x̄) is the (D−p−1)-dimensional delta function,

x = x̄ is the location of the p-dimensional object, and gD−p−1 is the determinant of

the (D − p− 1)-dimensional metric such that we have the normalization
∫
dD−p−1x

√
gD−p−1δ

D−p−1(x− x̄) = 1. (2.21)

We have picked worldsheet parameters σa = xa, a = 0, .., p− 1. Tp can be considered

as mass per unit length and thus it is typically positive.

If the Lagrangian is of the form (2.19) with positive mass term, i.e. Tp > 0, one

obtains:

T µ (BI)
µ = −Tp

1√
−GD

√
−f̃√gD−p−1f̃abg

µ′ν′ δf̃
ab

δgµ′ν′
δD−p−1(x− x̄) < 0
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T m (BI)
m = −Tp

1√
−GD

√
−f̃√gD−p−1f̃abg

m′n′ δf̃ab

δgm′n′
δD−p−1(x− x̄) < 0. (2.22)

Using (2.22) in (2.7) one readily sees that (2.8) is satisfied if D < 6. For D > 6

(2.8) is not automatically satisfied. In particular string theory gives D = 10 or 11

and thus we must have Tm
m non-vanishing to obtain our four-dimensional positive

curvature universe.

String theory also allows negative tension objects, i.e. Tp < 0, and higher-

derivative terms in the low-energy effective action for gravity. Then, using the form

of the localized stress-energy tensor (2.22) and adding the contributions from the

fluxes, scalar fields and higher derivative terms, it may be possible to satisfy the

condition (2.8). We will discuss this possibility in Sections 4 to 8.

3. dS in Type IIB String Theory with Branes and Planes

With a general understanding of gravitational coupling to fluxes and localized matter

fields in D dimensions, we will now consider the specific case of low-energy type IIB

superstring theory with the following action in Einstein frame:

Stotal = SSUGRA + Sloc, (3.1)

where

SSUGRA =
1

2κ210

∫
d10x

√
−G10

(
R− ∂Mτ∂

M τ̄

2|Imτ |2 − |F̂5|2
4 · 5! −

G3 · Ḡ3

12Imτ

)

+
1

8iκ210

∫
C4 ∧G3 ∧ Ḡ3

Imτ
. (3.2)

Here τ = C0 + ie−φ; G10 = det gMN ,M,N = 0, .., 9; gMN is the metric in Einstein

frame; G3 = F3 − τH3; F3 is the three-form RR flux, H3 is the three-form NS-NS

flux, and F̂5 is defined by

F̂5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (3.3)

For the localized action we will consider Dp-branes and orientifold planes in

various dimensions. The action for a Dp-brane is given by

SDp = −
∫
dp+1σ Tp e

φ(p+1)
4

√
−f̃ + µp

∫ (
C ∧ eF̂

)
p+1

. (3.4)

Here f̃ is the same as in (2.19) and Cp+1 is the RR flux. As above, F̃ab is raised or

lowered with the pullback metric fab. Note that the sign of µp determines whether we

have a brane or an anti-brane. However both branes and anti-branes have positive

tension Tp > 0.
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On the other hand, for an orientifold, we have the action

SOp = −
∫
dp+1σ TOpe

φ(p+1)
4

√
−f + µOp

∫
Cp+1, (3.5)

where the orientifold has negative tension, i.e. TOp < 0. Here µp is the charge of the

Op-plane and we have the relation |TOp| = e−φ|µOp|. Also note that since the Op

plane has negative charge, we have µp = eφTOp = −eφ|TOp|.
With the above localized action and the bulk supergravity action, we can write

(3.1) in the form (2.1) with the interaction Lagrangian being1

Lint = Lbulk + LDp + LOp

Lbulk =
√

−G10

(
−∂Mτ∂

M τ̄

2|Imτ |2 − |F̂5|2
4 · 5! −

G3 · Ḡ3

12Imτ

)

LDp = −Tpe
φ(p+1)

4

√
−f̃√gD−p−1δ

10−p−1(x− x̄)

LOp = |TOp|e
φ(p+1)

4

√
−f√gD−p−1δ

10−p−1(x− x̄). (3.6)

In the above K10 has been replaced by 2κ210. Using the above form of the Lagrangian

we can readily obtain the stress-energy tensor (2.2) and check whether the constraint

(2.8) is satisfied or not.

To evaluate the trace of the stress-energy tensor, we will restrict the form of the

fields to ensure Poincaré invariance in the non-compact spacetime. This way even

without solving for the on-shell values of the fluxes and metric, we can check whether

the inequality (2.8) is satisfied. These conditions are the following:

•The fluxes H3 and F3 only have legs along M6, and τ depends only on xm, the

coordinates of M6.

• F̂5 will have legs in the xµ directions. Then by imposing self duality and Poincaré

invariance, one obtains the general form

F̂5 = (1 + ∗10) dα ∧ dt ∧ dx ∧ dy ∧ dz, (3.7)

where α(xM) is a scalar field which is a function of all coordinates xM ,M = 0, .., 9.

Having laid down the required conditions, we will now analyze the individual

cases with branes, anti-branes and orientifold planes.

1The topological term cannot enter the stress-energy tensor since δSCS

δgMN = 0 where SCS =

µp

∫ (
C ∧ eF̃

)
p+1

is the Chern-Simons action. Therefore we omit it in the Lagrangians here. For

Dp-branes F̂ is not generally zero but Op-planes do not carry gauge fields, and have F̂=0.
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3.1 Direct product space with Branes and Planes

We will first consider product spaces M10 =M4×M6 with branes and planes, where

the transverse space M6 can be either compact or non-compact. For p = 3, we have

D3 or anti-D3 branes which fill up M4. Thus the induced metric is

fab = gab, for a, b = µ, ν

fab = 0 for a, b 6= µ, ν. (3.8)

Then we find 2

T µ

µ (D3/D̄3)
= −T3eφ

√
−f̃√g6√
−G10

(
4 + F̂ µ

µ

)
δ6(x− x̄)

Tm
m (D3/D̄3) = 0. (3.9)

However, since the flux F̂ is anti-symmetric while the metric is symmetric, F̂ µ
µ = 0.

Thus neither the D3 nor the anti-D3 brane tensor satisfies the constraint (2.8).

The results for D3 and anti-D3 branes can easily be generalized to Dp and anti-

Dp branes with p = 5, 7. For Poincaré invariance in the noncompact dimensions,

we will fill up M4 with the Dp or anti-Dp branes and the remaining worldvolume

will fill up some Sp−3 cycle inside the transverse space MD−p−1. If xm, xn denote

coordinates of the cycle Sp−3, then we have

fab = gab, for a, b = µ, ν,m, n

fab = 0 for a, b 6= µ, ν,m, n. (3.10)

And we obtain

T µ
µ (Dp/D̄p)

= −Tpe
φ(p+1)

4

√
−f̃√gD−p−1√

−G10

(
4 + F̂ µ

µ

)
δD−p−1(x− x̄)

Tm
m (Dp/D̄p) = −Tpe

φ(p+1)
4

√
−f̃√gD−p−1√

−G10

(
p− 3 + F̂ u

u

)
δD−p−1(x− x̄). (3.11)

Again, the worldvolume flux F̂ is anti-symmetric while the metric is symmetric.

Hence F̂ µ
µ = 0. Using the form above, we can readily see that neither the Dp nor

anti Dp-brane stress-energy tensor satisfies the constraint (2.8) for p = 5, 7.

Now for the five-form flux: using self-duality, i.e. |F̂5|2 = 0, one finds that the

constraint (2.8) for the stress-energy tensor of the F̂5 will be satisfied if and only if

F̂µabcdF̂
µabcd > 0. (3.12)

2Note that the upper indices here and elsewhere in this section have been raised with the metric

gMN , which is free of any warping in the case of a direct product space . For the warped com-

pactifications studied in later sections, we will make the distinction between the warped metric and

unwarped metric, where we introduce ‘tilded’ quantities, Ãm, that are defined with respect to the

unwarped metric.
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However, using the form of the flux (3.7), it is straightforward to see that F̂µabcdF̂
µabcd <

0 and thus the constraint (2.8) is not satisfied by the five-form flux. Alternatively,

F̂5 can be written as a sum of two types of fluxes as described in section (2.1), and

again we arrive at the same conclusion.

Finally, using the condition that G3 has legs along M6 and τ only depends on

xm, one finds that the stress-energy tensors for G3 and τ do not satisfy the constraint

(2.8). Since stress-energy tensors arising from fluxes, scalar fields or localized Dp or

anti-Dp branes individually do not satisfy the constraint (2.8), the total stress-energy

tensor for the entire system consisting of all these ingredients will also not satisfy

the constraint.

