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ABSTRACT: We revisit the classical theory of ten-dimensional two-derivative grav-
ity coupled to fluxes, scalar fields, D-branes, anti D-branes and Orientifold-planes.
We show that such set-ups do not give rise to a four-dimensional positive curvature
spacetime with the isometries of de Sitter spacetime. We further argue that a de
Sitter solution in type IIB theory may still be achieved if the higher-order curva-
ture corrections are carefully controlled. Our analysis relies on the derivation of the
de Sitter condition from an explicit background solution by going beyond the su-
pergravity limit of type IIB theory. As such this also tells us how the background
supersymmetry should be broken and under what conditions D-term uplifting can
be realized with non self-dual fluxes.
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1. Introduction

The hot, dense state of the early universe and its subsequent evolution offer a unique

testing ground for theories of high-energy physics; if string theory is the correct

theory of the earliest universe, it should be possible to embed all the known results

from cosmology in a consistent string theory description. Our best observational data

of the early universe, from the cosmic microwave background (CMB)[I, B, B, @, B, A],
and late time acceleration [[{], point to a universe that is very close to spatially flat, in

which large-scale structure was generated from an almost scale-invariant spectrum

of primordial density perturbations with a nearly Gaussian distribution. This is



consistent with a large class of inflationary models [[f], which we will have in mind
here, as well as a variety of alternatives to inflation [§, f§, L0].

However, the dynamics of the early universe is necessarily studied via an effective
field theory (EFT) approach. Although one might expect a decoupling of energy
scales, leading to suppression of higher-order terms in the Lagrangian by increasing
powers of the cut-off, the predictions of inflation can be highly sensitive to corrections
of both the potential or inflaton mass [[[T] and the kinetic terms [[J, [3]. This forces
one to consider the UV sensitivity of inflation, which has been addressed from many
perspectives: see [L1, [4] for reviews, [[T] for a recent take, and [Ld] for a completely
different approach. The dependence of cosmological observables on the detailed
embedding of inflation into string theory offers a unique window into the high-energy
physics of the early universe, and may provide evidence that string theory could be
the correct description of physics at these scales.

A consistent string compactification with a de Sitter (or quasi de Sitter) vacuum
in the 3+1 non-compact directions is crucial to such an embedding. Achieving such a
compactification has proved to be an extremely difficult endeavour. No-go theorems
exist for supergravity [L7, [[§ and for string theory (without time-dependent fields
or higher-curvature corrections), the well-known Maldacena-Nunez result [I9]. This
was extended to the heterotic case with higher-order corrections (but without non-
perturbative effects) included [Rq, B1)].

In Type II string theory, dS solutions have been studied in many works, for
example B3, B3, B4, B3, B6, B, BY, B9, B2, B0, B1]. In addition, many models of
inflation in string theory have been proposed (see the reviews by [[4, [1]), together
with ‘uplift’ mechanisms for obtaining dS [B3, B4, B3] by lifting an AdS minimum of
the scalar potential to a metastable dS minimum.

In this paper, we revisit the question from the full ten-dimensional setup of
Type IIB string theory, generalizing the analysis of Maldacena-Nunez [[9] by in-
cluding extended localized sources in the gravity action. In particular we consider
the traced-over Einstein equations, identifying the conditions for achieving de Sitter
space in the non-compact dimensions for the cases of fluxes, scalar fields and differ-
ent localized sources, e.g. D-branes, anti D-branes and orientifold planes, in Type
[IB with two-derivative gravity. We find that none of these ingredients satisfy the
required condition, suggesting that one must consider additional terms in the gravity
action.

One example of such additional terms is the set of higher-order curvature correc-
tions. We perform an explicit calculation using an M-theory uplift, so as to simplify
the form of the available fluxes. To study the effect of curvature corrections, we are
forced to take an indirect route and instead consider a generalized correction to the
action. We make an ansatz for the stress-energy tensor of the perturbative correc-
tions, noting that the correction terms are built from curvatures. We explicitly find
that positive curvature in the non-compact directions is only possible if curvature



corrections are present and satisfy a certain inequality.

We further find that the fluxes in any dS solution must be non self-dual, as is
consistent with broken supersymmetry. These fluxes, combined with D-brane instan-
tons, are enough to fix both the complex structure and Kahler moduli, including the
volume modulus. In addition to this, the instantons are one possible source for the
curvature correction terms required to give positive curvature to the non-compact
space. We do not propose a specific form for these corrections, and as the complete
set of supported corrections is not yet known, further conclusions cannot be made
at this point.

The structure of this paper is as follows: Sections 2 and 3 rederive the Gibbons-
Maldacena-Nunez No-Go theorem, and apply it to bulk fields (fluxes and scalar fields)
and localized sources. In Section 4, we set up our M-theory calculation, which we
perform in Section 5. We then examine the resulting equations of motion in Section
6 and 7, and discuss the origin of higher order curvature corrections in Section 8. We
conclude our work with a short discussion of our results in Section 9.

2. Einstein gravity in D dimensions

Consider the following Einstein-Hilbert action coupled to matter in D spacetime

S = = [ av/ =Gt + [ aPsLi, 21)
D

where Kp is the D-dimensional Newton constant, Rp is the Ricci scalar in D dimen-

dimensions:

sions, Gp is the determinant of the D-dimensional metric gy, M, N =0,..,D — 1,
and L, is the Lagrangian for the local or global fields that couple to gravity. It can
contain global fluxes, scalar fields, local sources and terms that describe graviton self
coupling. In the Einstein equations, L;,; enters through the stress-energy tensor

2 6£int
T = - . 2.2
MN /=G p, 0gMN (22)
Variation of (P1]) with respect to g™¥ gives the following Einstein equation:
Kp 1
R =— Tyn — =—— T 2.3
MN 5 <MN D_29MN>7 ( )
where T is defined in the usual way, i.e.

Now we will split the geometry into two manifolds: My, spanned by coordinates
2. = 0,..,3 and a transverse space MP~% spanned by coordinates 2™, m =
4,..,D — 1. We want M, to describe our four dimensional non-compact space-time



geometry and thus choose (2°, z', 2% 23) = (t,z,y, z), where t is timelike. MP~4

can be either a compact or non-compact D — 4 dimensional manifold, described by
spacelike coordinates ™. We will often refer to ™ and x* as describing internal and
external directions respectively. The line element is

ds%) = dsi + ds%_4 = gudrtdx” + gmpdx™dx". (2.5)

Now if the D-dimensional manifold has a direct product topology M, x MP~* then
the Ricci scalar for My is:

R4 = gMVR;uw (26)

If Ry > 0 we obtain a positive curvature spacetime, of which de Sitter space is one
example, as is consistent with our universe. Alternatively, if R4 < 0, we have Anti-de
Sitter type geometry, which is not consistent with the current universe.

Taking the trace of (B-3) in the p, v directions, we get

Kp

RERECES)

[T}(6 — D) +4T,7] . (2.7)

Thus for a positively curved spacetime, i.e. Ry > 0, we must satisfy the condition:
(D —6)T} > 4T} (2.8)

Whatever the content of the Lagrangian, we must satisfy (R.§) if we are to obtain a
positively curved four-dimensional universe. If we do not have a direct product space,
but rather a warped product space, then the manifold cannot be nicely separated:
Mp # My x MP~*. However, we can still try to obtain an effective four-dimensional
space at low energies. In this case, the transverse dimensions are not accessible,
which is possible if the size of MP~* is small compared to the typical distance scale
of interactions in M. We will separately address the case of a warped product space
in the context of type IIB string theory in Section 3.2, where we will again see that
the condition (2-§) plays a crucial role.
We can now proceed to analyse different choices for the Lagrangian.

2.1 Fluxes and scalar fields coupled to gravity

We can reproduce the No-Go theorem of Gibbons [[7, [§ and Maldacena-Nunez [[9]
by including fluxes in the Lagrangian. We consider the flux Lagrangian

‘Cililt =TV _GDFal...aqFalmaqa (29)

where F' is a ¢g-form. The above Lagrangian leads to the following stress-energy
tensor:

TJ\ZN = _gMNF2 + 2qFMa2..aqF]C\Lf2maq~ (210)



One can readily check that with the above form of the tensor, condition (B.§) will be
satisfied if

A(1 = q)F? > —Fgy 0, "> g (D - 2). (2.11)

We will consider two types of fluxes: the first type with legs only along the internal
directions and the second type with legs in M. Also note that the overall minus
sign in the Lagrangian is chosen to give positive energy, i.e. Tyy > 0. For the first
type of flux a; = m,n for all ¢ and F? > 0 with Fj,, o, F**% = 0. Thus we find
that condition (B.§) is not satisfied for ¢ > 1.