We can generalize the case for the localized Dp or anti-Dp branes to include

smeared Dp or anti-Dp branes along the compact directions.3 The only difference

in the smeared case is that the delta function in the stress-energy tensor (2.22) will

be replaced by some distribution i.e. δ(x − x̄) → Γ(xm) > 0. Smearing the branes

in this fashion will allow one to compute the Ricci curvature on the brane, which

will be a finite quantity. Again, since Γ(xm) > 0, the stress-energy tensors will not

obey the constraint (2.8). In summary, we conclude that local or non-local branes

or anti-branes in the presence of global fields do not satisfy the condition (2.8) .

The only remaining case is the Op-planes. Orientifold planes are the loci of

fixed points of some discrete symmetry group, arising from a Z2 quotient of the

theory combining worldsheet orientation reversal with an involution on the spacetime

manifold [36]. The number of fixed points of this orientifolding then gives the number

of orientifold planes, which fill all the noncompact dimensions. They have no gauge

fields on their worldvolume, and have negative fractional charge and tension. As the

planes are fixed points of a symmetry group, their location in the internal space is

fixed and cannot be arbitrarily chosen. Thus the planes are essentially localized and

cannot be thought of as smeared objects.

To construct an explicit gravity solution, we consider the localized action for the

plane coupled with the bulk action. The tension of O3-planes taken to lie in M4 is

given by

T µ
µ (O3) = 4|TO3|eφ

√
−f√g6√
−G10

δ6(x− x̄)

Tm
m (O3) = 0, (3.13)

while for Op-planes with p = 5, 7, assuming as above that the spacetime directions

M4 are filled, we find

T µ
µ (Op) = 4|TOp|e

φ(p+1)
4

√
−f√gD−p−1√

−G10

δD−p−1(x− x̄)

3A discussion of smeared sources can be found in [37, 38, 39]. This procedure is a way to

incorporate the global nature of charge cancellation into the 10d equations of motion, which are

inherently local. Not all ‘smeared’ solutions correspond to solutions of the full 10d equations.
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Tm
m (Op) = |TOp|e

φ(p+1)
4

√
−f√gD−p−1√

−G10

(p− 3) δD−p−1(x− x̄). (3.14)

Orientifolds have negative tension, T µ
µ (Op) > 0, so there is a possibility that the

constraint (2.8) might be satisfied when O-planes are included. However we will

see that this does not lead to positive curvature in four dimensions. To see this first

consider the Einstein equations arising from variation of the action (3.1) with respect

to the metric:

Rµν = −gµν
[
G3 · Ḡ3

48 Imτ
+

F̂ 2
5

8 · 5!

]
+
F̂µabcdF̂

abcd
ν

4 · 4! + κ210Nf

(
T loc
µν − 1

8
gµνT

loc

)
,

Rmn = −gmn

[
G3 · Ḡ3

48 Imτ
+

F̂ 2
5

8 · 5!

]
+
F̂mabcdF̂

abcd
n

4 · 4! +
G bc

m Ḡnbc

4 Imτ
+
∂mτ∂nτ

2 |Imτ |2

+ κ210Nf

(
T loc
mn −

1

8
gmnT

loc

)
, (3.15)

where Nf is the number of localized objects contributing to Sloc. Since we are

considering manifolds which have the product form M10 = M4 × M6, we have the

following form for the metric:

ds2 = gµν(x
µ)dxµdxν + gmn(x

m)dxmdxn. (3.16)

With this metric ansatz, taking the trace of the first equation in (3.15) gives

R4(x
µ) = −G3 · Ḡ3

12 Imτ
+
F̂µabcdF̂

µabcd

4 · 4! +
κ210Nf

2

(
T µ loc
µ − Tm loc

m

)
. (3.17)

The left-hand side is independent of xm, and hence the right-hand side should be as

well. It follows that we can evaluate the right-hand side at any value of xm, and

so we are free to consider xm away from the localized Op-planes, where the local

O-plane stress-energy tensor gives zero. As we have already studied, the flux and

local or smeared Dp or anti-Dp brane contributions to R4 are negative definite. Thus

we obtain

R4 ≤ 0. (3.18)

Since we have a product space M10 =M4 ×M6, R4 is the Ricci scalar of M4. Thus

we conclude that neither Dp-branes, anti-Dp branes, nor Op-planes, in the presence

of type IIB fluxes and scalar fields, give rise to positive curvature for M4.
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3.2 Warped Product Manifold with Branes and Planes

Now we consider the more general case where the ten-dimensional manifold is not a

direct product space, but rather a warped product. We look for solutions to (3.15)

which take the following warped form:

ds2 = gµνdx
µdxν + gmndx

mdxn

= e2Ag̃µνdx
µdxν + e−2Ag̃mndx

mdxn, (3.19)

where A(xm) is a scalar function, g̃µν(x
µ) is independent of internal coordinates xm

while g̃mn(x
m) depends on xm . Now, using the ansatz (3.19) for the metric, we get

Rµν = R̃µν − g̃µνe
4A
▽̃

2A, (3.20)

where the Laplacian is defined as

▽̃
2 = g̃mn∂m∂n + ∂mg̃

mn∂n +
1

2
g̃mng̃pq∂ng̃pq∂m, (3.21)

and R̃µν is the Ricci tensor for the metric g̃µν . Since the geometry is not a direct

product, there is no notion of a separate four-dimensional space at all energies. If

the internal space is compact and small, then at low energies we effectively have a

four-dimensional non-compact space M̃4 with metric g̃µν . Then the condition R̃4 =

g̃µνR̃µν > 0 states that M̃4 has positive curvature. Thus, for a warped product

geometry with metric of the form (3.19), we will restrict to the case where M6 is

compact and look for local and global fields in ten-dimensional type IIB theory that

can give rise to M̃4 with positive curvature.

We take the trace of the first equation in (3.15) and use the relation (3.20) to

get

▽̃
2e4A = R̃4 +

e2AG3 · Ḡ3

12 Imτ
− e2AF̂µabcdF̂

µabcd

4 · 4! + e−6A∂me
4A∂me4A

+
κ210
2
e2A
(∑

i

[
Tm
m (Op/Ōp)i − T µ

µ (Op/Ōp)i

]
+
∑

j

[
Tm
m (Dp/D̄p)j − T µ

µ (Dp/D̄p)j

] )
.

(3.22)

Here T a
a (Op/Ōp)i

denotes the trace of the stress-energy tensor of the Op or anti-Op

planes localized at x̄i, and similarly T a
a (Dp/D̄p)j

denotes the trace of the stress-energy

tensor of the Dp or anti-Dp branes at ȳj. The fluxes, branes, and planes, are related

globally by charge cancellation, although we will not discuss the precise details here.

We can integrate (3.22) over the compact internal manifold M̃6 (which has the metric

g̃mn) to get

C = Ṽ6R̃4 +

∫
d6x

√
g̃6Iglobal +

∫
d6x

√
g̃6

[κ210
2
e2A
(∑

i

[
Tm
m (Op/Ōp)i − T µ

µ (Op/Ōp)i

]
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+
∑

j

[
Tm
m (Dp/D̄p)j − T µ

µ (Dp/D̄p)j

] )]
, (3.23)

where C =
∫
d6x

√
g̃6▽̃

2e4A is a constant and we have defined Iglobal and Ṽ6 as

Iglobal ≡
e2AG3 · Ḡ3

12 Imτ
− e2AF̂µabcdF̂

µabcd

4 · 4! + e−6A∂me
4A∂me4A ≥ 0,

Ṽ6 ≡
∫
d6x
√
g̃6 > 0. (3.24)

If M6 has no singularities or the warp factor e4A is globally defined, then C = 0.

However, in the presence of local sources classical gravity breaks down near the

sources and this leads to physical singularities in the manifold. To resolve these

singularities, we can smear the Dp-anti-Dp branes while Op and anti-Op planes are

by definition localized objects. If we remove the O planes entirely and only keep

smeared branes, then M6 will be regular and C = 0. However as discussed in the

previous section, Tm
m (Dp/D̄p)

− T µ
µ (Dp/D̄p)

≥ 0, and thus we get

R̃4 ≤ 0. (3.25)

If we keep O planes, then there will be regions in the manifold with no classical gravity

description. One can remove the singular points from the manifold leaving holes, but

then C 6= 04. To obtain the exact value of C, one needs to know the metric near

the singularity, but since classical gravity breaks down, we are unable to evaluate C.

Thus, classical gravity is an incomplete description for a system containing O planes

and we expect quantum corrections to resolve the classical singularity associated

with the planes.

In summary, neither Dp nor anti-Dp branes with arbitrary worldvolume fluxes in

the presence of type IIB fluxes and scalar fields result in positive curvature in four

dimensions. For direct product geometries, inclusion of Op or anti Op planes also

do not give rise to positive curvature. For warped product geometries arising in the

presence of Op or anti-Op planes, classical two derivative gravity is insufficient and

we must look for quantum corrections via higher-derivative gravity terms arising in

string theory.