If ¢ < 4 then all the legs will be along MP~* since otherwise the isometries of
d = 4 Minkowski or de Sitter like space will be broken. Thus when we consider the
second type of flux which has legs in My, we will restrict to the case ¢ > 4. For ¢ > 4
we will consider 4 out of ¢ legs along My i.e. flux with legs in all the directions of
M, and the rest of its legs along the internal directions. With this condition on the
fluxes, one obtains the following identities:

F2 = Falaz..aqFalazuaq = C(Q>4)FM1--M4a5-.aqFulu!uas”aq
Frag.a,F" % = Cq — 1,3) Fyy jgas..ag 1149 (2.12)

where the coefficient C(q, k) is defined by

q

Clg, k)= —————. 2.13
@0 = (213)
This in turn gives us
as..a 4 2
Flay.a 1% = &F . (2.14)

Using the above relation and the fact that F? < 0, condition (2-§) will be satisfied if
and only if

D<q+1. (2.15)

Thus for D > ¢ + 1, we find that a g-form flux with legs in My does not give rise
to positive curvature for My. Any flux that preserves the desired isometries of My
can be written as a combination of the two types of fluxes described above. Thus,
whatever the form of the flux, ¢g-form flux for D > g+ 1 does not give rise to positive
curvature for My, as was first demonstrated by Maldacena and Nunez [[J].

Next we consider scalar fields. The most general interaction Lagrangian for a
scalar field interacting with gravity is given by

Lh=—/—Gp (0mpd™ ¢+ V(). (2.16)



Note that the overall minus sign is chosen so that when V(¢) = 0 (for example
massless fields with only kinetic energy), we get positive energy, i.e. Tog > 0. The
stress-energy tensor is given by

Ty y = —gun (005 ¢+ V() + 200 On . (2.17)

Then with the stress-energy tensor given above, the only way (B.§) is satisfied is
if and only if

80,00"¢ + V() > 0. (2.18)

Now if we demand that the M, is isotropic in space but dependent on time, we
readily find 9,¢0" = ¢"0,¢0,¢ < 0 since g < 0. Thus if V(¢) < 0, M, will not have
positive curvature. In type IIB string theory, which will be the focus of our study,
the scalar axio-dilaton field 7 has no potential and thus will not aid in constructing
positive curvature.

2.2 Localized matter coupled to gravity

Another possibility for the interaction Lagrangian is that of localized matter. For
a p-dimensional object embedded in D-dimensional geometry, the most general La-
grangian that couples to the metric is the worldvolume Born-Infeld Lagrangian:

L3 = =T\ = Fapp10" 7w — 1), (2.19)
where f is the determinant of the metric f,, defined in the following way:

~ ~ OXM XN
fab:fab+Fab> fab:gMN b
do® Oo

Here T, is the tension, Fy, is the worldvolume flux, B, is the pullback of the back-

and ﬁab = Fab + Bab~ (220)

ground magnetic flux, a,b =1,..,p+1, and fab is raised or lowered with the pullback
metric fu. Also note that d°7P~!(z—z) is the (D —p—1)-dimensional delta function,
x = 7 is the location of the p-dimensional object, and gp_,_; is the determinant of
the (D — p — 1)-dimensional metric such that we have the normalization

/ dP " e fgp 167 P e —7) = 1. (2.21)

We have picked worldsheet parameters o = 2%,a =0, ..,p— 1. T}, can be considered
as mass per unit length and thus it is typically positive.

If the Lagrangian is of the form (R.19) with positive mass term, i.e. T, > 0, one
obtains:

// 5f — —
7,60 = \/ a1 farg"” g PP Yz —2) <0



,,5]““’ D—p-1

1
T m B - _Tp_iG\/ VN = Y Sgm ———4 (x —7) <0.(2.22)

Using (2:29) in (.7]) one readily sees that (B.§) is satisfied if D < 6. For D > 6
(R.§) is not automatically satisfied. In particular string theory gives D = 10 or 11
and thus we must have 7" non-vanishing to obtain our four-dimensional positive
curvature universe.

String theory also allows negative tension objects, i.e. 1, < 0, and higher-
derivative terms in the low-energy effective action for gravity. Then, using the form
of the localized stress-energy tensor (2:23) and adding the contributions from the
fluxes, scalar fields and higher derivative terms, it may be possible to satisfy the
condition (B.§). We will discuss this possibility in Sections 4 to 8.

3. dS in Type IIB String Theory with Branes and Planes

With a general understanding of gravitational coupling to fluxes and localized matter
fields in D dimensions, we will now consider the specific case of low-energy type 11B
superstring theory with the following action in Einstein frame:

Stotal = SSUGRA + Slocs (3.1)

where

2K3, 2|lm7|?  4-5!  12Imr
1 / CiNG3 NGy

2
81Ky

1 ouToMr |F5* G- G
SSUGRA = 53~ dw\/flo(ﬁ’— w077 1L G 3)

+ (3.2)

Im7
Here 7 = Cy +ie™?%; Gio = det gyun, M, N = 0,..,9; gy is the metric in Einstein
frame; G3 = F3 — 7Hs; F3 is the three-form RR flux, H3 is the three-form NS-NS
flux, and Fj is defined by

A 1 1
Fy = Fs— 5Co N Hy+ 5By A F. (3.3)

For the localized action we will consider Dp-branes and orientifold planes in
various dimensions. The action for a Dp-brane is given by

B . s1) - P
SDp——/dp+ane \/—f+up/<0/\e )p+1' (3.4)

Here f is the same as in (B.19) and C,4; is the RR flux. As above, F,, is raised or
lowered with the pullback metric f,;,. Note that the sign of 11, determines whether we
have a brane or an anti-brane. However both branes and anti-branes have positive
tension 7, > 0.



On the other hand, for an orientifold, we have the action

Sop = —/dp+1a Tope¢(p4+1) v—f+ ,U/Op/Cp+17 (3.5)

where the orientifold has negative tension, i.e. T, < 0. Here p, is the charge of the
Op-plane and we have the relation |Tp,| = €7?|uo,|. Also note that since the Op
plane has negative charge, we have p, = e®Tp, = —e®|Tp,|.

With the above localized action and the bulk supergravity action, we can write
(B-1) in the form (R.1) with the interaction Lagrangian being'

Lint = Lyuik + Lop + Lop
_8MT8M7_' . |F5|2 . Gg . Gg
2|Imr|2  4-5!  12Imr

Liuk = v/ —Gho (

o(p+1) ~ oy _
Lpp = —Tye 1 \/ _f\/gD—p—1510 P l(x — )
¢(p+1)

Lop = |Tople 7 /= f/Gpp 10 Pz — 7). (3.6)

In the above Ko has been replaced by 2x%,. Using the above form of the Lagrangian
we can readily obtain the stress-energy tensor (B.2)) and check whether the constraint
(R.§) is satisfied or not.

To evaluate the trace of the stress-energy tensor, we will restrict the form of the
fields to ensure Poincaré invariance in the non-compact spacetime. This way even
without solving for the on-shell values of the fluxes and metric, we can check whether
the inequality (B.§) is satisfied. These conditions are the following:

oThe fluxes H; and Fj only have legs along M®, and 7 depends only on 2™, the
coordinates of M6,

e F} will have legs in the z* directions. Then by imposing self duality and Poincaré
invariance, one obtains the general form

Fy = (14 %10)da Adt Adz A dy A dz, (3.7)

where a(zM) is a scalar field which is a function of all coordinates 2™, M =0, .., 9.
Having laid down the required conditions, we will now analyze the individual

cases with branes, anti-branes and orientifold planes.

IThe topological term cannot enter the stress-energy tensor since fﬁ&i = 0 where Scs =

wp [ (C’ Aef ) is the Chern-Simons action. Therefore we omit it in the Lagrangians here. For
p+1

Dp-branes F' is not generally zero but Op-planes do not carry gauge fields, and have F=0.



3.1 Direct product space with Branes and Planes

We will first consider product spaces My = M, x M with branes and planes, where
the transverse space M5 can be either compact or non-compact. For p = 3, we have
D3 or anti-D3 branes which fill up My. Thus the induced metric is

fab = Gap, for a,b= pu,v

fao =0 for a,b## p,v. (3.8)

Then we find 2

_ o N IV i) 55 (0 — 7
T: (D3/D3) — —T3ze G 4+ Fff 6 (z —2)
m (D3/D3) — 0. (3.9)

However, since the flux F is anti-symmetric while the metric is symmetric, I3 =0
Thus neither the D3 nor the anti-D3 brane tensor satisfies the constraint (2.3).

The results for D3 and anti-D3 branes can easily be generalized to Dp and anti-
Dp branes with p = 5,7. For Poincaré invariance in the noncompact dimensions,
we will fill up M, with the Dp or anti-Dp branes and the remaining worldvolume
will fill up some SP~3 cycle inside the transverse space MP~P~1 If ™ 2" denote
coordinates of the cycle SP~3, then we have

fab = Gap, for a, b= p,v,m.n
fao =0 for a,b+# p,v,m,n. (3.10)

And we obtain

p—3+ F) §PPY (g — 7). (3.11)

Again, the worldvolume flux Fis anti-symmetric while the metric is symmetric.
Hence F & = 0. Using the form above, we can readily see that neither the Dp nor
anti Dp-brane stress-energy tensor satisfies the constraint (B.§) for p = 5, 7.

Now for the five-form flux: using self-duality, i.e. |E52 = 0, one finds that the
constraint (B.§) for the stress-energy tensor of the Fy will be satisfied if and only if

Bapea " > 0. (3.12)
2Note that the upper indices here and elsewhere in this section have been raised with the metric
gMN | which is free of any warping in the case of a direct product space . For the warped com-

pactifications studied in later sections, we will make the distinction between the warped metric and
unwarped metric, where we introduce ‘tilded” quantities, A™, that are defined with respect to the
unwarped metric.