4. Curvature Corrections and Background Solutions from M-

theory

In the above sections we have argued that it is impossible to get a four-dimensional

de Sitter spacetime in a ten-dimensional two-derivative gravity coupled to fluxes,

4We thank Juan Maldacena for pointing this out. After the removal of points, C becomes a

boundary term. Additionally, removing the points means Tm
m (Op/Ōp)i

− T
µ
µ (Op/Ōp)i

= 0 but the

effect of O planes is captured by the fluxes.
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scalar fields, D-branes and anti D-branes. With Orientifold-planes sourcing warped

product manifolds, the classical gravity description is not sufficient to make a verdict

one way or another. We need quantum corrections in the form of higher-curvature

corrections to study the case with the Orientifold-planes. In fact string theory can

have these corrections which, as we show below, could indeed help us to overcome

the no-go theorem.

The analysis thus far has been done solely in the context of Type IIB string

theory. However, the full set of quantum corrections in IIB is not known, and in

addition there are many fields present which can complicate the analysis. To make

the computations easier, we work in M-theory, where the bosonic field content is just

the metric, gMN , and the three-form, CMNP , and make an ansatz for the form of

the stress-energy tensor arising from any curvature corrections, given in (5.2). A T 2

reduction of M-theory in the limit when the torus size goes to zero, will reproduce

the answer for Type IIB theory.5

We begin by setting up the M-theory uplift of the IIB system we are interested

in. The action for M-theory is given by

S = Sbulk + Sbrane + Scorr, (4.1)

where Sbulk is the standard supergravity action for M-theory with a 3-form flux C

and corresponding field strength G4, Sbrane is the contribution from M2-branes, and

Scorr is a curvature correction to the action. The supergravity and brane actions are

given by

Sbulk =
1

2κ2

∫
d11x

√−g
[
R− 1

48
G2

]
− 1

12κ2

∫
C ∧G ∧G, (4.2)

Sbrane = −T2
2

∫
d3σ

√−γ
[
γµν∂µX

M∂νX
NgMN − 1 +

1

3!
ǫ̃µνρ∂µX

M∂νX
N∂ρX

PCMNP

]
,

(4.3)

where T2 is the tension of the M2-brane, XM denotes the worldsheet coordinates of

the brane, γµν is the induced metric on the brane, and we have assumed a minimal

coupling of the brane to the fluxes.

The corrections to the action are of the formRn orGn (or a combination thereof)6

and can come from several sources: instanton corrections, tree level α′ corrections,

and loop corrections. We delay a proper discussion of the Rn terms to Section 8.

To study the effect of these corrections, we first assume that Scorr has two types of

contributions: those that depend on the metric and are therefore non-topological,

which we denote Ŝntop, and those that are topological and do not depend explicitly

on the metric, Ŝtop. In other words we have

Scorr = Ŝntop + Ŝtop, (4.4)

5Earlier studies using EOMs but without invoking quantum corrections may be found in [41].
6See for example [42] for more detail, up to four-point amplitudes, on this.
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where Ŝtop can depend on the topological classes constructed out of the curvature

form R.

Both sets of corrections depend on the curvatures RMNPQ and GMNPQ of the

metric gMN and the three-form field CMNP respectively, and we brand them curvature

corrections. The contributions to Ŝntop and Ŝtop at lowest order in α′ are known (see

[44] for example, as well as Section 8) and using these we can express Ŝntop and Ŝtop

as

Ŝtop = − T2

∫
C ∧X8 + Stop(R,G)

Ŝntop =
T2

9.213 · (2π)4
∫
d11x

√
−g
(
J0 −

1

2
E8

)
+ Sntop(R,G), (4.5)

where X8 is the curvature correction eight-form built completely with curvature two-

form, such that C ∧X8 is a gravitational Chern-Simons term required to cancel the

anomaly on the fivebrane worldvolume [48]; and J0 and E8 are given in [44]. The

additional contributions Sntop and Stop are functions of both the curvatures (R,G).

Some details of Sntop and Stop have been worked out and they are given in [42] and

[43] respectively. We will give a more complete discussion in Section 8.

In Section 5 we will make an ansatz for the variation of the correction terms

with respect to the metric, which acts as an effective stress-energy tensor TMN
corr ,

rather than deal with the action of the correction terms directly. In other words, we

will make an ansatz for

TMN
corr ≡ − 2√−g

δScorr

δgMN

∣∣∣
g,C

= − 2√−g
δŜntop

δgMN

∣∣∣
g,C

, (4.6)

where the subscript denotes a given choice of the metric and the three-form flux.

From the action (4.1), we obtain three key equations which govern the evolution

of the system. The first is the Einstein equation,7

RMN − 1

2
gMNR = TMN , (4.7)

where TMN is the total stress-energy tensor coming from fluxes, brane sources and

quantum or curvature corrections, and which we compute in Section 5. The second

is the flux equation [44],

d ∗11 G =
1

2
G ∧G+ 2κ2 (T2X8 + ∗11J) + SG, (4.8)

where J is the source term coming from n3 M2-branes, ∗11 is the Hodge star with

respect to the warped metric unless mentioned otherwise, and SG is the contribution

from Sntop and Stop in (4.5) that we will discuss later.

7We are assuming that the volume of the internal fourfold is large so that an equation like (5.14)

can be used to describe the metric there. This brings us to the issue of moduli stabilization, which

will be discussed towards the end of Section 7.
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The third equation is the M2-brane equation,

�XP + γµν∂µX
M∂νX

NΓPMN =
1

3!
ǫµνρ∂µX

M∂νX
N∂ρX

QGP
MNQ, (4.9)

where ǫµνρ =
√−γǫ̃µνρ. The source term at a spacetime position x is related to the

spacetime position X of the brane, and is given by

JPQR(x) =
2κ2n3T2√−g

∫
d3σ

√
−γǫ̃µνρ∂µXP∂νX

Q∂ρX
Rδ11(x−X). (4.10)

We would like to find a solution to these equations that is conformally de Sitter when

brought to IIB, such that the IIB metric can schematically be written as

ds2 =
1

t2c
ηµνdx

µdxν + ds2internal, (4.11)

where the time coordinate tc is conformal time, usually denoted τ or η, which in the

de Sitter space is related to physical time by

tc ∼ e−tphys. (4.12)

It follows that the infinite future (tphys → ∞) is given by the limit tc → 0, as is

the case during inflation. From this point onward we will drop the subscript c, and

denote conformal time as t.

We make the following ansatz for the metric in M theory:

ds2 =
1

(Λ(t)
√
h)4/3

(−dt2 + ηijdzidzj) + h1/3
[
g̃mndy

mdyn

(Λ(t))1/3
+ (Λ(t))2/3|dz|2

]

≡ e2A(y,t)(−dt2 + ηijdzidzj) + e2B(y,t)g̃mndy
mdyn + e2C(y,t)|dz|2, (4.13)

where i, j = 1, 2, g̃mn is the unwarped metric, A,B and C are warp factors that can

be written in terms of Λ(t) and h(ym), which we leave unspecified for the moment,

and

dz ≡ dx3 + idx11, (4.14)

so that the only time dependence in the system comes from Λ(t). Specifically, the

internal eight-dimensional manifold only depends on time via the warp factor Λ(t)

as we saw earlier, i.e.

ds28 =
g̃mndy

mdyn

Λ1/3(t)
+ Λ2/3(t)|dz|2. (4.15)

This ansatz is chosen as the M-theory uplift for the solution we want to obtain in

Type IIB, i.e. by shrinking the torus specified by coordinates (z, z̄) or (x3, x11) to zero

size one may recover type IIB theory. It is a generalization of the ansatz considered
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in [44], and describes a system of M2-branes moving towards orbifold singularities

of the torus fibration of the fourfold (where the D7 fluxes are localized). This was

developed as a first step towards an M theory uplift of D3/D7 [47].

The IIB metric that follows from dimensional reduction of the M theory metric

(4.13) is given by

ds2 =
1

Λ(t)
√
h
(−dt2 + ηijdzidzj + dx23) +

√
hg̃mndy

mdyn, (4.16)

so that, taking Λ(t) = Λ|t|2 (taking the absolute value to avoid any imaginary warp-

ing in the M-theory metric), we obtain

ds2 =
1

Λt2
√
h
(−dt2 + ηijdzidzj + dx23) +

√
hg̃mndy

mdyn. (4.17)

For this to be a dS solution, we demand that Λ be strictly positive. We also require

a suitably well-behaved functional form for h(y), to avoid any pathology. However,

for our purposes, we will leave its functional form to be completely general.

Turning now to the flux equations, the equation for the G-fluxes can be rewritten

as:

DM

(
GMPQR

)
=

1√−g ǫ̃
PQRM1....M8

[
1

2 · (4!)2GM1....M4GM5....M8 +
2κ2T2
8!

(X8)M1....M8

]

+
2κ2T2n3√−g

∫
d3σǫ̃µνρ∂µX

P∂νX
Q∂ρX

Rδ11(x−X) +
1√−g

(
δSntop

δCPQR

+
δStop

δCPQR

)
.

(4.18)

The above equation is in general hard to deal with because of the quantum corrections

etc. However the the G-fluxes are related to the membrane motion via the membrane

EOM. In the limit where the membrane motion is very slow, γµν , which is the pull-

back metric, is simply equal to the spacetime metric given in (4.13). This implies

Gmµνρ = ∂m

(
ǫ̃µνρ
hΛ(t)2

)
, (4.19)

which shows that the spacetime part of the three-form field Cµνρ should be time-

dependent to maintain a metric of the form (4.13) with a membrane fixed at a

point on the eight-dimensional internal space. However to solve all the background

equations we need more flux components. Let us then switch on the following three

additional G-fluxes:

Gmnpq ≡ 4∂[mCnpq], Gmnpa ≡ 3∂[mCnpa], Gmnab ≡ 2∂[mCnab]. (4.20)

To add some flexibility to the equations we seek to solve, and since we generically

expect a mix of time-dependent and time-independent fluxes, we assume that the

components Gmnpa are time independent, whereas all other fluxes depend on the

internal coordinates ym, as well as on (a, b) – i.e. on (x3, x11) – and the time t.
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5. The Einstein Equations

In what follows we solve the Einstein equations (5.14) by including the general form

of the stress-energy tensor TMN in Section 5. This way we will be able to tabulate all

the equations for the metric components satisfying (4.13), in Section 6. Subsequently,

in Section 7, we study the flux equations (4.8) and resulting consistency conditions.

5.1 General Form of The Stress-Energy Tensor

Like the action, the stress-energy tensor has 3 contributions:

TMN = TMN
G + TMN

corr + TMN
B , (5.1)

where G is for G-flux, corr is for correction, and B is for brane. As discussed in

Section 4, we will study the effect of higher-order curvature corrections to the action

by making an ansatz for the resulting T corr
MN . Since our goal is to study solutions

that are de Sitter in the non-compact dimensions, we are primarily concerned with

tracking the time dependence of each component of the action and resulting Einstein

equation. In line with this, we choose an ansatz for T corr
MN that allows us to keep track

of the time dependence. The stress-energy contributions are then given by

TMN
G =

1

12

[
GMPQRGN

PQR − 1

8
gMNGPQRSGPQRS

]
(5.2)

TMN
B (x) = −κ

2T2n3√−g

∫
d3σ

√
−γγµν∂µXM∂νX

Nδ11(x− xb) (5.3)

TMN
corr =

−2√−g
δŜntop

δgMN

∣∣∣
g,C

≡
∑

i

[Λ(t)]αi+1/3CMN, i, (5.4)

where again xb is the spacetime position of the brane (which is generically time

dependent), and we have defined

Ci
MN = gMN C̃i − 2

δC̃i
δgMN

. (5.5)

In the following sections we will attempt to search for solutions, by separately exam-

ining the mn, ab, and µν components of the Einstein equation. Note that the scalars

C̃i are defined in terms of the unwarped metric, such that the only dependence on

warp factors in CMN comes from the explicit factors of the warped metric gMN .

5.2 Internal (m,n) components

We will start with the internal (m,n) components along the six-dimensional base.

Two set of equations need to be solved now: the Einstein equation and the flux

equation. For the Einstein equation we need the Einstein tensor from the M-theory

metric (4.13). The Ricci tensor Rmn is given by

Rmn = R̃mn + 3
[
2∂(mA∂n)B − ∂mA∂nA− g̃mn∂kA∂

kB
]
+ 4

[
∂mB∂nB − g̃mn∂kB∂

kB
]
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−3D(m∂n)A− 2D(m∂n)C + 2
[
2∂(mC∂n)B − ∂mC∂nC − g̃mn∂kC∂

kB
]

−4D(m∂n)B − g̃mn�B + e2(B−A)
[
B̈ + ȦḂ + 6Ḃ2 + 2ĊḂ

]
g̃mn, (5.6)

and the warped curvature scalar R is given by

R = −e−2B [10�B + 6�A + 4�C + 20∂mB∂
mB]− 3e−2B [4∂mA∂

mA+ 8∂mA∂
mB]

−2e−2B [3∂mC∂
mC + 8∂mB∂

mC + 6∂mA∂
mC] + e−2B R̃

+2e−2A
[
6B̈ + 2Ä+ 2C̈ + 21Ḃ2 + 6ȦḂ + 12ĊḂ + 2ȦĊ + Ȧ2 + 3Ċ2

]
, (5.7)

where remaining raising and lowering operations are done by the unwarped internal

metric g̃mn. The Einstein tensor Gmn is found to be

Gmn = G̃mn −
∂mh∂nh

2h2
+ g̃mn

[
∂kh∂

kh

4h2
− 6Λh

]
, (5.8)

where Λ is the coefficient of t2 in Λ(t), and hence the above expression is independent

of time.

To study the stress-energy tensor from the G-fluxes we have to first express the

various components of the G-fluxes GMNPQ in terms of their unwarped components

G̃MNPQ as:

G012m = G̃012m[Λ(t)]13/3h5/3, G012a = G̃012a[Λ(t)]10/3h5/3

G0mna = G̃0mna[Λ(t)]4/3h−1/3, G0mab = G̃0mab[Λ(t)]1/3h−1/3

Gmnpa = G̃mnpa[Λ(t)]1/3h−4/3, Gmnab = G̃mnab[Λ(t)]−2/3h−4/3

G0mnp = G̃0mnp[Λ(t)]7/3h−1/3, Gmnpq = G̃mnpq[Λ(t)]4/3h−4/3 (5.9)

where what we have done here is to simply isolate the warp factor dependences

of GMNPQ and express its components in terms of G̃MNPQ. This also means that

GMNPQ ≡ G̃MNPQ by definition. We can also isolate the warp factor from the metric

and write the determinant as

det g = −[Λ(t)]−14/3h2/3det g̃. (5.10)

The stress-energy tensor is easily expressed in the language of the unwarped G-fluxes

(5.9) and the determinant (5.10):

T (G)
mn = g̃mn

∂kh∂
kh

4h2
− ∂mh∂nh

2h2
+

1

4h

[
G̃mlkaG̃

lka
n − 1

6
g̃mnG̃pklaG̃

pkla

]
(5.11)

+
Λ(t)

12h

[
G̃mlkrG̃

lkr
n − 1

8
g̃mnG̃pklrG̃

pklr

]
+

1

4hΛ(t)

[
G̃mlabG̃

lab
n − 1

4
g̃mnG̃pkabG̃

pkab

]
.

The stress-energy tensor from the membrane (M2 brane) will not contribute however.

This is because the stress-energy tensor, given by [44],

T (B)
mn = −κ2T2n3g̃pmg̃qn

h1/3[Λ(t)]5/3√
g̃

∫
d3σ

√
−γγµν∂µXp∂νX

qδ11(x−X), (5.12)
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where g̃ is the determinant of the metric in the m,n directions, vanishes in the limit

where the membrane motion is very slow. The only other contribution will be from

the correction terms, which, using gmn = e2B g̃mn, gives

T corr
mn = h1/3

∑

i

[Λ(t)]αi C̃i
mn. (5.13)

The equation that we need to solve now is

Gmn = T (G)
mn + T corr

mn . (5.14)

This can be split into a time-independent piece,

G̃mn − g̃mn6Λh =
1

4h

[
G̃mlkaG̃

lka
n − 1

6
g̃mnG̃pklaG̃

pkla

]
+ h1/3

∑

αi=0

C̃i
mn, (5.15)

where we made use of our assumption that the Gmnpa are time independent, and a

time-dependent piece given by

Λ(t)

12h

[
G̃mpqrG̃

pqr
n − 1

8
g̃mnG̃pqrsG̃

pqrs

]
+

1

4hΛ(t)

[
G̃mpabG̃

pab
n − 1

4
g̃mnG̃pqabG̃

pqab

]

+ h1/3
∑

αi 6=0

[Λ(t)]αi C̃i
mn = 0. (5.16)

Note that at this stage the only possible way Gmnpr and Gmnab can also be time

independent and yet still satisfy (6.15) is if the αi are allowed to take the values

αi = (1,−1, 0, 0, ....0). (5.17)

It is not clear we can have this condition for our case, and so we will assume that

the only time-independent components of the G-fluxes are Gmnpa.

5.3 Internal (a, b) components

The Ricci tensor for the (a, b), i.e. the x3 and x11 components, is given by

Rab = −δabe2(C−B) [�C + 3∂mC∂
mA + 4∂mC∂

mB + 2∂mC∂
mC]

+ δabe
2(C−A)

[
C̈ + ȦĊ + 6ĊḂ + 2Ċ2

]
, (5.18)

which can be used to compute the Einstein tensor Gab. For the M-theory metric

(4.13), Gab is given by

Gab = δabΛ(t)

[
−R̃

2
− 9hΛ+

g̃pk∂ph∂kh

4h2

]
, (5.19)
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where we note that there is an overall time dependence given by Λ(t). The stress-

energy tensor due to the fluxes is given by

T (G)
ab =

Λ(t)

12h

[
G̃amnpG̃

mnp
b − δab

G̃mnpcG̃
mnpc

2
+ δab

3g̃mp∂mh∂ph

h

]

+
1

4h

[
G̃acmnG̃

cmn
b − 1

4
δabG̃mncdG̃

mncd

]
− δab

[Λ(t)]2

4 · 4!h G̃mnpqG̃
mnpq. (5.20)

The interesting thing about the above formula is that the time dependence of the

first term (involving G̃mnpa) is exactly the same as the time dependence of the Gab.