However, using the form of the flux (B.7), it is straightforward to see that F Mbcdﬁ pabed
0 and thus the constraint (.§) is not satisfied by the five-form flux. Alternatively,
F% can be written as a sum of two types of fluxes as described in section (2.1]), and
again we arrive at the same conclusion.

Finally, using the condition that G5 has legs along M% and 7 only depends on
2™, one finds that the stress-energy tensors for GG3 and 7 do not satisfy the constraint
(B§). Since stress-energy tensors arising from fluxes, scalar fields or localized Dp or
anti-Dp branes individually do not satisfy the constraint (B.§), the total stress-energy
tensor for the entire system consisting of all these ingredients will also not satisfy
the constraint.

We can generalize the case for the localized Dp or anti-Dp branes to include
smeared Dp or anti-Dp branes along the compact directions.®> The only difference
in the smeared case is that the delta function in the stress-energy tensor (2.29) will
be replaced by some distribution i.e. §(x —z) — I'(z™) > 0. Smearing the branes
in this fashion will allow one to compute the Ricci curvature on the brane, which
will be a finite quantity. Again, since I'(z™) > 0, the stress-energy tensors will not
obey the constraint (R.§). In summary, we conclude that local or non-local branes
or anti-branes in the presence of global fields do not satisfy the condition (B.§) .

The only remaining case is the Op-planes. Orientifold planes are the loci of
fixed points of some discrete symmetry group, arising from a Z, quotient of the
theory combining worldsheet orientation reversal with an involution on the spacetime
manifold [Bf]. The number of fixed points of this orientifolding then gives the number
of orientifold planes, which fill all the noncompact dimensions. They have no gauge
fields on their worldvolume, and have negative fractional charge and tension. As the
planes are fixed points of a symmetry group, their location in the internal space is
fixed and cannot be arbitrarily chosen. Thus the planes are essentially localized and
cannot be thought of as smeared objects.

To construct an explicit gravity solution, we consider the localized action for the
plane coupled with the bulk action. The tension of O3-planes taken to lie in M, is

given by
V=136 _
T (03) — 4|T03|6¢FC\T,/1:56(93 — )
T o) =0, (3.13)

while for Op-planes with p = 5,7, assuming as above that the spacetime directions
M, are filled, we find

T = AT Y I 5o
1 (Op) P V=G

3A discussion of smeared sources can be found in [@, , @] This procedure is a way to
incorporate the global nature of charge cancellation into the 10d equations of motion, which are

inherently local. Not all ‘smeared’ solutions correspond to solutions of the full 10d equations.

— 10 —



4>(p4+1) vV —f\/QD—p—1
vV—=Gho

Orientifolds have negative tension, T :f ©op) > 0, so there is a possibility that the
constraint (B.§) might be satisfied when O-planes are included. However we will

T3 (o) = [Tople (p—3)8" "z — 7). (3.14)

see that this does not lead to positive curvature in four dimensions. To see this first
consider the Einstein equations arising from variation of the action (B.]]) with respect
to the metric:

Gg . G_g F52 F b dF abed 1
R, =—qg. pabed 'y 2N Tloc__ yTlOC
= 9 | 8 Tmr T 85 goar ot Fw g ’
G3-Gs | I | | Fuaeal,™  GEGupe | 0nT0n
48 Im7 8- 5! 4 -4l 4 Imt 2 |Imr|?
1
+ KJ%ONJC <T1’lf(L)TCL - ggmnT10C> ) (315)

where Ny is the number of localized objects contributing to Si... Since we are
considering manifolds which have the product form M;q = M, x M5, we have the
following form for the metric:

ds® = G (2! )dat dx” + Gy (2™)da™ dz". (3.16)

With this metric ansatz, taking the trace of the first equation in (B.17) gives

G3 . Gg Fuabchuade 4 K%ONJC

my — _
Ra(@") = —oqs 141 2

(Tplec —Tm'ee) (3.17)
The left-hand side is independent of ™, and hence the right-hand side should be as
well. It follows that we can evaluate the right-hand side at any value of ™, and
so we are free to consider ™ away from the localized Op-planes, where the local
O-plane stress-energy tensor gives zero. As we have already studied, the flux and
local or smeared Dp or anti-Dp brane contributions to R, are negative definite. Thus
we obtain

R, <0. (3.18)
Since we have a product space My = My x M5, R4 is the Ricci scalar of M,. Thus

we conclude that neither Dp-branes, anti-Dp branes, nor Op-planes, in the presence
of type IIB fluxes and scalar fields, give rise to positive curvature for My.

— 11 —



3.2 Warped Product Manifold with Branes and Planes

Now we consider the more general case where the ten-dimensional manifold is not a
direct product space, but rather a warped product. We look for solutions to (B.17)
which take the following warped form:
ds? = G dx’dx” + gppdx™da"
= e, do"d” + e Guda™da”, (3.19)

where A(z™) is a scalar function, g,,(z") is independent of internal coordinates ™
while G, (2™) depends on ™ . Now, using the ansatz (B.19) for the metric, we get

R, = Ry — §ue**V2A, (3.20)
where the Laplacian is defined as
- 1 -

and éuv is the Ricci tensor for the metric g,,. Since the geometry is not a direct
product, there is no notion of a separate four-dimensional space at all energies. If
the internal space is compact and small, then at low energies we effectively have a
four-dimensional non-compact space M4 with metric g,,. Then the condition R4
g‘“’RW > 0 states that M, has positive curvature. Thus, for a warped product
geometry with metric of the form (B.I9), we will restrict to the case where M® is
compact and look for local and global fields in ten-dimensional type IIB theory that
can give rise to M, with positive curvature.

We take the trace of the first equation in (B:I5)) and use the relation (B:2() to
get

2AG3 . Gg 24 Fuabcd F,mbcd

V2 4A R o —6Aam 4Aam 4A
T o Ty 14! te © e

2
K10 24 m n m n
+ e (Z [T ©op/opi — L, <0p/0‘p>i} +Z [Tm (p/Dpi — Ly (Dp/ﬁp)j} )
J

7

(3.22)

Here T (Op/Op)
planes locahzed at 7;, and similarly T (Dp/Dp) denotes the trace of the stress-energy

tensor of the Dp or anti-Dp branes at y;. The fluxes, branes, and planes, are related
globally by charge cancellation, although we will not discuss the precise details here.
We can integrate (B:23) over the compact internal manifold M® (which has the metric

Jmn) to get

; denotes the trace of the stress-energy tensor of the Op or anti-Op

~ ~ — — H2 m
C = VgRy+ [ d°z v 96Lgiobal + d°z \/ s [%em(z [T (Op/Op)i T: (Op/Op)i

)

- 12 —



m H
+ Z |:Tm (Dp/Dp)j — Tu (Dp/fjp)j] )}’ (3.23)
J

where C' = [ dSx \/GsV?e** is a constant and we have defined Zyjopa and Vs as

2A Y 24 1, rpabed
€ Gg . Gg e F b dF“ _
Iglobal = 19 s — ;11‘04' +e 6A o, edA om etA > 0,

Vs = /d% s > 0. (3.24)

If Mg has no singularities or the warp factor e** is globally defined, then C' = 0.
However, in the presence of local sources classical gravity breaks down near the
sources and this leads to physical singularities in the manifold. To resolve these
singularities, we can smear the Dp-anti-Dp branes while Op and anti-Op planes are
by definition localized objects. If we remove the O planes entirely and only keep
smeared branes, then Mg will be regular and C' = 0. However as discussed in the

—TH

. (Dp/Dp) > 0, and thus we get

revious section, T™ -
p > =m (Dp/Dp)

Ry <0. (3.25)

If we keep O planes, then there will be regions in the manifold with no classical gravity
description. One can remove the singular points from the manifold leaving holes, but
then C' # 0. To obtain the exact value of C, one needs to know the metric near
the singularity, but since classical gravity breaks down, we are unable to evaluate C'.
Thus, classical gravity is an incomplete description for a system containing O planes
and we expect quantum corrections to resolve the classical singularity associated
with the planes.

In summary, neither Dp nor anti-Dp branes with arbitrary worldvolume fluzes in
the presence of type IIB fluxes and scalar fields result in positive curvature in four
dimensions. For direct product geometries, inclusion of Op or anti Op planes also
do not give rise to positive curvature. For warped product geometries arising in the
presence of Op or anti-Op planes, classical two derivative gravity is insufficient and
we must look for quantum corrections via higher-derivative gravity terms arising in
string theory.

4. Curvature Corrections and Background Solutions from M-
theory

In the above sections we have argued that it is impossible to get a four-dimensional
de Sitter spacetime in a ten-dimensional two-derivative gravity coupled to fluxes,

4We thank Juan Maldacena for pointing this out. After the removal of points, C' becomes a
boundary term. Additionally, removing the points means 7" = 0 but the
effect of O planes is captured by the fluxes.

_ Tk _
(Op/Op)i Tu (Op/Op)i
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scalar fields, D-branes and anti D-branes. With Orientifold-planes sourcing warped
product manifolds, the classical gravity description is not sufficient to make a verdict
one way or another. We need quantum corrections in the form of higher-curvature
corrections to study the case with the Orientifold-planes. In fact string theory can
have these corrections which, as we show below, could indeed help us to overcome
the no-go theorem.

The analysis thus far has been done solely in the context of Type IIB string
theory. However, the full set of quantum corrections in IIB is not known, and in
addition there are many fields present which can complicate the analysis. To make
the computations easier, we work in M-theory, where the bosonic field content is just
the metric, gy, and the three-form, Cy;yp, and make an ansatz for the form of
the stress-energy tensor arising from any curvature corrections, given in (5.2). A T2
reduction of M-theory in the limit when the torus size goes to zero, will reproduce
the answer for Type IIB theory.”

We begin by setting up the M-theory uplift of the IIB system we are interested
in. The action for M-theory is given by

S = Sbulk + Sbrane + Scorr> (41)

where Sy, is the standard supergravity action for M-theory with a 3-form flux C
and corresponding field strength Gy, Sprane is the contribution from M2-branes, and
Seorr 18 @ curvature correction to the action. The supergravity and brane actions are

given by
N Bt 1,
Sbulk—z%z d"z Q[R 48G] D 2/C’/\G/\G (4.2)
Sbrane = dgo-\/ |i /u/a XMa XNgMN -1 + Si'”ﬂVpa XMO XN8 X CMNP:|

(4.3)
where T} is the tension of the M2-brane, XM denotes the worldsheet coordinates of
the brane, v is the induced metric on the brane, and we have assumed a minimal
coupling of the brane to the fluxes.

The corrections to the action are of the form R"™ or G™ (or a combination thereof)®
and can come from several sources: instanton corrections, tree level o/ corrections,
and loop corrections. We delay a proper discussion of the R" terms to Section §
To study the effect of these corrections, we first assume that S.,.. has two types of
contributions: those that depend on the metric and are therefore non-topological,
which we denote Sntop, and those that are topological and do not depend explicitly
on the metric, gtop. In other words we have

Scorr = gntop + gtopu (44)

5Earlier studies using EOMs but without invoking quantum corrections may be found in [

6See for example [@] for more detail, up to four-point amplitudes, on this.
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where S’top can depend on the topological classes constructed out of the curvature
form R.

Both sets of corrections depend on the curvatures Rynpg and Guynpg of the
metric gys v and the three-form field Cy, yp respectively, and we brand them curvature
corrections. The contributions to S’nmp and gmp at lowest order in o’ are known (see
[[4] for example, as well as Section 8) and using these we can express S’nmp and gtop
as

Siep = — T / C A Xs 4 Siop(R, G)

. T

1
Sntop == m /dllxv —g (J(] - §E8) +Sntop(R7 G)7 (45)

where Xy is the curvature correction eight-form built completely with curvature two-
form, such that C' A Xy is a gravitational Chern-Simons term required to cancel the
anomaly on the fivebrane worldvolume [[I§]; and J, and Ej are given in [4]. The
additional contributions S, and S, are functions of both the curvatures (R, G).
Some details of S, and Si,, have been worked out and they are given in [[ and
[E3] respectively. We will give a more complete discussion in Section 8.

In Section | we will make an ansatz for the variation of the correction terms
TMN

corr

with respect to the metric, which acts as an effective stress-energy tensor
rather than deal with the action of the correction terms directly. In other words, we
will make an ansatz for

TMN _ 2 55007“7“ 2 5Sntop (46)

corr v —g 59MN 9,C - v —4g 59MN 9,C

where the subscript denotes a given choice of the metric and the three-form flux.

From the action ([L1]), we obtain three key equations which govern the evolution
of the system. The first is the Einstein equation,’

1
RMY — SR =T, (4.7)

where TM¥ is the total stress-energy tensor coming from fluxes, brane sources and
quantum or curvature corrections, and which we compute in Section . The second
is the flux equation [4],

1
d *11 G = §G NG + 2%2 (T2X8 + *11J> + Sg, (48)

where J is the source term coming from ns M2-branes, *;; is the Hodge star with
respect to the warped metric unless mentioned otherwise, and Sg is the contribution
from Syt and Sy, in () that we will discuss later.

"We are assuming that the volume of the internal fourfold is large so that an equation like )
can be used to describe the metric there. This brings us to the issue of moduli stabilization, which
will be discussed towards the end of Section 7.
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The third equation is the M2-brane equation,
1
OX? + 49, XM0, XNTPuN = 5EwaﬂxMaVXNapXQGPWQ, (4.9)
where €,,, = \/—7V€uw,. The source term at a spacetime position x is related to the
spacetime position X of the brane, and is given by
. 2/*€2n3T2
V=

We would like to find a solution to these equations that is conformally de Sitter when
brought to IIB, such that the IIB metric can schematically be written as

JPRR (1) Bo/ =0, X"0,X%0,X 5" (z — X). (4.10)

1
ds* = t—znw,d:z“d:z” +dst (4.11)
where the time coordinate ¢, is conformal time, usually denoted 7 or n, which in the
de Sitter space is related to physical time by

te ~ e o, (4.12)

It follows that the infinite future (¢,,,s — o0) is given by the limit ¢, — 0, as is
the case during inflation. From this point onward we will drop the subscript ¢, and
denote conformal time as t.

We make the following ansatz for the metric in M theory:

1 ij Grmndy" dy"
A = Ry dadz) + W SR+ (M)
= WY (—d? + ndzdz;) + 2Bt g dymdy™ + WY |dz|?, (4.13)

where i, j = 1,2, Gy is the unwarped metric, A, B and C are warp factors that can
be written in terms of A(t) and h(y™), which we leave unspecified for the moment,
and

dz = dl’g +idl’11, (414)

so that the only time dependence in the system comes from A(t). Specifically, the
internal eight-dimensional manifold only depends on time via the warp factor A(¢)
as we saw earlier, i.e.

2 Gmndy™dy"

ds? = AT + A?3(t)]dz|. (4.15)

This ansatz is chosen as the M-theory uplift for the solution we want to obtain in

Type IIB, i.e. by shrinking the torus specified by coordinates (z, Z) or (x3, x11) to zero
size one may recover type IIB theory. It is a generalization of the ansatz considered
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in [A4], and describes a system of M2-branes moving towards orbifold singularities
of the torus fibration of the fourfold (where the D7 fluxes are localized). This was
developed as a first step towards an M theory uplift of D3/D7 [A7).
The IIB metric that follows from dimensional reduction of the M theory metric
(ETJ) is given by
s? = A(t;\/ﬁ(—alt2 + n¥dzdz; 4 d2) + V hGmady™dy", (4.16)

so that, taking A(t) = A|t|* (taking the absolute value to avoid any imaginary warp-

ing in the M-theory metric), we obtain
o _ 1
At2Vh

For this to be a dS solution, we demand that A be strictly positive. We also require

(—dt? + 0 dzdz; + dz?) + Vhgmndy™dy". (4.17)

a suitably well-behaved functional form for h(y), to avoid any pathology. However,
for our purposes, we will leave its functional form to be completely general.

Turning now to the flux equations, the equation for the G-fluxes can be rewritten
as:

1 1 2K%T:
Dy (GMPRR) = ———Pofth-.Ms Gty G + —2(X8)M1....M8}

N 2 (41)? 8!

1 (68 i,
dPodP 9, X"0,X%0,X 6" (x — X) + < nor y —p ) ,
! g ( ) V=9 \0Cpgr  0Cpqr
(4.18)

2/{2T27’L3

V=9

The above equation is in general hard to deal with because of the quantum corrections
etc. However the the G-fluxes are related to the membrane motion via the membrane
EOM. In the limit where the membrane motion is very slow, 7,,, which is the pull-
back metric, is simply equal to the spacetime metric given in (.I3). This implies

_ €uvp
Grpvp = Om (hA(t)2) , (4.19)

which shows that the spacetime part of the three-form field C),, should be time-

dependent to maintain a metric of the form (f.IJ) with a membrane fixed at a
point on the eight-dimensional internal space. However to solve all the background
equations we need more flux components. Let us then switch on the following three
additional G-fluxes:

Gmnpq = 4a[mcnpq}> Gmnpa = Ba[monpa]a Gmnab = 2a[m0nab]- (420)

To add some flexibility to the equations we seek to solve, and since we generically
expect a mix of time-dependent and time-independent fluxes, we assume that the
components Gy, are time independent, whereas all other fluxes depend on the
internal coordinates y™, as well as on (a,b) —i.e. on (r3,711) — and the time ¢.

- 17 —



5. The Einstein Equations

In what follows we solve the Einstein equations (p.I4)) by including the general form
of the stress-energy tensor T,y in Section . This way we will be able to tabulate all
the equations for the metric components satisfying (.13), in Section ff. Subsequently,
in Section [, we study the flux equations ([.§) and resulting consistency conditions.