This means that the G̃mnpa components can remain time independent, as we had

earlier. The correction term contribution to the stress-energy tensor for the (a, b)

directions is

T corr
ab = h1/3

∑

i

[Λ(t)]αi+1C̃i
ab. (5.21)

As before, we can write the resulting Einstein equation as a time-independent ex-

pression (where we collect the terms linear in Λ(t)):

(
R̃

2
+ 9hΛ

)
δab +

1

12h

[
G̃amnpG̃

mnp
b − δab

G̃mnpcG̃
mnpc

2

]

+ h1/3
∑

αi=0

C̃i
ab = 0, (5.22)

and a time-dependent expression:

1

4h

[
G̃acmnG̃

cmn
b − 1

4
δabG̃mncdG̃

mncd

]
− δab

[Λ(t)]2

4 · 4!h G̃mnpqG̃
mnpq

+ h1/3
∑

αi 6=0

[Λ(t)]αi+1 C̃i
ab = 0. (5.23)

Once again, we must assume Gmnpq and Gmnab are time dependent in such a way as

to solve (5.23). Thus the conclusion of this section is perfectly consistent with the

conclusions of the previous section.

5.4 Spacetime (t, z1, z2) components

We now study the spacetime components. The curvature tensors R00 and Rij are

given by

Rij = −ηije2A−2B [�A + 3∂mA∂
mA+ 4∂mA∂

mB + 2∂mA∂
mC] (5.24)

+
(
Ä+ 6ȦḂ + Ȧ2 + 2ȦĊ

)
ηij

R00 = e2A−2B [�A+ 3∂mA∂
mA+ 4∂mA∂

mB + 2∂mA∂
mC] (5.25)
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−
[
2Ä+ 6(B̈ + Ḃ2 − ȦḂ) + 2(C̈ + Ċ2 − ȦĊ)

]
, (5.26)

using which the Einstein tensor Gµν is found to be

Gµν = − ηµν
Λ(t)

[
R̃

2h
+
g̃mk∂kh∂mh

4h3
− �h

2h2
+ 3Λ

]
, (5.27)

where we see that the overall time dependence is provided by 1/Λ(t). The above

equation should be balanced by the stress-energy tensor from the G-flux and correc-

tions, as well as from the membrane. The latter term is there because the almost

static membrane does contribute to the stress-energy tensor along the spacetime

directions.

The stress-energy tensor from the G-flux is given by

T (G)
µν = −ηµν

[
(∂h)2

4Λ(t)h3
+
G̃mnpaG̃

mnpa

4!Λ(t)h2
+
G̃mnpqG̃

mnpq

4 · 4!h2 +
G̃mnabG̃

mnab

16h2[Λ(t)]2

]
. (5.28)

As expected, T (G)
µν has a piece that scales as 1/Λ(t), so we should be able to maintain

the time independence of the Gmnpa components.

The stress-energy tensor coming from the correction terms can be found to be

T corr
µν = h−2/3

∑

i

[Λ(t)]αi−1C̃i
µν . (5.29)

Finally we will need the stress-energy tensor for the static membrane. The EOM of

the worldvolume metric gives us, in the case where the brane is moving very slowly,

γµν = ∂µX
M∂νX

NgMN ≈ gµν =
ηµν

[Λ(t)
√
h]4/3

. (5.30)

Using this we can show that the stress-energy tensor is given by

T (B)
µν = − κ2T2n3

h2Λ(t)
√
g̃
δ8(x−X)ηµν , (5.31)

which is again suppressed by 1/Λ(t), confirming the time independence of the com-

ponents Gmnpa.

Again, we can split the full Einstein equation into a time-independent part:
(
R̃

2h
− �h

2h2
+ 3Λ

)
=
G̃mnpaG̃

mnpa

4!h2
+
κ2T2n3

h2
√
g̃
δ8(x−X)− 1

3h2/3

∑

{αi}=0

C̃µ,i
µ (5.32)

where we have traced over the µ, ν components using ηµν , and a time-dependent

part:

ηµν

[
G̃mnpqG̃

mnpq

4 · 4!h2 +
G̃mnabG̃

mnab

4!h2Λ(t)2

]
− 1

h2/3

∑

{αi}6=0

[Λ(t)]αi−1C̃i
µν = 0. (5.33)
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6. Analysis of the EOMs and Consistency Conditions

We have now split the Einstein equations into 6 equations, 3 of which are time

dependent, and 3 of which are time independent. To deduce the properties of these

equations, it suffices to look at the traced over form of each. The traced-over time

independent equation for the spacetime (µ, ν) components is

(
R̃

2h
− �h

2h2
+ 3Λ

)
=
G̃mnpaG̃

mnpa

4!h2
+
κ2n3T2δ

8(x−X)

h2
√
g̃

− 1

3h2/3

∑

{αi}=0

C̃µ, i
µ , (6.1)

whereas for the internal (m,n) components, it is

36hΛ+ h1/3
∑

{αi}=0

C̃m, i
m = G̃m

m. (6.2)

Note that the flux contribution in (5.15) is traceless, so it doesn’t appear in the above

equation. Finally, for the internal (a, b) components the trace equation is

R̃

2
+ 9hΛ +

h1/3

2

∑

{αi}=0

C̃a, i
a = 0, (6.3)

where again the flux contributions from (5.22) do not enter. The last two equations,

(6.2) and (6.3), are quite similar and can be rewritten as

∑

{αi}=0

C̃m, i
m = − 2

h1/3
(R̃ + 18hΛ), (6.4)

∑

{αi}=0

C̃a, i
a = − 1

h1/3
(R̃ + 18hΛ), (6.5)

from which we can read off that

∑

{αi}=0

C̃m, i
m = 2

∑

{αi}=0

C̃a, i
a . (6.6)

Using (6.2) and (6.3) we can also write

R̃ = −18hΛ− h1/3


1

2

∑

{αi}=0

C̃a, i
a +

1

4

∑

{αi}=0

C̃m, i
m


 , (6.7)

which allows us to rewrite the constraint (6.1) as

−�h =
G̃mnpaG̃

mnpa

12
+ 12h2Λ+

2κ2n3T2δ
8(x−X)√
g̃
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+h4/3


1

2

∑

{αi}=0

C̃ a, i
a +

1

4

∑

{αi}=0

C̃ m, i
m − 2

3

∑

{αi}=0

C̃ µ, i
µ


 . (6.8)

There are three further equations that arise from (5.22) in the limit when a 6= b,

a = b = 3 and a = b = 11 respectively. These are

G̃amnpG̃
mnp
b + 12h4/3

∑

{αi}=0

C̃i
ab = 0,

G̃3mnpG̃
mnp
3 − G̃11,mnpG̃

mnp
11 = 24h4/3

∑

{αi}=0

(
1

2
C̃a, i
a − C̃i

33

)
,

G̃3mnpG̃
mnp
3 − G̃11,mnpG̃

mnp
11 = −24h4/3

∑

{αi}=0

(
1

2
C̃a, i
a − C̃i

11,11

)
. (6.9)

If we now consider integrating equation (6.8) over the compact eight-dimensional

manifold, we see that the LHS integrates to zero as the warp factor h is a globally

defined quantity, and we get

1

12

∫
d8x
√
g̃ G̃mnpaG̃

mnpa + 12Λ

∫
d8x
√
g̃ h2 + 2κ2T2n3

+

∫
d8x
√
g̃h4/3


1

2

∑

{αi}=0

C̃a, i
a +

1

4

∑

{αi}=0

C̃m, i
m − 2

3

∑

{αi}=0

C̃µ, i
µ


 = 0. (6.10)

In the absence of fluxes and higher-curvature corrections the above equation implies

that the simplest solution will be Λ = 0, i.e. a four-dimensional Minkowski space.

This conclusion cannot be changed by the insertions of the type IIB Orientifold-

planes precisely because they become smooth geometries8 in M-theory and therefore

cannot change the sign of Λ in the absence of any corrections. In the presence of

fluxes, and in the presence or absence of the higher-curvature corrections, it is not

difficult to see that the Λ < 0 solution is favored. However to allow a Λ > 0 solution

from (6.10), it is at least necessary to have the higher curvature corrections, because

the first three terms in (6.10) are positive definite. Moreover, if all the curvature

corrections in (6.10) add up to some positive value, a Λ > 0 solution will again be

impossible.

This means that for a Λ > 0 solution to exist, the curvature terms in (6.10)

should integrate to a negative definite value. This conclusion should be valid for all

possible choices of the globally-defined warp factor h and the internal metric g̃mn.