5.1 General Form of The Stress-Energy Tensor

Like the action, the stress-energy tensor has 3 contributions:

TMN = TN 4 7MY PN (5.1)

corr

where G is for G-flux, corr is for correction, and B is for brane. As discussed in
Section fll, we will study the effect of higher-order curvature corrections to the action
by making an ansatz for the resulting 737y . Since our goal is to study solutions
that are de Sitter in the non-compact dimensions, we are primarily concerned with
tracking the time dependence of each component of the action and resulting Einstein
equation. In line with this, we choose an ansatz for T}7% that allows us to keep track
of the time dependence. The stress-energy contributions are then given by

1 1
=1 [GMPQRG%R - §9MNGPQRSGPQRS (5.2)
MN K Tong 3 v M N 511
T3 (z) = — Ner o/ =" 0, XM 0, XV 6 (v — ) (5.3)
MN = 59}\;;’ Lo F Z[A(t)] i+1/3CcMN, i (5.4)

where again x, is the spacetime position of the brane (which is generically time
dependent), and we have defined

6C;
5gMN :

In the following sections we will attempt to search for solutions, by separately exam-

Ciun = gunCi —2 (5.5)

ining the mn, ab, and ur components of the Einstein equation. Note that the scalars
C; are defined in terms of the unwarped metric, such that the only dependence on
warp factors in Cy;ny comes from the explicit factors of the warped metric gy .

5.2 Internal (m,n) components

We will start with the internal (m,n) components along the six-dimensional base.
Two set of equations need to be solved now: the Einstein equation and the flux
equation. For the Einstein equation we need the Einstein tensor from the M-theory
metric (.I3). The Ricci tensor R, is given by

Ryn = Ron + 3 [20(n A0,y B — 0, A0y A — §innOy A" B] + 4 [0,, B0, B — G101 BO" B]
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—3D(1,.0n)A — 2D 1,0,y C + 2 [20(1,COpy B — 0,,C0,C — G0, CO* B]
—AD 0 B — Gonn OB + 2B=4) [B + AB+ 6B + QC’B] G (5.6)
and the warped curvature scalar R is given by

R = —e 2P [100B + 60A + 40C + 200,,B0™ B] — 3¢~ [40,,A0™ A + 80,,A0™ B)
—2¢728 [30,,C0™C + 80, BO"C' + 69,, AO"C] + ¢ 2P R
126724 (6B + 24 + 20 + 21B% + 6AB + 1208 + 2AC + A? + 30’2} . (57

where remaining raising and lowering operations are done by the unwarped internal
metric §,.,. The Einstein tensor G,,, is found to be

~ OmhO,h {@ha’“h

pum— _— - A .
G = G — e~ o). (5:8)

where A is the coefficient of ¢? in A(t), and hence the above expression is independent
of time.

To study the stress-energy tensor from the G-fluxes we have to first express the
various components of the G-fluxes Gyynpg in terms of their unwarped components

Gunpg as:
Go12m _ ~012m [A(t)]13/3h5/3, (0120 _ é012a[A(t)]10/3h5/3
GOmna _ éOmna[A(t)]4/3h—1/3’ GOmab _ éOmab[A(t)]l/?)h—l/g
Gmnpe — émnpa [A(t)]1/3h_4/3, Gmnab émnab [A(t)]—z/gh—4/3
GOmre = GO [A(8)] /AR E, Gt = GrPIA(H] PR (5.9)

where what we have done here is to simply isolate the warp factor dependences
of GMNPQ and express its components in terms of GMNPQ_ This also means that
Gunpg = G mnpg by definition. We can also isolate the warp factor from the metric
and write the determinant as

det g = —[A(t)]"*/3h*3det 7. (5.10)

The stress-energy tensor is easily expressed in the language of the unwarped G-fluxes
(b.9) and the determinant (5.10):

_ Ophd*h  0,ho,h 1 [~ ~ 1. -~ =
Tngg) = Imn k4h2 TS + Th lelkaGn tha _ agmnkazakal“] (5.11)
A(t) ~ ~ lkr 1 ~ ~ ~pklr 1 ~ ~ lab 1 ~ ~ ~pkab
+ 12h Gmlk?“Gn ggmnkaer + 4hA(t) GmlabGn ngnkaabG .

The stress-energy tensor from the membrane (M2 brane) will not contribute however.
This is because the stress-energy tensor, given by [E4],

WA
Vi

Tn(mf) = _H2T2n3§pmgqn

/ o/ =" 9,X70, X166 (x — X), (5.12)

- 19 —



where g is the determinant of the metric in the m, n directions, vanishes in the limit
where the membrane motion is very slow. The only other contribution will be from
the correction terms, which, using gmn = €22 Gymn, gives

T = 02 M) MC,- (5.13)

The equation that we need to solve now is

Goun = T, 4 T, (5.14)

mn
This can be split into a time-independent piece,

~ 1 ~ ~ 1 ~ ~ ~.
Gmn - gmn6Ah = E [GmlkaGnlka - Bgmnkalakala} + h1/3 Z Cﬁrm? (515)
a;=0

where we made use of our assumption that the G,,,;,, are time independent, and a
time-dependent piece given by

AW [~ ~ 1.~ 1 R DU
Ta1 Gm rG par — - mnG rstqu Gm a, G pav — — mnG a qua
12h { parn T gdmntpa ] PTG { pabTin’ T g Jmn’Tpgab

+ B3N A C,, = 0. (5.16)

a; #0

Note that at this stage the only possible way Gnpr and Grney can also be time
independent and yet still satisfy (B.19) is if the a; are allowed to take the values

a; = (1,-1,0,0,...0). (5.17)

It is not clear we can have this condition for our case, and so we will assume that
the only time-independent components of the G-fluxes are Gpa-
5.3 Internal (a,b) components

The Ricci tensor for the (a,b), i.e. the 2% and z'! components, is given by

Ray = —0,eX¢~P) [OC + 30,,CO™A + 40,,CO™ B + 20,,C0™C]
F 5,20 [é +AC +6CB + 20'2] , (5.18)

which can be used to compute the Einstein tensor G,. For the M-theory metric
(ET3), Gap is given by

Gay = Su(t) |5 —9hA + L5 (5.19)

R gpkﬁphakh]
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where we note that there is an overall time dependence given by A(t). The stress-
energy tensor due to the fluxes is given by

G € 0, Gmnpcémnpc ) 3§mpam haph]

A(t
7;(bG) _ ()

— 14571 GamnGmnp_ a a
127 P Ty ey

1 ~ 1.~ =
_'_E [GacmnGb ann — ZéamenchmnCd — 5

A)]? ~ ~
ab—a .( 4),]}1 GrnpgG™™. (5.20)

The interesting thing about the above formula is that the time dependence of the
first term (involving émnpa) is exactly the same as the time dependence of the Gp.
This means that the émnpa components can remain time independent, as we had
earlier. The correction term contribution to the stress-energy tensor for the (a,b)
directions is

T =0y TA)] I Coy (5.21)

As before, we can write the resulting Einstein equation as a time-independent ex-
pression (where we collect the terms linear in A(t)):

é 1 ~ ~ mnp émnpcémnpc
(5 + 9hA> Oab + m [Gamanb Oab 5

+RAN"CL, =0, (5.22)
a; =0

and a time-dependent expression:

x
1h

- 1.~ = A@)]? ~
|:GacmnGb emn— iéamenchmnCd} - 5ab [4 (4)']}1, Gmnpq

+REN T A@)]TC, = 0. (5.23)

a; 70

émnpq

Once again, we must assume Gnpq and Gpngy are time dependent in such a way as
to solve (.23). Thus the conclusion of this section is perfectly consistent with the
conclusions of the previous section.
5.4 Spacetime (¢, z1, 22) components
We now study the spacetime components. The curvature tensors Rgy and R;; are
given by

Rij = —T]Z'j€2A_2B [DA + 38mA8mA + 48mA8mB + 20mA8mC] (524)

+ (A+64B + 42+ 24C)
Roo = 4728 [0A + 30,,A0™ A + 40,, AO™ B + 20,, A0"C] (5.25)
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- [2A+6(B+32 _ABY+2(C+C? - AC)}, (5.26)
using which the Einstein tensor G, is found to be

R §™o,hd,,h Ok

2h e Con2

G/J,l/ = - 77/»“’

A + 3A

, (5.27)

where we see that the overall time dependence is provided by 1/A(t). The above
equation should be balanced by the stress-energy tensor from the G-flux and correc-
tions, as well as from the membrane. The latter term is there because the almost
static membrane does contribute to the stress-energy tensor along the spacetime
directions.

The stress-energy tensor from the G-flux is given by

7;(VG) _ _nwj (8h)2 N GmnpaGmnpa N Gmnqumnpq Gmnamenab
AR T AR 44102 16R2[A(1)]2

. (5.28)

As expected, 7:5,? ) has a piece that scales as 1/A(t), so we should be able to maintain
the time independence of the G, components.
The stress-energy tensor coming from the correction terms can be found to be

T = h™ Y CA()]*IC,, (5.29)

Finally we will need the stress-energy tensor for the static membrane. The EOM of
the worldvolume metric gives us, in the case where the brane is moving very slowly,

Nuv

, = 0,XMo, xN NGy = ————. 5.30
Tu °w gMN Ju [A(t)\/ﬁ]zl/g ( )
Using this we can show that the stress-energy tensor is given by
2
T
TO = - Z 221 5800 Xy, (5.31)

o RA(VG
which is again suppressed by 1/A(t), confirming the time independence of the com-

ponents Gpa-
Again, we can split the full Einstein equation into a time-independent part:

1 ~
Ble—X)— —— CH*(5.32
on o mr T @ X) g {;_0 i (5:32)
where we have traced over the pu,v components using 7,,, and a time-dependent

part:

1 I
T p2/8 Z [A()]™ 1C,W = 0. (5.33)
{ai}#0

émnpqémnpq émnabémnab
S T NGE
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6. Analysis of the EOMs and Consistency Conditions

We have now split the Einstein equations into 6 equations, 3 of which are time
dependent, and 3 of which are time independent. To deduce the properties of these
equations, it suffices to look at the traced over form of each. The traced-over time
independent equation for the spacetime (u, ) components is

R Oh GonpaG™™ 15203 Ty68(z — X)) 1 5 i
v = Al = mnpa B w, i 1
(Qh on2 T3 ) T g 3h2/3 {QZ}::O G, (6:1)
whereas for the internal (m,n) components, it is
36hA + K13 N Ot = G, (6.2)

{ai}=0

Note that the flux contribution in (5.17) is traceless, so it doesn’t appear in the above
equation. Finally, for the internal (a,b) components the trace equation is

h’ a, 1
+9hA + —— d cri=o, (6.3)

where again the flux contributions from (5.23) do not enter. The last two equations,
(b.2) and (B.3), are quite similar and can be rewritten as

- 2 .
dooni= — 7 (R + 18hA), (6.4)
{ei}=0

- 1 -

d cri= — 55 (R +18hA), (6.5)
{ai}=0

from which we can read off that
d o Cmi=2 (6.6)
Using (p.9) and (6-3) we can also write
R=—1sha—ps L > grig > (6.7)
2 a 4 m )
{Q’i}:O {Q’Z‘}:O
which allows us to rewrite the constraint (6.1)) as

i a~mnpa 2 2 T 58 - X
_ gy = GG o 2T (@ — X)
12 V3
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- ) 1 ~ ) 2 ~ )
4/3 a, i m, 1 ) b
+h > ¢, + 4 Ca™ ' =3 Y Cmtl. (69

{a; }=0 {a; }=0 {a;}=0

N | —

There are three further equations that arise from (5:23) in the limit when a # b,
a=0b=3 and a = b = 11 respectively. These are

éamnpélrynnp_l'lQhMg Z ééb = 0,

{a;}=0
~ ~mn; ~ M, 1 sa, i i
G3man3 p i Gll,mnp 1 P = 24h4/3 Z <§Ca’ - 33) P
{al}z(]
~ ~mn, ~ ~mn 1 Sa, i 7
G3man3 P — Gll,mnp 11 P = _24h4/3 Z <§Ca7 - Cll,ll) . (69)
{a;}=0

If we now consider integrating equation (B.§) over the compact eight-dimensional
manifold, we see that the LHS integrates to zero as the warp factor h is a globally
defined quantity, and we get

1 ~ ~
E dsx\/§ GmnpaGmnpa + 12A/d8$\/§ h2 + 2H2T2n3
N D NAEE S SRR SR BTN
2 “ 4 " 3 H

{a; }=0 {a;}=0 {a;}=0

In the absence of fluxes and higher-curvature corrections the above equation implies
that the simplest solution will be A = 0, i.e. a four-dimensional Minkowski space.
This conclusion cannot be changed by the insertions of the type IIB Orientifold-
planes precisely because they become smooth geometries® in M-theory and therefore
cannot change the sign of A in the absence of any corrections. In the presence of
fluxes, and in the presence or absence of the higher-curvature corrections, it is not
difficult to see that the A < 0 solution is favored. However to allow a A > 0 solution
from (B.17), it is at least necessary to have the higher curvature corrections, because
the first three terms in (f.10) are positive definite. Moreover, if all the curvature
corrections in (B.10) add up to some positive value, a A > 0 solution will again be
impossible.

This means that for a A > 0 solution to exist, the curvature terms in (p.10)
should integrate to a negative definite value. This conclusion should be valid for all
possible choices of the globally-defined warp factor A and the internal metric g,,,.

8The “twisted sector” states appear precisely from smoothing the geometry in M-theory. The
higher curvature term C A Xg provides the gravitational couplings on the corresponding type I1IB
Orientifold-planes as will be briefly discussed above (F.d). The rest of the curvature terms from
Siop and gntop in (@) contribute to the higher curvature terms on the Orientifold-planes beyond
the Chern-Simons terms of ([-J) and ([-4). For more details see [[i5, [if.
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In particular, for certain choices of the warp factor the fluxes may be localized over
a small patch on the internal manifold (for example like the type IIB seven-brane
solution). Then the integral condition on the higher-curvature terms will have to be
realized at every such patch on the internal manifold. On a small patch, since there
is no local transformation that can make the metric flat everywhere, 5y * can be
viewed as the expectation or the average value on the patch, or more explicitly:

(M) = / /G BN (6.11)

In other words, for a solution to exist we must have the following condition

% > (e ">+i > cmy —% > e <o. (6.12)

{ai}zo {ai}:O {ai}:O

: corr ~i
Since T ~ C? .

this equation is almost analogous to (B.§) but expressed in the
language of curvature corrections.” This makes sense because only these corrections
will allow us to overcome the Gibbons-Maldacena-Nunez [[7, [§, [9 no-go theorem.
Under this assumption, (B.13) gives non-trivial constraints on the curvature correc-
tions required to have a four-dimensional de Sitter solution in Type IIB theory.

The curvature terms may be further constrained if we look at the time-dependent
equations. These equations are

Gmnqumnpq Gmnamenab

4 A =8hY% N (AT (6.13)
{a;}#0

~ - A2 ~ - oy~

Guomn G — 0L G G — g2 SO @ e (6.04)
a;#0

A(t) ~ pars 1 = ~mmva a;m, i

%qurstq - mepabG pab — _8h4/3 Z[A(t)] Zcm’ : (6’15)
a;#0

From the first equation above, and noting that both the terms on the LHS are
positive definite, we deduce one new condition on the corrections by integrating over
the eight-dimensional manifold:

> am(er’) >0, (6.16)
{a;}7#0

where a = A(t,) for a fixed t,. In fact (.I6) will be an infinite set of constraints
because, due to its time dependence, a® can take any (positive) values including

90ne subtlety however is that this constraint arises from the Einstein equations of an 11-
dimensional M theory, in which p runs from 0 to 2, while in (E) it runs from 0 to 3, so the
numerical factors are not expected to be the same in both expressions. We would have to redo
the calculation in IIB to get the same expression. However in both cases the condition is that the
four-dimensional curvature upon compactification be positive.
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arbitrary fractional numbers. Note that
c*"n >0 (6.17)

will always solve (p-10)) if the «; appearing in (p.I6) are not equal to each other.
However a generic statement cannot be made unless we actually solve all the EOMs.

In view of that we will only demand (6.1G) as our constraint equation. The other
two equations involve relative signs and therefore tell us nothing about the signs of

D tan#0Ca 0T D0 O

In total we have the following conditions on the form of the corrections:

3 2@y Y e < (e, (6.13)

{a;}=0 {a; }=0 {a; }=0

> am(cr’) > 0. (6.19)

{ai}#0

7. Analysis of the background fluxes and additional consis-
tency checks

The above set of conclusions was derived by analyzing the Einstein’s equations alone.
The next question is whether any conclusions are altered when the equations of
motion for the G-fluxes are taken into account. Before moving ahead with the exact
flux equations, we will do a more careful analysis of the background fluxes to see
how the type IIB fluxes should be viewed from our choices of the M-theory fluxes.
Imagine we rewrite the flux components in M-theory as [i7]:

N
G = Gupmda" Adz” Ada” Ada™ + Grpgada™ A dz"™ Ada? Ada® + Y FPAQY,
=1

(7.1)

where we have taken the time-dependent components émnpq and émnab to be localized
around certain singular points on the eight-dimensional internal space and we have
decomposed Gnp, into a delocalized and a localized piece as

5 il
Gmnpa = gmnpa + Gnifzpa' (72)
In ([1)), the localized pieces are contained in the last term, where the sum is over the

points at which the F-theory torus degenerates, the 2° are the normalizable harmonic
forms located at these points, and the F represent the gauge fields on the resulting
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D7-branes at these points in I1IB, such that only the F* are functions of time.!° Then
it turns out that the delocalized piece Gy, gives rise to the type IIB three-forms in
the following way:

vanpadxm Adz"™ N daP A dz® = 2(H3)mppda™ A da™ A dzP A da?
+2(F3)pmnpdx™ A dx™ A da? A dz't,  (7.3)

where Hjz and Fj are the NS and RR three-forms of type IIB theory respectively,
while the localized fluxes should appear as gauge-fields on the type IIB seven-branes.
A straightforward decomposition immediately gives us:

1
[anme » [avym {g— <|H3|2+|F5|2)+|F3|2]

B
N
+) /d%F"A*BF",
=1
N
/O/\G/\G—> /04/\H3/\F3+ Z/d%@/\F"AF", (7.4)
=1

where for the first relation, the first three terms appear in the type IIB bulk and
the last term collects the interactions on the D7-brane worldvolume. We have also
assumed that the self-duality of Fj is imposed via the EOM, so that the action is
explicitly non-selfdual. The five-form piece comes from the spacetime part of the
G-flux and the three-form fluxes come from the components G,;,qq. For the second
relation, the first term is the bulk term and the second one is the seven-brane Chern-
Simons term. The C' A Xg term gives rise to the couplings on the D7-branes and
O7-planes and possibly some contributions to the bulk interactions. For example we
expect some parts of C' A Xy to reproduce

o | Crn A JA(R) + a5 / Cron A /IR, (75)

where A(R) and H(R) are the corresponding A-roof genus and Hirzebrusch polyno-
mial respectively. We have also used the orthogonality condition for the components
of € to get the interactions of the seven-brane worldvolume gauge fields. Note that
this analysis only gives the abelian part of the gauge group (i.e the Cartan subal-
gebra), which could be extended to include a non-abelian gauge group by including
M2-branes wrapping vanishing 2-cycles of the fourfold.