8The “twisted sector” states appear precisely from smoothing the geometry in M-theory. The

higher curvature term C ∧X8 provides the gravitational couplings on the corresponding type IIB

Orientifold-planes as will be briefly discussed above (7.5). The rest of the curvature terms from

Stop and Ŝntop in (4.5) contribute to the higher curvature terms on the Orientifold-planes beyond

the Chern-Simons terms of (7.5) and (7.4). For more details see [45, 46].
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In particular, for certain choices of the warp factor the fluxes may be localized over

a small patch on the internal manifold (for example like the type IIB seven-brane

solution). Then the integral condition on the higher-curvature terms will have to be

realized at every such patch on the internal manifold. On a small patch, since there

is no local transformation that can make the metric flat everywhere, C̃M, i
M can be

viewed as the expectation or the average value on the patch, or more explicitly:

〈C̃M, i
M 〉 ≡

∫
d8x
√
g̃ h4/3C̃M, i

M . (6.11)

In other words, for a solution to exist we must have the following condition

1

2

∑

{αi}=0

〈C̃a, i
a 〉+ 1

4

∑

{αi}=0

〈C̃m, i
m 〉 − 2

3

∑

{αi}=0

〈C̃µ, i
µ 〉 < 0. (6.12)

Since T corr
mn ∼ C̃ i

mn, this equation is almost analogous to (2.8) but expressed in the

language of curvature corrections.9 This makes sense because only these corrections

will allow us to overcome the Gibbons-Maldacena-Nunez [17, 18, 19] no-go theorem.

Under this assumption, (6.12) gives non-trivial constraints on the curvature correc-

tions required to have a four-dimensional de Sitter solution in Type IIB theory.

The curvature terms may be further constrained if we look at the time-dependent

equations. These equations are

G̃mnpqG̃
mnpq

4
+
G̃mnabG̃

mnab

Λ(t)2
= 8h4/3

∑

{αi}6=0

[Λ(t)]αi−1C̃µ, i
µ , (6.13)

G̃acmnG̃
acmn − [Λ(t)]2

6
G̃mnpqG̃

mnpq = −8h4/3
∑

αi 6=0

[Λ(t)]αi+1 C̃a, i
a , (6.14)

Λ(t)

6
G̃pqrsG̃

pqrs − 1

Λ(t)
G̃mpabG̃

mpab = −8h4/3
∑

αi 6=0

[Λ(t)]αi C̃m, i
m . (6.15)

From the first equation above, and noting that both the terms on the LHS are

positive definite, we deduce one new condition on the corrections by integrating over

the eight-dimensional manifold:
∑

{αi}6=0

aαi〈C̃µ, i
µ 〉 > 0, (6.16)

where a ≡ Λ(ta) for a fixed ta. In fact (6.16) will be an infinite set of constraints

because, due to its time dependence, aαi can take any (positive) values including

9One subtlety however is that this constraint arises from the Einstein equations of an 11-

dimensional M theory, in which µ runs from 0 to 2, while in (2.8) it runs from 0 to 3, so the

numerical factors are not expected to be the same in both expressions. We would have to redo

the calculation in IIB to get the same expression. However in both cases the condition is that the

four-dimensional curvature upon compactification be positive.
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arbitrary fractional numbers. Note that

〈C̃µ, i
µ 〉 > 0 (6.17)

will always solve (6.16) if the αi appearing in (6.16) are not equal to each other.

However a generic statement cannot be made unless we actually solve all the EOMs.

In view of that we will only demand (6.16) as our constraint equation. The other

two equations involve relative signs and therefore tell us nothing about the signs of∑
{αi}6=0 C̃a, i

a or
∑

{αi}6=0 C̃m, i
m .

In total we have the following conditions on the form of the corrections:

1

2

∑

{αi}=0

〈C̃a, i
a 〉+ 1

4

∑

{αi}=0

〈C̃m, i
m 〉 < 2

3

∑

{αi}=0

〈C̃µ, i
µ 〉, (6.18)

∑

{αi}6=0

aαi〈C̃µ, i
µ 〉 > 0. (6.19)

7. Analysis of the background fluxes and additional consis-

tency checks

The above set of conclusions was derived by analyzing the Einstein’s equations alone.

The next question is whether any conclusions are altered when the equations of

motion for the G-fluxes are taken into account. Before moving ahead with the exact

flux equations, we will do a more careful analysis of the background fluxes to see

how the type IIB fluxes should be viewed from our choices of the M-theory fluxes.

Imagine we rewrite the flux components in M-theory as [47]:

G̃ = Gµνρmdx
µ ∧ dxν ∧ dxρ ∧ dxm + G̃mnqadx

m ∧ dxn ∧ dxq ∧ dxa +
N∑

i=1

F i ∧ Ωi,

(7.1)

where we have taken the time-dependent components G̃mnpq and G̃mnab to be localized

around certain singular points on the eight-dimensional internal space and we have

decomposed G̃mnpa into a delocalized and a localized piece as

G̃mnpa = G̃mnpa + G̃loc
mnpa. (7.2)

In (7.1), the localized pieces are contained in the last term, where the sum is over the

points at which the F-theory torus degenerates, the Ωi are the normalizable harmonic

forms located at these points, and the F i represent the gauge fields on the resulting
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D7-branes at these points in IIB, such that only the F i are functions of time.10 Then

it turns out that the delocalized piece G̃mnpa gives rise to the type IIB three-forms in

the following way:

G̃mnpadx
m ∧ dxn ∧ dxp ∧ dxa ≡ 2(H3)mnpdx

m ∧ dxn ∧ dxp ∧ dx3

+2(F3)mnpdx
m ∧ dxn ∧ dxp ∧ dx11, (7.3)

where H3 and F3 are the NS and RR three-forms of type IIB theory respectively,

while the localized fluxes should appear as gauge-fields on the type IIB seven-branes.

A straightforward decomposition immediately gives us:

∫
G ∧ ∗11G →

∫
d10x

√
g10

[
1

g2B

(
|H3|2 + |F5|2

)
+ |F3|2

]

+
N∑

i=1

∫
d8σ F i ∧ ∗BF i,

∫
C ∧G ∧G →

∫
C4 ∧H3 ∧ F3 +

N∑

i=1

∫
d8σ C4 ∧ F i ∧ F i, (7.4)

where for the first relation, the first three terms appear in the type IIB bulk and

the last term collects the interactions on the D7-brane worldvolume. We have also

assumed that the self-duality of F5 is imposed via the EOM, so that the action is

explicitly non-selfdual. The five-form piece comes from the spacetime part of the

G-flux and the three-form fluxes come from the components Gmnqa. For the second

relation, the first term is the bulk term and the second one is the seven-brane Chern-

Simons term. The C ∧ X8 term gives rise to the couplings on the D7-branes and

O7-planes and possibly some contributions to the bulk interactions. For example we

expect some parts of C ∧X8 to reproduce

a1

∫

D7

CRR ∧
√
Â(R) + a2

∫

O7

CRR ∧
√
H(R/4), (7.5)

where Â(R) and H(R) are the corresponding A-roof genus and Hirzebrusch polyno-

mial respectively. We have also used the orthogonality condition for the components

of Ωi to get the interactions of the seven-brane worldvolume gauge fields. Note that

this analysis only gives the abelian part of the gauge group (i.e the Cartan subal-

gebra), which could be extended to include a non-abelian gauge group by including

M2-branes wrapping vanishing 2-cycles of the fourfold.

Once the structure of the fluxes is laid out, the physics away from the singular

points will be captured by the delocalized fluxes only. The G-flux EOM (4.18) then

10A discussion of these issues is also given in [50] and [51]. Note that the existence of these points

do not mean that the eight-dimensional manifold is singular.
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gives us the following equation for the warp factor h:11

−�h =
1

12
G̃mnpa(∗8G̃)mnpa +

2κ2T2
8!
√
g̃
(X8)M1...M8 ǫ̃

M1....M8 (7.6)

+
2κ2T2n3√

g̃
δ8(x−X)− 2κ2T2n̄3√

g̃
δ8(x− Y ) + α1

δSntop

δC̃012

+ α2
δStop

δC̃012

,

where ∗8 is the Hodge star with respect to the unwarped metric unless mentioned

otherwise, αi are coefficients that can be derived from (4.18), and we take only

the delocalized flux components. Equation (7.6) can be compared to the Einstein

equation:

−�h =
G̃mnpaG̃mnpa

12
+ 12h2Λ +

2κ2n3T2δ
8(x−X)√
g̃

+
2κ2n̄3T2δ

8(x− Y )√
g̃

+h4/3


1

2

∑

{αi}=0

C̃a, i
a +

1

4

∑

{αi}=0

C̃m, i
m − 2

3

∑

{αi}=0

C̃µ, i
µ


 , (7.7)

where we have re-expressed (6.8) in terms of the delocalized fluxes instead of the total

fluxes. The factors (n3, n̄3) denote the number of M2 and anti-M2 branes located at

(X, Y ) respectively and X8 is defined in the usual way [52] such that
∫
X8 = − 1

4!(2π)4
χ4, (7.8)

where the integral is over the eight-dimensional manifold with Euler characteristic

χ4, which could in general take any sign.