Once the structure of the fluxes is laid out, the physics away from the singular
points will be captured by the delocalized fluxes only. The G-flux EOM ([.1§) then

10A discussion of these issues is also given in [@] and [ Note that the existence of these points
do not mean that the eight-dimensional manifold is singular.
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gives us the following equation for the warp factor h:!'!

1~ ~\mnpa 2'14’2T2 ~M7 ... M;
—0Oh = l_gmnpa(*gg) b + 8'\/5 (Xg)MlmMse 8 (76)
22T, 2k T 0Snio 0Sto
T sy = 2T sy g, OOt 05t

Vi V3 5Coz  0Co

where xg is the Hodge star with respect to the unwarped metric unless mentioned
otherwise, «; are coefficients that can be derived from ([L.1I§), and we take only
the delocalized flux components. Equation ([7.f) can be compared to the Einstein

equation:
= G gy 2T = X) | 2T V)
12 NG NG
4/3 1 Sa, 1 1 5 2 ~/J, i
+h 5 Z Ca’ + 1 Z C g H’ R (77)
{a;}=0 {a;}=0 {a; }=0

where we have re-expressed (p.§) in terms of the delocalized fluxes instead of the total
fluxes. The factors (ng, n3) denote the number of M2 and anti-M2 branes located at
(X,Y) respectively and Xg is defined in the usual way [pg] such that

/Xg = 21 )4X4, (78)

where the integral is over the eight-dimensional manifold with FEuler characteristic
X4, which could in general take any sign.

Comparing ([.7) and ([.G) we get the following consistency relation which should
be compared with the consistency condition that we had from (B.10):

1 4K2T2 n3 5Sntop 6Stop

émn a [émnpa - (*Sé)mnpa} + 12Ah2 + = 58(1’ - Y) - —
127 Vi st Com
1 | -2 . 2K°T: .
S D0 Gty 3 Griog 3 G| - g (K@ =0,
{a;}=0 {a;}=0 {a;}=0 8\/§

(7.9)

Firstly note that in the presence of curvature corrections and positive cosmological
constant A it is in general not possible to maintain the self-duality of the G-fluxes.
This may be more obvious if we re-express (B.9) using ([3) as

|H \2—|F|2—ﬂ3 Ci, - Ct (7.10)
3 3 - 12 11 33 ) :
{al}z(]

"'We have defined the covariant derivative D, in the following way: D G =

0, (V=gGT)
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which may not be consistent with Hy = — *g F3 and F3 = x¢H3, where xg is the
six-dimensional Hodge star measured with respect to the unwarped metric. In other
words:

gNmnpa o (*8g~)mnpa ?é 0’ (7‘11)

meaning that supersymmetry should be broken to allow for a positive cosmological
constant. One may also note that the contribution from the anti-M2 branes in ([7.9)
allows the self-duality of the G-fluxes to be broken even for vanishing cosmological
constant A and vanishing higher-order corrections. This means supersymmetry can
be broken in flat space by the anti-M2 branes.

The above relation can in fact be extended to the full G-fluxes, i.e. including
both the localized and the delocalized pieces. To show this we make use of another
component of the G-flux equation, finding

~ ~ ~ 1 ~\ gmn,
A(t)D,G™™ + D,G*™P = % [A(t)qu"P - <*8G)q p} (7.12)

duh [~ 1/ ~\ammp 6Snto 6So
Gamnp G 3 D 7
h |i 12 <*8 ) :| 156mnp 255mn17’

which is expressed in terms of the total fluxes and is again consistent with ([.11)). In
deriving the above equation we have assumed

(Xs)orzns, .., = 0- (7.13)

Note that for the delocalized flux components ,C’:mnpa, away from the singular points,

([12) simplifies to

Crmnpq=0
(7.14)

il —
Girsipa=0

5Sntop + ﬁ2 6§top

oy 3G

Dagam"p = % [gamnp . 11_2 (*85) amnp} N

meaning that the delocalized flux components are not covariantly constant. Another
consequence of the above equation is that the G,,,,, components will continue to
remain time independent provided

Grnpg=0

0 = 0, (7.15)

ot

5§ntop + ﬁ2 5§top

A 3Cp  5Chmp

Glafipa=0
giving us another constraint on the curvature corrections in the theory, although
solutions should also exist for cases which violate this constraint and hence require
a more general analysis that includes a time dependence for émnpa.

Now looking at ([.11)) and ([(.§) we conclude that a four-fold with negative Euler
characteristic x4 may easily accommodate fluxes of the kind ([.I1)) and simulta-
neously account for the supersymmetry breaking, although this is not a necessary

— 929 —



condition for a solution to exist. In other words, without loss of generality, we can
demand

1 ~ ~\ mnpa
Z/\/ggmnpa (*8g> ' - /H3/\F3 < 0, (716)

which in turn can be made consistent with the first equation in (p.9), namely

[ oG (B = =33 (C4), (7.17)

a; =0

provided »_, _(C4,;) > 0. This could be taken as another constraint on the curva-
ture corrections, which applies in the case that y, < 0. A similar constraint would
apply for the case x4 > 0.

Yet another possible class of solutions are those with vanishing Euler characteris-
tic x4 = 0. These solutions could correspond to an internal M-theory eight manifold
that is an elliptical fibration of a Calabi-Yau threefold, since the Euler characteristic
of the eight manifold is related to the Chern classes of the base by [[3J]:

X4 = 12/ ci(ea +30c3). (7.18)
B

If the base manifold is Calabi-Yau, then ¢; = 0, and hence x4 vanishes. This, in
conjunction with the condition R = 0, leads to its own set of solutions, with the
modified conditions:

> Gy <0, (7.19)

{a; }=0
> (Cr =0 < 0. (7.20)

{a;}=0
As an interesting corollary, in the absence of any curvature corrections and due to
(B-2), (63) or (B.4), it is impossible to get a four-dimensional de Sitter spacetime if

the internal six-dimensional base of the M-theory eight-fold is a Calabi-Yau manifold
because

R = —18hA. (7.21)

We now make a few observations. Note that to stabilize all the complex structure
moduli, we will have to switch on G-fluxes in the internal manifold. The vanqa
components are the ones that will do the required job for us. However due to the
background constraint ([.11]) we cannot allow supersymmetric fluxes. In fact we
can extend ([.11]), by incorporating the localized fluxes in ([.§) and ([.7), to full
G-fluxes Grunpas Gmnpg and Grupgs. This means, in addition to ([.I1) we will have
another relation

Gl — s, Gl £ 0, (7.22)
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where %, is the Hodge star on a four-dimensional surface ¥, inside the six-dimensional
base of our eight-manifold. Since the localized fluxes are related to the gauge fields
on the seven-branes wrapping >4 in type IIB theory, this immediately implies that
the gauge fluxes (both the abelian and the non-abelian pieces) will create a D-term
potential satisfying the background constraint relations ([.9) and (p-10).

In addition to that, the decomposition ([(.J) switches on an FI term from the
H; = dB, of vanqa and from the Iy = dA of @ﬁ;;;qa, proportional to

F-NF~ (7.23)
4
where F~ = F — x4, F and we have defined F = F, — Bs.

Since the background supersymmetry is broken by the G-fluxes, the F-term is
explicitly non-zero allowing us to switch on a non-zero D-term in the presence of
higher-curvature quantum corrections. The fact that the F-term and D-term are
related to each other can be inferred from the decomposition ([.9) where both three-
form and gauge fluxes in type IIB are sourced by M-theory G-fluxes. This way we
take care of the issues raised by [[1].'? Note that in the absence of the quantum
corrections, this wouldn’t have been possible.

Finally, we need to switch on D-brane instantons that would help us stabilize
all the Kéahler structure moduli, including the volume moduli. As mentioned earlier,
we have to make sure that the internal manifold is stabilized at large volume so that
the dynamics can be captured by the set of EOMs described above. In the presence
of the D-brane instantons higher-curvature terms are automatically generated (some
aspect of this will be discussed in Section f). These curvature terms are the last
pieces of the link required to satisfy the consistency relations (f-17) or ([-9).

Thus both the fluxes and the curvature corrections are therefore necessary con-
sequences of stabilized moduli in this set-up. As such they could lead to a positive
cosmological constant solution, and a natural realization of D-term uplifting [B4].