Comparing (7.7) and (7.6) we get the following consistency relation which should

be compared with the consistency condition that we had from (6.10):

1

12
G̃mnpa

[
G̃mnpa − (∗8G̃)mnpa

]
+ 12Λh2 +

4κ2T2n̄3√
g̃

δ8(x− Y )− α1
δSntop

δC̃012

− α2
δStop

δC̃012

+h4/3


1

2

∑

{αi}=0

C̃a, i
a +

1

4

∑

{αi}=0

C̃m, i
m − 2

3

∑

{αi}=0

C̃µ, i
µ


− 2κ2T2

8!
√
g̃
(X8)M1...M8 ǫ̃

M1....M8 = 0.

(7.9)

Firstly note that in the presence of curvature corrections and positive cosmological

constant Λ it is in general not possible to maintain the self-duality of the G-fluxes.

This may be more obvious if we re-express (6.9) using (7.3) as

|H3|2 − |F3|2 =
h4/3

12

∑

{αi}=0

(
C̃i
11 − C̃i

33

)
, (7.10)

11We have defined the covariant derivative Dq in the following way: DqG
qmnp ≡

1
√

−g
∂q (

√−gGqmnp).
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which may not be consistent with H3 = − ∗6 F3 and F3 = ∗6H3, where ∗6 is the

six-dimensional Hodge star measured with respect to the unwarped metric. In other

words:

G̃mnpa − (∗8G̃)mnpa 6= 0, (7.11)

meaning that supersymmetry should be broken to allow for a positive cosmological

constant. One may also note that the contribution from the anti-M2 branes in (7.9)

allows the self-duality of the G-fluxes to be broken even for vanishing cosmological

constant Λ and vanishing higher-order corrections. This means supersymmetry can

be broken in flat space by the anti-M2 branes.

The above relation can in fact be extended to the full G-fluxes, i.e. including

both the localized and the delocalized pieces. To show this we make use of another

component of the G-flux equation, finding

Λ(t)DqG̃
qmnp +DaG̃

amnp =
∂qh

h

[
Λ(t)G̃qmnp − 1

12

(
∗8G̃

)qmnp
]

(7.12)

+
∂ah

h

[
G̃amnp − 1

12

(
∗8G̃

)amnp
]
+ β1

δSntop

δC̃mnp

+ β2
δStop

δC̃mnp

,

which is expressed in terms of the total fluxes and is again consistent with (7.11). In

deriving the above equation we have assumed

(X8)012M1....M5
≈ 0. (7.13)

Note that for the delocalized flux components G̃mnpa, away from the singular points,

(7.12) simplifies to

DaG̃amnp =
∂ah

h

[
G̃amnp − 1

12

(
∗8G̃
)amnp

]
+

[
β1
δSntop

δC̃mnp

+ β2
δStop

δC̃mnp

]G̃mnpq=0

G̃loc
mnpa=0

(7.14)

meaning that the delocalized flux components are not covariantly constant. Another

consequence of the above equation is that the G̃mnpa components will continue to

remain time independent provided

∂

∂t

[
β1
δSntop

δC̃mnp

+ β2
δStop

δC̃mnp

]G̃mnpq=0

G̃loc
mnpa=0

= 0, (7.15)

giving us another constraint on the curvature corrections in the theory, although

solutions should also exist for cases which violate this constraint and hence require

a more general analysis that includes a time dependence for G̃mnpa.

Now looking at (7.11) and (7.6) we conclude that a four-fold with negative Euler

characteristic χ4 may easily accommodate fluxes of the kind (7.11) and simulta-

neously account for the supersymmetry breaking, although this is not a necessary
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condition for a solution to exist. In other words, without loss of generality, we can

demand

1

4

∫ √
g̃ G̃mnpa

(
∗8G̃
)mnpa

=

∫
H3 ∧ F3 < 0, (7.16)

which in turn can be made consistent with the first equation in (6.9), namely
∫
d6x
√
g̃ (H3)mnp(F3)

mnp = −3
∑

αi=0

〈Ci
3,11〉, (7.17)

provided
∑

αi=0〈Ci
3,11〉 > 0. This could be taken as another constraint on the curva-

ture corrections, which applies in the case that χ4 < 0. A similar constraint would

apply for the case χ4 > 0.

Yet another possible class of solutions are those with vanishing Euler characteris-

tic χ4 = 0. These solutions could correspond to an internal M-theory eight manifold

that is an elliptical fibration of a Calabi-Yau threefold, since the Euler characteristic

of the eight manifold is related to the Chern classes of the base by [73]:

χ4 = 12

∫

B

c1(c2 + 30c21). (7.18)

If the base manifold is Calabi-Yau, then c1 = 0, and hence χ4 vanishes. This, in

conjunction with the condition R̃ = 0, leads to its own set of solutions, with the

modified conditions:
∑

{αi}=0

〈C̃m, i
m 〉χ=0 < 0, (7.19)

∑

{αi}=0

〈C̃a, i
a 〉χ=0 < 0. (7.20)

As an interesting corollary, in the absence of any curvature corrections and due to

(6.2), (6.3) or (6.4), it is impossible to get a four-dimensional de Sitter spacetime if

the internal six-dimensional base of the M-theory eight-fold is a Calabi-Yau manifold

because

R̃ = −18hΛ. (7.21)

We now make a few observations. Note that to stabilize all the complex structure

moduli, we will have to switch on G-fluxes in the internal manifold. The G̃mnqa

components are the ones that will do the required job for us. However due to the

background constraint (7.11) we cannot allow supersymmetric fluxes. In fact we

can extend (7.11), by incorporating the localized fluxes in (7.6) and (7.7), to full

G-fluxes Gmnpa, Gmnpq and Gmnab. This means, in addition to (7.11) we will have

another relation

Gloc − ∗4Gloc 6= 0, (7.22)
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where ∗4 is the Hodge star on a four-dimensional surface Σ4 inside the six-dimensional

base of our eight-manifold. Since the localized fluxes are related to the gauge fields

on the seven-branes wrapping Σ4 in type IIB theory, this immediately implies that

the gauge fluxes (both the abelian and the non-abelian pieces) will create a D-term

potential satisfying the background constraint relations (7.9) and (6.10).

In addition to that, the decomposition (7.2) switches on an FI term from the

H3 = dB2 of G̃mnqa and from the F2 = dA of G̃loc
mnqa, proportional to

∫

Σ4

F− ∧ F− (7.23)

where F− ≡ F − ∗4F and we have defined F ≡ F2 − B2.

Since the background supersymmetry is broken by the G-fluxes, the F-term is

explicitly non-zero allowing us to switch on a non-zero D-term in the presence of

higher-curvature quantum corrections. The fact that the F-term and D-term are

related to each other can be inferred from the decomposition (7.2) where both three-

form and gauge fluxes in type IIB are sourced by M-theory G-fluxes. This way we

take care of the issues raised by [71].12 Note that in the absence of the quantum

corrections, this wouldn’t have been possible.

Finally, we need to switch on D-brane instantons that would help us stabilize

all the Kähler structure moduli, including the volume moduli. As mentioned earlier,

we have to make sure that the internal manifold is stabilized at large volume so that

the dynamics can be captured by the set of EOMs described above. In the presence

of the D-brane instantons higher-curvature terms are automatically generated (some

aspect of this will be discussed in Section 8). These curvature terms are the last

pieces of the link required to satisfy the consistency relations (6.10) or (7.9).

Thus both the fluxes and the curvature corrections are therefore necessary con-

sequences of stabilized moduli in this set-up. As such they could lead to a positive

cosmological constant solution, and a natural realization of D-term uplifting [34].

8. A discussion on the curvature corrections

In this section we discuss in more detail the possible origins for the higher-order

curvature corrections13 we have argued might allow for construction of de Sitter

vacua in IIB compactifications. While our calculations were done in M-theory, it is

interesting to first look at the corrections that can appear in type IIB string theory.

These terms can be sourced by tree- and loop-level n-graviton scattering amplitudes,

or equivalently loop corrections to the underlying σ-model, and are also induced by

12It will be interesting to compare our results with the ones in [72] regarding D-term uplifting.
13We will restrict ourselves to Rn corrections as these have been studied in more detail than the

Gn corrections. For an analysis of Gn corrections, the readers may refer to [42, 43].
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D-instanton corrections. The general form of these corrections is given by (adopting

the notation of [74], combined with [65] but with the substitution s = (m+ 6)/4):

(α′)n−m+1tm,nZ
(w,w′)
m D2mRn (8.1)

where tm,nD
2mRn is the contraction of 2m covariant derivatives and n Riemann

tensors with a tensor tm,n. The coefficient Zw,w′

m is an eigenfunction of the Laplace

operator on the fundamental domain of SL(2,Z), with modular weight (w,w′). This

coefficient can be written as an Eisenstein series [65], and is necessary for SL(2,Z)

invariance of the corrections to the action.