8. A discussion on the curvature corrections

In this section we discuss in more detail the possible origins for the higher-order
curvature corrections’® we have argued might allow for construction of de Sitter
vacua in IIB compactifications. While our calculations were done in M-theory, it is
interesting to first look at the corrections that can appear in type IIB string theory.
These terms can be sourced by tree- and loop-level n-graviton scattering amplitudes,

or equivalently loop corrections to the underlying o-model, and are also induced by

121t will be interesting to compare our results with the ones in [@] regarding D-term uplifting.
13We will restrict ourselves to R™ corrections as these have been studied in more detail than the
G" corrections. For an analysis of G™ corrections, the readers may refer to [@, @]
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D-instanton corrections. The general form of these corrections is given by (adopting
the notation of [4], combined with [65] but with the substitution s = (m + 6)/4):

(@) " Z50 ) D R (8.1)

where tmmDQmR" is the contraction of 2m covariant derivatives and n Riemann
tensors with a tensor t,,,. The coefficient Z;f,jw/ is an eigenfunction of the Laplace
operator on the fundamental domain of SL(2,7Z), with modular weight (w,w"). This
coefficient can be written as an Eisenstein series [(5], and is necessary for SL(2,7Z)
invariance of the corrections to the action.

The lowest-order correction can be calculated from 4-graviton scattering; see for
example [B] in type II and
both tree level (at order (a/)? ) and at the one-loop level. In the calculation by Gross
and Witten [p7], this led to a gaussian path integral that can alternatively be written

67 in Heterotic, which induces a D R* correction at

as a contraction of four copies of the Riemann tensor with two copies of a rank-8
tensor denoted ts. This allows one to write the correction as (equations 10 and 11 of
Gross and Witten):

[ Aviaug exp [T T 0 Buuar . (82)
or in terms of the tg tensor:

M2 . 18 $V1V2... U8
t t Rmuszz Rugmugm RM5M6V5V6 Rmusl/wg ) (8'3)

with the tg tensor defined by

VAetTH E,, = thbedsp B F. (8.4)

The above correction is often written in the literature as simply tgtgR*. Another
approach to calculating this correction is to consider loop corrections in the sigma
model (see for example [BY]), where an n-loop effect will lead to an R" correction
that is order (/)" in the corresponding string theory. Collecting all the terms at
order R* yields a correction of the form:

(%610610 — tgtg) R4, (85)
where € is the rank-10 totally anti-symmetric tensor .

One might also wonder if there are R? or R? terms. The sigma model analysis
does not produce these terms, which would indicate that type II theories are protected
from o2 and o corrections, as shown in the sigma model in [69]. This was also done
in the context of type I, II and heterotic string theory in [[[(], which confirmed
the result that R? and R? corrections do not appear. One can also check that
RS terms do not arise, and in fact the next corrections coming from the tree-level
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graviton scattering are D?R*, D?R5 and RS, all at order (o)® (see table I of [74]).
At the loop level, there has been recent work [[(3], [/6, [[1] showing that perhaps

2 can become important in a certain class of

string loop corrections at order g2(a)
compactifications (dubbed the Large Volume Scenario).

Another contribution comes from calculating the graviton scattering amplitude
in a D-instanton background, as was done by Green and Guterperle [(g], which
gives an extra contribution to S ) that is neccessary for the correction to be
SL(2,Z) invariant. The coefficient for the D°R* correction has modular weight
(w,w") = (0,0), and is given by (equation 1.15 of with s = 3/2, or in our

notation, m = 0):

3/2 —-1/2

Zy = 2¢(3)CO7" £8¢(3)c© (8.6)
47y " ik, 3/2) exp [—2m(|k|e™ — ike™*)] \/|k| <1 + W + ) :

k40

where C© and ¢ are the axion and dilaton. The first term on the RHS is the tree-
level correction, while the second term is the 1-loop correction. The set of terms
on the second line is an infinite set of D-instanton corrections, with the function
w(k,3/2) defined as in Appendix A of [B5].

The picture in M-theory is slightly simpler, as there is only one curvature su-
perinvariant. A review of the corrections to M-theory supergravity, as well as the
supersymmetrization, can be found in [[fd], while the detailed derivations can be
found in [BO] and [BI]. A feature of the M-theory picture that is fairly well un-
derstood is the necessity of an additional Chern-Simons term to cancel the 5-brane
anomaly, via anomaly inflow. This term takes the form

C A Xg, (8.7)

where Xy is built out of R*. As this term includes a factor of the M-theory 3-form
flux, it will contribute to the equation of motion of the fluxes.

A key feature of these corrections is that the form of the contraction conspires to
choose only the Weyl part of the Riemann tensor, such that the corrections vanish
on manifolds with vanishing Weyl tensor. This was shown explicitly by Banks and
Green in [B7], where they considered AdS5 x S°. This is great news for AdS/CFT,
since the correspondence is protected from loop corrections. However, it makes the
search for scenarios where corrections may be important a non-trivial exercise. One
possibility for finding non-negligible corrections is to consider Calabi-Yau manifolds,
and indeed this is the internal manifold used in the 4D effective picture of these
corrections in Kahler Uplifting [BY, fJ]. However, this introduces a new difficulty:
many Calabi-Yau manifolds can not be given an explicit metric — for example the
explicit realization of Kahler uplifting in [[I0] is done on CP''%.
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9. Conclusion

This paper has been a close examination of de Sitter solutions in Type IIB string
theory, from the perspective of the 10-dimensional equations of motion (and the
corresponding 11-dimensional M-theory equations). We have reached two key con-
clusions:

1. By applying the Gibbons-Maldacena-Nunez No-Go Theorem [17, [I§, 9] to
localized static sources we have found that the inclusion in IIB supergravity
of Dp- branes, anti Dp-branes, Op-planes, and by extension any linear com-
bination thereof, does not lead to positive curvature in the 341 non-compact
directions.

2. The addition of curvature corrections, sourced by D-instantons as well as tree
and loop-level graviton scattering, may lead to a de Sitter solution in the 3+1
non-compact directions, although an explicit construction of this would require
specifying a metric on the internal manifold as well as a subset of correction
terms to consider. Furthermore, this solution naturally leads to compactifica-
tion with broken supersymmetry, all moduli stabilized, and the generation of
a D-term in the scalar potential of the 4d effective field theory.

The first result is a fairly simple extension of the analysis performed by Maldacena-
Nunez [[9], and Giddings, Kachru, Polchinski [p(], among others. Our assumptions
in deriving this were limited to demanding (i) maximal symmetry in the 341 di-
mensions, as well as (ii) positive curvature in the 3+1 dimensions. Since we only
consider time-independent matter configurations, the 3+1 dimensional non-compact
spacetime we are looking for is ‘pure’ de Sitter, as opposed to quasi-de Sitter as is
usually considered in cosmology. However, to construct any 3+1 dimensional pos-
itive curvature geometry, the stress-energy tensor must satisfy the condition (2.8)
regardless of the symmetry, and in particular regardless of time dependence.

Note that there are many existing proposals which we have not considered, for
example ITA on nilmanifolds [B3], IIA on solvmanifolds [B4], and non-geometric fluxes
[B3]. These proposals should also be subject to condition (2.8).

The second result is a non-trivial check that curvature corrections do indeed
evade the No-Go theorems. In this calculation we have used an ansatz for the effec-
tive stress-energy tensor induced by the curvature corrections, which we view as an
appropriate way to proceed given the freedom to set the internal manifold as well as
the complicated (and not completely known) form of the curvature corrections.

A worthy question at this point would be the sensitivity of our second result to
the form of the ansatz, as it is entirely possible that some choices of internal manifold
do not lead to curvature corrections that can be parametrized in this way. Thus a
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conservative restatement of our second result would be as follows: given a class of
internal manifolds that allow the time dependence of the curvature correction to be
isolated from other contributions, there do exist de Sitter solutions provided a set
of consistency conditions (6.1§) - (.19) is satisfied. This hints at interesting further
work, to clarify the consistency of our claims with the work of Sethi et al. [20] which
found that such corrections in Heterotic theory do not lead to dS solutions.

Upon studying the dS solution obtained via curvature corrections, we uncov-
ered a number of interesting features. Solutions exist for any choice of the Euler
characteristic of the internal manifold, including an elliptic fibration of a Calabi-Yau
threefold. Furthermore, this setup generically leads to non self-dual fluxes, which
break supersymmetry, and induce a D-term in the scalar potential, suggesting that
this construction may be a realization of D-term uplifting [B4]. The moduli of this
setup can be fully stabilized: the complex structure moduli are fixed by the fluxes,
while the Kahler moduli are stabilized by the D-instantons, which in turn source the
curvature corrections. Hence our analysis indicates that curvature corrections can
do the job at hand.

This work has opened up several directions for future research. One option,
motivated by the desire for a deeper understanding of string theory, is to continue the
investigation of de Sitter solutions, using dualities to relate the solutions in different
string theories. This has the potential to clarify subtleties of dualizing non-BPS
states, and to allow one to ‘map out’ the space of dS vacua in string theory.

An alternative way forward is to push this work closer to cosmology, and in par-
ticular, inflationary cosmology. While the full 10d equations do not lend themselves
to model building, this approach does provide a clear path to studying compactifica-
tions with a time-dependent scalar curvature (‘quasi-dS’). The appeal of this option
lies in building self-consistent embeddings of inflationary cosmology in string theory,
with the (albeit ambitious) goal of teasing out distinctive signatures of string theory
in the sky. As has happened before, it may be that effects from a full 10-dimensional
construction result in observational signatures which do not arise in the effective field
theory approach.
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