The lowest-order correction can be calculated from 4-graviton scattering; see for

example [66] in type II and [67] in Heterotic, which induces a D0 R4 correction at

both tree level (at order (α′)3 ) and at the one-loop level. In the calculation by Gross

and Witten [67], this led to a gaussian path integral that can alternatively be written

as a contraction of four copies of the Riemann tensor with two copies of a rank-8

tensor denoted t8. This allows one to write the correction as (equations 10 and 11 of

Gross and Witten):
∫

dψα
Ldψ

β
R exp

[
ψ̄α
LΓ

µν
αβψ

β
Lψ̄

α′

R Γστ
α′β′ψ

β′

RRµνστ

]
, (8.2)

or in terms of the t8 tensor:

tµ1µ2...µ8tν1ν2...ν8Rµ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8 , (8.3)

with the t8 tensor defined by

√
detΓµνFµν = tµ1µ2...µ8Fµ1µ2Fµ3µ4 ...Fµ7µ8 . (8.4)

The above correction is often written in the literature as simply t8t8R
4. Another

approach to calculating this correction is to consider loop corrections in the sigma

model (see for example [68]), where an n-loop effect will lead to an Rn correction

that is order (α′)n in the corresponding string theory. Collecting all the terms at

order R4 yields a correction of the form:
(
1

8
ǫ10ǫ10 − t8t8

)
R4, (8.5)

where ǫ10 is the rank-10 totally anti-symmetric tensor .

One might also wonder if there are R2 or R3 terms. The sigma model analysis

does not produce these terms, which would indicate that type II theories are protected

from α′2 and α3 corrections, as shown in the sigma model in [69]. This was also done

in the context of type I, II and heterotic string theory in [70], which confirmed

the result that R2 and R3 corrections do not appear. One can also check that

R5 terms do not arise, and in fact the next corrections coming from the tree-level
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graviton scattering are D2R4, D2R5, and R6, all at order (α′)5 (see table I of [74]).

At the loop level, there has been recent work [75, 76, 77] showing that perhaps

string loop corrections at order g2s(α
′)2 can become important in a certain class of

compactifications (dubbed the Large Volume Scenario).

Another contribution comes from calculating the graviton scattering amplitude

in a D-instanton background, as was done by Green and Guterperle [78], which

gives an extra contribution to Z
(w,w′)
m that is neccessary for the correction to be

SL(2,Z) invariant. The coefficient for the D0R4 correction has modular weight

(w,w′) = (0, 0), and is given by (equation 1.15 of [65] with s = 3/2, or in our

notation, m = 0):

Z0 = 2ζ(3)C(0)3/2 + 8ζ(3)C(0)−1/2
(8.6)

+4π
∑

k 6=0

µ(k, 3/2) exp
[
−2π(|k|e−φ − ike−φ)

]√
|k|
(
1 +

3

16π|k|C(0)
+ ...

)
,

where C(0) and φ are the axion and dilaton. The first term on the RHS is the tree-

level correction, while the second term is the 1-loop correction. The set of terms

on the second line is an infinite set of D-instanton corrections, with the function

µ(k, 3/2) defined as in Appendix A of [65].

The picture in M-theory is slightly simpler, as there is only one curvature su-

perinvariant. A review of the corrections to M-theory supergravity, as well as the

supersymmetrization, can be found in [79], while the detailed derivations can be

found in [80] and [81]. A feature of the M-theory picture that is fairly well un-

derstood is the necessity of an additional Chern-Simons term to cancel the 5-brane

anomaly, via anomaly inflow. This term takes the form

C ∧X8, (8.7)

where X8 is built out of R4. As this term includes a factor of the M-theory 3-form

flux, it will contribute to the equation of motion of the fluxes.

A key feature of these corrections is that the form of the contraction conspires to

choose only the Weyl part of the Riemann tensor, such that the corrections vanish

on manifolds with vanishing Weyl tensor. This was shown explicitly by Banks and

Green in [82], where they considered AdS5 × S5. This is great news for AdS/CFT,

since the correspondence is protected from loop corrections. However, it makes the

search for scenarios where corrections may be important a non-trivial exercise. One

possibility for finding non-negligible corrections is to consider Calabi-Yau manifolds,

and indeed this is the internal manifold used in the 4D effective picture of these

corrections in Kahler Uplifting [35, 40]. However, this introduces a new difficulty:

many Calabi-Yau manifolds can not be given an explicit metric – for example the

explicit realization of Kahler uplifting in [40] is done on CP
11169.
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9. Conclusion

This paper has been a close examination of de Sitter solutions in Type IIB string

theory, from the perspective of the 10-dimensional equations of motion (and the

corresponding 11-dimensional M-theory equations). We have reached two key con-

clusions:

1. By applying the Gibbons-Maldacena-Nunez No-Go Theorem [17, 18, 19] to

localized static sources we have found that the inclusion in IIB supergravity

of Dp- branes, anti Dp-branes, Op-planes, and by extension any linear com-

bination thereof, does not lead to positive curvature in the 3+1 non-compact

directions.

2. The addition of curvature corrections, sourced by D-instantons as well as tree

and loop-level graviton scattering, may lead to a de Sitter solution in the 3+1

non-compact directions, although an explicit construction of this would require

specifying a metric on the internal manifold as well as a subset of correction

terms to consider. Furthermore, this solution naturally leads to compactifica-

tion with broken supersymmetry, all moduli stabilized, and the generation of

a D-term in the scalar potential of the 4d effective field theory.

The first result is a fairly simple extension of the analysis performed by Maldacena-

Nunez [19], and Giddings, Kachru, Polchinski [60], among others. Our assumptions

in deriving this were limited to demanding (i) maximal symmetry in the 3+1 di-

mensions, as well as (ii) positive curvature in the 3+1 dimensions. Since we only

consider time-independent matter configurations, the 3+1 dimensional non-compact

spacetime we are looking for is ‘pure’ de Sitter, as opposed to quasi-de Sitter as is

usually considered in cosmology. However, to construct any 3+1 dimensional pos-

itive curvature geometry, the stress-energy tensor must satisfy the condition (2.8)

regardless of the symmetry, and in particular regardless of time dependence.

Note that there are many existing proposals which we have not considered, for

example IIA on nilmanifolds [83], IIA on solvmanifolds [84], and non-geometric fluxes

[85]. These proposals should also be subject to condition (2.8).

The second result is a non-trivial check that curvature corrections do indeed

evade the No-Go theorems. In this calculation we have used an ansatz for the effec-

tive stress-energy tensor induced by the curvature corrections, which we view as an

appropriate way to proceed given the freedom to set the internal manifold as well as

the complicated (and not completely known) form of the curvature corrections.

A worthy question at this point would be the sensitivity of our second result to

the form of the ansatz, as it is entirely possible that some choices of internal manifold

do not lead to curvature corrections that can be parametrized in this way. Thus a
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conservative restatement of our second result would be as follows: given a class of

internal manifolds that allow the time dependence of the curvature correction to be

isolated from other contributions, there do exist de Sitter solutions provided a set

of consistency conditions (6.18) - (6.19) is satisfied. This hints at interesting further

work, to clarify the consistency of our claims with the work of Sethi et al. [20] which

found that such corrections in Heterotic theory do not lead to dS solutions.

Upon studying the dS solution obtained via curvature corrections, we uncov-

ered a number of interesting features. Solutions exist for any choice of the Euler

characteristic of the internal manifold, including an elliptic fibration of a Calabi-Yau

threefold. Furthermore, this setup generically leads to non self-dual fluxes, which

break supersymmetry, and induce a D-term in the scalar potential, suggesting that

this construction may be a realization of D-term uplifting [34]. The moduli of this

setup can be fully stabilized: the complex structure moduli are fixed by the fluxes,

while the Kähler moduli are stabilized by the D-instantons, which in turn source the

curvature corrections. Hence our analysis indicates that curvature corrections can

do the job at hand.

This work has opened up several directions for future research. One option,

motivated by the desire for a deeper understanding of string theory, is to continue the

investigation of de Sitter solutions, using dualities to relate the solutions in different

string theories. This has the potential to clarify subtleties of dualizing non-BPS

states, and to allow one to ‘map out’ the space of dS vacua in string theory.

An alternative way forward is to push this work closer to cosmology, and in par-

ticular, inflationary cosmology. While the full 10d equations do not lend themselves

to model building, this approach does provide a clear path to studying compactifica-

tions with a time-dependent scalar curvature (‘quasi-dS’). The appeal of this option

lies in building self-consistent embeddings of inflationary cosmology in string theory,

with the (albeit ambitious) goal of teasing out distinctive signatures of string theory

in the sky. As has happened before, it may be that effects from a full 10-dimensional

construction result in observational signatures which do not arise in the effective field

theory approach.
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